PostgreSQL 8.0.0 Documentation

The PostgreSQL Global Development Group

PostgreSQL 8.0.0 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2005 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2005 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE

AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

L (=] = (o TSR i
1. What iS POSIOrESQL 2. ..ceeieeeeeecieseseseeeeee st se ettt e e srestestesee e enennensenes i
2. A Brief History Of POSIGreSQL. ..ottt st ii

2.1. The Berkeley POSTGRES PrOjJECL.......ccovirieirieireenietesese e ii
2.2, POSIGIESO5....c.ee ittt e e nren ii
2.3, POSIGIESQL. ...ttt e iii
B T @0 1= o1 1o o 1= TSR iii
o N1 a1l T (o] 4 aT= LT o SR iv
5. Bug RepOrting GUIEIINES.........coiiiiiriierierieeree ettt iv
5.1, 1deNtifying BUGS......c.civeuirieiirieiirieieieieesiee ettt iv
5.2, WRALE L0 FEPOLL. ...ttt v
5.3. WhHEre t0 repOIt DUGS......cceiiiiiiiiiinieerieiereet ettt sneea vii
TR 1110] = 1 USSR 1
1. GEttiNG SEAMEM. ..ot b et et b e s bt e b e e e e ebeebeseeseen 1
I O [151 7= = LT o OO 1
1.2. Architectural FUNdamentalS..........cccociiiiiiieiee e s 1
1.3. Creating a Database.........ccocceiiieeie e e e 2
1.4. ACCeSSING @ DAtabase..........cccevvieeieiicese e 3
P o TSI O L I - T To T - Vo T SRS 6
2.1, INEFOAUCTION.....etiieee ettt ettt ettt b et sb bt ne et ebesbeseesren 6
A ©10] g To1=T o] £ TSRS 6
2.3. Creating @ NeW Table.......c.ccv i ens 6
2.4, Populating a Table With ROWS.........ccccoviiieieeeece e 7
2.5. QUENYING @ TADIE.....c.eoecece et re s re e nnens 8
2.6.J0INS BEtWEEN TabIESot 10
2.7. Aggregate FUNCHONS. ..ot r e e 12
B2 < T U o o - =1 13
2.9, DEIEBLIONS ...ttt ettt et b e ere e 14
3. AQVANCEA FEAIUIBS......ccuiie e seeeeeeeere s te e e e et se e saesaeae e e e esesaeseeseenseneenensesenns 15
B 700 I T 1 0T [T 1o 1o P 15
G T Y 1= S 15
3.3, FOreigN KEYS.....oeeeeee ettt s bbb 15
B I - g 7= od 1T T S 16
BT] =1 = g = PSP 18
B 7L T O o T (o] 113 o T S 19

[I. ThE SQL LANQUAGE.c.ectieitieetiirieeriees ettt s bbb 21

4. SQL SYNTAX.....cctiitiieeeietise sttt et r e r e e nne 23

4.0, LEXICAl STIUCTURouiitiie ettt ettt st st se e nesae e 23
4.1.1. Identifiers and Ky WOIAS.........ccoureiririeninese et 23
4.01.2. CONSEANTS.....coitiiieiie ettt b e b ae e b s ae e e sae e e e besaeenneereenes 24
4.1.2.1. String CONSLANLS......cciiiiiiirierie et 24
4.1.2.2. Dollar-Quoted String Constants..........ccoeoeervereneneneneeesenies 25
4.1.2.3. Bit-String CONSLANLS........cccoririeeeirere e 26
4.1.2.4. NUMEIC CONSLANLS......cooiiirieieeeieneerie et 26
4.1.2.5. Constants of Other TYPaS......ccccveeveveceerereee e 27
R T @ T 011 = | (0] = YRS PRPRP 27
4.1.4. Special CharaCterS......ccccvueiieeeiisie st 28
4.1.5. COMMENTS. ..ottt n e s e sr e e resreenenre s 28

4.1.6. LEXICAl PrECEUBNCE. ... eee ettt et sneas 29

4.2, ValUB EXPIESSIONS....c.civiiireeeirietireetiseeteesie st sseie st se e se bbb s se e neens 30
4.2.1. ColuMN REFEIENCES.eieeeeeeeiee et 31
4.2.2. POSItional ParameterS.........ccoviiiirereieeeee e 31
4.2.3. SUDSCHIPLS ...ttt ettt 31
4.2.4. Field SeIECHON........cooiieeeeeee e 32
4.2.5. Operator INVOCAIONS.......ccceerereieeieeeeee ettt ere s 32
4.2.6. FUNCLION CallS......oiiiiiiieeeeieeee et 32
4.2.7. Aggregate EXPreSSIQNS. ...t 33
4.2.8. TYPE CASHS. ..ottt ettt ettt se e s e et s a e n b s 33
4.2.9. Scalar SUDQUETIES. ..ot 34
4.2.20. Array CONSIIUCTOIS......couerueeiietieiesiesee ettt sre e see e see b sreenesne s 34
4.2.11. ROW CONSITUCTIOLS. ..c.ueitirieetisteeeesie ettt s 36
4.2.12. Expression Evaluation RULES..........ccccceveeieviciesc e 37

5. Data DEfINITION........oiuiieiieeeeeeetere ettt b b e e aesae e 38

5.1, TADIE BASICS....c.eiiieceeeeterte ettt e 38

5.2, DEfaUIt VAIUES........c.eoiieeieie et 39

LIRS I @70 0 £ 1 7= 11 | £ TSR PSRRI 40
5.3.1. CheCk CONSIIAINLS......cccoiirieirieenieie sttt s ebe s sbe e 40
5.3.2. NOt-NUII CONSEIAINTSoveiiieirieirieeriee e sre e 42
5.3.3. UNIQUE CONSIIAINES......eceieeeeeiesiesieseeeeese et se e e e seesae e saesesnesnens 42
5.3.4. PHIMArY KEYS.....cceieitiitisteieieeiestestesteseeeeessese st aesae e e snessesaeseenessensessnsnens 43
5.3.5. FOrEIgN KEYS.....o ottt sttt sttt s nnens 44

5.4, SYSIEM COlUMNS......iiiitiriiierieierie ettt st s ebe e sbe e 46

LR T] =) - g (= 48

5.6. MOdifying TaDIES.....c.oiviiieirer et s 50
5.6.1. AddiNG @ COIUMN......cuiiiiiiiiiiet e 50
5.6.2. RemMOVING @ COIUMUI.......ccoiiiiiiiirieerieie et 51
5.6.3. AddiNg @ CONSIIAINT........ccoveirieirieereee e 51
5.6.4. Removing @ CONSIIAINL.......cccoeirieireereeeseeieee et 51
5.6.5. Changing a Column’s Default Value.............ccoeoveiniinninnnccnees 52
5.6.6. Changing a Column’s Data TYPE......cccveerrererreierieereee s 52
5.6.7. Renaming @ COIUMMN........ccooiiiiriiree ettt 52
5.6.8. Renaming @ Table..........coviiiiiiiieee e 53

LT o 41V (=T TSRS 53

5.8 SCREMAS ... bbbt e 54
5.8.1. Creating @ SChema.........ccooiiiiiire e 54
5.8.2. The PUbIiCc SChema.........ccooiiiie e 55
5.8.3. The Schema Search Path...........ccocooiiiiiiiiine e 55
5.8.4. Schemas and Privileges..........ccouiiriiririni e 56
5.8.5. The System Catalog Schema..........ccccoooveiiiii s, 57
5.8.6. USAQE PAlBIMNS.......ceiiiiiiiiiieesie sttt st st snee s 57
5.8.7. POrability........cccoeeieieeese e s 57

5.9. Other Database ODJECLS.......ciicveiererieceere e s ene s 58

5.10. Dependency TracCKimg........cccevieierierieeiere s eseeses e et eae e eee e ae e s e sneenes 58

6. Data ManiPUIALION........cceiieeceeic st sttt testesr e e eneenesaesrens 60

(ST TS T o] To = = S 60

(SR U Lo F-1 (] o N == S 61

LSRRG B =111 g o [I | = VOSSP 61

7. QUETIES. ..ottt iteeete et et et et eete st e e st e e b et e e be e st e sbesaeesbesbeeabeebeeaeanbesbeensesbeeatesbesbaenbesbeennesresnnes 63

7.1 OVEIVIEW. ...ttt sttt sttt st st st sttt ettt e st se e b sb et e seebeneebenesbeneas 63

7.2. TabIe EXPreSSIONS....c..ciiiitiriitiieieerteesieie ettt sttt s ebe e sne e 63

T.2.1. TREFROMCIAUSE......eeeeitieieceet e eeeee e stee e tee et e st e e s ete s s eaeessabeesssseessreessabenean 64

472 0 I o T 1= To B =] =S 64

7.2.1.2. Table and Column AlIASES......ccocerererereeeere e 67

7.2.1.3. SUDQUETIES. ...t 68

7.2.1.4. Table FUNCHIONS......cccci i e 68

7.2.2. TRAWHERECIAUSE.oviieieeeieetesie et snens 69
7.2.3. TheGROUP BENAHAVINGCIAUSES......cceiiriireiieieeeeeiesie e 70

7.3 SEIECTE LISES...c.eiieieeeeeee ettt et st b e e 72
7.3.1. SeleCt-LISt IIEMS.....couiiiiieieeee et e 72
7.3.2. COlUMN LADELS.......oiiiiiieeeee e e 73
T.3.3.DISTINCT oiiiteiitieiiteiteesee st este e st e st e s beesreesbeessbeesseessesssbeesseesseesaseenbeensessasean 73

7.4. ComMDINING QUEIIES. ..ottt st sb e e 74
AT Yo 1 1] o 1 L) = 74
ST I =V Lo [T 0] 75
S T L= ez B Y/ 61T TSRS 77
o J0 O 10T =T ol 1] 1= 78
S J0 O I [01 =T o =T Y o 1= S USSR 79
8.1.2. Arbitrary Precision NUMDEIS.........ccccoceirieii e 79
8.1.3. Floating-PoOiINt TYPES....ccieieieeeeese s seeeees st e et snens 80

S I Y=Y =Y I 1Y o 1= T 81

o JZ N Y (o T U= =V Y Y o= 82
IR T O =T = (o (T g)Y/ 0 1= 82
8.4, BiNAry Dat@ TYPES....cccveerierieriereeiresestestes e seesee e sseste s e seeseesessessesressenseseensesessesseses 84
8.5. DAtE/TIME TYPES.. ettt sttt st be st st sbe e 86
8.5.1. DAte/TIME INPUL. ..ottt s 87
B.5.1. 1. DALES....ccieeerieeee ettt e et 87

S IR0 T2 I 1= 88

8.5.1.3. TIME STAMPS.....eiiiiiiitiirieireeeree et 88

8.5. 1.4, INTEIVAIS.....cciiiiirieeee ettt st 89

8.5.1.5. Special ValUES.........cooiiiicrcc s 90

8.5.2. DALe/TIME OULPUL....oeeieiirieierieiereet ettt eb e e 90
8.5.3. TIME ZONEBS ..ottt sttt s nne e 91
8.5.4. INTEINAIS.....ciieeeee e e 92

8.6. BOOIEAN TYPE... ittt ettt b e e eb e s eb e ene e 92
8.7, GEOMELIIC TYPES. .. ettt rie ettt sttt ettt e e e e aeeaesb et e bese e e eneebeneeses 93
S A I = o T | £SO 93
8.7.2. LINE SEOMENLS.....couiiuiiiiieieiee ettt ettt et e sbe st see e e e sae e 94
8.7, 3. BOXES... ittt bbb et bbb e e 94
B.7.4. PANS....ociicice ettt 94
8.7.5. POIYGONS. ..t e e 94
B.7.68. ClICIES .ttt ettt e 95

8.8. NetWOrk AdAreSS TYPES.....covieeieieeeesie ettt sttt e e e st neere s 95
BL8.LUINBL it 95
BLB.2.CHAI e ——————————— 96
8.8.3.INBL VS.CIAr cooeeiiii e e 96
8.8.4.MACAUAN ...eiiiiiiie it e 97

8.9. Bil SIHNG TYPES ... teeeeee ettt s e e st et e e e e e enenrennenes 97
S IO 4 - | T PO PRPRRURRPI 98
8.10.1. Declaration Of Array TYPES......ccvierereererieresesesieseesesseseseeseeseesassessesnens 98
8.10.2. Array Value INPUL.......ccerieeeeeese st a e snen 98
8.10.3. ACCESSING AITAYS....ccuirieiereeeerisiesteseeseeesessessestessessesessessessessesssnsesessenns 100
8.10.4. MOAIfYING AITAYS....c.eiirieirieiriee sttt sttt 101

8.10.5. Searching inN AITAYS......cccoeireiree ettt 104

8.10.6. Array Input and OULPUL SYNTAXccccreririeierieinieeree e 104
8.11. COMPOSILE TYPES...cecteerteerteeriee sttt sttt sttt b ettt nnes 105
8.11.1. Declaration of COMPOSILE TYPES.....ccerervererieiirieirieeseeie e 106
8.11.2. Composite Value INPUL..........ccoriiireene e 107
8.11.3. Accessing COMPOSItE TYPES......ccerreririerenieeriet e 107
8.11.4. Modifying COMPOSILE TYPES....ceiirererereriereenierie et 108
8.11.5. Composite Type Input and OUtPUt SYNLAX.......ccceververereriereeierenene 108
8.12. Object Identifier TYPES.....ii ittt 109
8.13. PSEUAO-TYPES ...ttt sttt sttt ae b et sa e bt e e ene e 111
9. FUNCLIONS ANA OPEIALOLS.......citirieitiiiieeeeeie ettt bbb e e sbe b e see e e e s nesne e 113
9.1, LOQICAl OPEIALOLS......ceueruerterie ettt ea st e et sbe bt a et eaeeaas 113
9.2. ComMPAriSON OPEIALAIS.......cceiveieerieieeieseeeeste st esee e eseesteseesesteseessesreesaesresneens 113
9.3. Mathematical Functions and OPeratorS........cccceveveeceevereeieseeceese e see s 115
9.4. String FUNCtions and OPEratQrS.........cccvveeerereereeseeieeseseese e e e see e e saeseeeens 118
9.5. Binary String FUNctions and OPeratorS.........ccceveveeeeereseeieseseeseeseeseeseseens 126
9.6. Bit String FUNCLIONS and OPEratOrS........ccccueeeeeereereeieeseseee e eeeseeseeseeseeeeens 127
9.7. Pattern MatChiNg.....ccvcoveicieie ettt sttt ne e 128
.7 L.LIKE .ottt sttt 128
9.7.2.SIMILAR TO Regular EXPreSSIONS........cccecvvrrererereeseseseseseesessesessenns 129
9.7.3. POSIX Regular EXPreSSIONS......cccovvevveeeiereseseseseeseseseseseesesssssessenns 130
9.7.3.1. Regular Expression Details.........c.ccoevvvveceniniesennnerereeeseen 131

9.7.3.2. Bracket EXPreSSIiONS......ccccveeeeeerereeseeseeeseseseessesseseeseeessenees 133

9.7.3.3. Regular EXpression ESCapEs.......ccocevveiereennenenenese e 134

9.7.3.4. Regular Expression MetasyntaX..........ccccoeeereerrienerenesienennens 136

9.7.3.5. Regular Expression Matching Rules..........ccccoevvcvvievereccnnnnn, 138

9.7.3.6. Limits and Compatibility..........c.cooerreireiinienrerrereseeseeee 139

9.7.3.7. Basic Regular EXPressions..........cococoeieneensensenesienesieesnene 139

9.8. Data Type Formatting FUNCLIONS..........ccovirririnieee e 140
9.9. Date/Time Functions and OPEratQrS.........ccoceereererieierieeseenee e 145
0.9. 1. EXTRACT AAE_PANM .ocvieeeeeereeeeesiesteeie st seeste e e e be e e seesaeeesseeennans 148
0.9.2.daE_trUNC eieeeeetietiee ettt et e e s e e e e e 151
9.9.3.AT TIME ZONE......iccitiiteeiteiiiteeiteestessteesteestessteesseeste s sateeseensessraesnsesnseesens 151
9.9.4. CUIeNt DA/ TIMEccuiiiiieeeeeieete et 152
9.10. Geometric FUNCtIONS aNd OPEratorS.......cccooeeeeereriereereeeeeee e 153
9.11. Network Address Functions and Operatars...........ccoeoeeeeerierenenereeneeienenens 157
9.12. Sequence Manipulation FUNCLIQNS.........cccooiririeie e 158
9.13. Conditional EXPreSSIONS.ccueieererierieierie ettt sae s 160
9.13.L.CASE ..ttt bbbttt 160
O0.13.2.COALESCE ...cttiiit ettt ste sttt sttt st st e bbb saa e e e re e e 161
O.13.3UNULLIF 1.ttt sttt 162
9.14. Array FUNCtions and OPEratOrS........ccceeeeveeieiee e eceeseseese e seesae e 162
9.15. Aggregate FUNCHIONS........cccoov ettt eneens 163
9.16. SUDQUETY EXPrESSIONS....ccviiuiieeieesteeieseseetesteeseesteseeste s etestessnesaesseenaesseeneens 165
9.18. LEXISTS e cutirireeteresteses ettt stttk b bt b et 165
D.18.2.IN ettt 166
9.16.3.NOT INuriiirereerereieres st et r e b s ennen e e nnenas 166
9.16.4. ANYSOME......ocriuiieresrereiie sttt r e n e nnenas 167
D.18.5.ALL 1.ttt 168
9.16.6. ROW-WIiSE COMPANISQN....ceeieririeriereereeereseeseesteseeseesessesseseeseeseeseesessenns 168
9.17. Row and Array COMPATISONIS.cuiuruerrerereereeeeessesseseessesessessessessessessessesessesses 169
LS 0 0t 0 RS 169

Vi

O0.17.2NOT INtiitiiteeeeeieee ettt et en e r e e 169

9.17.3. ANYSOMERBITAY)..c.eeveuerrenereeierieieseetesestesestese bt see st e s s se b e b saenesnns 170
.17 4 ALL (BITAY). .t ttetereetereeteestee sttt st et et sbe e sbe st se e s b et et be e nnees 170

9.17.5. ROW-WiSE COMPAIISON......cuiriruirerterirteririee sttt 170

9.18. Set Returning FUNCHONS........c.coiiiirieeee et 170
9.19. System Information FUNCHONS..........cccoiiiriirneree e 171
9.20. System Administration FUNCHONS...........ccoeieiirereie e 176

10. TYPE CONVEISION. ...cuuititeeeieeeteeteste e seeeeie s e st e bestese et ebesbesbesee s aneesesaesaesbesbeseeneeneeneseas 179
F10. 1. OVEIVIEW....c.vetieereeeeeeeeie ettt see st it st sae e e e e et e s sbesbeseeseeneeneebesbeseesanseneeneanens 179
110.2. OPIALOIS. .. eeteeueeteeteete ettt sttt sttt st se e et et sbesae e e sbeeaeesbeeaeeseesaeeasenbenneenes 180
B0 R e o 1 o] o USRS 183
10.4. VAlUE STOFAQE.coeeueeierieete ettt st b e e b e e e ene s 185
10.5.UNION CASE aNdARRAYCONSIIUCES......ccuerueeeereeiesiesie e s snens 186

L1 INAEXES. ..ttt et b ettt b e bbbttt Re e h e b b e e neene e 188
0 R 111 o To [B od 1 o o T PP URTUPTUTPRPRRTRN 188
I [T oGl Y/ o= S 189
11.3. MURICOIUMN INAEXES.......eiviieiieeeeeieei e e ene 190
11.4. UNIQUE INUEXES....cveeieeieeectictesie ettt st e e e e ste e st se e s snesresanseneneenens 190
11.5. INAEXES ON EXPIrESSIONS.....ceieieeeeeeetisiesiistesieseeesestes e sseseeseesessessessessensessesessens 191
11.6. OPEratOr ClaSSES. . cuciierristisiereeieeeseseseestesaesee e s e ste e s e seeeese s e ssessessenseseneasens 192
11.7. PArtial INDEXES.....ccucirieeirieiieiesie ettt 193
11.8. EXamining INAEX USAQE.......cccevereeerireieiriiieeeesessesessesesessessesssssessensssessessens 195

D2 o o Tt U L =Y a1y Y @] 1 (o S 197
22 R 1 To 113 1T o TSRS 197
12.2. Transaction ISOIAtION.cccererieieire e e ene s 197
12.2.1. Read Committed Isolation LeVel.........cccccvovvvvvnerecene e 198

12.2.2. Serializable 1S0lation LEVEL...........coeveeeerierrreee e 199

12.2.2.1. Serializable Isolation versus True Serializability................. 200

12.3. EXPlICIE LOCKING ..ottt e 200
12.3.1. Table-LeVel LOCKS.......cciieeeeecesese e 201

12.3.2. ROW-LEVEI LOCKS.......ciiieiieeeee ettt 202

12.3.3. DEAAIOCKS. .. oo e 203

12.4. Data Consistency Checks at the Application Level..........cccovenncinenenen 203
12.5. LOCKING AN INUEXESc.couiiieiiriiesieirieese ettt 204

13, PerfOrManCe TIPS .. e uerereereeeeieetestesieseeeeee e sttt e e se e eaesbesbesee s eneesessesaesbesbeseeneeneeneseas 206
13,0, USINGEXPLAIN ...otietiietirietiee ettt e s e s e ssssensssensssensssensssessssens 206
13.2. Statistics Used by the PIanner............ccooiiriniineeeeesree e 209
13.3. Controlling the Planner with EXpliciDIN ClauSes..........cccceorenirineneiniennns 210
13.4. Populating @ Database...........cooeeiiiiieere e 212
13.4.1. Disable AULOCOMMIL..........ccririiire et 212

13.4.2. USECOPY.....cuiieiiieiiietiesttes sttt sse e es s e st e st stenesaens 212

13.4.3. REMOVE INUEXES....ccueiuiiiienieeeie sttt 213

13.4.4. Increasmaintenance_WOrk_MEMcccceevieeeeiiresieeesreeesreeereeeesneeeas 213

13.4.5. Increaseheckpoint_SEgMENLS ovcceriiireesie e 213

13.4.6. RUMPANALYZEAREIWAIS.cooiiiiiiiierieieeeteee e 213

[, Server AAMINISIIALIONcciicieeiieccee sttt e be e b e sbeeaeesbesaeesbesbeeabesbeebeenbesaeennes 214
14, InStallation INSITUCLIONS.ccoiiiriere e enes 216
I S To T A =Y 7o o PSSP 216
14.2. REQUITEMENES. ...cviieeieeieeetesiesieseeseesestestesaeseeeeeeessestestessesesseesessessessessensesseseasens 216
14.3. GEttiNg TNE SOUICE....c.iiiieiiriiiriirer et e 218
14.4. 1T YOU Are UpPGrading.......cccoeeeeruererieerieerieesieesiees e s s 218

Vii

14.5. Installation ProCEAULE.........ccccviiereeeeece et 219
14.6. POSt-INStallation SEUD........ccviireireec s 225
14.6.1. Shared LiDraries.......cocooeeeee i 225
14.6.2. Environment Variables..........ccocoviiieneinineeeeeeee e 226
14.7. SUPPOItEd PIAfOIMIS.......ciieeiirieieriet ettt 226
15. Client-Only Installation 0N WINAOWS........c.coeireirniineenieesieeseee e 232
16. Server RUN-time ENVIFONMENL........c.oiiieie e 233
16.1. The PostgreSQL USEr ACCOUNL.......ccceiiririrrieerere et 233
16.2. Creating a Database CIUSLEL..........ccriiiii i 233
16.3. Starting the Database SELVEN ... e 234
16.3.1. Server Start-up FailUres.........c.cooiiereneinnee e 235
16.3.2. Client Connection Problems..........coeierinenenineeene e 236
16.4. Run-time ConfiguratiOn............cceieiieene e 237
16.4.1. File LOCALIONS......coirieriiieiieieeee sttt e 238
16.4.2. Connections and AuthentiCation...........ccccvvererereieienie s 239
16.4.2.1. CoNNECiON SEttNGS.....ccoveceve e 239

16.4.2.2. Security and Authentication...........cceccvveeeeeevcceese s 240

16.4.3. Resource CONSUMPLION.ccccviiiiieiereeeeese e sresaeeesesse e ste e saeeesenes 241
16.4.3. 1. MEIMOIY...iiitiiiiiriii ittt sies sttt st st be e b sresre e e 241

16.4.3.2. Free SPace Map.......cccouuvivieiieeneniieesieesee e s 242

16.4.3.3. Kernel Resource USAge.......ccocvevevrierieneeieneneseseseseesesennens 242

16.4.3.4. Cost-Based Vacuum Delay.........ccccvvvreveveeieniesesnneseieniennens 243

16.4.3.5. Background WILEL.........ccevrueeeeeeresese e e 243

16.4.4. Write ANEAA LOG......ciereieirerieriete e 244
16.4.4.1. SEHINGS ..ciieiieriierie et e 244

16.4.4.2. CheCKPOINIS......ceoviiirieirieerieere e 245

16.4.4.3. AFCRIVING....ceitiireiiree e 246

16.4.5. QUErY PIANNING.......cccoiuiirieirieirieenie e 246
16.4.5.1. Planner Method ConfiguratiQn.............ccovoerrennennienenecnnes 246

16.4.5.2. Planner Cost CONSLANS........cccovvvrvrierieneeieere e seeeesee e 247

16.4.5.3. Genetic QUery OPtIMIZEL......cccoeiririririirereere e 248

16.4.5.4. Other Planner OPtioNS.........cccveirirerneninensiesese e 248

16.4.6. Error Reporting and LOGQINGg........cccveerueerireriririnesesesesie e 249
16.4.6.1. WHETIe 10 10G . ..civieeiirieirieirieesiees e 249

16.4.6.2. WHEN TO LOG ..eeueeuirieiieieeieieeee ettt enn 251

16.4.6.3. What TO LOG......cccouvririeirieireisieesie e 252

16.4.7. RUNIIME StAtiSHCS.....coi ittt 254
16.4.7.1. StatisticS MONITOMNG.......coeeeerereeere e 254

16.4.7.2. Query and Index Statistics Collectar...........c.ccooevereieieriennns 254

16.4.8. Client Connection Defaults..........c.coeiiirinininineec e 255
16.4.8.1. Statement Behaviar...........ccccceeiininieneneceenee e 255

16.4.8.2. Locale and FOrmatting..........ccocceveeveevenieseese e 256

16.4.8.3. Other Defaults........cocoiiiieeie e 257

16.4.9. LOCK ManagemenLt........cccecueeeeiineeie e e steete st see e e 258
16.4.10. Version and Platform Compatibility.........ccccovevevenvrceene e 258
16.4.10.1. Previous PostgreSQL VErSIONS.......ccceeveeevevesiesesiesesiennens 258

16.4.10.2. Platform and Client Compatibility..........cccceevrivrvreieieniennns 259

16.4.11. Preset OPtiONS.....ccccvvvireieeeeseseseseeee e e sresaees e sse s ssesaeeesenes 259
16.4.12. CustomMized OPLIONS......ccccveeeeeiresereereeese et e e nes 260
16.4.13. DeVeloper OPtiONS......cccvceveeeeresesereeeeeseseeseeseeessesse e sseseeseeessenees 261
G 0 I S T T A @ o] 1o T3 262
16.5. Managing Kernel RESOUICES........couiiirieireiriees e 263

viii

16.5.1. Shared Memory and SemMaphores.cccoevirrirnenreneresese e 263

16.5.2. RESOUICE LIMItS....cciiiieiecieceetee ettt 267

16.5.3. Linux Memory OVErCOMMUL..........ccurueerieiririinieneseses e 268

16.6. Shutting DOWN the SEIVET ...t s 269
16.7. Secure TCP/IP Connections With SSL........ccccevviiiineneneeeesese e 270

16.8. Secure TCP/IP Connections with SSH TuNNEIS.........ccooevreniniieneeeene 270

17. Database Users and PriVIIEgES ..ot 272
17.1. DAtabase USEIS.....ceciiieeiee ettt sttt st sre e st s nae st ena s 272
A L= N 11 01U (== S 273
17,3, GIOUPS. ..ottt ettt b ettt et e e s ae et s bt s ae et e e bt e e e ebesae e e e sheenne b e nneenes 273
O o V1 =T o T LTSRS 274
17.5. FUNCHONS @Nd THQOELS ..veiteieeeeeieriesie sttt st s b e ene s 274

18. Managing Databases.........cocvciiiiiie et e e 276
18,1, OVEIVIEW....c.vetiieieieeeeeieeie ettt ettt b e e et et ae b et e s b e se et ebeebesbesbe b e s e e enesnens 276
18.2. Creating a Database.........ccccceeievicccc e 276
18.3. Template Databas@s........cccccvveeieiicese e 277
18.4. Database ConfiguratiQn..........ccccceeeeerieeere e 278
18.5. DesStroying a Database.........cccccevveeeiieiiseeeee st ene 279
18.6. TADIESPACES......civieeeeere ettt st e et s r et e e e nnens 279

19. Client AUTNENTICALION.......cciieirerieerere ettt senes 281
19.1. Thepg_hba.Conf fil€ c..iivieeeiecececece et e b 281
19.2. Authentication MEthOUS.........cccvirriiri e 285
19.2.1. Trust aUtNENLICALIQN.cccviereirieee e 285

19.2.2. Password authentiCation............coovvereeeeeerennseneesese e 286

19.2.3. Kerberos authenticatin...........ccccevvereeeeinieneseneeeese e 286

19.2.4. Ident-based authenticatiQn..........c.ccceveeeeeriererinerecese e 287

19.2.4.1. Ident Authentication over TCPP.......cccoeoevviviereeeeeens 287

19.2.4.2. Ident Authentication over Local Sockets.........cccccoceveeeeeennns 288

19.2.4.3. 1dENE MBSceieierieirieeree et 288

19.2.5. PAM authentiCation.........coeveeeeiinese e 289

19.3. Authentication Problems...........coii e 289

20. LOCALIZALION.....cueeiectecieete ettt ettt st e be et e s e e sresbeese e beeseesesaeeneesresanens 290
20.1. LOCAIE SUPPOLL... vttt sttt sttt b e et 290
20.1. 0. OVEIVIEWL....cvieeeeiecteeie et eee s e eestesteetestesaeesbesaeestesteessesbesaeesesaeesesreennens 290

20.1.2. BENAVIOK......cuiceeiictieece ettt sttt sae e sreennens 291

20.1.3. ProbBIEMS.......ooee et s 291

20.2. Character SEt SUPPOLL.......ciiriieeerere ettt et s sae e 292
20.2.1. Supported CharaCter SELS........coe e 292

20.2.2. Setting the Character Set.........ccoo i 293

20.2.3. Automatic Character Set Conversion Between Server and Client 294

20.2.4. Further REAAING......cceccveveieieesiesieeesteeee ettt sae e e enaens 296

21. Routine Database Maintenance TaskS........c.coiverininiineee e 297
21.1. ROULING VACUUMINGeeiteiieieeeesiesteete e sieetesreeeeseeseestesseeseestesseesaesneenaessesnenns 297
21.1.1. Recovering diSK SPACE.......ccccevevieiese et 297

21.1.2. Updating planner StatiStiCS........c.cevivrvereeresieeresese e seesee e esee e 298

21.1.3. Preventing transaction ID wraparound failures..........c..cccceeevveenenn. 299

21.2. ROULINE REINAEXING......ccivieiieieieire et es et te st sresee e sre e sae e e e enenes 301
21.3. Log File MaINtENANCE.........ccceeeeeeeeece et ene e 301

R = - (o (0T o J= U o =T (o] =S 303
4 N1 O]I I ¥ o] SRS 303
22.1.1. Restoring the dUmMp......ccccoeeeeinese e 303

22.1.2. Using pg_dumpall.........cccoeoriiinniininere e 304

22.1.3. Handling large databases...........cccoeerrinneinieitniseseesese e 304

A R T O\ < £ USSR 305

22.2. File system level Dackup.........cccoeiieiiiiiiiee e 305
22.3. On-line backup and point-in-time recovery (PITR)........ccccovvenriinnenneienne 306
22.3.1. Setting up WAL archivVing..........cccermerrenneienietneesesesesesese e 307

22.3.2. Making a Base BackuUp..........ccoeermenrinnciee e 309

22.3.3. Recovering with an On-line Backup.........cccccoereieininene e 310

22.3.3.1. RECOVErY SEetliNGS......coceiueeeereriere e 311

22.3.4. TIMEIINES....c ettt e 312

22.3.5. CAVEALSottt e e e e sre e 313

22.4. Migration Between ReleaSsES. ... 313

23. Monitoring Database ACHVILY..........ccciriere e e e 315
23.1. Standard UNiX TOOIS......ccciiiiireriiene et 315
23.2. The StatistiCS COIECLOL. ..ot 315
23.2.1. Statistics Collection Configuration............c.ccevevveriesencesesceere e 316

23.2.2. Viewing Collected StatiStiCS.........ceverveieerrieere e 316

23.3. VIEWING LOCKS.....coiiiiiieieiticiese sttt eae st enaesneenaesneennens 320

24, MONItOriNg DISK USAQE.......cviiiiiiiteieieese st st sttt s a e 321
24.1. Determining DiSK USAQE.......ccccoueereririsesieseee ettt sesas e s se e sneses 321
24.2. DISK FUII FAIIUIE.....oieeteeieeeeees s 322

25. Write-Ahead Logging (WAL).....cceieeeeeeee st see ettt see e ne s s 323
25.1. BENEFItS Of WAL.....oieiieieieete ettt 323
25.2. WAL CONfIQUIALION.......oieie et ene e 323
AT T 1] (=1 = 1S 325

26. REQIESSION TOSIS...cuiuiiieiirieierieteret ettt ettt bt 326
26.1. RUNNING the TESIS... .ot e 326
26.2. TSt EVAIUALION......cueeeeeeciee et nne e 327
26.2.1. Error message differenCes........coovvinrenieinereeee e 327

26.2.2. Locale differenCeS.......cccoeeeeeirese e 327

26.2.3. Date and time differenCes.........ccovvvveeiri v 328

26.2.4. Floating-point differences..........covverreiniineeeee e 328

26.2.5. Row ordering differenCes.........oeoerrerrenneiere e 328

26.2.6. The “random” tESL......ccceiereeeerere e 329

26.3. Platform-specific comparison fileS.........ccorirneiieineeeese e 329

[V. CHENE INTEITACESeeeeieeeiee et ettt b et b e s b b e e e neeaenae e 331
R 11o] o 1o I O3 I] = Y SO 333
27.1. Database Connection Control FUNCLIONS.........ccoooviiireirinienesee e 333
27.2. Connection Status FUNCHIQNS.........coiiiririeieeeene e 339
27.3. Command EXecution FUNCHONS...........cooiriiieerenere e 342
27.3.1. MaIN FUNCLIONS.....coiiiiiieceeeeere et s 342

27.3.2. Retrieving Query Result Information...........ccccceeoveceeieccesesceese e 348

27.3.3. Retrieving Result Information for Other Commands.........c.ccccoeeue. 351

27.3.4. Escaping Strings for Inclusion in SQL Commands...........ccccccceeeuenne 352

27.3.5. Escaping Binary Strings for Inclusion in SQL Commands.............. 353

27.4. Asynchronous Command ProCeSSINgG......ccocevveeriereiereieeiesieseseseseeseeessenes 354
27.5. Cancelling QUENES IN PrOgreSS......cccvvvreriereeeeesiesieseessesasesessessessesaessesessesses 357
27.6. The Fast-Path INterface........coceoveiieiinnirnerse e 358
27.7. Asynchronous NOtIfiCation..........ccvevvirinierereeese s 359
27.8. Functions Associated with tR®OPYCOMMANd..........ccocevreirniernienseneseeneee 360
27.8.1. Functions for SENdiMOPYDALA.........cccceerereririeirieesee e 361

27.8.2. Functions for ReceivimgOPYData........c.ccovererieirieeneesese e 362

27.8.3. Obsolete FUNCLIONS FOIOPY.......cocieieciiieeeee et e e saee st 363

27.9. CONIOl FUNCHONS.......eitiiieiiesierieeeeee ettt st sre st eneneas 365
27.10. NOEICE PrOCESSINGceiviiiteesiee ettt 365
27.11. Environment Variables..........cooiiirieeeeeeee e 366
27.12. The PasSSWOIA File.......ccoooi it 368
27.13. SSL SUPPOLL.....cieiieieiierene et st 368
27.14. Behavior in Threaded Programs..........ccocooeoeereneneeneeencee e 368
27.15. Building lIDpg ProgramsS.........ccooieiininenereeesiese e 369
27.16. EXQMPIE PrOQIamMS.....cccii ittt sie st e sae st sae e sne e 370
A T 1o [l @ o] o £ PTSS 379
B T I o T3 (] Y SO U SRR 379
28.2. Implementation FEAUIES..........ccociiiirieeeeere e 379
28.3. ClIeNt INTEITACES.coereerterie e et 379
28.3.1. Creating a Large ODJECL........cccovvieiieiceece e e 379
28.3.2. Importing a Large ObJECL........ccovveeiieeeeer e e 380
28.3.3. Exporting a Large ODJecCt........ccvveiicicese e e 380
28.3.4. Opening an Existing Large ObJeCL.......cccccvvceveveeiere e 380
28.3.5. Writing Data to a Large ObjecCL........cccccevvvveiinerieeeeee e 380
28.3.6. Reading Data from a Large ObJECL.......ccccevvvvvveveceeese e 381
28.3.7. Seeking in a Large ODJECL........ccvvveveeeerr e 381
28.3.8. Obtaining the Seek Position of a Large Object..........ccocvevvecvcennene 381
28.3.9. Closing a Large Object DeSCHPLOL......ccovvvererereeeee e 381
28.3.10. Removing a Large ObJECL.......cccoeveeriere e 381
28.4. Server-Side FUNCHOMNS..........cveerise e ene e 382
28.5. EXamMPIe PrOgram... ..ottt 382
29. ECPG - Embedded SQL IN.C.....ccooeeieeee et seene e 388
29.1. ThE CONCEPL....c.i ittt ettt bbbt bee 388
29.2. Connecting to the Database SEIVE........ccc e 388
29.3. CloSING & CONNECLIQN......c.cotiirieirieierieie ettt 389
29.4. Running SQL COMMANGS.......ccctreiriririnerenienesiere et 390
29.5. ChoOSIiNG 8 CONNECHIOM.......ccciieirieerieie ettt 391
29.6. Using HOSt Variables............cooiiiinecee e 391
29.6. 1. OVEIVIBW... it stesie ettt st s see st te e e e esesbesbeseeseeneeneenens 391
29.6.2. DECIAre SECHONS......c.iiteieeeeeteeie et 392
29.6.3.SELECT INTOQNAFETCH INTO...ccciiietieieeieeieriesieeee e ereesre e e snesreennens 392
RS I G g o o= 1 o) 5= ST POSR 393
29.7. DYNAMIC SQL ...ttt e bbb e 394
29.8. USING SQL DESCHPLON ArEAS......ceieruiriirieieieeeeiesie st seeseses e et see s saesees 394
29.9. Error HANAING....c.cooeeeiiiee et 396
29.9.1. Setting CallDacKS..........coeiiiririe e 396
pAS IR T o | o= TSRS 398
29.9.3.SQLSTATEVS SQLCODEcttiitieitiiiieereesiessaeseessiessisesssesssesssasssessessens 399
29.10. INCIUAING FlES....c.ieieeecece et enaens 401
29.11. Processing Embedded SQL Programs..........ccccceeeeveveninnesceeneseesee e 402
29.12. Library FUNCHONS........ociceee ettt sae e naesneenaens 402
29,13, INEINAIS....c.i et 403
30. The INformation SChEMIA.........ccoeiriirie e 406
30.1. ThE SCREMA. ..ottt 406
30.2. DALA TYPES...eiiueeeesierieeiesteeeesteeeeseesseeaestesseesesseeessseseessessesssessessesssesseeseessesseens 406
30.3.information_schema_catalog_Name ...ccccceiieeviesiee e 406
30.4.applicable_TOlES i n 407
30.5.CheCK_CONSIIAINIS ooiieieceee ettt seeeaesaenneens 407

Xi

30.6.column_dOMain_USAQE ..eeceeriereerierieeiesiesieeie st e eesteseeste b eesbesseeneesseeseeseesneens 407

30.7.ColUMN_PHVIIEOES ottt sttt na e s ee e nnen 408
30.8.COUMN_UOL_USAGE .eeeieteeieeie ettt e et sttt s saesreeeesaeeneens 409
30.9.COMUMNS .ottt ettt st e e e et et e be b e e et e saeenneeneeaesaeennen 409
30.10.constraint_CoIUMN_USAJE eoverierieerierieeie e et e et b e s see e see e sneens 413
30.11.constraint_table_USAQgE iicereieriere ettt e e 414
30.12.data_type_PrivilEgES ciecceeceerieee e 414
30.13.domain_CONSITAINIS .ieiciiieecieecieeeeieeeete e e eree e stre e ear e e et e e e e re e e sanee e sareeeenreeennns 415
30.14.doMaiN_Ut_USAQE .ioceeieieieiieesiieste st e siesseeste st s seessae et eesaaessse e beesseesnaeenses 415
0 {010 ST o] 0 = T TSP RRTR 416
30.16.IEMENL_LYPES eeieeeeirieiiecee ettt et e ettt e e s a e e sreenrae et s 419
10 {0t =T T= o] [=Yo [][S 421
30.18.KEY_COIUMN_USAQE .evireerierriiiieesiiesieeieestesseestessbesssasssse e beessaesssesnbessseessnssnsens 422
{0 R I o F- T = T =1 (=Y £ T USSR 422
30.20.referential_CONSIIAINIS .oiiiiiee e ree et e e e e 425
1010 724 I o] =T o] (U1 o o W o =31 £- S 426
30.22.10le_roUtiNE_grantS cooieecieeciie e e e s e see e e srre e eae e e e e et ene e e snre e e nnre e e nns 426
30.23.r0le_table_grantS e e e e nes 427
10 {0 o] Y V1= Vo [T o [= g1 £ 428
30.25.r0utine_privileges oo e e 428
3B0.26.F0ULINES oottt sttt et b e b b e e et sb e bt e e enenns 429
30.27.SChEMALA ..eviiviieieieeet et et ene s 433
{02 S o | (L= (0 4= S 434
30.29.sglimplementation_info oo 434
000G {0 Yo I = U Yo U= Yo 1= SRR 435
30.31.S01_PACKAGES ceeereereeeierieeienieeeesee st eee e st e tesre e e e ste e e tesre e te b e et sneenaesreeneens 436
000 17 Yo |) -4 oo O RRR 436
30.33.501_SIZING_ProfileS oo e e 437
30.34.table_CONSIIAINIS .eioeeiieie ettt sttt s sa e saeeseesaeeneen 437
30.35.table_privileges o 438
30.36.1ADIES ettt bbb st eeene e saeeneen 438
00T 0 (o To =T USRS 439
30.38.USAQE_PrIVIIEIES oottt 440
30.39.VIEW_COIUMN_USAQE .eeeterueiiieeeieesieeee et et stesessee st sbe b eesbesaeesaesaeeneesaesnnans 441
30.40.ViEW_table_USAJE .iovieeieeeeeiiteesiieste et e siesseeste et s seessae e beessaeenae e beesreesnaeenren 442
0 BTSSR 442
V. SEIVEI PrOGIamMIMINGccciiiiiiiieieieee sttt sttt ae b b e e e et sae b e besee e e e eneneas 444
31, EXtENAING SOQL.....eiiieiie e bbb e e 446
31.1. How EXtensibility WOIKS.........cccoviiiee et 446
31.2. The PoStgreSQL TYPe SYSLEIM.......ccoeiieeeiee et 446
31.2.1. BASE TYPES ittt sttt sttt bbb et reereees 446
31.2.2. COMPOSILE TYPES...ecitiereeieeieeeeesesteesiesteeeesteseeste e eae e sseessesneeneesresnaens 446
31.2.3. DOMAINS.civiriieereneereenret ettt 447
31.2.4. PSEUAO-TYPES ...ccveiueiriieieieeetestesteseesaesessessesrestesaesae e esestestesresaenaesesseens 447
31.2.5. POlyMOrphiC TYPES....cceeecectese ettt s 447
31.3. User-Defined FUNCLONS. ...t 447
31.4. Query Language (SQL) FUNCHANS........cccceveeeeenere e 448
31.4.1. SQL FuNnctions 0N BaSe TYPES....cccccveerrerrrerrieriereeesesiesieseeseeeesessenns 449
31.4.2. SQL Functions on COMpPOSIte TYPES....ccccvvvrerereerereseseseeseeeeessens 450
31.4.3. SQL Functions as Table SOUrCES..........ccoovvrmrererenienienrsereeeenens 453
31.4.4. SQL Functions Returning SetS........ccoceveirerreiininieneenese e 454

Xii

31.4.5. Polymorphic SQL FUNCHONS........ccccoiirieneeriet e 455

31.5. FUNCLION OVEIOAAING.coirteirieirieeriee ettt 456
31.6. Function Volatility CategoOriEs........cccoueireirrerinieresee et 456
31.7. Procedural Language FUNCLIONS ..o 457
31.8. INterNal FUNCLIONS......cciiiie ettt eae e 458
31.9. C-Language FUNCHOMNS.........ccoeirieirieeneeie sttt 458
31.9.1. DYNamic LOAING.......cccrerereeeriiiie et 458
31.9.2. Base Types in C-Language FUNCLIONS...........cccceeeirienenenieneeceeenene 459
31.9.3. Calling Conventions Version 0 for C-Language Functions............. 462
31.9.4. Calling Conventions Version 1 for C-Language Functions............. 464
31.9.5. WIItING COR.....cerirereeieiiiririeie ettt 466
31.9.6. Compiling and Linking Dynamically-Loaded Functions.................. 467
31.9.7. Extension Building InfrastruCture..........c.cccoooeeve e 469
31.9.8. Composite-Type Arguments in C-Language Functians.................. 471
31.9.9. Returning Rows (Composite Types) from C-Language Functians472
31.9.10. Returning Sets from C-Language Functians............ccccceeeeeveiennns 473
31.9.11. Polymorphic Arguments and Return TYPResS.......cccocveevevvvceeveesennens 478
31.10. User-Defined AQQregates.......c.ccuvviiriirierieieeieeese e steseeeeese s sseeesenns 479
31.11. User-Defined TYPES......cciviereeeeere ettt st ene s 481
31.12. User-Defined OPEratOrS.....cccccueereiereserereeeetese e stesesasese e re e s seenesneses 484
31.13. Operator Optimization INfOrmation............cccceeeriereiererscesce e 485
31.13. 1. COMMUTATOR....ecueetieteeeeseeeeestesteessesseeseessesseessesseeaessesseessssseesssssesanns 485
3L.13.2NEGATOR . ettt nnena 486
31133 RESTRICT c.eicteueierertetesereseseseeteenesesesseseesesesassesesssssssesessssssesenensssssnss 486

31 00 1 2 T 1 RS 487
BLLAB.5HASHES. ..ottt et et eesaeenaens 487
31.13.6 MERGE$SORT] SORT2LTCMP GTCMP....ocirieiriririniererie e 488
31.14. Interfacing EXtensions TO INAEXES.......ccovirrerineieriee e 489
31.14.1. Index Methods and Operator ClaSSES.......c.cccveerrererereneneneennens 490
31.14.2. Index Method Strategies..........coeveerrererieieriee e 490
31.14.3. Index Method SUuppOrt ROULINES.........cccoeirieirieeneenese e 491
31.14.4. AN EXAMPIE.....coiiiiiicee e 492
31.14.5. Cross-Data-Type Operator CIasses........cccveireerrenenenesenesieennns 495
31.14.6. System Dependencies on Operator Classes........cccovvevrenereene 495
31.14.7. Special Features of Operator Classes........ccoceeeerverereieneeceeenens 496

R 7 I 1o To =] £ TSP 497
32.1. Overview of Trigger BENAVIQL.........ccocoiiiiiiiiere e 497
32.2. Visibility of Data Changes.........cccueririneieieeese e 498
32.3. Writing Trigger FUNCHONS N C.....oocoiiiiiiieeeeeee e 499
32.4. A Complete EXAMPIE......oiie e 501
33. ThE RUIE SYSIEIML.....cciicie ettt e st e e ae s e st e reesesneenaesrennnens 505
I T I I o TSI @ LU 1Y o I == TSRS 505
33.2. Views and the RUIE SYSEIML.......cccceeieiireeiieeeee et eee e 507
33.2.1. HOWSELECTRUIES WOIK.......cocireeierinrenesreinree et 507
33.2.2. View Rules in NOSELECTSIAtEMENTS........cccoveirreerereneneneseenreenes 512
33.2.3. The Power of Views in PostgreSQL.........ccocvvveveveeienene e 513
33.2.4. UPAAtiNg @ VIEW......ccveiieieeeeetesie e seeeeses st e et sne e 513
33.3. Rules 0nNSERT, UPDATE @ANADELETE.....ccccceeeeserieseeseeeeese e ssessesaeseenessenes 513
33.3.1. How Update RUIES WOIK..........cccvveicieesr e 514
33.3.1.1. AFirst Rule Step by Step.....cccccvvevvvvi e 515

33.3.2. Cooperation With VIEBWS..........cccovviereeenire e ee s 518

33.4. RUIES ANd PrIVIIEGES........ooiiiiiieiree e e 523

Xiii

33.5. Rules and Command SEAUS.........cccoeereerrerneesee s 524
33.6. RUIES VEISUS THOGEIS ..cveirieerieerieie ettt 525
34, Procedural LANQUAGES.......coccerruirieieteiee ettt sttt sttt st sne e 528
34.1. Installing Procedural LangUAagES.........c.coerrereriererenenieesieesesie e 528
35. PL/pgSQL - SQL Procedural LanNQUAGE.cccoeerrierirenineeriee s 530
BN O A T OSSPSR 530
35.1.1. Advantages of Using PL/PGSQL.......ccccooiiiininiirineee e 531
35.1.2. Supported Argument and Result Data TYpes.......ccccevvrerereeienenenn 531
35.2. Tips for Developing in PL/PGSQL......coiiiiinerere s 532
35.2.1. Handling of Quotation Marks...........cccccrovirinineneieese e 532
35.3. Structure of PL/PGSQL......o it 534
35.4. DECIArAtIONS......c.civevireetereetee sttt 535
35.4.1. Aliases for FuNction Parameters..........cccoeereineieneenesesesese e 535

T B @] o) Y/ g To T 1Y/ 0 1= RSP 537
35.4.3. ROW TYPBS ittt sttt sttt sttt st st sba st sbe e e 537
35.4.4. RECOIA TYPES...ciiieeiieteeieesesee e steete e seesteseestesreenaestesseesesaeensesresnnens 538
5.4 5. RENAME.....cutiiitirieterietee sttt sttt st sttt be st se et ettt et nrene 538
BT T b o] (=171 (o] 1= S 538
35.6. BASIC SAEMENLS.......c.eirieereiires st 539
35.6.1. ASSIgNMENL.....cciiiiesiesie ettt sr ettt sre e e neeneens 540
35.6.2.SELECT INTO . uuiiietieiieteeeeseeseestesteesesseeseessesseeseessesssnssesseessesseenssssesnaens 540
35.6.3. Executing an Expression or Query With No Resullt.........c..cccceue.e. 541
35.6.4. Doing NOthing At All.....coceeeeeee e 541
35.6.5. Executing Dynamic Commands.........ccccoverrereniniennienesenese e 542
35.6.6. Obtaining the ReSUlt StatLIS.........cccovirrerneiee e 543
35.7. CONLIOl SLIUCLUIES......ccueeieie et s enenes 544
35.7.1. Returning From a FUNCLON..........coviinriiieie e 544
B5.7. L. IRETURNM ...ttt steeeeie et et see ettt aesee e see e ntesseeeesneeneas 544
35.7.1.2RETURN NEXT . iiiiiteiiieitiesieesiesteesieeseeseeesteesneesseesteesseesnessnnens 544

35.7.2. CoONAItIONAIS.......cceiiiirieereeeeer e e 545

T 0 N | I o | N USSR 545
35.7.2.2IF-THEN-ELSE ...ieiteeeeittesteeeee st estee st see et 546
35.7.2.3IF-THEN-ELSE IF .ooiiitieceecie e estee sttt 546
35.7.2.41F-THEN-ELSIF-ELSE ...ioiiieeie e estee st seeestee et 546
35.7.2.5IF-THEN-ELSEIF-ELSE ...coteicie ettt etee et 547

35.7.3. SIMPIE LOOPS....eeiuiieiitiiieieieeeetesie st s 547

LT 0 75 1 @ T | = T STSTSTN 547
B5.7.3.2EXIT woutieeierieiereeteseetesesteseste e see st saeteseeteseste e sbe e ssesessesesaeseseesenens 547
35.7.3.3MWHILE....cutiiiirietirietesieteesie e see e see st s ste e ste et sessesesaesesaesenens 548
35.7.3.4FOR(INtEgEr VAIIANL)......cccoeririereeiriirie e 549

35.7.4. Looping Through Query ReSUILS..........cccevvreeveveriesecese e 549
35.7.5. TrapPiNg EITOLS....c.ccii ettt enaen 550
35.8. CUISOIS....ciiiiiiiriici e e 551
35.8.1. Declaring Cursor Variables............ccoeeveevi e 551
35.8.2. OPENING CUISOIS.....ccuiiuieeeiieeiesesieesiesteeeesteseessesseeaessesseessesseesssssessaens 552
35.8.2.10PEN FOR SELECT.....cccsiiriiriienieenie e enieesiee e sseesseesnes 552
35.8.2.20PEN FOR EXECUTE.....cccosciiriiiniienie sttt 552

35.8.2.3. Opening a Bound CUISOL......c.ccvevvviereneiee s srese e eeeenes 553

35.8.3. USING CUISOIS.....cuiiiiiiieeeeeetestesteseeseesessessesaestesse s e sse st seesasnesnesnenns 553
3B5.8.3. LFETCH. ettt ettt st sttt s e ebe e 553
35.8.3.2.CLOSE ...ttt sttt ebe e 553

35.8.3.3. REtUrNING CUISOIS....c.ciuiirieierieierieiereeie sttt seese e 554

Xiv

35.9. Errors @nd MESSAGES.ccueueirieirieirieie sttt sttt 555
35.10. Trigger PrOCEAUIES........ccoeiirieiiet ettt e 556
35.11. Porting from Oracle PL/SQL.......cccoeiriirrirnereseesiee e 561
35.11.1. Porting EXamples.......ccociiiiiiieee e 561
35.11.2. Other Things to WatCh FOrL........cccoiviiiiieiiereeesee e 567
35.11.2.1. Implicit Rollback after EXCeptions.........c.ccccveeevecirciencenens 567

35.11.2. 2EXECUTE .cuiiietisieteieteesteeseese st saste et sestesesseessesessesesaesessnsesens 567

35.11.2.3. Optimizing PL/pgSQL Functians..........cccceeveereneneneeccnenne, 567

I IS AN o] o7=1 Vo [ST 568

36. PL/Tcl - Tcl Procedural LAnQUAGE..........coveveeererie e s see e 571
6. 1. OVEBIVIBWL. ..ttt ettt ettt ebe b b e et e e et e st bt b et e see e enenneneas 571
36.2. PL/Tcl Functions and ArgUMENLES.........cooiererereniene e 571
36.3. Data Values iN PLITCl ..o 572
36.4. Global Data in PLITCL......coi it 573
36.5. Database Access from PL/TCL......ocoiiie e 573
36.6. Trigger Procedures in PLITCL. ... e 575
36.7. Modules and thenknown COMMANC..........ccoeirineriniereee e 577
36.8. TCl Procedure NAMES.......cccoiiieirieeriee ettt 577
37. PL/Perl - Perl Procedural LanQUAGE........ccccvveiereereeeeireseesteie e e sre e seenssessesne s 578
37.1. PL/Perl Functions and ArgUMENLS.......cccecereereeerieseseeseeesesesee e e saeseenessenes 578
37.2. Database Access from PLIPEIL........ccoiirirerce e 580
37.3. Data Values iN PLIPELL.........oc e 581
37.4. Global Values in PLIPELL........ccooiiieeereer e 581
37.5. Trusted and Untrusted PL/PEIL.........ccoiirinninrereeeeeree e 582
37.6. PL/PEI THIQOEIS. c.et ettt sttt sttt 583
37.7. Limitations and MiSSINg FEAUIES..........cccviirrinrei e 584
38. PL/Python - Python Procedural Language..........c.coovienieieneienieeneenese e 585
38.1. PL/PYthON FUNCLIONS.......coiitiiiiiiriee ettt e 585
38.2. THQGEr FUNCLIONS.ccvi ittt 586
38.3. DAtaDASE ACCESS.....cv ittt sttt eae s 586
39. Server Programming INTErfaCE.........ccoeiiieiiieerc e 588
39.1. Interface FUNCHONS........coii et 588
5]l T o0 1 1= ox SO P PRSPPI 588
SPIfINISN. et 590

] o T 1V o TP 591

] T 0[] o ST SUTUSU TP PRSPPI 592

] e = T o111 = TR 593

] o = G oSSR 596

Y I 0] (=] 0 1= 14 = OO U UPPPTURRURPRRRO 597
SPI_getargCOUML........cc.oiiiieiee ettt e s ee e eanns 599
SPI_getargtypeid.......cccoicieiiee e e e e 600

] T ST UL (=T g o] = o RS 601

S Y CCTe U (= o] = T o TSRS 602

0] o = (ST o] o SRR 604

0] o I e 01 C=To] g o] 011 o FOR OO UR PR S 605

Y o I w0 £=To 1o TR 606

S o I o0 £=To] g (= (o o T 607
SPI_CUISOI _IMOVE ... ittt e st st re e e 608

S o I o0 £=To] o [0 - T 609

] o I ST= 1YL= o] = 610
39.2. Interface SUPPOIrt FUNCHONS.......cccoov it 611
SPI_NAME ..o e 611

XV

SPI_fNUMDEL. ..o 612

SPIL_gEIVAIUR....ceeeeeee e e 613
SPIL_gethinual.......coo oo 614

] T 11 13 1TSS 615

] o TR0 =1 117 =1 o TSP 616
SPIL_getreINAIME ... e 617
39.3. MemMOry ManagemEeINt.........cc.ooeeiiierieriereeie sttt s ee e enen 618
SPL_PAIOC. ettt e e e 618
SPL_IEPAIIOC. ...t e e 620
SP P B e 621
SPCOPYUPIE e e 622
SPL_IEtUMNIUPIE ... e 623

]l T 1o 1137 (0 o =S 624

] T (== (U]] =TSR 626
SPI_freetUptable.......cccoiiceeece e e 627

]l T (==] = o TS 628
39.4. Visibility of Data Changes........cccccvieeiererieiese et se s eee e s sae e 629
TS BT e 11 01 o] =TSSR 629
VL RETEIBINCE. ...ttt ettt sttt b e te s beetesbeeaeebesbeensesbeeneesbeeneenbeereenns 632
[, SQL COMMANGS.....ccuiiitiitiiieeie e sttt e ite s te et e ste e estesbeeaesbesbeesbesbesseessesaeessesbesssesbesseensesseenees 634
ABORT ...ttt st b et e e e et s be st e s be s he et e e beeae e beeheebesbeearebeebeenreaaeennes 635
ALTER AGGREGATE ...ttt ettt s et s s aesae s be s sressneeeste s sbessanesnnessres 637
ALTER CONVERSION.......ooiiictectie st cee et s teeseeeae e tessesseesbessbessseesstessressnsesnnessres 639
ALTER DATABASE ...ttt ettt s sbe s saneente e sres 640
ALTER DOMALIN ..ottt ettt et s s s aeeae e bessaeesnseenbessaessnseenbessbessnseenseesres 642
ALTER FUNCTION ...ttt ettt sttt st ssressmaeenteesressnneenneesres 644
ALTER GROUP.......cooteeeee ettt ettt ettt st s sneebe e sbeesnreenteesres 646
ALTER INDEX ..ottt ettt ettt et et srae s e b s saaesneeenbessbeesnneenbessbessnresnneesres 648
ALTER LANGUAGE ..ottt ettt et ettt et et s e saneebe e sreesnreenneesres 650
ALTER OPERATORttt st e ettt enaeebe e sreeeareenneesres 651
ALTER OPERATOR CLASSottt ettt et et s sne et sraesre b nres 652
ALTER SCHEMALottt ettt ettt s ae e te e be e saeeeteebeesaeeeareenbeesees 653
ALTER SEQUENCE........ci ittt sttt st e 654
F I 1 = I T 656
ALTER TABLESPACEc.oo ottt sttt ettt st bbbt sreeneas 662
ALTER TRIGGER.......co oottt sttt ettt st b et sae s 664
I = I TR 665
ALTER USER ..ottt sttt ettt sttt b e et e st s stesbeeate b e sbaennesneennes 666
ANALYZE ..ottt ettt ettt ettt s be et e e b e sae e te s aeetesbeeat e beebeenteaaeenns 669
BEGIN ... oottt ettt ettt st e b e b ettt e s beeaa et e ebe e b e abe et sheear e beereenns 671
CHECKPOINT ..o cttett ettt eee et st e st sbe st sbesbeebesbesasesaesaeesbesbesssasbessessssseensesresnnens 673
CLOSE ... ottt st st e b e st sbe s et e s b e e st e besreebeereenesreeanens 674
CLUSTER. ...ttt ettt ettt et sttt s ae e sae e e e sbesbeenbasbesneesesaeennesresnnens 675
COMMENT .ttt ettt et et st e it st e et et e s beeaeesaeeaeesbesbeessasbesssesesseensesrennnens 678
COMMIT Lottt et sae b et e s b e e be et e ebeeasesbesaeesbesbeenbasbesseensesaeensesbesnnens 681
COPY ettt ettt et e e te et et s be et e b e e bt et e be et e ehe et e besbeeabeebeereeteeaeenesbennnen 682
CREATE AGGREGATEcti ettt sttt et ste st tasbe e saesaeenaesbeennens 689
CREATE CAST ettt ettt sttt s e e st s e besbeenbasbesreabesbeennesbesnnens 692
CREATE CONSTRAINT TRIGGER........c.oooiitieteetecteeee ettt 695
CREATE CONVERSION......ooi ittt ettt sttt ses st st ssvesssessnbessressnessnre s 696
CREATE DATABASE ...ttt ettt sttt e s sats et e svessnesenbessbeesnesanre s 698

XVi

CREATE FUNCTION.....ciiiiieese ettt e 702
CREATE GROUR......coitctietee ettt et 706
CREATE INDEX ...ttt ettt et ene s 708
CREATE LANGUAGE.......cco it 711
CREATE OPERATOR......ooiiii ettt e 713
CREATE OPERATOR CLASS ...ttt 716
CREATE RULE ..ot e 719
CREATE SCHEMAL. ... e 722
CREATE SEQUENCE ...t 724
CREATE TABLE ...ttt e 727
CREATE TABLE AS......o e 737
CREATE TABLESPACE ... 739
CREATE TRIGGER........oiiiiii s 741
CREATE TYPE ...t s 744
CREATE USER......i i 750
CREATE VIEW....ccii e 753
DEALLOCATE ... s 756
DECLARE......co o 757
DELETE ..o s 760
DROP AGGREGATEooiiiteerteerteeree et 762
DROP CAST ..ottt 763
DROP CONVERSION......cotiiiireirreereeeneerese e 764
DROP DATABASE ..ottt e sr e 765
DROP DOMAIN ...ttt e r et s e r e b e e e enenne s 766
DROP FUNCTION.....ccttitiiiiieieeiesit sttt s sn e sn e e e 767
DROP GROURP........oitiiiii ettt s sn e 768
DROP INDEX... .ot iiitietirieseee ettt ettt st r et en e e e s 769
DROP LANGUAGE ..ottt e 770
DROP OPERATOR.......ciiiteeeieert sttt 771
DROP OPERATOR CLASSottt s 773
DROP RULE......ooiiiitieerte ettt st 774
DROP SCHEMA ...ttt e 775
DROP SEQUENCE........o ottt e 776
DROP TABLE ...ttt e e e 777
DROP TABLESPACE.........coi ot s 779
DROP TRIGGER.......ccoiiiiiiciiirt i e s 780
DROP TYPE..... ottt e e e s 781
DROP USER ..ottt e s 782
DROP VIEW. ..o e 784
END e s 785
EXECUTE ..o s 786
EXPLAIN Lot s 788
FETCH ..o s 791
GRANT L s 795
INSERT ... e 800
LISTEN oo s 803
LOAD .o s 805
LOCK ettt 806
IMOVE ...t 809
NOTIFY et 811
PREPARE ..ottt e r et 813

XVil

REINDEX. ... e e e e 815

RELEASE SAVEPOINT ...ttt ettt sttt st e sae e sneene e snes 818
RESET. ... ottt ettt sttt e ettt s e e s e s et e s e st e se st esena e s e e e s e s s e e nenen 820
REVOKE ...ttt et s e bt e st e st e e s te e s be e saaeeteenbeesaaeanseeneenees 821
ROLLBACK ...ttt ettt ettt s st s e tese st ese s e s e s sensesenssanen 824
ROLLBACK TO SAVEPOINTcciiiiiieisietisietesee et sens 825
SAVEPOINT ..ottt st sttt e sttt st esesaeseseebe e st e e s beneetens 827
S I 3 TS 829
SELECT INTO. ittt sttt sttt st st st se st st stesesansensete e te e ssenessns 840
] SRS 842
SET CONSTRAINTS ...ttt sttt se st 845
SET SESSION AUTHORIZATION....c.oiitiieirieeseeerise et 846
SET TRANSACTION.....c.iiiirieteietert ettt sttt st st se et 848
SHOW ..ottt st st sttt b et b ettt se et e ettt e e bt 850
START TRANSACTION.....ci ettt sttt sttt snns 852
TRUNGCATE ...ttt st sttt ettt se et s be s be e sbeseseesesaebeseebenens 853
UNLISTEN. ..ttt sttt sb ettt s e e e senes 854
UPDATE ...ttt ettt sttt ettt ettt st s et b et b et b e e b e e senes 856
VACUUM L.ttt sttt st st ettt e et seneebeneebeneebe e 859
[I. PostgreSQL Client APPlICAtIONS.......cccceieieeeeire et enens 862
Lo 1S3 1= o | o TSSOSO USRS 863
CrEALEAN. ...t e 866
Lo (=71 =] =T g T S 869
CFEALEUSEL ... ettt ettt ettt e e ettt b e e et e et e e s bt e sae e e it e e b e e sae e eas e e beesaeesas e e beesbeesnnesnrean 872
Lo o T | o SO TSSOSO 875
AFOPIANG. ...ttt bbb 878
OFOPUSEL. ..ttt b e e b et b et b et bbbt e bbbttt 880
LTo7 oo OO PSRRI 883
PO CONTIG ettt e 885
o1 e [V 10T o OSSOSO PO PRTRTRTRTOO 887
PO AUMPAIL ... e e 894
PO_TESTOME......eeie e e e s e 898
15T | TSSOSO P TR P TSP PP 904
1722 (o011 . To | o F PR 927
[1l. PostgreSQL Server APPlICAtIONS.........coerririreereee e 930
11 (o | o TSRS 931
1o oTox (=TT o OSSPSR 934
[oTo I eTe] g1 (0] o F=\ = VNSRS 935
o7 [o | OSSPSR 936
1o I (=251 014 [0 o SO TP URURUTPRSRTRN 940
010153 (0 <SRRI 942
010153 10 0 F=] (= S SRRSO 946
VL INTEINAIS ..ot et b bbbt e e e et eb e e b e b e e e e e eaenne e 951
40. Overview of PostgreSQL INtErNalS.........ccceveeieieie i 953
40.1. The Path of @ QUELY.....cccvieeeeeeeee sttt s e 953
40.2. How Connections are Established.............ccoeoviinninninneiceeereeneees 953
40.3. The ParSer StAQE......ccvvivieriereeeesesteste e saeseese s s st e seee e sesrestesaesresaeneesessenns 954
A0.3. 1. PAISEL ...ttt sttt r e e n e ere 954
40.3.2. Transformation ProCESS.........covivrireireenee s 955
40.4. The PostgreSQL RUIE SYSIEML.......coviiiiiieeree e 955
40.5. PlanNer/OPtMIZEL........coieiriereeieseieesie sttt sttt s b seebe e 955

XVii

40.5.1. Generating Possible Plans............ccceininninneeeecseeseies 956

0.6, EXECULOL.....ccueiitieeieie ettt sttt st st sbe et e e s ae e tesbe e ee b e eaeesesneeneas 957
A1, SYSIEM CAlAlOGS.....c.eiveuerietirietereetert ettt sttt ettt b et bt ne bbbt b nnene 958
O O @ V= oY= OSSR 958
R oo I Voo | 1=To T-1 (= SO UR SRR 959
7 G I oo - Ty OO USRS 959
T T 11 0T PR 961
T T T 111 o1 o TSP 961
I T T L o =T SRR 962
A T TR L 4o U1 S PR 962
S oo T o= 1] AP 965
e oo T o =TSP 966
I O o Yo T oo 10 TSY 1 = 1 | RPN 969
g 0 5t I o Yo o0 1011/ To o RPN 970
41.12.pg_databasecccceiiiieiiieie e e 971
I G o Yo e (=T o =T o o USRS 972
I I o Yo o 1YY o1 T 14 (o) o RS 974
I ST oo [o] £ 101 o RS 974
o I G o o g To = S 975
o I A o Yo T 1= 1SS 976
R o Yo T = 1Yo [Vo =Y 976
I e o Yo N = 1o =Yoo} =T od A 977
I O o Yo T 1 (=] 1) 978
O o To T - 134 1YY o = Lo S 978
Oy o To T o oo = T R 979
G oo Tl o] o 1= - Lo PP R 979
O o To T o oo PR 981
A ST o To T {1141 (=P 983
R G o To TR - o (o 11U 983
A o To TR - L1 1o USRS 984
7 A S o To T = o] (=1 - Ut ST 986
A o To T 4 To o 1= RS URRTRS 986
G O o To T 1 o1 TR UV 987
471,31, SYSEM VIEBWS......ceeiiieiirietereete sttt sttt st b et sn e snebesnebe e 993
Iy o Yo T 1o [0t = PR 994
RS o Yo T [To) < RPR 994
I N o Yo T (V][RP 996
ST o Yo T =111 To PR 996
RS O o To) = (PR 997
A1.37.pG_taDIES i ———————— 999
Rt C i oTo TN =Y USSR PPSRRRTRN 1000
RS I o To TR (SRR TRRRRRTRN 1000
42. Frontend/Backend ProtoCOL..........ccoeiiirninine e 1002
2.0, OVEIVIEW....iueeeeeieeteete ettt sttt et be b st se e e ese b e b se e b e s et e st ebeebenbeseeneenea 1002
42.1.1. MeSSaQING OVEIVIEW.....cc.eccuerreeeerireeeseesreeaestesseessesseeseesseseessessesssenes 1002
42.1.2. Extended QUETY OVEIVIEW.........cocevveeeeeectese s seeseeeee et sae s 1003
42.1.3. Formats and FOrmat COUES........covvrrrrereienresereee e 1003
42.2. MESSAQE FIOW.......ocviieceeeeece sttt eenens 1004
N R - 1 LU o 1004
42.2.2. SIMPIE QUETY...ccueivieiesiereeeeietestestesteseeee e ese e esteseeseesessessessessenseneeneens 1006
0 T = (=1 o [=To [@ U =Y oY S 1007
42.2.4. FUNCHON Call......ooieieeeeeeeeee s 1010

XiX

42.2.5. COPY OPEIAtiONS.....ceriitiirieirieitrieie sttt 1010

42.2.6. ASynchronous OPeratiQns..........occeveererererenesenesee e 1011

42.2.7. Cancelling Requests in Progress.......ccovvenreieneieneienseseseneneee 1012

A T =14 411 g = LT o SR 1013

42.2.9. SSL SesSioN ENCrYPLON......cccveirieiriee et 1013

42.3. MeSSage Data TYPES.....cceeieriirireieiet st 1014
42.4. MESSAJE FOIMALS......coiiiiiiiitieiire ettt see e e 1014
42.5. Error and Notice Message Fields........ccoi e 1030
42.6. Summary of Changes since Protocol.2.0.........ccccooeviiiniininienenenereeeens 1031

43. PostgreSQL Coding CONVENLIONS........cceieieerierie ettt see e 1033
e Tt I o] 10 £ P-4 1] o USSP 1033
43.2. Reporting Errors Within the Server..........nni e 1033
43.3. Error Message Style GUILE........cccv ettt ne s 1035
43.3.1. What gOES WHEIE........coeceeeecteceeee et 1035

G TR T o . = 111 Vo T 1036

43.3.3. QUOLALION MAFKS......cccveierieeiecte e 1036

43.3.4. USE Of QUOLES......eo ettt sttt 1036

43.3.5. Grammar and PUNCLUALION..........ccevuereereeeeece s seeseeee e e 1037

43.3.6. Upper Case VS. IOWET CASE........ccevvrereereeesteseseseeree e seese e 1037

43.3.7. AVOId PASSIVE VOICE.....ccueeeeeeeerieitesteieeeieese e s e steseeseesessesne e ssenseneeneens 1037

43.3.8. Present VS Past tENSE........ccvvireerre e et se et 1037

43.3.9. Type of the ODJECL....ccveeeeeeeec e 1038

43.3.10. BraCKetS......ooererrereerireresie e 1038

43.3.11. Assembling error MESSAGESccuvrerererrerereese e 1038

43.3.12. REASONS fOr EITQIS....c..coeeeeeeeriiiesierieee et e e see e neene s 1038

G TG 0 I T 0 Vo 1o T T = U =S 1038

43.3.14. Tricky WOrdS t0 @VOId.........ccorueuirieireiereeereeees e 1039

43.3.15. Proper SPelliNg.....c.cceoeerrieiieereeree e 1039

VG T0C T I G 0 o o= 1 2= 1 [IS 1040

44, Native Language SUPPQLL......co.cereirieirieieisieesieeseeesiee st snene 1041
44.1. FOr the TranSIator.......cocoeeeeie e enea 1041
44.1.1. REQUIFEMENTS....c.eitiiiteieetee ettt sttt 1041

44.1.2. CONCEPLS....ccuiiiriieriereste ettt 1041

44.1.3. Creating and maintaining message catalogs.........ccooeeerrererenennen. 1042

44.1.4. Editing the PO fil@S.....oooeeee e 1043

44.2. FOr the ProgramIMer.........ccoeiiriiierieeee st s sse e sre st e e eenens 1044
N I |V (=Tl = g (o R 1044

44.2.2. Message-writing guUIdelines...........coeoeorieiine e 1045

45. Writing A Procedural Language Handler...........cooooinnineeeeese e 1046
46. Genetic QUETY OPLIMIZEL......cc.cirireieieie ettt bbb s se e 1048
46.1. Query Handling as a Complex Optimization Prohlem.............cccccevvreennns 1048
46.2. Genetic AlQOMtNMS........ooe o s 1048
46.3. Genetic Query Optimization (GEQOQO) in PostgreSQL........ccccceevevvevvieennne 1049
46.3.1. Future Implementation Tasks for PostgreSQL GEQQ.................. 1050

46.4. FUNhEr REAAING........ceieieeiesteeese sttt ete ettt e e sneennesnee e 1050

47. Index Cost EStimation FUNCLONS..........coviiiinreeersseeeres e 1051
48. GIST INUEXES.....iiirierereiriresiere sttt nen e nnenas 1054
E G I 0T [8 X o o OSSPSR TSP 1054

8 B o a =Y =1 1 L T SSRSR 1054
T T [9T 0] (=T 0 g =T) =i o) R SSR 1054
b S o 11 =1 (T] o =TSSP 1055
A8.5. EXAMPIES ..ottt s st ettt et 1055

XX

49. Database PhySiCal STOrage........ccveirrirriiriniriese e 1057

49.1. Database File LAYOUL...........cccooieireiireeree ettt 1057
e NS TS 1058
49.3. Database Page LayOUL..........cccuereirieerieenee st 1060

50. BKI BaCKeNd INTEITACE......cceririiiriiieie ettt s 1063
50.1. BKIFile FOMMAAL ...ttt st enen 1063
50.2. BKI COMMANTS.....ciiiiieiiiie ettt see e e e s bt seeseeeeneas 1063
50.3. EXAMIPIE ..ttt ettt bbb ne e ene 1064

RV LI o] o 1= s To 1) VSR RTO USRS 1065
A. PostgreSQL Error COUES........coiiiiiir s 1066
S = L C YA T (=3RS]] Lo« S S 1073
B.1. Date/Time Input INterpretatiQn...........coeeceveeeese e 1073

B.2. Date/Time KeY WOIS........c.ccveiie et ee 1074

B.3. HiStOry Of UNItS.......ccceiicieece ettt 1088

C. SQL KEY WOIS ... ceiiiceeeiicieie st eeeste st te et et ste st enaestesneeaesaessaestesseensenseennaneas 1090
D ST T I @] 0] . = o = S 1109
D.1. SUPPOIEA FEAIUIES......cveireeetesieereeeete et see ettt e e sre e sre e ena e ens 1110

D.2. UNSUPPOEA FEALUIES.......ciiieieieereeeete sttt saeee sttt ena s 1120

E. REICASE NOTES......ciiiicetre et 1128
E.1. RElCASE 8.0 .ot 1128
ELL. L. OVEIVIEW. ..ottt 1128

E.1.2. Migration t0 VErsion 8.0........cccuveireiririnerinsieesieesee e 1129

E.1.3. Deprecated FEAULES........coviireireereeee s 1130

I B O g = T o =TSSR 1131

E.1.4.1. Performance IMprovements.........ccoueeveeereereeereeneenienens 1131

E.1.4.2. Server Changes.........cccreireininiinniesieesieeseeesee e 1133

E.1.4.3. QUErY Changes........cccveireirieineniiinieesieesieeseeie e 1134

E.1.4.4. Object Manipulation Changes..........ccccveereerreneieneenenens 1136

E.1.4.5. Utility Command Changes........ccceererreiereerieenieeseeeseeeens 1137

E.1.4.6. Data Type and Function Changes..........cccoeereeeneeneenennenns 1138

E.1.4.7. Server-Side Language Changes...........ccccveeereereereennnnens 1140

E.1.4.8. PSOI ChanQES.....cccuiueirieiirieiirieeeeeieeseeesee e 1141

E.1.4.9. pg_dump Changes........cceereirierenene e 1141

E.1.4.10. [Ibpg Changes. ... 1142

E.1.4.11. Source Code Changes.......cccceeerererereneeierere e 1142

E.1.4.12. Contrib Changes.........ccourerieirierisere e 1144

E.2. REICASE 7.4.B.....ceceeeeteeeeee ettt 1144
E.2.1. Migration t0 VErSioN 7.4.G.......ccccoiiirereieeene e 1144

A O g - T Vo 1= 1144

E.3. REICASE 7.4.5. ... 1145
E.3.1. Migration tO VErSioN 7.4.8........oov e 1145

G T O o - T T T 1145

E.4. REICASE 7.4 4.ttt 1146
E.4.1. Migration t0 VErSION 7.4 4......ccccceevieieieeeeee s steseie et seenenens 1146

R S O g - T g [o =SSR 1146

E.5. REICASE 7.4.3. ..ot 1146
E.5.1. Migration t0 VErSiON 7.4.3......ccvocveeeere e seesieae et ste e seeeenens 1147

T2 O g - T To =SSR 1147

E.B. REICASE 7.4.2. ...ttt 1147
E.6.1. Migration tO VEIrSIiON 7.4.2.......c.cccoureirrineenserieeseeesie e 1148

E.B.2. CRANGES. ...ttt 1149

XXi

E.7. REICASE 7. 4. L.ttt ettt ee et e s e st e s sae e s s be e s ete s e saes 1149

E.7.1. Migration t0 VErsion 7.4 L. 1150
E.7.2. CRANGES. ..ottt 1150

E.8. REICASE 7.4 ..ottt sttt st 1151
E.8. 1. OVEIVIEW.etiieeeieiceierie ettt s e et e e sbesbesee e e e eneas 1151
E.8.2. Migration t0 VEISION 7.4........ccieireireineeieesieiieese s 1153
E.8.3. ChanQES.... .ottt 1154
E.8.3.1. Server Operation Changes.......cccvererereenenenene e 1154

E.8.3.2. Performance IMprovements..........c.ooeverererieneneseeniesie e 1155

E.8.3.3. Server Configuration Changes..........ccoceveerinenenencneneeen 1157

E.8.3.4. QUErY ChangES........ccoeririirieieirere e 1158

E.8.3.5. Object Manipulation Changes.........c.cveverrenienenenieneeeene 1159

E.8.3.6. Utility Command Changes.........ccccceevvveeveveseece e, 1160

E.8.3.7. Data Type and Function Changes..........cccoevveeeveveeieesrreeenn. 1161

E.8.3.8. Server-Side Language Changes.........cccccvvveeevevenciesieeeennn. 1163

E.8.3.9. pSOl ChanQeS.....cccecieeieee ettt 1163

E.8.3.10. pg_dump Changes.........ccoeivierrierierienieceeseeseeseeseeeee e 1164

E.8.3.11. libpg Changes.......ccccvviiieieeeece et 1165

E.8.3.12. IDBC Changes......cecuveriririeriniireninesieesieesieesesseseesesaesesessenes 1165

E.8.3.13. Miscellaneous Interface Changes.........ccccccvevvvvreriereenenn, 1166

E.8.3.14. Source Code Changes.......cccceceeereriereneeieeese e seseeeeeens 1166

E.8.3.15. Contrib Changes.........ccccvveeieeeieee e e 1167

E.O. REICASE 7.3.8...eoceee ettt et 1167
E.9.1. Migration t0 VErsion 7.3.8.......ccccereirninreserieereeesee s 1168
I T O g - T o =SS 1168
E.L10. REIEASE 7.3. 7. i ceie ettt sttt ene st st nn e e nns 1168
E.10.1. Migration tO VEIrSION 7.3.7.....ccoeireireineneerieesieeree e 1168
E.10.2. ChANQES.. .ottt 1168
E.11. REIEASE 7.3.6...cieie ettt sttt st s ens 1169
E.11.1. Migration tO VErsion 7.3.6.......cccureerrinninnieerieeseeeseeesee e 1169
E.11.2. ChANQES....ciiiiiiieiieiertesee ettt 1169
E.12. REIEASE 7.3.5. .t e 1170
E.12.1. Migration t0 VErsion 7.3.5......ccciriirrinnineieesee e 1170
E.12.2. ChANQES....coieiiiiieirieee ettt 1170
E.13. REIEASE 7.3.4... ettt 1171
E.13.1. Migration tO VErsioN 7.3.4.......ccoiiiiereieeenerie et 1171

N T @1 g - T o =SSR STTURRRR 1171
E.14. REIEASE 7.3.3. .ottt bbb b e 1171
E.14.1. Migration tO VErSioN 7.3.3......cccoiiirereeeeerie e 1171
I B O g = 14 o =Y TSRS 1171
E.15. REIEASE 7.3.2. .ttt e e 1173
E.15.1. Migration tO VEISION 7.3.2.......cccceieieeieceeiese e 1174
T O o - T g Vo 1= 1174
E.16. REIEASE 7.3. 1.ttt s 1175
E.16.1. Migration tO VErsion 7.3.L......ccccoeveiieiecieiese e 1175
T2 O g - T o =TSSR 1175
E.17. REIEASE 7. 3.ttt st sttt 1175
E.L7. 1. OVEIVIEW. ..ottt sttt es 1176
E.17.2. Migration tO VEISION 7.3.....cccceeceeereseseeeeeseseseessesesesse e ssesseseesesnens 1176
o A TR 1 g - T o =SSR 1177
E.17.3.1. Server OPeratiOn........ccccveeuereerereseseseseeseeesesseseeseessesesseens 1177

E.17.3.2. PerfOrmMancCe......ccccovvviiiineeeeee s 1177

XXil

E.17.3.3. PrIVIIEgES ..ot 1178

E.17.3.4. Server ConfiguratiQn...........ccoveeerrenreieneineeseeseeseeens 1178

E.17.3.5. QUEIES ..ot iiieeeeeeeeete ettt 1179

E.17.3.6. Object Manipulation.............cccureirrerrenrereeneeseeseeens 1179

E.17.3.7. Utility COmMMAaNdS........ccooeirrinriiinicrieeneeeseeieseee s 1180

E.17.3.8. Data Types and FUNCLONS..........ccvirreerieeneereeseeeeeens 1181

E.17.3.9. InternationalizatiQn............cccooeoereeenese e 1183
E.17.3.10. Server-side LanguUages.......cccceceeererereererererieseeseeseeneseene 1183
I 0 I O o 1o | TSRS 1183
0 4 102 11] o T TS TSR 1184
0 0 e FN | = 3RS 1184

E.17.3.14. Miscellaneous Interfaces.......c.ccooverenennenene s 1184
E.17.3.15. SOUICE COE......ccoririiriiiiieieere st 1185
E.17.3.16. CONIIRL....oiiiiiieeisieerieee e 1186

E.18. REIEASE 7.2.5...ceiieiieieeeeee ettt s 1187
E.18.1. Migration tO VEISION 7.2.6......ccceceieieeiecieieee et seee e 1187
E.18.2. ChaNQES......ccoiii ettt e nas 1187
E.19. REICASE 7.2.5. ..ottt sttt 1187
E.19.1. Migration t0 VEISION 7.2.5.......ccciieviereeeceseseseeseeesese e ste s seeneenens 1188
T2 1 g - T o =SSR 1188
E.20. REICASE 7.2.4. ...ttt et sttt 1188
E.20.1. Migration t0 VEISION 7.2.4.......cccovvieierereeeseseseesieeesese e stes e seeneenens 1188
2 O 2 1 g - T o =SSR 1188
O o L 1o T e SR 1189
E.21.1. Migration tO VEIrSiON 7.2.3......cccereireinriesiesieeseeesee e 1189
E.21.2. ChANQES....coiiciieiiie e 1189
E.22. REIECASE 7.2.2. ..ottt sttt st ene e nns 1189
E.22.1. Migration tO VErSION 7.2.2.......cccoveireinrinierieeseeeseeesee e 1189
E.22.2. ChANQES....coiiiiiiiiere et 1189
E.23. REIECASE 7.2. 1ottt sttt st 1190
E.23.1. Migration to VErsion 7.2.L.......cccoeereinninnierieereeeseee e 1190
E.23.2. ChAnQeS.. ..ot 1190
E.24. REIEASE 7.2...ce ettt sttt st 1191
E.24. 1. OVEIVIEW. ...eiiiieieeieieie ettt sttt e e sbe st ee e e e eneas 1191
E.24.2. Migration tO VEISION 7.2.......cccooiiirerereeeeceie e 1191
E.24.3. ChANQES...ccuiieeeieieee ettt bbb e 1192
E.24.3.1. Server OPeratiOn.........ocooeoueeerierenere s 1192

E.24.3.2. PerfOrmancCe.......ccccoiiiiinieeeee e 1193

E.24.3.3. PriVIIEQES ..ot e 1193

E.24.3.4. Client AuthentiCatiQn............cccecererirerieneereeenene e 1193

E.24.3.5. Server ConfiguratiQn...........cccceeeveeienecceese e, 1193

E.24.3.6. QUETIES......oeiteerieeirieiirietesiete ettt aese s nes 1194

E.24.3.7. Schema Manipulation...........cccccoeveveneeieere e, 1194

E.24.3.8. Utility Commands..........cccoevveeieneniese e 1195

E.24.3.9. Data Types and FUNCLIONS.........cccccereeceern e 1195

E.24.3.10. Internationalization.............ccccoeerverneneneerseseeseeseeens 1196
E.24.3.11. PL/PGSQL..tiiiiiiiiirieireierieees et 1196
E.24.3.12. PLIPEIl.cuieitiiee ettt 1197
E.24.3.13. PLITCluetiiitee et 1197
E.24.3.14. PL/IPYtNON......ciiiriiirieiree et 1197
e Tt L T o 1o | S 1197
E.24.3.16. IDPG...cveoeveeeeeeeeeeeeeeeeeese e seesees e eenesenena 1197

XXii

E.25.

E.26.

E.27.

E.28.

E.29.

E.30.

E.31.

E.32.

E.33.

E.34.

E.35.

E.36.

E.37.

E.38.

E.39.

E.24.3.17. IDBC......o oot e 1197

E.24.3.18. ODBC......ccociiicesieisteesete et 1198

E.24.3.19. ECPG....cooiiiiseeseesetete ettt 1199

E.24.3.20. MiSC. INterfaces........cocurereirieee e 1199

E.24.3.21. Build and Install...........coooeoeirinininereeeeee e 1199

E.24.3.22. SOUICE COUE......c.eiiiiieiieieeeeee e 1200

E.24.3.23. CONLIRL....oiiiiicieicieisieesee e 1200
REIEASE 7.1.3.. et et bbb e 1201
E.25.1. Migration t0 VErsion 7.1.3........ccoiiiireinene e 1201
E.25.2. ChANQES...cuiieeeieiee ettt bbb e 1201
REIEASE 7.1.2.. ..ottt ettt a s 1201
E.26.1. Migration tO VEISION 7.1.2.......cccccceieieeieiieiiese et 1201
[I O g - T g Vo = 1201
REICASE 7. 1. L.t s 1201
E.27.1. Migration tO VErsion 7.1.L.......cccceviieeneceeese et 1202
A A O g - T g Vo T S 1202
REIEASE 7. L. e bbb e 1202
E.28.1. Migration t0 VEISION 7.1.......ccccceeeieieieeieesese e ese e ste e sneneenens 1203
S A O g - T o =TSSR 1203
REIEASE 7.0.3. ...ttt 1206
E.29.1. Migration t0 VErsion 7.0.3........ccccveiererereeesesesesieeesesse e sre e seeseenens 1207
S O g - 1 o =SSR 1207
REIEASE 7.0.2.. ...ttt 1208
E.30.1. Migration t0 VErsion 7.0.2........ccoevereinninniiereereeesee e 1208
E.30.2. ChANQES.. ..ottt 1208
REIEASE 7.0. L.t s n e na e eneas 1208
E.31.1. Migration to vVersion 7.0. L. ... 1208
E.31.2. ChANQES....cciiiiiieerieere et 1208
REIEASE 7.0ttt st eneas 1209
E.32.1. Migration to Version 7.Q.......ccoeereereinninserieeseeeseee s 1209
E.32.2. ChAnQeS.. ..ottt 1210
REIEASE B.5.3..... et 1216
E.33.1. Migration to Version 6.5.3........cccocirrinninnceereeree s 1216
E.33.2. ChanQes....coocirieiee s 1216
REIEASE B.5.2..... e e et 1216
E.34.1. Migration t0 Version 6.5.2.........cccoeiiriinnini e 1216
E.34.2. ChANQES. ..ottt bbb e 1216
REIEASE B.5. 1. e bbb e 1217
E.35.1. Migration to Version 6.5.1.........cccoeiiriinineie et 1217
E.35.2. ChanQeS....ccoiciiciiieireseese et 1217
REIEASE B.5.....oei i e bbb 1218
E.36.1. Migration t0 VErsioN B.5.........ccceeceieiieieseeese et 1219

E.36.1.1. Multiversion Concurrency Control.........ccccoeeeevevvrcvesveeeennn. 1219
E.36.2. ChaNQES......ccoiie ettt st 1219
REICASE B.4.2.....ceieeeeee e e e 1222
E.37.1. Migration t0 VErsion 6.4.2...........ccccevevueieeeseieseseiesese e se e seeseenens 1223
R ©1 g - T o =TSSR 1223
REIEASE B.4. L. ...ttt 1223
E.38.1. Migration t0 VErsion 6.4.1.........cccccevevuereeeneseseneesesesreseseseeneenens 1223
RS 02 O g T- 1o =SSR 1223
REIEASE B4 ...t 1224
E.39.1. Migration t0 VErSion 6.4.........cceveirminninnerieseeese e 1224

XXiV

E.39.2. ChANQES.. ..ottt s 1225

E.40. REIEASE B.3.2. ..o ittt sttt ettt 1228
E.40.1. ChAnQES....coociieriiirieeeeese ettt 1228
E.4L1. RElEASE B.3. 1.ttt ettt 1229
E.41.1. ChANQES....ccoociiiiiiirieirteese ettt 1229
E.42. REIEASE B.3......oeie ettt sttt 1230
E.42.1. Migration tO VErSioN B6.3........ccooirireriereeeecnie e seesieee e 1231
E.42.2. ChANQES...ccuiieeeieieeie ettt bbb e 1231
E.43. REIECASE B.2. 1.ttt 1234
E.43.1. Migration from version 6.2 to version 6.2.1.........cccccocvvenerennnennne 1235
E.43.2. ChANQES...cuiiieeeieieeie ettt s e 1235
E.44. REIEASE B.2......ooiiiiieeeeeeee ettt et bbb e e 1235
E.44.1. Migration from version 6.1 to Version G.2.........ccccceeeeveveecvenveenene. 1235
E.44.2. Migration from version £.t0 Version 6.2..........ccccoevveeeveveecenveeeene. 1236
[T O o = T Vo T 1236
E.45. REIEASE B.1. 1ot e e 1238
E.45.1. Migration from version 6.1 to version 6.1.L.........cccccevvveecvnrecnennn. 1238
E.45.2. ChANQES....coieieeeceeee sttt sttt e se e enea 1238
E.46. REIEASE B L.....ooecieiieeieeiee sttt sttt 1238
E.46.1. Migration t0 VEIrSioN B6.1........ccccccivieiereeienienesesiesieeenese e sre e seeneenens 1239
LGP O g - T o =TSSR 1239
E.47. RElASE 6.0 ...ttt 1241
E.47.1. Migration from version 1.09 to version 6.0.........ccccceveevivvivrierereenens 1241
E.47.2. Migration from pre-1.09 to Version 6.0.........cccoeevrrererereeneeninnens 1241
E.47.3. ChANQES.. ..ot 1241
E.48. RElEASE 1.Q9.......cce ettt et st ens 1243
E.49. REIEASE 1.Q2.......ooiieeeeeeeee ettt sttt see e ens 1243
E.49.1. Migration from version 1.02 to version 1.02.1........cccccoevreiennnene 1244
E.49.2. Dump/Reload ProCedUr ... 1244
E.49.3. ChAnQeS.. ..o s 1245
E.50. RElEASE 1.Q1.......o ittt ettt 1245
E.50.1. Migration from version 1.0 to version 1.01........cccccveeneienecnnnene 1245
E.50.2. ChANQES....c.oiiiiirieiierieeree e 1247
E.51. REIEASE 1.0ttt 1247
N I R 1 g = T o =SSP 1248
E.52. Postgres95 Release Q.03........oo e 1248
E.52.1. ChANQES. ..ottt bbb e 1249
E.53. Postgres95 Release Q.02.........coo it 1251
E.53.1. ChanQES. ..ottt s s s 1251
E.54. Postgres95 Release Q.0L........cooiiniii e 1251
F. THE CVS REPOSIIONY. ... iiiciecticte ettt ete sttt sttt e e sae e e tesreenaanreennannas 1253
F.1. Getting The Source Via Anonymous CVS........ccccoeveienienieseeiene e se e 1253
F.2. CVS Tree OrganiZation.........ccccceieiieereseeieseeeesieseesee e s saes e sseese e enesnesneeneens 1254
F.3. Getting The Source Via CVSUR.....ccoov ettt 1255
F.3.1. Preparing A CVSup Client System.........ccccveverveceeveseese e 1256
F.3.2. Running a CVSUP ClIENt......ccccoeciiiiese e 1256
F.3.3. INStalliNg CVSUP.....ceiiii ettt eenea 1258
F.3.4. Installation from SOUICES.......ccoceireirrineirseree s 1259

LC B o Tot U4 g =T o) 1 1T o ST 1261
L0 T Tor 2T To | 1261
L7 Lo To] I ST= SO 1261
G.2.1. Linux RPM INStallation........ccovevrereiereeeere e 1262

XXV

G.2.2. FreeBSD INStAllation.........ccoieeie it 1262

G.2.3. Debian PaCKAgES.........ccururuiririirierieesiees ettt 1263

G.2.4. Manual Installation from SOUICE.......cccceeririrerere e 1263

G.2.4.1. Installing OpenJade..........ccoeoreereineieneeeee e 1263

G.2.4.2. Installing the DOcBOOK DTD Kit.........cccoeineinnereneeseneeee 1264

G.2.4.3. Installing the DocBook DSSSL Style Sheets.........ccocee..... 1264

G.2.4.4. Installing JAdeTeX.....c.ccooiiiieereeeeeese e 1265

G.2.5. Detection Donfigure ... 1265

G.3. Building The DOCUMENTALION.........cooiiiiirierie et 1265
LR 0 R o 8 I SO 1266

G.3.2. MABNPAGES ...ttt ettt et bt b e se e e e e e e 1266

G.3.3. Print Output Via JAAETEX.....cccceririireeieirere et 1266

G.3.4. Print OUIPUL Via RTE ..o 1267

G.3.5. Plain TEXt FIleS.....coiircieierrrerees e 1268

G.3.6. SYNtAX ChECK......c.eceee ettt e 1268

G.4. Documentation AUtNOING.......ccccviiiieiereeeee e 1268
G.4.1. EMACS/PSGML.....oiiiiiiiiiiriieise st 1269

G.4.2. Other EMAcS MOES.........ccoeueirririeieienesesiieee st 1270

G.5. SLYIE GUITE. ...ttt et 1270
G.5.1. REfErenCe PAgeS....ccccicviieeeecese sttt st 1270

L TR (=] g T T o (0] [=Tox £ TSRS 1273
H.1. Externally Developed INtErfaces......ccovvviviereecsese e 1273

H. 2. EXIENSIONS.....ccvciiierereretne sttt 1274
BiIDHOGIAPNY ..t b bbbttt na e 1275
... 1277

XXVi

List of Tables

4-1. Operator Precedence (AECIEASING)......cicurereeererrsrirertereeeeesesesresaeeeessessesses e saeseesessesseses 29
o I D = 1 = B Y] 1= 3 77
oS N1 4 1= Y o 1 o =R 78
8-3. MONELAIY TYPES....e ettt sttt et r b e et b bt e e s eneenennes 82
S N O T T = ot (=T g Y] L= OSSR 82
8-5. SpeCial CharaCler TYPES.....ocirieirieieriet ettt ettt s e 84
8-6. BINAIY DAt TYPES.....c ettt sttt sttt b et bbb 84
8-7.bytea Literal ESCAPEU OCIELS......ccoiiiieirieeriee ettt s e 84
8-8.bytea OULPUL ESCAPET OCLELS.......couiiiiiieeierieie ettt e 85
8-9. DAL/ TIME TYPES .ttt ettt sttt b et b et b et bbbt e b e st ket e bbbt e b e 86
8-10. DALE INPUL......oitiiriiereeeeiet ettt r e e et b bt e sren et eneenes 87
8-11. TIME INPUL...eeeee ettt bbb bbbt ekt b et bt bbb 88
8-12. TIME ZONE INPUL......eiitiieiti ettt b ettt b et b et b e e 88
8-13. Special Date/TimMe INPULS........ceireiriei ettt ettt 90
8-14. Date/TImMe OULPUL SEYIES... .o .ot st 90
8-15. Date Order CONVENTIONS.oouieeereeieeiesie ettt et sbe st st se e e ebesae e se e e e e e e enesreseas 91
e e ST CT=To] g 1] ([Y] 012U 93
8-17. NEtWOIrK AQUIESS TYPES. ..ot ittt sttt sttt bbb e e e besbe b e e b e e e e enesneneas 95
8-18.cidr Type INPUL EXAMPIES.....c.ooiiiiiii ettt e s 96
8-19. ObjJECt IHENTIFIET TYPES...ueitiitiriiieieert ettt st se e b bbb e e e e eae 110
S S O Y= TN o [o Tl 1Y o= SRS 111
9-1. COMPAriISON OPEIALQIS.....ccueieeieeireeiiesteeteeteereestesessaesesseestesteessesseseessesseessestesssessesseessessesneens 113
9-2. MathematiCal OPEIatOrS.......cccocviiiieerieeeie st ere s e st e et sre e e s te e e aestesseeaesreeaesreeneens 115
9-3. MathematiCal FUNCHONS..........cocorieii e 116
9-4. TrIgONOMELIIC FUNCLONS.......eeiiiieiesestiee ettt e s e e te e e aesbeeneeaesneeeesreeneens 117
9-5. SQL String FUNCIONS and OPEIatQrIS........cccevueieeireiesesiereres e e e e s e e e s sre e seeeenens 118
9-6. Other StriNg FUNCLONS.........coiiiiieeeese e e s st e e te e sae e e e ssesneseesenseneenennens 119
O-7. BUIIt-IN CONVEISIONS.....ccuiuiiriiereiiisesee ettt es 123
9-8. SQL Binary String FUNCtions and OPEeratorS........ccvvverereereeiesesieseseeseeeseseseessessesesessens 126
9-9. Other Binary String FUNCHONS.cvcoiiirisesereeesese s stesieee et e e see e e sensenesnesnens 126
9-10. Bit StriNG OPEIatOLS.....cvcveiieriiriirieeeieeesesesteseeseseseseessesseseesessessestessessessesessessessessensessssessens 127
9-11. Regular EXpression MatCh OPEratorS........ccovioieirieirieerieesieesese et 130
9-12. Regular EXPreSSioN ALOMS... ..ottt ettt et 131
9-13. Regular EXpression QUANTIfIErS.........co i e 132
9-14. Regular EXpression CONSIIAINIS.........coiiiiiirieriecrieesie e e 133
9-15. Regular Expression Character-Entry ESCaPeS........cccveireinieininensese s 134
9-16. Regular Expression Class-Shorthand ESCAPES.........ccoecreireinininiseserese s 135
9-17. Regular EXpression CONStraint ESCAPES........ccvo it 136
9-18. Regular Expression Back REfErenCes.........cccviirciieineee e 136
9-19. ARE Embedded-Option LEHALS. ...ttt 137
9-20. FOrmMatting FUNCHIONScoueirieirieiiietee et 140
9-21. Template Patterns for Date/Time FOrmatting..........c.cccveoireineiinninsesesesee e 141
9-22. Template Pattern Modifiers for Date/Time FOrmatiing.........c.ccooererereinienesenenereneenens 142
9-23. Template Patterns for Numeric FOrmatting..........ccocovererrinieniene s 143
9-24.t0_char EXAMPIES......coiiiiiiee ettt et nae 144
9-25. DAt/ TIME OPEIALOIS.....ciuiiirtitiieeeerte ettt sttt sttt sbe st e s be e e e e e sbesbesbese e e e eneenens 145
9-26. DAte/TIME FUNCHONS.couiitiitiiieereee ettt st s s e eae 146
9-27.AT TIME ZONEVANANTScueirieiirieiirietisisieesieess st 151
9-28. GEOMELIIC OPEIALOLS......ccviiueeieiteeiesteeteete et estesressae s e steetesteeeessesseestesseessestesssensesseensessensenns 154

XXVii

9-29. GEOMETINIC FUNCLIONS.eeieicteie ettt ettt e st e et e e s et e s s e bt e s sebae e sbeessabeessseesssreessarenesans 155

9-30. Geometric Type CONVErsion FUNCHOMSoiiiirieirieenieeseeesie e e 156
9-31.cidr ANAINEt OPEIALOIS.......ciueuireeeiieiiieieiri ettt b e bbb 157
9-32.cidr andinet FUNCHONS........ooiieeeee et e e ene 158
9-33.Macaddr FUNCLIONS.......coiiiiiitiee ettt st se e sae b st se e e e eneenen 158
9-34. SEQUENCE FUNCHIOMS......ccuteeiiieiirieeeieteeee ettt e 159
O-35.arTAY OPEIALOIS. ... eiitiieieti ettt ettt ettt et et et e sbe et e s beeaeesaesaeeaeesaeeasesbesaeasesaeeeesaesanans 162
LS L= =\ VA Vg o3 o] o SRS 163
9-37. AQQregate FUNCHIOMNS.ccii ettt sttt bbb s e e bbbt e e e e ene 163
9-38. Series Generating FUNCLIONS.ooiii e e 171
9-39. Session INformation FUNCHONS. ..ot e 172
9-40. Access Privilege INqQUiry FUNCHOMNS ..o s 173
9-41. Schema Visibility INqQUIry FUNCHONS.........cccociiiiie ettt e 174
9-42. System Catalog Information FUNCLIONS..........ccccceiiiieiiee et 175
9-43. Comment INformation FUNCHONS..........coiiiiieieirere et s 176
9-44. Configuration Settings FUNCHIOMNS........c.coviieir e 177
9-45. Backend Signalling FUNCLIONS........ccciiieiiieeie et sae e ae e e s naesneeneens 177
9-46. Backup Control FUNCLONS........cccciiiiiicise et e sr et a e ene s 177
12-1. SQL Transaction ISOIAtioN LEVEIS.........ccceeiiriieeiricte ettt 197
G S a1 T AT 01T a1 (=) VT 262
16-2. SYStEM V IPC PAramMELELS......cceeeieeeeeesieseetesteseestesseeseeseesaestesseesseseeeseessesneessessesssessessennes 263
20-1. Server CharaCter SELS. ...ttt ettt 292
20-2. Client/Server Character Set CONVEISIONS........cccviirieirieireinieesese et 294
23-1. Standard StatiStICS VIEWS......cceieeeireseseseseeseseseseeseeseeeesesessessessesaeseesessesssssessenseseesessens 316
23-2. StatiStiCS ACCESS FUNCHONS......ccueeeeeieise et s e e sre e e e enens 318
30-1.information_schema_catalog_name COlUMNS. ..ot 407
30-2.applicable_roles L0] (1] 331 o 1S SRR 407
30-3.check_constraints (O] (17291 o 1= S 407
30-4.column_domain_usage COIUMNS.......c.ccoiiiireieeire e e ene 408
30-5.column_privileges (O] (17291 0 1= SRS 408
30-6.column_udt_usage COIUMNS......ciiiiieire et se e e e neene 409
30-7.colUMNS COIUMNS.....cuiiei ettt et et s ae e besbeeabesbeeaeesesreennesreeneens 410
30-8.constraint_column_usage COlUMNS .t st 413
30-9.constraint_table_usage COIUMNS et e 414
30-10.data_type_privileges (070 11 1 3 o TSRS 414
30-11.domain_constraints (O70] 18101 1TSS 415
30-12.domain_udt_usage COIUMNS.......ciiiiiice et ae e e sreennens 416
30-13.domMAINS COIUMNS......cciiiiiiieieceee ettt ete e te st et e be e e e saesaeestesaeessesbesseensesreensesaeeneens 416
30-14.element_types COIUMNS..........eoiieiiiereetiee et e st te e sre e s ae e e et e ereenesaeeaesreeneens 419
30-15.enabled_roles COIUMNS.......cooiiiiiiieceecee ettt e re b e be e saeesareebeesaeesaneenbeas 421
30-16.key_column_usage COIUMNS......ccciiieiice ettt re e sreennens 422
30-17.parameters COIUMNS ..o et e et e aeeaesneenaesreenaens 422
30-18.referential_constraints COIUMNS ...t s 425
30-19.role_column_grants (0701118101 1= RS 426
30-20.role_routine_grants COlUMNS.... et rs 426
30-21.role_table_grants (0701 18] 3 4 TSRO 427
30-22.role_usage_grants (0701 18] 1 3 4 TSROSO 428
30-23.routine_privileges (701 111401 s -SSP 428
10 oYU T L= YR @0 11] SRS 429
30-25.schemata COIUMNS.....cccviiiirice sttt s se e e e s sesaese e seneeneenennens 433
30-26.sql_features COlUMNS. ...ttt ettt et s ae e be st e e b e beereebeereennas 434
30-27.sgl_implementation_info (@] 01191 01 434

XXViii

30-28.5ql_languages COIUMNS........cceiiirieese et e se e neenen 435

30-29.501_packages COIUMNS.......ccciieieerieese ettt se et e e senee e eneenens 436
30-30.501_SIZING COIUMNS ..ottt ettt st s e e e aesaeseesaeneeneeneeneas 436
30-31.sql_sizing_profiles 100] (1] 321 oIS TSRS 437
30-32.table_constraints (O] (11371 o IS 0PSRN 437
30-33.table_privileges (O] 111491 0 1S TP 438
30-34.1aDIES COIUMNS. ... ettt st e e e st bt st e seese e e esesaesaeseensenseneeneenens 438
30-35.trggers COIUMNS.......cii et te st et e esresaeestesreessesbeeseeneesreeneesresneens 439
30-36.usage_privileges (701 18] '] 1SS 440
30-37.view_column_usage COIUMNS........couciiiice e sre e 441
30-38.view_table_usage COIUMNS. ...ttt s s reennens 442
30-39.VIEWS COIUMNS... .ottt bbb se e bbb e b e e e e e eae 442
31-1. Equivalent C Types for Built-In SQL TYPES.....cecceiericeee ettt 461
B = B (=TS U= L (=T o | =SSR 490
B I o F= TS] (= 1= 0[RS 491
1 I 1 (=TS IS (= 1 (=0 (=SSP 491
31-5. B-tree SUPPOIt FUNCHIOMNS........cccieeiseeiese et ettt ae e e s sneeaesneeneens 491
31-6. Hash SUPPOrt FUNCLIONS........cciieieiec sttt n e ene 492
31-7. R-tree SUPPOIt FUNCHONS......cciicieeeese st ste e se et a e se s see e nee e e enens 492
31-8. GIST SUPPOIt FUNCLOMS......ccuiiiieeieeeeesresesieseeeeesseseestesseaesessessestesaessesesessesssssessenseessessens 492
N YY1 (=1 1 O 1 - 1 oo L= 958
41-2.pg_aggregate COIUMNS......coccuiiieeeiecee ettt st s eesbesbe s s e besseessesaeesesbesssebesssenresreenees 959
A1-3.PG_AM COIUMNS.....oeiieiteceeite ettt te et be et e s e e ste s e ebesbesssesbeeseensesbeensesbesssebesssensesreenses 960
N o To I Uy Lo o T @] 1 4 LS 961
T ST o Yo - U241 o (o To o] 113 1 o S 961
G o Yo - Ui L= A @] [0 o1 1 S 962
41-7.pg_attribute (0] (17331 o 3RS 962
It S oo I o= A @0] 1 4 LSS 965
e I oo I ol - Eot S @ o 111 '] SRS 966
41-10.pg_constraint (@] 01191 1SR 969
41-11.pg_conversion COIUMNS......ccoi ettt ne e eneeeas 970
41-12.pg_database COIUMNS.......cciiieieere ettt et e e sne st besee e e e eneneas 971
41-13.pg_depend COIUMNSottt ettt s se e se st ae st e besee e e e eneneas 972
41-14.pg_description L0] (1] 391 o IS OSSR 974
41-15.pg_group COIUMNS......c.eciiiiiieiieeeee ettt be st e et e eae e s e saeetesbeeneesbesaeensesreennas 974
S o Yo 1T L= G @] [V 3 1 S 975
41-17.pg_inherits (0] 18] 5'0] 1S3 976
N R o Yo F=TaTo (U= To LT @0 11 1 4 1SS 977
41-19.pg_largeobject (701 18] '] 1SS 978
41-20.pg_listener (0] 18] '] 13U 978
41-21.pg_nNamespace COIUMNS.......cciii e s re e st a et e sae e eesreeneas 979
VN o Yol o] o Tot = YT o [1 o £ 979
VMR AC T o Yol o] o 1= - 1 o) AR O 0 11 .4 1 980
VI 8 o Yo I o] (oY @0 (1o 0T = 981
41-25.pg_rewrite COIUMNS. . ..ottt ettt et b e s e ere e be e sareeseebe e saeeenneenreesres 983
41-26.pg_ShadoW COIUMNScciirieiictecee ettt et ste e stesbeebesbeeseesesbeestesbesssesbesbsensesreenees 984
41-27 .pg_statistic (7o) 18] 4 0 T OO PRRRRPR 985
41-28.pg_tablespace COIUMNS......c.coiciiiiiieece ettt ettt sttt s reestesbe b e besbeenreereeneas 986
41-29.pg_trigger COIUMNS. ..ottt ettt et s ste st e s beebe e besbeentesbeensesbesaeenreereeneas 987
41-30.pg_tyPe COIUMNS.....uiieeitectieteee ettt ettt ettt s esbe st e et et e saeebesaeebesbesasebesasensesreeneas 988
N YY) (=T I TS 994
e 228 o To T [T L= =TSR O o1 113 1 o S 994

XXIX

41-33.p0_10CKS COIUMNS.....couiiiiiiiieieiee et sttt sttt e e s sbeseeseesaeneese e e enesbesbeneeneeneesenes 995

e 7o To T (1 L= @] o LSS 996
41-35.pg_SettingsS COIUMINS......iiieeeeeteee et ettt et ne st besee e e e eneneas 996
e TG oo TRy = VE T @0] 0 o LTSRS 997
T N oTo T - Lo (SR O o 111 o] £ TSSO 999
471-38.pg_USEI COIUMNS.....uiiiiiiitiieiereeeet ettt sttt besee st et et e e e s sbesbesbeseeneenens 1000
41-39.pg_VIEWS COIUMNS.......ueiiiiicticteete ettt et st eesee s e e e e besra et e saeeneesreeneetesreennanes 1000
49-1. CONLENTS OPGDATA. ...t etetete et estesee st e e e e eseeaesbesbesbese et eseebesbeseessenseneeseeaesbesbeseeseaneanens 1057
49-2. OVErall PAge LAYOUL.......ccuiiiiieieireeteete ettt b e b e bbb e e eneas 1060
49-3. PageHeaderData LayQUL...........cccoeiiiiriiiieiire et s eneas 1060
49-4. HeapTupleHeaderData LayQUL...........cccooeeiririiiniesie et seeeenens 1061
P S 1S3 (o [(=1 1@ I Yy o G @ To L= SR 1066
B-1. MONTN NAMES......uiitiiieieeee ettt ettt s h e s bbb et eb e b e e e e e eas 1074
B-2. Day Of the WEEK NAIMES........cciieci ettt sttt nea e 1074
B-3. Date/Time Field MOGIfIEIS. ..ot e 1075
B-4. Time Zone Abbreviations fOr INPUL............ccocirieiiceece e 1075
B-5. Australian Time Zone Abbreviations for INPUL...........cccoovveiieniccese e 1078
B-6. Time Zone Names for SEttiMmNezoneccccceveeeerieieseeese s 1078
O S @ T (= VY17 0] (o LTSS 1090

List of Figures

46-1. Structured Diagram of a Genetic AIgOtRM...........ocooiiieiieiee e 1049

List of Examples

8-1. USING the CharaCter tYPS.....ccvieeeee ettt s enenes 83
e U LS o g T= oo o [=Y= Vo T 4 o - 93
8-3. USING the Dit StHNG tYPES....cci it e e sre e 97
10-1. Exponentiation Operator Type ReSOIULIQN.ccoocireriririrrreree s 181
10-2. String Concatenation Operator Type ReSOIULON.ccviriireirereereeeee s 182
10-3. Absolute-Value and Negation Operator Type ReSOIULION........ccccoveereereiniresenienes 182
10-4. Rounding Function Argument Type ReSOIULION..........ccooriririirieireree s 184
10-5. Substring Function Type RESOIULIQN.ccoiiriiriirrirereere e 184
10-6.character ~ Storage TYPE CONVEISION........ccurueireirierireetiesiee st see s sse s seenes 186
10-7. Type Resolution with Underspecified Types in a Union...........coeoveneennennennenneens 187
10-8. Type Resolution in a Simple UNIOM........cccririeceeseeeseesee e 187
10-9. Type Resolution in a TranspOSEed UNION..........ccoeereiiririineriiesieesieesee s seseeseesseeseens 187
11-1. Setting up a Partial Index to Exclude Common Values...........ccoecveineeneinnenseeneens 193
11-2. Setting up a Partial Index to Exclude Uninteresting Values..........c.ccccveveveinninnnneneenn 193
11-3. Setting up a Partial UniqUe INAEX.........coiiiieeeee e e 194
19-1. EXamplepg_hba.conf — ENTHES.....ceiiiiiiieee e e 284
19-2. An exampleg_ident.conf L= SO 288
27-1. libpg EXample Programi.L. ... st se e s s sne s 370
27-2. libpg EXAmMPIE Programi.2... ...ttt en s 372
27-3. libpg EXample Programi.d... ..ot st sne s 375
28-1. Large Obijects with libpg Example Programi...........ccceecierieieneiceese e eeese e 382
34-1. Manual Installation of PL/PYSQL......ccvoiiiieeiecere et 529
35-1. A PL/POSQL Trigger PrOCEUUIE.........cveiiee et teete st sae e et e e sneenaesneeneens 557

XXX

35-2. A PL/pgSQL Trigger Procedure FOr AUAItING.........coceoereirieineinineseseeseseseeesie e 558

35-3. A PL/pgSQL Trigger Procedure For Maintaining A Summary Table...........ccccccceveenene 559

35-4. Porting a Simple Function from PL/SQL t0 PL/PGSQL......cooiiiiiiireeerere e 561

35-5. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL........... 562

35-6. Porting a Procedure With String Manipulation @drParameters from PL/SQL to PL/pgSQL
564

35-7. Porting a Procedure from PL/SQL t0 PL/POSQL....couiiieeeeee e 565

XXXi

Preface

This book is the official documentation of PostgreSQL. It is being written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

« Part lis an informal introduction for new users.

- Part ldocuments the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

- Partlll describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

- Part IV describes the programming interfaces for PostgreSQL client programs.

- Part V contains information for advanced users about the extensibility capabilities of the server.
Topics are, for instance, user-defined data types and functions.

- Part Vicontains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

- Part VIl contains assorted information that may be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL:2003 standard and offers many modern features:

« complex queries

- foreign keys

. triggers

« views

- transactional integrity

- multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

- data types

- functions

- operators

- aggregate functions
+ index methods

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html

Preface

- procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by everyone
free of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over a decade of devel-
opment behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented e design of POSTGRESd the definition of the initial data

model appeared ilthe POSTGRES data mod&he design of the rule system at that time was de-
scribed inThe design of the POSTGRES rules systEne rationale and architecture of the storage
manager were detailed the design of the POSTGRES storage system

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGREfS released to a few external users in June 1989. In response

to a critique of the first rule systenh (commentary on the POSTGRES rules syktta rule system

was redesigneddn Rules, Procedures, Caching and Views in Database Systems/ersion 2 was
released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for
multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, lllustra Infor-

mation Technologies (later merged into Inforfiwhich is now owned by IBM) picked up the code

and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

« The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregate functions were re-implemented. SupportGrdwr BY
query clause was also added.

« A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

- A new front-end librarylibpgtcl , supported Tcl-based clients. A sample shadlclsh , pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

- The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

« The instance-level rule system was removed. Rules were still available as rewrite rules.

- A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

« GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version nhumbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be folmgendix E

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasitaéc Everything that represents

input or output of the computer, in particular commands, program code, and screen output, is shown
in a monospaced fonexample). Within such passages, italicexample) indicate placeholders;

you must insert an actual value instead of the placeholder. On occasion, parts of program code are
emphasized in bold faceXample), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: braglatd]() indicate optional
parts. (In the synopsis of a Tcl command, question matksae used instead, as is usual in Tcl.)
Braces{ and}) and vertical lines|() indicate that you must choose one alternative. Dats) mean
that the preceding element can be repeated.

Preface

Where it enhances the clarity, SQL commands are preceded by the promand shell commands
are preceded by the prom@tNormally, prompts are not shown, though.

An administratoris generally a person who is in charge of installing and running the serugseA

could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

FAQs

The FAQ list contains continuously updated answers to frequently asked questions.
READMEs

READMEHiles are available for most contributed packages.
Web Site

The PostgreSQL web sftearries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5. http://www.postgresql.org

Preface

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

- A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

- A program produces the wrong output for any given input.
- A program refuses to accept valid input (as defined in the documentation).

- A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

- The exact sequence of stéfpam program start-umecessary to reproduce the problem. This should
be self-contained; it is not enough to send in a baELECT statement without the preceding
CREATE TABLEand INSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything inyqagirc start-up file.)

An easy start at this file is to use pg_dump to dump out the table declarations and data needed to set
the scene, then add the problem query. You are encouraged to minimize the size of your example,
but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

Preface

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,

show it, even if you do not understand it. If the program terminates with an operating system error,

say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output

from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all de-
tails are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

Anything you did at all differently from the installation instructions.

The PostgreSQL version. You can run the comm8BLOECT version(); to find out the version

of the server you are connected to. Most executable programs also suppertian option; at
leastpostmaster --version andpsgl --version should work. If the function or the options

do not exist then your version is more than old enough to warrant an upgrade. If you run a prepack-
aged version, such as RPMs, say so, including any subversion the package may have. If you are
talking about a CVS snapshot, mention that, including its date and time.

If your version is older than 8.0.0 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

Vi

Preface

- Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you
have installation problems then information about the toolchain on your machine (compiler, make,
and so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the back-
end server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server
process is quite different from crash of the parent “postmaster” process; please don't say “the post-
master crashed” when you mean a single backend process went down, nor vice versa. Also, client
programs such as the interactive frontend “psql” are completely separate from the backend. Please try
to be specific about whether the problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing lispgt&l-bugs@postgresgl.org >. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site
http://www.postgresql.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresgl.org > mailing list.

Do not send bug reports to any of the user mailing lists, suchpasqksql@postgresgl.org >

or <pgsgl-general@postgresgl.org >, These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list
<pgsql-hackers@postgresqgl.org >. This list is for discussing the development of PostgreSQL,
and it would be nice if we could keep the bug reports separate. We might choose to take up a
discussion about your bug report pgsgl-hackers , if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresql.org >, Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org >, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug-report web form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail . For more information send mail to <majordomo@postgresgl.org > with the single word
help in the body of the message.

Vii

Preface

viii

|. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reaBarg |l to gain a
more formal knowledge of the SQL language Rart IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should alBanteifd

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution

or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then referGbapter 14for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you may have some more work
to do. For example, if the database server machine is a remote machine, you will need to set the
PGHOS®nvironment variable to the name of the database server machine. The environment variable
PGPORTNay also have to be set. The bottom line is this: if you try to start an application program and
it complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

« A server process, which manages the database files, accepts connections to the database from client
applications, and performs actions on the database on behalf of the clients. The database server
program is calleghostmaster

- The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. For that purpose
it starts (“forks”) a new process for each connection. From that point on, the client and the new
server process communicate without intervention by the originsimaster process. Thus, the

Chapter 1. Getting Started

postmaster is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next
section.

To create a new database, in this example namei, you use the following command:
$ createdb mydb
This should produce as response:

CREATE DATABASE

If s0, this step was successful and you can skip over the remainder of this section.

If you see a message similar to

createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or the search path was
not set correctly. Try calling the command with an absolute path instead:

$ lusr/local/pgsgl/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check back in the installa-
tion instructions to correct the situation.

Another response could be this:

createdb: could not connect to database templatel: could not connect to server:
No such file or directory

Is the server running locally and accepting

connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started ehetedb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database templatel: FATAL: user "joe" does not
exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, seleapter 17or help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (pssajigs) to

create the first user account. It could also be that you were assigned a PostgreSQL user name that is

Chapter 1. Getting Started

different from your operating system user name; in that case you need to usedivitch or set the
PGUSERenvironment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as.

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
characters in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, simply type

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the databaseydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More aboutreatedb anddropdb may be found ircreatedanddropdbrespectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

- Running the PostgreSQL interactive terminal program, cakeql, which allows you to interac-
tively enter, edit, and execute SQL commands.

- Using an existing graphical frontend tool like PgAccess or an office suite with ODBC support to
create and manipulate a database. These possibilities are not covered in this tutorial.

- Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further Fart IV.

You probably want to start upsqgl , to try out the examples in this tutorial. It can be activated for the
mydb database by typing the command:

$ psql mydb

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. If you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name
as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same
name as the operating system user that started the server, and it also happens that that user always has permission to create
databases. Instead of logging in as that user you can also specify tition everywhere to select a PostgreSQL user hame

to connect as.

Chapter 1. Getting Started
If you leave off the database name then it will default to your user account name. You already discov-
ered this scheme in the previous section.

In psql , you will be greeted with the following message:

Welcome to psgl 8.0.0, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with psgl commands
\g or terminate with semicolon to execute query
\q to quit

mydb=>
The last line could also be
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed Post-
greSQL yourself. Being a superuser means that you are not subject to access controls. For the purpose
of this tutorial this is not of importance.

If you encounter problems startinggl then go back to the previous section. The diagnostics of
createdb andpsql are similar, and if the former worked the latter should work as well.

The last line printed out bysgl is the prompt, and it indicates thgdgl is listening to you and that
you can type SQL queries into a work space maintainepshy . Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 8.0.0 on i586-pc-linux-gnu, compiled by GCC 2.96
1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;
?column?

The psgl program has a number of internal commands that are not SQL commands. They begin

with the backslash charactek,”™ Some of these commands were listed in the welcome message. For
example, you can get help on the syntax of various PostgreSQL SQL commands by typing:

mydb=> \h

To get out ofpsql , type

mydb=> \q

Chapter 1. Getting Started

andpsgl will quit and return you to your command shell. (For more internal commands\2y@e
thepsgl prompt.) The full capabilities ofsql are documented ipsql If PostgreSQL is installed
correctly you can also typean psgl at the operating system shell prompt to see the documentation.
In this tutorial we will not use these features explicitly, but you can use them yourself when you see
fit.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, includidgderstanding the New SQand A Guide to the

SQL StandardYou should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a databasenmaiess described in
the previous chapter, and have started psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory

src/tutorial/ . To use those files, first change to that directory and run make:
$ cd [src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. (You
must use GNU make for this — it may be named something different on your system, often gmake.)
Then, to start the tutorial, do the following:

$ cd ... [src/tutorial
$ psqgl -s mydb

mydb=> \i basics.sql

The\i command reads in commands from the specified file. -§heption puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the filebasics.sql

2.2. Concepts

PostgreSQL is aelational database management syst@DBMS). That means it is a system for
managing data stored melations Relation is essentially a mathematical termtiaole The notion

of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection mfws Each row of a given table has the same set of named
columns and each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a databdsster.

Chapter 2. The SQL Language

2.3. Creating a New Table
You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar(80),

temp_lo int, -- low temperature
temp_hi int, -- high temperature
prcp real, -- precipitation
date date

):

You can enter this int@sgl with the line breakspsgl will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) may be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashHgs$n*

troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar(80) specifies a data type that can store arbitrary character strings up to 80 characters in
length.int is the normal integer typeeal is a type for storing single precision floating-point num-
bers.date should be self-explanatory. (Yes, the column of tgpee is also namedate . This may

be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL typ&s, smallint , real , double precision ,

char(N),varchar(N),date ,time ,timestamp , andinterval , as well as other types of general

utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of
user-defined data types. Consequently, type names are not syntactical key words, except where
required to support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar(80),
location point
)i
Thepoint type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLEtablename ;

2.4. Populating a Table With Rows
TheINSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES ('San Francisco’, 46, 50, 0.25, '1994-11-27);

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes &s in the example. Theate type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

Chapter 2. The SQL Language

Thepoint type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES ('San Francisco’, '(-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES ('San Francisco’, 43, 57, 0.0, '1994-11-29";

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES ('1994-11-29', 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.

Please enter all the commands shown above so you have some data to work with in the following
sections.

You could also have usedOPYto load large amounts of data from flat-text files. This is usually
faster because th@OPYcommand is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM '/home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more aba@riveommand irCOPY.

2.5. Querying a Table

To retrieve data from a table, the tablegiseried An SQL SELECTstatement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of tedzlther , type:

SELECT * FROM weather;
Here* is a shorthand for “all columns®.So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

city | temp_lo | temp_hi | prcp | date
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29
(3 rows)

1. While SELECT *is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a
column to the table would change the results.

Chapter 2. The SQL Language

You can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:
city | temp_avg | date
+ +
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how theAS clause is used to relabel the output column. (ABelause is optional.)

A query can be “qualified” by adding\@HERElause that specifies which rows are wanted. WIHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression
is true are returned. The usual Boolean operat®x)(OR andNOT) are allowed in the qualification.

For example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather

WHERE city = 'San Francisco’ AND prcp > 0.0;
Result:
city | temp_lo | temp_hi | prcp | date
+ + e +
San Francisco | 46 | 50 | 0.25 | 1994-11-27
1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in
either order. But you'd always get the results shown above if you do

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

city

Chapter 2. The SQL Language

Hayward
San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results bpISIingCT
andORDER BYogether?

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called a
join query. As an example, say you wish to list all the weather records together with the location of
the associated city. To do that, we need to compare the city column of each row of the weather table
with the name column of all rows in the cities table, and select the pairs of rows where these values
match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner
than actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:
SELECT *

FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(2 rows)

Observe two things about the result set:

« There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

- There are two columns containing the city name. This is correct because the lists of columns of the
weather and thecities table are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities

2. Insome database systems, including older versions of PostgreSQL, the implementat®nET automatically orders
the rows and s@RDER BYs redundant. But this is not required by the SQL standard, and current PostgreSQL doesn’t
guarantee thadISTINCT causes the rows to be ordered.

10

Chapter 2. The SQL Language

WHERE city = name;

Exercise: Attempt to find out the semantics of this query whenwWieERElause is omitted.

Since the columns all had different names, the parser automatically found out which table they belong
to, but it is good style to fully qualify column names in join queries:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan theveather table and for each row to find the matchitides row. If no matching row

is found we want some “empty values” to be substituted forcities table’s columns. This kind

of query is called amuter join (The joins we have seen so far are inner joins.) The command looks
like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date [name | location
+ + e + + +
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(3 rows)

This query is called &ft outer joinbecause the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is calleskH join As an example, suppose we wish to

find all the weather records that are in the temperature range of other weather records. So we need to
compare theemp_lo andtemp_hi columns of eaclweather row to thetemp_lo andtemp_hi

columns of all otheweather rows. We can do this with the following query:

SELECT Wi1.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE W1l.temp_lo < W2.temp_lo
AND W1l.temp_hi > W2.temp_hi;

city | low | high | city | low | high

11

Chapter 2. The SQL Language

--------------- [R YR S ——— R ——
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50

(2 rows)

Here we have relabeled the weather tabl@/aandw?2to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, €.9.:

SELECT *
FROM weather w, cities ¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute theount , sum, avg (average)max (maximum) andnin (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with

SELECT max(temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try
SELECT city FROM weather WHERE temp_lo = max(temp_lo); WRONG

but this will not work since the aggregatex cannot be used in th&yHEREIlause. (This restriction

exists because th#HERElause determines the rows that will go into the aggregation stage; so it has

to be evaluated before aggregate functions are computed.) However, as is often the case the query can
be restated to accomplish the intended result, here by usobguery

SELECT city FROM weather
WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

San Francisco
1 row)

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.
Aggregates are also very useful in combination VBRROUP B¥lauses. For example, we can get the

maximum low temperature observed in each city with

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

12

Chapter 2. The SQL Language

city | max
_______________ SR
Hayward | 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows ust#/ING

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max(temp_lo) < 40;

city | max
_________ B
Hayward | 37
(1 row)

which gives us the same results for only the cities that haweral_lo values below 40. Finally, if
we only care about cities whose names begin wi&h tve might do

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE 'S%’ O
GROUP BY city
HAVING max(temp_lo) < 40;

0 TheLIKE operator does pattern matching and is explainegdation 9.7

It is important to understand the interaction between aggregates and S(IEREand HAVING
clauses. The fundamental difference betwegfEREANdHAVING s this: WHERBelects input rows

before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereaBIAVING selects group rows after groups and aggregates are computed. Thus, the
WHERElause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other han&iAW®NG clause al-

ways contains aggregate functions. (Strictly speaking, you are allowed to wi®I1&Gclause that
doesn'’t use aggregates, but it's wasteful. The same condition could be used more efficiently at the
WHERBtage.)

In the previous example, we can apply the city name restrictiovHERESInce it needs no aggregate.
This is more efficient than adding the restrictiorH®VING because we avoid doing the grouping and
aggregate calculations for all rows that fail WeIEREheck.

2.8. Updates

You can update existing rows using tb@DATEcommand. Suppose you discover the temperature
readings are all off by 2 degrees as of November 28. You may update the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > '1994-11-28’;

13

Chapter 2. The SQL Language

Look at the new state of the data:

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
+ + e +
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using it ETEcommand. Suppose you are no longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = 'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROMablename ;

Without a qualification DELETEwiIll remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

14

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples foun€hapter 20 change or improve them, so it

will be of advantage if you have read that chapter. Some examples from this chapter can also be found
in advanced.sgl in the tutorial directory. This file also contains some example data to load, which

is not repeated here. (Refer$ection 2.1for how to use the file.)

3.2. Views

Refer back to the queries fBection 2.6 Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can createviewover the query, which gives a name to the query that you can refer
to like an ordinary table.

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which may change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall theweather andcities tables fromChapter 2 Consider the following problem: You want
to make sure that no one can insert rows inweather table that do not have a matching entry
in thecities table. This is called maintaining threferential integrityof your data. In simplistic
database systems this would be implemented (if at all) by first looking aitite table to check

if a matching record exists, and then inserting or rejecting theweather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:
CREATE TABLE cities (

city varchar(80) primary key,
location point

15

Chapter 3. Advanced Features

CREATE TABLE weather (

city varchar(80) references cities(city),
temp_lo int,

temp_hi int,

prcp real,

date date

);
Now try inserting an invalid record:
INSERT INTO weather VALUES ('Berkeley’, 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you @hapter Sor more information. Making correct use of

foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactionsre a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from

Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates intéransactiongives us this guarantee. A transaction is said to
beatomic from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly

16

Chapter 3. Advanced Features

thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN andCOMMITcommands. So our banking transaction would actually look like

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;

-- etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the comnRdid.BACKnstead ofCOMMIT and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue aBEGIN command, then each individual statement has an im@EGIN and (if successful)
COMMITwrapped around it. A group of statements surrounde8®@IN and COMMITis sometimes

called atransaction block

Note: Some client libraries issue BEGIN and COMMITcommands automatically, so that you may
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepointsSavepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint withbAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TOAIl the transaction’s database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to
other sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s
account, only to find later that we should have credited Wally’s account. We could do it using save-
points like this:

17

Chapter 3. Advanced Features

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Bob’;

-- oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control to be had over a transaction
block through the use of savepoints. MoreoWaLLBACK Tds the only way to regain control of a
transaction block that was put in aborted state by the system due to an error, short of rolling it back
completely and starting again.

3.5. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A tabldties and a tableapitals . Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you're really clever you
might invent some scheme like this:

CREATE TABLE capitals (

name text,
population real,
altitude int, -- (in ft)
state char(2)
);
CREATE TABLE non_capitals (
name text,
population real,
altitude int -- (in ft)

);

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,
population real,
altitude int - (in ft)

);

18

Chapter 3. Advanced Features

CREATE TABLE capitals (
state char(2)
) INHERITS (cities);

In this case, a row ofapitals inheritsall columns game, population , andaltitude) from its

parent cities . The type of the columnameistext , a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a
table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 ft.:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ &
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude of 500 ft. or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ N
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here theONLYbeforecities indicates that the query should be run over onlydiies table, and
not tables beloweities in the inheritance hierarchy. Many of the commands that we have already
discussed —SELECT, UPDATE andDELETE— support thisSONLYnotation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints
or foreign keys, which limits its usefulness. See Section 5.5 for more detail.

3.6. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

19

Chapter 3. Advanced Features

If you feel you need more introductory material, please visit the PostgreSQL wélbositanks to
more resources.

1. http://www.postgresgl.org

20

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
commands. The rest treats several aspects that are important for tuning a database for optimal perfor-
mance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should look rdd VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged tBadddirst. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how the SQL commands are applied to define and modify
data.

We also advise users who are already familiar with SQL to read this chapter carefully because there
are several rules and concepts that are implemented inconsistently among SQL databases or that are
specific to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequenceaafmmandsA command is composed of a sequenceobens
terminated by a semicolon (*;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be &«ey word anidentifier, a quoted identifier a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

Additionally, commentgan occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the&JPDATECommand always requiresSET token to appear in a certain position, and this
particular variation ofINSERT also requires &ALUESIn order to be complete. The precise syntax
rules for each command are describeéart VI.

4.1.1. Identifiers and Key Words

Tokens such aSELECT, UPDATE or VALUESIn the example above are exampleskey words that

is, words that have a fixed meaning in the SQL language. The tak¥nFABLEand A are exam-

ples ofidentifiers They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C

SQL identifiers and key words must begin with a leti@iz(but also letters with diacritical marks

and non-Latin letters) or an underscorg. (Subsequent characters in an identifier or key word can be
letters, underscores, digi3-0), or dollar signs$). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use may render applications less portable. The

23

Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more thBWMEDATALEN characters of an identifier; longer names can be
written in commands, but they will be truncated. By defaNWMEDATALERs 64 so the maximum
identifier length is 63. If this limit is problematic, it can be raised by changingNARRIEDATALEN
constant irsrc/include/postgres_ext.h

Identifier and key word names are case insensitive. Therefore
UPDATE MY_TABLE SET A = 5;
can equivalently be written as
uPDaTE my_TabLE SeT a = 5;
A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my_table SET a = 5;

There is a second kind of identifier: tidelimited identifieror quoted identifierIt is formed by en-
closing an arbitrary sequence of characters in double-qubjes delimited identifier is always an
identifier, never a key word. Seelect' could be used to refer to a column or table named “select”,
whereas an unquotestlect would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character other than a double quote itself. (To include a double
guote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifié&¥®Q foo , and"foo" are considered the same by PostgreSQL, but
"Foo" and"FOQ" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thie®, should be equivalent tt=OO" not"foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds dafplicitly-typed constants PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single ¢qiofes (
example'This is a string’ . The standard-compliant way of writing a single-quote character
within a string constant is to write two adjacent single quotes,Bignne”s horse’ . PostgreSQL

24

Chapter 4. SQL Syntax

also allows single quotes to be escaped with a backslgshd for example the same string could be
written’Dianne\'s horse’

Another PostgreSQL extension is that C-style backslash escapes are av#ilaislea backspace,

\f is a form feed)n is a newline\r is a carriage return; is a tab, and xxx , wherexxx is an

octal number, is a byte with the corresponding code. (It is your responsibility that the byte sequences
you create are valid characters in the server character set encoding.) Any other character following a
backslash is taken literally. Thus, to include a backslash in a string constant, write two backslashes.

The character with the code zero cannot be in a string constant.

Two string constants that are only separated by whitespéheat least one newlinare concatenated
and effectively treated as if the string had been written in one constant. For example:

SELECT ’foo’
‘bar’;

is equivalent to
SELECT ‘foobar’;
but

SELECT 'foo’ ‘bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign §), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence

of characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne’s horse”
using dollar quoting:

$$Dianne’s horse$$
$SomeTag$Dianne’s horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always writ-
ten literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
This is most commonly used in writing function definitions. For example:

$function$
BEGIN
RETURN ($1 ~ gM\t\n\n\W\[g);
END;
$function$

25

Chapter 4. SQL Syntax

Here, the sequendg$Nt\nin\w\]$q$ represents a dollar-quoted literal strifugr\n\w\\] ,

which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delim#iamnction$ | it is just some more characters within

the constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitiveagdString contenttag is correct,
butTAGString contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written as four
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

4.1.2.3. Bit-String Constants

Bit-string constants look like regular string constants witB éupper or lower case) immediately
before the opening quote (no intervening whitespace), B.t0p1’ . The only characters allowed
within bit-string constants ar@and1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a |&adipger
or lower case), e.gX’1FF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.4. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits .[digits][e[+-] digits]
[digits]. digits [e[+-] digits]
digits e[+-] digits

wheredigits is one or more decimal digits (0 through 9). At least one digit must be before or after

the decimal point, if one is used. At least one digit must follow the exponent magkeif bne is

present. There may not be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42

35

4,

.001

5e2
1.925e-3

26

Chapter 4. SQL Syntax

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
typeinteger if its value fits in typeinteger (32 bits); otherwise it is presumed to be typgint

if its value fits in typebigint (64 bits); otherwise it is taken to be typ@meric . Constants that
contain decimal points and/or exponents are always initially presumed to beuygéc .

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated asdypéfloat4)

by writing

REAL '1.23' -- string style
1.23:REAL -- PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.5. Constants of Other Types
A constant of ararbitrary type can be entered using any one of the following notations:

type ’ string
‘string i type
CAST ('string ' AS type)

The string constant’s text is passed to the input conversion routine for the typetgpkledThe result

is a constant of the indicated type. The explicit type cast may be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string ')

but not all type names may be used in this way;Seetion 4.2.8or details.

The:: , CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discusse&eatction 4.2.8But the formtype ' string ' can only be used

to specify the type of a literal constant. Another restrictionygre * string * is that it does not

work for array types; use or CAST() to specify the type of an array constant.

4.1.3. Operators

An operator name is a sequence of upBEtMEDATALEN (63 by default) characters from the follow-
ing list:

+-*<>=~1@H#N"&|"'?

There are a few restrictions on operator names, however:

27

Chapter 4. SQL Syntax
« - and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

- A multiple-character operator name cannot end or - , unless the name also contains at least one
of these characters:

~l@#NN&|"?

For example@-is an allowed operator name, but is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named@ you cannot writex*@Y, you must writexX* @Yto ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an

operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

- A dollar sign §) followed by digits is used to represent a positional parameter in the body of a
function definition or a prepared statement. In other contexts the dollar sign may be part of an
identifier or a dollar-quoted string constant.

- Parentheseg)() have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets||) are used to select the elements of an array.S&etion 8.1Gor more information on
arrays.

« Commas () are used in some syntactical constructs to separate the elements of a list.

« The semicolon;() terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

« The colon () is used to select “slices” from arrays. (S8ection 8.10 In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

- The asterisk¥) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument 0btbhETaggregate function.

« The period () is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the
end of the line, e.g.:

-- This is a standard SQL comment

28

Chapter 4. SQL Syntax

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment */
*/

where the comment begins with and extends to the matching occurrence/of These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that may contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Lexical Precedence

Table 4-1shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators is
hard-wired into the parser. This may lead to non-intuitive behavior; for example the Boolean operators

< and> have a different precedence than the Boolean operatoend>=. Also, you will sometimes

need to add parentheses when using combinations of binary and unary operators. For instance

SELECT 5 ! - 6;

will be parsed as
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late —!thatdefined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write

SELECT (5) - 6;

This is the price one pays for extensibility.

Table 4-1. Operator Precedence (decreasing)

Operator/Element IAssociativity Description
left table/column name separator
left PostgreSQL-style typecast
[1 left array element selection
- right unary minus
" left exponentiation
* | % left multiplication, division, modulg
+ - left addition, subtraction
IS IS TRUE, IS FALSE, IS
UNKNOWNS NULL
ISNULL test for null
NOTNULL test for not null
(any other) left all other native and user-defined
operators
IN set membership

29

Chapter 4. SQL Syntax

Operator/Element IAssociativity Description

BETWEEN range containment
OVERLAPS time interval overlap
LIKE ILIKE SIMILAR string pattern matching
<> less than, greater than
= right equality, assignment
NOT right logical negation

IAND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used iIOBERATORYynNtax, as for example in

SELECT 3 OPERATOR(pg_catalog.+) 4;

the OPERATORoONSstruct is taken to have the default precedence showabte 4-1for “any other”
operator. This is true no matter which specific operator name appears ORHRATOR()

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target liss&lLtheTcommand,

as new column values INSERT or UPDATE or in search conditions in a number of commands. The
result of a value expression is sometimes calletaar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also sediled expressionr even
simply expressions The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

« A constant or literal value.

« A column reference.

« A positional parameter reference, in the body of a function definition or prepared statement.
« A subscripted expression.

- Afield selection expression.
« An operator invocation.

« A function call.

+ An aggregate expression.

« Atype cast.

« A scalar subquery.

« An array constructor.

- A row constructor.

- Another value expression in parentheses, useful to group subexpressions and override precedence.

30

Chapter 4. SQL Syntax

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate locatiorGhapter 9An example is théS NULL clause.

We have already discussed constantSéation 4.1.2The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form

correlation . columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a
table defined by means ofRROMclause, or one of the key wordéEwor OLD (NEwand OLD can

only appear in rewrite rules, while other correlation names can be used in any SQL statement.) The
correlation name and separating dot may be omitted if the column name is unique across all the tables
being used in the current query. (See a¥@pter 7)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL

statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

$number

For example, consider the definition of a functidapt , as
CREATE FUNCTION dept(texty RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the$1 will be replaced by the first function argument when the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression [subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression [lower_subscript : upper_subscript]

(Here, the brackets] are meant to appear literally.) Eashbscript is itself an expression,
which must yield an integer value.

31

Chapter 4. SQL Syntax

In general the arragxpression must be parenthesized, but the parentheses may be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multi-dimensional. For example,

mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]
(arrayfunction(a,b))[42]

The parentheses in the last example are requiredS8etgon 8.1Gor more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression . fieldname

In general the rovexpression must be parenthesized, but the parentheses may be omitted when
the expression to be selected from is just a table reference or positional parameter. For example,

mytable.mycolumn
$1.somecolumn

(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.)

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where theoperator token follows the syntax rules &ection 4.1.30or is one of the key wordsNQ
OR andNOT, or is a qualified operator name in the form

OPERATOR{chema. operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the u§drapter describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function ([expression [[expression 1)

For example, the following computes the square root of 2:

32

Chapter 4. SQL Syntax

sqrt(2)

The list of built-in functions is irChapter 9 Other functions may be added by the user.

4.2.7. Aggregate Expressions

An aggregate expressiaepresents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression)
aggregate_name (ALL expression)
aggregate_name (DISTINCT expression)
aggregate_name (*)

where aggregate_name is a previously defined aggregate (possibly qualified with a schema
name), andexpression is any value expression that does not itself contain an aggregate
expression.

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression yields a non-null value. (Actually, it is up to the aggregate function whether to ignore null
values or not — but all the standard ones do.) The second form is the same as the firstLkince

is the default. The third form invokes the aggregate for all distinct non-null values of the expression
found in the input rows. The last form invokes the aggregate once for each input row regardless of
null or non-null values; since no particular input value is specified, it is generally only useful for the
count() aggregate function.

For examplegount(*) yields the total number of input rowsount(fl) yields the number of input
rows in whichfl is non-null;count(distinct f1) yields the number of distinct non-null values
of f1.

The predefined aggregate functions are describ&eation 9.150ther aggregate functions may be
added by the user.

An aggregate expression may only appear in the result lisboiNGclause of 8&SELECTcommand.
It is forbidden in other clauses, such\&W$IEREbecause those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquerg¢sten 4.2.&andSection 9.1§ the aggre-

gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
argument contains only outer-level variables: the aggregate then belongs to the nearest such outer
level, and is evaluated over the rows of that query. The aggregate expression as a whole is then an
outer reference for the subquery it appears in, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result lisfafiNGclause applies with respect

to the query level that the aggregate belongs to.

4.2.8. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression : type

33

Chapter 4. SQL Syntax

The CASTsyntax conforms to SQL; the syntax with is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this is
subtly different from the use of casts with constants, as shov@eation 4.1.2.5A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast may usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example,
double precision can't be used this way, but the equivaléhtats8 can. Also, the names
interval , time , andtimestamp can only be used in this fashion if they are double-quoted,
because of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to
inconsistencies and should probably be avoided in new applications. (The function-like syntax is
in fact just a function call. When one of the two standard cast syntaxes is used to do a run-time
conversion, it will internally invoke a registered function to perform the conversion. By convention,
these conversion functions have the same name as their output type, and thus the “function-like
syntax” is nothing more than a direct invocation of the underlying conversion function. Obviously,
this is not something that a portable application should rely on.)

4.2.9. Scalar Subqueries

A scalar subquery is an ordinaBELECTquery in parentheses that returns exactly one row with one
column. (SeeChapter 7for information about writing queries.) TRREELECTquery is executed and

the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See @sution 9.160r other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.10. Array Constructors

An array constructor is an expression that builds an array value from values for its member elements.
A simple array constructor consists of the key wafRRAY a left square brackdt, one or more

34

Chapter 4. SQL Syntax

expressions (separated by commas) for the array element values, and finally a right squaré bracket
For example,

SELECT ARRAY[1,2,3+4];
array

The array element type is the common type of the member expressions, determined using the same
rules as folUNIONor CASEconstructs (se8ection 10.h

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key wordARRAYmay be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[34]];
array

{{1.2}1,{3.4}}
(1 row)

SELECT ARRAY[[1,2],[3.4]];
array

{{1.2}.{3.4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a subARRAYconstruct. For example:

CREATE TABLE arr(fl intf], f2 int[]);
INSERT INTO arr VALUES (ARRAYI[[L,2],[3,4]l, ARRAY][[5,6],[7,8]]);

SELECT ARRAYI[f1, 2, '{{9,10}{11,12}}:int]] FROM arr;
array

{{{1,2},{3,4}}.{{5.6}.{7.8}}.{{9,10},{11,12}}}
1 row)

Itis also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key wordaRRAYfollowed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE ’bytea%’);
?column?

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element
for each row in the subquery result, with an element type matching that of the subquery’s output
column.

35

Chapter 4. SQL Syntax

The subscripts of an array value built wlRRAYalways begin with one. For more information about
arrays, se&ection 8.10

4.2.11. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) from values
for its member fields. A row constructor consists of the key wR@jya left parenthesis, zero or

more expressions (separated by commas) for the row field values, and finally a right parenthesis. For
example,

SELECT ROW(1,2.5,’this is a test);

The key wordROWs optional when there is more than one expression in the list.

By default, the value created byroDVexpression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE ASAn explicit cast may be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, f2 float, f3 text);
CREATE FUNCTION getfl(mytable) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- No cast needed since only one getfl() exists
SELECT getfl(ROW(1,2.5,'this is a test));
getfl

CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);
CREATE FUNCTION getfl(myrowtype) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getfl(ROW(1,2.5,'this is a test’));
ERROR: function getfl(record) is not unique

SELECT getfl(ROW(1,2.5,'this is a test’)::mytable);
getfl

SELECT getf1(CAST(ROW(11,'this is a test,2.5) AS myrowtype));
getfl

11
1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row values or test a row witls NULL orIS NOT NULL, for example

SELECT ROW(1,2.5,'this is a test) = ROW(1, 3, 'not the same);

36

Chapter 4. SQL Syntax

SELECT ROW(a, b, c) IS NOT NULL FROM table;

For more detail se8ection 9.17Row constructors can also be used in connection with subqueries,
as discussed iBection 9.16

4.2.12. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote
SELECT true OR somefunc();
thensomefunc() would (probably) not be called at all. The same would be the case if one wrote
SELECT somefunc() OR true;
Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation ordeHERBNAHAVINGCclauses, since

those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(ANDORNOTcombinations) in those clauses may be reorganized in any manner allowed by the laws

of Boolean algebra.

When it is essential to force evaluation ordeGASEconstruct (se&ection 9.13may be used. For
example, this is an untrustworthy way of trying to avoid division by zero\WwHERElause:

SELECT ... WHERE x <> 0 AND y/x > 1.5;
But this is safe:
SELECT ... WHERE CASE WHEN x> 0 THEN y/x > 1.5 ELSE false END;

A CASEconstruct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would doubtless be best to sidestep the problem by
writingy > 1.5*x instead.)

37

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable -- it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in random order,
unless sorting is explicitly requested. This is covere@livapter 7 Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation t8hapter 8 Some of the frequently used data typesiateger for whole
numberspumeric for possibly fractional numbergxt for character stringslate for datestime

for time-of-day values, antinestamp for values containing both date and time.

To create a table, you use the aptly nan@REATE TABLEEommand. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

);

This creates a table namedy first_table with two columns. The first column is named
first_column and has a data type @fxt ; the second column has the naseeond_column and

the typeinteger . The table and column names follow the identifier syntax explaine8eiction

4.1.1 The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give nhames to your
tables and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (
product_no integer,

38

Chapter 5. Data Definition

name text,
price numeric

);

(Thenumeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it usingdROP TABLEommand. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script
files to unconditionally try to drop each table before creating it, ignoring the error messages.

If you need to modify a table that already exists look iS&ction 5.6ater in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahe&htapter Gand read the rest of

this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, the columns will be filled with their respective default values. A data manipu-
lation command can also request explicitly that a column be set to its default value, without having to
know what that value is. (Details about data manipulation commands @ieaipter 6)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99

The default value may be an expression, which will be evaluated whenever the default value is inserted
(notwhen the table is created). A common example is that a timestamp column may have a default
of now() , so that it gets set to the time of row insertion. Another common example is generating a
“serial number” for each row. In PostgreSQL this is typically done by something like

CREATE TABLE products (
product_no integer DEFAULT nextval(’products_product_no_seq’)

39

Chapter 5. Data Definition

);

where thenextval() function supplies successive values froseguence obje¢seeSection 9.1
This arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

);

TheSERIAL shorthand is discussed furtherSection 8.1.4

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,

however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no data type that accepts only positive num-
bers. Another issue is that you might want to constrain column data with respect to other columns or
rows. For example, in a table containing product information, there should only be one row for each

product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0)

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECKollowed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product_no integer,
name text,
price numeric CONSTRAINT positive_price CHECK (price > 0)

40

Chapter 5. Data Definition

So, to specify a named constraint, use the key va8ISTRAINTfollowed by an identifier followed
by the constraint definition. (If you don't specify a constraint name in this way, the system chooses a
name for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price.

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be writ-
ten as table constraints, while the reverse is not necessarily possible, since a column constraint is
supposed to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you
should follow it if you want your table definitions to work with other database systems.) The above
example could also be written as

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)

);
or even

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0 AND price > discounted_price)

);
It's a matter of taste.

Names can be assigned to table constraints in just the same way as for column constraints:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),

41

Chapter 5. Data Definition

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL
name text NOT NULL
price numeric

A not-null constraint is always written as a column constraint. A not-null constraint is function-
ally equivalent to creating a check constralHECK golumn_name IS NOT NULL), but in Post-
greSQL creating an explicit not-null constraint is more efficient. The drawback is that you cannot give
explicit names to not-null constraints created that way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

);
The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULLconstraint has an inverse: th&JLL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column may be null. Th&lULL constraint is not defined in the SQL standard and should not be used

in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

);

and then insert thOTkey word where desired.

Tip: In most database designs the majority of columns should be marked not null.

42

Chapter 5. Data Definition

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with
respect to all the rows in the table. The syntax is

CREATE TABLE products (
product_no integer UNIQUE
name text,
price numeric

);
when written as a column constraint, and

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

);
when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, ¢)
);

This specifies that the combination of values in the indicated columns is unique across the whole
table, though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

In general, a unique constraint is violated when there are two or more rows in the table where the val-
ues of all of the columns included in the constraint are equal. However, null values are not considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to store
an unlimited number of rows that contain a null value in at least one of the constrained columns. This
behavior conforms to the SQL standard, but we have heard that other SQL databases may not follow
this rule. So be careful when developing applications that are intended to be portable.

5.3.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null
constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,

43

Chapter 5. Data Definition

name text,
price numeric
)i
CREATE TABLE products (
product_no integer PRIMARY KEY
name text,

price numeric

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)

A primary key indicates that a column or group of columns can be used as a unique identifier for
rows in the table. (This is a direct consequence of the definition of a primary key. Note that a unique
constraint does not, by itself, provide a unique identifier because it does not exclude null values.) This
is useful both for documentation purposes and for client applications. For example, a GUI application
that allows modifying row values probably needs to know the primary key of a table to be able to
identify rows uniquely.

A table can have at most one primary key (while it can have many unique and not-null constraints).
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintairef¢inential integritybetween
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

Let's also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no)
quantity integer

44

Chapter 5. Data Definition

Now it is impossible to create orders witihoduct_no entries that do not appear in the products
table.

We say that in this situation the orders table is taferencingtable and the products table is the
referencedable. Similarly, there are referencing and referenced columns.

You can also shorten the above command to

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

);

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, ¢) REFERENCES other_table (c1, c2)
);

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can contain more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

);

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

45

Chapter 5. Data Definition

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

- Disallow deleting a referenced product
« Delete the orders as well
« Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well.

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

);

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT
order_id integer REFERENCES orders ON DELETE CASCADE

quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common oREBFRICT prevents deletion of

a referenced ronNO ACTIONmeans that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that ACTIONallows the check to be deferred until later

in the transaction, where@&ESTRICT does not.)JCASCADEspecifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULLand SET DEFAULT These cause the referencing columns to be set to nulls or default
values, respectively, when the referenced row is deleted. Note that these do not excuse you from
observing any constraints. For example, if an action specHis DEFAULTbut the default value

would not satisfy the foreign key, the operation will fail.

Analogous toON DELETRhere is alsdON UPDATRvhich is invoked when a referenced column is
changed (updated). The possible actions are the same.

More information about updating and deleting data i€hapter 6

Finally, we should mention that a foreign key must reference columns that either are a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documenta-
tion for CREATE TABLE

46

Chapter 5. Data Definition

5.4. System Columns

Every table has severalstem columnthat are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns, just know they exist.

oid
The object identifier (object ID) of a row. This is a serial number that is automatically added by
PostgreSQL to all table rows (unless the table was created WaiftgOUT OIDSin which case

this column is not present). This column is of typeé (same name as the column); skection
8.12for more information about the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies, since without it, it's difficult to tell which individual table a
row came from. Theableoid can be joined against thid column ofpg_class to obtain

the table name.

Xmin
The identity (transaction ID) of the inserting transaction for this row version. (A row version is

an individual state of a row; each update of a row creates a new row version for the same logical
row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
xXmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that althoughtide can be
used to locate the row version very quickly, a rowtsl will change each time it is updated or
moved byVACUUM FULLThereforectid is useless as a long-term row identifier. The OID, or
even better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
a table, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that a few additional precautions are taken:

« A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows.

« OIDs should never be assumed to be unique across tables; use the combingtiteviof and
row OID if you need a database-wide identifier.

47

Chapter 5. Data Definition

« The tables in question should be created usingH OIDSto ensure forward compatibility with
future releases of PostgreSQL. It is planned thatHOUT OIDSWwill become the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedu€sa gt

21for details. Itis unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit ¢f Billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
number of SQL commands, not number of rows processed.

5.5. Inheritance

Let’s create two tables. The capitals table contains state capitals which are also cities. Naturally, the
capitals table should inherit from cities.

CREATE TABLE cities (

name text,
population float,
altitude int -- (in ft)

);

CREATE TABLE capitals (
state char(2)
) INHERITS (cities);

In this case, a row of capitaleheritsall attributes (name, population, and altitude) from its parent,
cities. State capitals have an extra attribute, state, that shows their state. In PostgreSQL, a table can
inherit from zero or more other tables, and a query can reference either all rows of a table or all rows
of a table plus all of its descendants.

Note: The inheritance hierarchy is actually a directed acyclic graph.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500ft:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ N ——
Las Vegas | 2174
Mariposa | 1953
Madison | 845

48

Chapter 5. Data Definition

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500ft:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ N S —
Las Vegas | 2174
Mariposa | 1953

Here the “ONLY"” before cities indicates that the query should be run over only cities and not tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed --
SELECT, UPDATEandDELETE-- support this “ONLY” notation.

Deprecated: In previous versions of PostgreSQL, the default behavior was not to include child
tables in queries. This was found to be error prone and is also in violation of the SQL:1999
standard. Under the old syntax, to get the sub-tables you append * to the table name. For example

SELECT * from cities*;

You can still explicitly specify scanning child tables by appending *, as well as explicitly specify
not scanning child tables by writing “ONLY”. But beginning in version 7.1, the default behavior for
an undecorated table name is to scan its child tables too, whereas before the default was not to
do so. To get the old default behavior, set the configuration option SQL_Inheritance to off, e.g.,

SET SQL_Inheritance TO OFF;

or add a line in your postgresgl.conf file.

In some cases you may wish to know which table a particular row originated from. There is a system
column calledableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities ¢
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude
+ +
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities c, pg_class p
WHERE c.altitude > 500 and c.tableoid = p.oid;

which returns:

49

Chapter 5. Data Definition

relname | name | altitude
cites | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables (plus any columns declared specifically for the child table).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and for-
eign key constraints only apply to single tables, not to their inheritance children. This is true on both
the referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above ex-
ample:

- If we declarectites .nameto beUNIQUEoOr aPRIMARY KEYthis would not stop theapitals
table from having rows with names duplicating rowsities . And those duplicate rows would
by default show up in queries fronities . In fact, by defaultapitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint tacapitals , but this would not prevent duplication comparedities

- Similarly, if we were to specify thatites .name REFERENCESome other table, this constraint
would not automatically propagatedapitals . In this case you could work around it by manually
adding the samREFERENCESgonstraint tacapitals

- Specifying that another table’s columrREFERENCES cities(name) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable
care is needed in deciding whether inheritance is useful for your problem.

5.6. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the applica-
tion change, then you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
to existing tables. Note that this is conceptually distinct from altering the data contained in the table:
here we are interested in altering the definition, or structure, of the table.

You can

« Add columns,

« Remove columns,

« Add constraints,

- Remove constraints,

« Change default values,

« Change column data types,
- Rename columns,

- Rename tables.

All these actions are performed using theTER TABLEcommand.

50

Chapter 5. Data Definition
5.6.1. Adding a Column
To add a column, use a command like this:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a
DEFAULTclause).

You can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> ")

In fact all the options that can be applied to a column descripti@RBATE TABLEan be used here.
Keep in mind however that the default value must satisfy the given constraints, Abtheill fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

5.6.2. Removing a Column

To remove a column, use a command like this:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by addingCASCADE

ALTER TABLE products DROP COLUMN description CASCADE;

SeeSection 5.1For a description of the general mechanism behind this.

5.6.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_ no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.6.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Oth-
erwise the system assigned a generated name, which you need to find out. The psqgl céemmand

51

Chapter 5. Data Definition

tablename can be helpful here; other interfaces might also provide a way to inspect table details.
Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name$ikedon’t forget that you’ll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to addSCADHf you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use

ALTER TABLE products ALTER COLUMN product no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.6.5. Changing a Column’s Default Value

To set a new default for a column, use a command like this:
ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77

Note that this doesn't affect any existing rows in the table, it just changes the default fonNg&RT
commands.

To remove any default value, use

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn’t been defined, because the default is implicitly the null value.

5.6.6. Changing a Column’s Data Type

To convert a column to a different data type, use a command like this:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If a more complex conversion is needed, you can adfsl G clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions may fail, or may produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.6.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

52

Chapter 5. Data Definition

5.6.8. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

5.7. Privileges

When you create a database object, you become its owner. By default, only the owner of an object
can do anything with the object. In order to allow other users to ugiiilegesmust be granted.
(However, users that have the superuser attribute can always access any object.)

There are several different privilegeSELECT, INSERT, UPDATE DELETE RULE REFERENCES
TRIGGER CREATE TEMPORARYEXECUTEandUSAGE The privileges applicable to a particular ob-
ject vary depending on the object’s type (table, function, etc). For complete information on the differ-
ent types of privileges supported by PostgreSQL, refer taxRANT reference page. The following
sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.
There are corresponding ALTERcommands for other object types.

To assign privileges, th&eRANTcommand is used. For example,jik is an existing user, and
accounts is an existing table, the privilege to update the table can be granted with

GRANT UPDATE ON accounts TO joe;

To grant a privilege to a group, use this syntax:
GRANT SELECT ON accounts TO GROUP staff;

The special “user” nameUBLIC can be used to grant a privilege to every user on the system. Writing
ALL in place of a specific privilege grants all privileges that are relevant for the object type.

To revoke a privilege, use the fittingly namr&VOKEommand:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right tD8®PGRANTREVOKEetc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

Ordinarily, only the object’'s owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant

it in turn to others. If the grant option is subsequently revoked then all who received the privilege
from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT andREVOKE reference pages.

53

Chapter 5. Data Definition

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client con-
nection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more naraeldemaswhich in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, fdtemal andmyschema may

contain tables namenhytable . Unlike databases, schemas are not rigidly separated: a user may
access objects in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

- To allow many users to use one database without interfering with each other.
- To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they cannot collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.8.1. Creating a Schema

To create a schema, use the comma@rR&EATE SCHEMG&ive the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, wrijealified nameconsisting of the schema name and
table name separated by a dot:

schema. table

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database .schema. table

can be used too, but at present this is justgiar formacompliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use

54

Chapter 5. Data Definition
CREATE TABLE myschema.mytable (

%

To drop a schema if it's empty (all objects in it have been dropped), use
DROP SCHEMA myschema;

To drop a schema including all contained objects, use
DROP SCHEMA myschema CASCADE;

SeeSection 5.10or a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMAchemaname AUTHORIZATION username ;
You can even omit the schema name, in which case the schema name will be the same as the user
name. Se&ection 5.8.6or how this can be useful.

Schema names beginning wiih_ are reserved for system purposes and may not be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default, such
tables (and other objects) are automatically put into a schema named “public”. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and

CREATE TABLE public.products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into

applications anyway. Therefore tables are often referred torgyalified hameswhich consist of

just the table name. The system determines which table is meant by followeayeh pathwhich is

a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be createdCIREASE TABLE
command does not specify a schema name.

To show the current search path, use the following command:

SHOW search_path;

55

Chapter 5. Data Definition

In the default setup this returns:

search_path

$user,public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use
SET search_path TO myschema,public;

(We omit thesuser here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, sincemyschema is the first element in the path, new objects would by default be created in it.

We could also have written

SET search_path TO myschema;
Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.
See als@ection 9.190r other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATORgChema. operator)

This is needed to avoid syntactic ambiguity. An example is

SELECT 3 OPERATOR(pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner
of the schema needs to grant th8AGEprivilege on the schema. To allow users to make use of the
objects in the schema, additional privileges may need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’'s schema. To allow tOREATE
privilege on the schema needs to be granted. Note that by default, everyodR#wEEand USAGE

56

Chapter 5. Data Definition

privileges on the schenpublic . This allows all users that are able to connect to a given database to
create objects in itsublic schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.))

5.8.5. The System Catalog Schema

In addition topublic and user-created schemas, each database containgatalog schema,
which contains the system tables and all the built-in data types, functions, and operateasalog

is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searchetbeforesearching the path’s schemas. This ensures that built-in names will always be findable.
However, you may explicitly placpg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

In PostgreSQL versions before 7.3, table names beginningpgittwere reserved. This is no longer

true: you may create such a table name if you wish, in any non-system schema. However, it's best to
continue to avoid such names, to ensure that you won't suffer a conflict if some future version defines
a system table named the same as your table. (With the default search path, an unqualified reference to
your table name would be resolved as the system table instead.) System tables will continue to follow
the convention of having names beginning with , so that they will not conflict with unqualified
user-table names so long as users avoightheprefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are
recommended and are easily supported by the default configuration:

- If you do not create any schemas then all users access the public schema implicitly. This simu-
lates the situation where schemas are not available at all. This setup is mainly recommended when
there is only a single user or a few cooperating users in a database. This setup also allows smooth
transition from the non-schema-aware world.

« You can create a schema for each user with the same name as that user. Recall that the default
search path starts withuser , which resolves to the user name. Therefore, if each user has a
separate schema, they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it
altogether), so users are truly constrained to their own schemas.

- Toinstall shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the
names with a schema name, or they can put the additional schemas into their search path, as they
choose.

57

Chapter 5. Data Definition

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consistsefname . tablename . This is how PostgreSQL

will effectively behave if you create a per-user schema for every user.

Also, there is no concept of gublic schema in the SQL standard. For maximum conformance to
the standard, you should not use (perhaps even removplitie schema.

Of course, some SQL database systems might not implement schemas at all, or provide hamespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible.

+ Views

« Functions and operators
« Data types and domains
- Triggers and rewrite rules

Detailed information on these topics appearPant V.

5.10. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you will implicitly create a net of dependencies between the objects.
For instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered irSection 5.3.5with the orders table depending on it, would result in an error message
such as this:

DROP TABLE products;

NOTICE: constraint orders_product_no_fkey on table orders depends on table products
ERROR: cannot drop table products because other objects depend on it

HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run

DROP TABLE products CASCADE;

58

Chapter 5. Data Definition

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check wbROP ... CASCADE will do, run
DROPwithout CASCADENd read th&lOTICEmessages.)

All drop commands in PostgreSQL support specify@kSCADEOf course, the nature of the possible
dependencies varies with the type of the object. You can also RESTRICTinstead oilCASCADEO
get the default behavior, which is to prevent drops of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or CASCADHS required. No
database system actually enforces that rule, but whether the default behavior is RESTRICT or
CASCAD®aries across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL
versions prior to 7.3 are not maintained or created during the upgrade process. All other depen-
dency types will be properly created during an upgrade from a pre-7.3 database.

59

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We
also introduce ways to effect automatic data changes when certain events occur: triggers and rewrite
rules. The chapter after this will finally explain how to extract your long-lost data back out of the
database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row at a time. Even if you know only some
column values, a complete row must be created.

To create a new row, use thieSERT command. The command requires the table name and a value
for each of the columns of the table. For example, consider the products tabl€fapter 5

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, 'Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid that you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example,

INSERT INTO products (product_no, name) VALUES (1, 'Cheese’);
INSERT INTO products VALUES (1, 'Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

60

Chapter 6. Data Manipulation

Tip: To do “bulk loads”, that is, inserting a lot of data, take a look at the COPY command. It is not
as flexible as the INSERT command, but is more efficient.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To perform an update, you need three pieces of information:

1. The name of the table and column to update,
2. The new value of the column,
3. Which row(s) to update.

Recall fromChapter Shat SQL does not, in general, provide a unique identifier for rows. Therefore

it is not necessarily possible to directly specify which row to update. Instead, you specify which
conditions a row must meet in order to be updated. Only if you have a primary key in the table
(no matter whether you declared it or not) can you reliably address individual rows, by choosing a
condition that matches the primary key. Graphical database access tools rely on this fact to allow you
to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This may cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

Let's look at that command in detail. First is the key wardDATEfollowed by the table name. As

usual, the table name may be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equals sign and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also
left out theWHERElause. If it is omitted, it means that all rows in the table are updated. If it is
present, only those rows that match thélEREondition are updated. Note that the equals sign in
the SET clause is an assignment while the one intieERElause is a comparison, but this does not
create any ambiguity. Of course, th#HEREoNdition does not have to be an equality test. Many other
operators are available (s€hapter 9. But the expression needs to evaluate to a Boolean result.

You can update more than one column inDATEcommand by listing more than one assignment
in the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

61

Chapter 6. Data Manipulation

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we explained that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use theDELETEcommand to remove rows; the syntax is very similar toWr®ATECcommand.
For instance, to remove all rows from the products table that have a price of 10, use

DELETE FROM products WHERE price = 10;

If you simply write
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

62

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data out of the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is aglled;dn SQL
theSELECTcommand is used to specify queries. The general syntax &fEhECTcommand is

SELECT select_list FROMtable_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation.

The simplest kind of query has the form

SELECT * FROM tablel,;

Assuming that there is a table calledlel , this command would retrieve all rows and all columns

from tablel . (The method of retrieval depends on the client application. For example, the psql
program will display an ASClIl-art table on the screen, while client libraries will offer functions to
extract individual values from the query result.) The select list specificatmpeans all columns that

the table expression happens to provide. A select list can also select a subset of the available columns
or make calculations using the columns. For examplablel has columns named b, andc (and

perhaps others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming thatt andc are of a numerical data type). S8ection 7.3or more details.

FROM tablel is a particularly simple kind of table expression: it reads just one table. In general,
table expressions can be complex constructs of base tables, joins, and subqueries. But you can also
omit the table expression entirely and use S ECTcommand as a calculator:

SELECT 3 * 4,

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random();

7.2. Table Expressions

A table expressiogmomputes a table. The table expression contaifR@Mclause that is optionally
followed byWHEREGROUP BYandHAVINGclauses. Trivial table expressions simply refer to a table

on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optionaWHEREGROUP BYandHAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived irRB&tlause. All these transforma-

63

Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The FROMClause

The FROM Clauseaderives a table from one or more other tables given in a comma-separated table
reference list.

FROMtable_reference [, table_reference [, ...

A table reference may be a table name (possibly schema-qualified), or a derived table such as a
subquery, a table join, or complex combinations of these. If more than one table reference is listed in
theFROM:lause they are cross-joined (see below) to form the intermediate virtual table that may then
be subject to transformations by tHEREGROUP BYandHAVING clauses and is finally the result

of the overall table expression.

When a table reference names a table that is the supertable of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its subtable successors, unless the key word

ONLYprecedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types
Cross join
T1 CROSS JOINT2

For each combination of rows fromil andT2, the derived table will contain a row consisting of
all columns inT1 followed by all columns inr2. If the tables have N and M rows respectively,
the joined table will have N * M rows.

FROMT1 CROSS JOINT2 is equivalent toFROMT1, T2. It is also equivalent t-ROMT1
INNER JOIN T2 ON TRUHESsee below).

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The wordsINNER andOUTERare optional in all formsINNER is the defaultLEFT, RIGHT, and
FULL imply an outer join.

Thejoin conditionis specified in thedNor USING clause, or implicitly by the wordNATURAL
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The ONclause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used inveHERElause. A pair of rows fronT1 and T2 match if theON
expression evaluates to true for them.

USINGis a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of@IN USING has one column for each of the equated

64

Chapter 7. Queries

pairs of input columns, followed by all of the other columns from each table. TUBISIG (a,

b, ¢) isequivalentt®N (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) with the
exception that ifoNis used there will be two columres b, andc in the result, whereas with
USINGthere will be only one of each.

Finally, NATURALis a shorthand form afSING. it forms aUSINGlist consisting of exactly those
column names that appear in both input tables. As WBING, these columns appear only once
in the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will unconditionally have a row for each row
in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.

Also, for each row of T2 that does not satisfy the join condition with any row in T1, a

joined row with null values in the columns of T1 is added.

Joins of all types can be chained together or nested: either or bdthafidT2 may be joined tables.
Parentheses may be used aroo@tN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have talles

num | name

65

then we get the following results for the various joins:

=> SELECT * FROM t1 CROSS JOIN t2;
num | name | num | value
| xxx
| yyy
| zzz
| xxx
| yyy
| zzz
| xxx

| yyy
| zzz

WWNNNPRP PP
O 0O O oo YL YO
T WErFEOwER O we

3
(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON tl.num = t2.num;
num | name | num | value

----- B TR Y
1] a | 1] xxx
3¢ I 31 vyy

(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
num | name | value

_____ B B —
1] a | xxx
3lc | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
num | name | value

_____ B B —
1] a | xxx
31c | yyy

(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num;
num | name | num | value

w NP
O T o

(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
num | name | value

_____ R S ——
1] a | xxx
21b I
3lc | yyy

(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON tl.num = t2.num;
num | name | num | value
----- B TR Y

1] a | 1] xxx

Chapter 7. Queries

66

Chapter 7. Queries

3]c | 31wy
| | 5| zzz
(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON tl.num = t2.num;
num | name | num | value

1| a | 1| xxx
2|b I I
3]c | 31y
| | 5| zzz
(4 rows)

The join condition specified witbNcan also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx’;
num | name | num | value

----- R S
1| a | 1| xxx
2|b I I
3lc I |

(3 rows)

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. This is calleade alias

To create a table alias, write
FROMtable_reference AS alias
or
FROMtable_reference alias

The ASkey word is noisealias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;

The alias becomes the new name of the table reference for the current query — it is no longer possible
to refer to the table by the original name. Thus

SELECT * FROM my_table AS m WHERE my_table.a > 5;

is not valid SQL syntax. What will actually happen (this is a PostgreSQL extension to the standard)
is that an implicit table reference is added to BROMclause, so the query is processed as if it were
written as

67

Chapter 7. Queries
SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

which will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.,

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...

Additionally, an alias is required if the table reference is a subquerySseton 7.2.1.8

Parentheses are used to resolve ambiguities. The following statement will assign thetaliii®
result of the join, unlike the previous example:

SELECT * FROM (my_table AS a CROSS JOIN my table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROMtable_reference [AS] alias (columnl [, column2 [, ..]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output af@IN clause, using any of these forms, the alias hides the
original names within th@OIN . For example,

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...
is valid SQL, but
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS ¢

is not valid: the table alias is not visible outside the alias

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parenthesesistiieg assigned a table
alias name. (Se8ection 7.2.1.2 For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent #ROM tablel AS alias_name . More interesting cases, which can’t
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subqueisROEhe
clause of a query. Columns returned by table functions may be includggl CT, JOIN, or WHERE
clauses in the same manner as a table, view, or subquery column.

68

Chapter 7. Queries

If a table function returns a base data type, the single result column is named like the function. If the
function returns a composite type, the result columns get the same names as the individual attributes
of the type.

A table function may be aliased in tiF®OMtlause, but it also may be left unaliased. If a function is
used in theFROMclause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
WHERE foosubid IN (select foosubid from getfoo(foo.fooid) z
where z.fooid = foo.fooid);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record . When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. Consider this example:

SELECT *
FROM dblink('"dbname=mydb’, 'select proname, prosrc from pg_proc’)
AS tl(proname name, prosrc text)
WHERE proname LIKE ’'bytea%’;

The dblink function executes a remote query (Ssmtrib/dblink). It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in
the calling query so that the parser knows, for example, wisdiould expand to.

7.2.2. The WHERElause
The syntax of th&VHERE Clausés

WHEREsearch_condition

wheresearch_condition is any value expression (s&ection 4.2 that returns a value of type
boolean .

After the processing of thEROMclause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (that is, if the result is false or null) it is discarded. The search condition typically references
at least some column of the table generated irFlR@Nclause; this is not required, but otherwise the
WHERElause will be fairly useless.

69

Chapter 7. Queries

Note: The join condition of an inner join can be written either in the WHERElause or in the JOIN
clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND bval > 5
and

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even

FROM a NATURAL JOIN b WHERE b.val> 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROMclause is
probably not as portable to other SQL database management systems. For outer joins there is no
choice in any case: they must be done in the FROM:lause. An ONUSING clause of an outer join is
not equivalent to a WHEREondition, because it determines the addition of rows (for unmatched
input rows) as well as the removal of rows from the final result.

Here are some exampleswHERElauses:

SELECT ... FROM fdt WHERE c¢1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl1 IN (SELECT ¢3 FROM t2 WHERE c2 = fdt.cl1 + 10)
SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT ¢3 FROM t2 WHERE c2 = fdt.cl + 10) AND
SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in theROMlause. Rows that do not meet the search condition oftHERE

clause are eliminated frofdt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice alig hisweferenced

in the subqueries. Qualifyingl asfdt.c1 is only necessary if1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner
queries.

7.2.3. The GROUP B¥wnd HAVING Clauses

After passing thevHEREilter, the derived input table may be subject to grouping, usingslReUP
BY clause, and elimination of group rows using HwVINGclause.

SELECT select_list
FROM ...
[WHERE ..]
GROUP BYgrouping_column_reference [, grouping_column_reference]-..

The GROUP BY Clausés used to group together those rows in a table that share the same values
in all the columns listed. The order in which the columns are listed does not matter. The effect is to
combine each set of rows sharing common values into one group row that is representative of all rows

70

Chapter 7. Queries

in the group. This is done to eliminate redundancy in the output and/or compute aggregates that apply
to these groups. For instance:

=> SELECT * FROM testl;

x|y
——tem

al|3
c| 2
b|5
al|1l
(4 rows)

(3 rows)

In the second query, we could not have writt®BLECT * FROM testl GROUP BY x because
there is no single value for the colunynthat could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not used in the grouping cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum
RS S

a | 4
b| 5
c| 2
(3 rows)

Heresum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be fouseation 9.15

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the DISTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales on all
products).

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columnsoduct id , p.name, andp.price must be in theGROUP B¥Xlause

since they are referenced in the query select list. (Depending on how exactly the products table is
set up, name and price may be fully dependent on the product ID, so the additional groupings could
theoretically be unnecessary, but this is not implemented yet.) The calunits does not have to

be intheGROUP Blist since itis only used in an aggregate expresssam(...)), which represents

71

Chapter 7. Queries
the sales of a product. For each product, the query returns a summary row about all sales of the
product.

In strict SQL,GROUP B¥an only group by columns of the source table but PostgreSQL extends this
to also allownGROUP BYo group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped usinGBOUP BY¥lause, but then only certain groups are of interest, the
HAVINGclause can be used, much likedERElause, to eliminate groups from a grouped table. The
syntax is:

SELECT select_list FROM ... [WHERE ..] GROUP BY ... HAVING boolean_expression

Expressions in theAVINGclause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;

X | sum
[S

al| 4
b | 5
(2 rows)

X | sum
[S

al| 4
b | 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’'4 weeks'’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, teHERElause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), whileHA®ING clause restricts the output to
groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

7.3. Select Lists

As shown in the previous section, the table expression ilsEiEECTcommand constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by telect list The select list determines whidwolumnsof the
intermediate table are actually output.

72

Chapter 7. Queries

7.3.1. Select-List Items

The simplest kind of select list is which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defieetion 4.2 For
instance, it could be a list of column names:

SELECT a, b, ¢ FROM ...

The columns names, b, andc are either the actual names of the columns of tables referenced in the
FROMlause, or the aliases given to them as explainékiction 7.2.1.2The name space available in
the select list is the same as in "eIERElause, unless grouping is used, in which case it is the same
as in theHAVINGclause.

If more than one table has a column of the same name, the table name must also be given, as in
SELECT tbll.a, tbl2.a, thll.bo FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbl1.*, thl2.a FROM ...

(See alscsection 7.2.9

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of #rROMlause; they could be constant arithmetic expressions

as well, for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for further processing. The “further processing” in
this case is an optional sort specification and the client application (e.g., column headers for display).
For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column name is specified usiag, the system assigns a default name. For simple column
references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

Note: The naming of output columns here is different from that done in the FROMclause (see
Section 7.2.1.2). This pipeline will in fact allow you to rename the same column twice, but the
name chosen in the select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table may optionally be subject to the elimination
of duplicate rows. Th®ISTINCT key word is written directly afteBELECTto specify this:

SELECT DISTINCT select_list

73

Chapter 7. Queries

(Instead ofDISTINCT the key wordALL can be used to specify the default behavior of retaining all
rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression)] select_list

Hereexpression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving abtBEINCT filter. (DISTINCT ON
processing occurs aft@RDER Bsorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious GR@IP B¥wand
subqueries iffFROMhe construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl andquery2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3
which really says

(queryl UNION query2) UNION query3

UNIONEeffectively appends the resultgfiery2 tothe result ofjueryl (although there is no guaran-
tee that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate
rows from its result, in the same way BESTINCT , unlessUNION ALLis used.

INTERSECT returns all rows that are both in the resultaqpferyl and in the result ofjuery2 .
Duplicate rows are eliminated unles§TERSECT ALLis used.

EXCEPTreturns all rows that are in the result gfieryl but not in the result ofjuery2 . (This
is sometimes called thdifferencebetween two queries.) Again, duplicates are eliminated unless
EXCEPT ALLis used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they return the same number of columns and the corresponding
columns have compatible data types, as describ&kation 10.5

74

Chapter 7. Queries

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied

on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

TheORDER BYlause specifies the sort order:

SELECT select_list
FROMtable_expression
ORDER BYcolumnl [ASC | DESC] [, column2 [ASC | DESC] ..]

columnl , etc., refer to select list columns. These can be either the output name of a column (see
Section 7.3.2or the number of a column. Some examples:

SELECT a, b FROM tablel ORDER BY a;
SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum;
SELECT a, sum(b) FROM tablel GROUP BY a ORDER BY 1;

As an extension to the SQL standard, PostgreSQL also allows ordering by arbitrary expressions:

SELECT a, b FROM tablel ORDER BY a + b;

References to column names of #ROMlause that are not present in the select list are also allowed:
SELECT a FROM tablel ORDER BY b;

But these extensions do not work in queries involvisiglON INTERSECT, or EXCEPT and are not
portable to other SQL databases.

Each column specification may be followed by an optio®&C or DESCto set the sort direction to
ascending or descendingSCorder is the default. Ascending order puts smaller values first, where
“smaller” is defined in terms of the operator. Similarly, descending order is determined withethe
operator?

If more than one sort column is specified, the later entries are used to sort rows that are equal under

the order imposed by the earlier sort columns.

7.6. LIMIT and OFFSET

LIMIT andOFFSETallow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROMtable_expression
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rowsLIMIT ALL is the same as omitting theMIT clause.

1. Actually, PostgreSQL uses thiefault B-tree operator clager the column’s data type to determine the sort ordering for
ASCandDESC Conventionally, data types will be set up so thatthand> operators correspond to this sort ordering, but a
user-defined data type’s designer could choose to do something different.

75

Chapter 7. Queries

OFFSETsays to skip that many rows before beginning to return r@=ESET 0is the same as
omitting theOFFSETclause. If bottOFFSETandLIMIT appear, the®@FFSETrows are skipped before
starting to count theIMIT rows that are returned.

When usingLIMIT , it is important to use a®WRDER BYlause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You may be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specifi@RDER BY

The query optimizer takesMIT into account when generating a query plan, so you are very likely

to get different plans (yielding different row orders) depending on what you givelkoim and
OFFSET Thus, using differentIMIT /OFFSETvalues to select different subsets of a query resillt

give inconsistent resultsnless you enforce a predictable result ordering WHDER BYThis is not

a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unle@RDER BYs used to constrain the order.

The rows skipped by a®FFSETclause still have to be computed inside the server; therefore a large
OFFSETcan be inefficient.

76

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users may add new types to Post-
greSQL using th€REATE TYPEommand.

Table 8-1shows all the built-in general-purpose data types. Most of the alternative names listed in
the “Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but they are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n) | \varbit \variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in the plane

bytea binary data (“byte array”)

character varying [(n) |archar [(n)] \variable-length character string

I

character [(n)] char [(n)] fixed-length character string

cidr IPv4 or IPv6 network address

circle circle in the plane

date calendar date (year, month, day)

double precision float8 double precision floating-point
number

inet IPv4 or IPv6 host address

integer int ,int4 signed four-byte integer

interval [(p) 1 time span

line infinite line in the plane

Iseg line segment in the plane

macaddr MAC address

money currency amount

numeric [(p, S)] decimal [(p, S)] exact numeric of selectable
precision

path geometric path in the plane

point geometric point in the plane

polygon closed geometric path in the
plane

real float4 single precision floating-point
number

smallint int2 signed two-byte integer

serial seriald autoincrementing four-byte
integer

77

Chapter 8. Data Types

time zone

Name Aliases Description

text \variable-length character string
time [(p)] [without time of day

time zone]

time [(p)] with time timetz time of day, including time zong
zone

timestamp [(p)][date and time

without time zone]

timestamp [(p)] with timestamptz date and time, including time

zone

Compatibility: The following types (or spellings thereof) are specified by SQL: bit , bit varying
boolean , char , character varying

interval

, humeric , decimal

or without time zone).

, Character
, real , smallint

, varchar

, date , double precision

, integer

, time (with or without time zone), timestamp (with

A%

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as geometric paths, or have several possibilities for formats, such as the date and time
types. Some of the input and output functions are not invertible. That is, the result of an output func-
tion may lose accuracy when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decim@ible 8-2lists the available types.

Table 8-2. Numeric Types

78

Name Storage Size Description Range
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes usual choice for integel-2147483648 to
+2147483647
bigint 8 bytes large-range integer -9223372036854775808
to
922337203685477580[7
decimal \variable user-specified precisiomo limit
exact
numeric \variable user-specified precisiomo limit
exact
real 4 bytes \variable-precision, 6 decimal digits
inexact precision
double precision 8 bytes \variable-precision, 15 decimal digits
inexact precision
serial 4 bytes autoincrementing integ@rto 2147483647

Chapter 8. Data Types

Name Storage Size Description Range
bigserial 8 bytes large autoincrementingl to
integer 922337203685477580[7

The syntax of constants for the numeric types is describ&ation 4.1.2The numeric types have a
full set of corresponding arithmetic operators and functions. Reféhtpter Sor more information.
The following sections describe the types in detail.

8.1.1. Integer Types

The typesmallint ,integer , andbigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The typeinteger is the usual choice, as it offers the best balance between range, storage size, and
performance. Themallint type is generally only used if disk space is at a premium. Qitiet
type should only be used if theteger range is not sufficient, because the latter is definitely faster.

Thebigint type may not function correctly on all platforms, since it relies on compiler support for
eight-byte integers. On a machine without such suppa@int acts the same asteger (but still

takes up eight bytes of storage). However, we are not aware of any reasonable platform where this is
actually the case.

SQL only specifies the integer typegseger (orint) andsmallint . The typebigint , and the
type nameint2 ,int4 , andint8 are extensions, which are shared with various other SQL database
systems.

8.1.2. Arbitrary Precision Numbers

The typenumeric can store numbers with up to 1000 digits of precision and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where exact-
ness is required. However, arithmeticimmeric values is very slow compared to the integer types,

or to the floating-point types described in the next section.

In what follows we use these terms: Thealeof a numeric is the count of decimal digits in the
fractional part, to the right of the decimal point. Theecisionof a numeric is the total count of
significant digits in the whole number, that is, the number of digits to both sides of the decimal point.
So the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a
scale of zero.

Both the maximum precision and the maximum scale ofimeric column can be configured. To
declare a column of typeumeric use the syntax

NUMERICfrecision , scale)
The precision must be positive, the scale zero or positive. Alternatively,
NUMERIC(recision)

selects a scale of 0. Specifying

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce

79

Chapter 8. Data Types

input values to any particular scale, whereasieric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you're concerned about portability, always specify the precision and scale
explicitly.)

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this semsenthiz type
is more akin tovarchar(n) than tochar(n).)

In addition to ordinary numeric values, themeric type allows the special valu¢aN meaning “not-
a-number”. Any operation oNaNyields anotheNaN When writing this value as a constantin a SQL
command, you must put quotes around it, for exanf#®ATE table SET x = 'NaN’' . On input,
the stringNaNis recognized in a case-insensitive manner.

The typesdecimal andnumeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data typeseal anddouble precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and printing back out a value may show slight discrepancies. Man-
aging these errors and how they propagate through calculations is the subject of an entire branch of
mathematics and computer science and will not be discussed further here, except for the following
points:

. If you require exact storage and calculations (such as for monetary amounts), usenthie
type instead.

- If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

- Comparing two floating-point values for equality may or may not work as expected.

On most platforms, theeal type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. Thelouble precision type typically has a range of around 1E-307 to 1E+308 with

a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
may take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

In addition to ordinary numeric values, the floating-point types have several special values:
Infinity

-Infinity
NaN

80

Chapter 8. Data Types

"o

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, re-
spectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values
will probably not work as expected.) When writing these values as constants in a SQL command, you
must put quotes around them, for exampDATE table SET x = ’Infinity’ . Oninput, these
strings are recognized in a case-insensitive manner.

PostgreSQL also supports the SQL-standard notafiosts andfloat(p) for specifying inexact
numeric types. Herep specifies the minimum acceptable precision in binary digits. PostgreSQL
acceptgloat(l) tofloat(24) as selecting theeal type, whilefloat(25) tofloat(53) select
double precision . Values ofp outside the allowed range draw an erftmat with no precision
specified is taken to meaiouble precision

Note: Prior to PostgreSQL 7.4, the precision in float(p) was taken to mean so many decimal
digits. This has been corrected to match the SQL standard, which specifies that the precision is
measured in binary digits. The assumption that real and double precision have exactly 24 and
53 bits in the mantissa respectively is correct for IEEE-standard floating point implementations.
On non-IEEE platforms it may be off a little, but for simplicity the same ranges of p are used on
all platforms.

8.1.4. Serial Types

The data typeserial andbigserial are not true types, but merely a notational convenience for
setting up unique identifier columns (similar to theTO_INCREMENpProperty supported by some
other databases). In the current implementation, specifying

CREATE TABLEtablename (
colname SERIAL

)i
is equivalent to specifying:

CREATE SEQUENCtablename _colname _seq;
CREATE TABLEtablename (
colname integer DEFAULT nextval(’ tablename _colname _seq’) NOT NULL

);

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator.MOT NULLconstraint is applied to ensure that a null value cannot be explicitly
inserted, either. In most cases you would also want to attagkiQUEor PRIMARY KEYconstraint

to prevent duplicate values from being inserted by accident, but this is not automatic.

Note: Prior to PostgreSQL 7.3, serial implied UNIQUE This is no longer automatic. If you wish
a serial column to be in a unique constraint or a primary key, it must now be specified, same as
with any other data type.

To insert the next value of the sequence intogbgal column, specify that theerial column
should be assigned its default value. This can be done either by excluding the column from the list of
columns in theNSERT statement, or through the use of hEFAULTkey word.

The type nameserial andserial4 are equivalent: both creaisteger columns. The type
namesbigserial andserial8 work just the same way, except that they crea@amt column.

81

Chapter 8. Data Types

bigserial should be used if you anticipate the use of more tham2ntifiers over the lifetime of
the table.

The sequence created forsarial column is automatically dropped when the owning column is
dropped, and cannot be dropped otherwise. (This was not true in PostgreSQL releases before 7.3.
Note that this automatic drop linkage will not occur for a sequence created by reloading a dump from

a pre-7.3 database; the dump file does not contain the information needed to establish the dependency
link.) Furthermore, this dependency between sequence and column is made only $eridhe

column itself. If any other columns reference the sequence (perhaps by manually calkegttiae

function), they will be broken if the sequence is removed. Usirsgraal column’s sequence in

such a fashion is considered bad form; if you wish to feed several columns from the same sequence
generator, create the sequence as an independent object.

8.2. Monetary Types

Note: The money type is deprecated. Use numeric or decimal instead, in combination with the
to_char function.

The money type stores a currency amount with a fixed fractional precisionTabke 8-3 Input is
accepted in a variety of formats, including integer and floating-point literals, as well as “typical”
currency formatting, such &&1,000.00' . Output is generally in the latter form but depends on the
locale.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 4 bytes currency amount -21474836.48 to
+21474836.47

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar(n) variable-length with limit
character(n), char(n) fixed-length, blank padded
text variable unlimited length

Table 8-4shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character typebaracter varying(n) andcharacter(n), wheren

is a positive integer. Both of these types can store strings apctwaracters in length. An attempt to

store a longer string into a column of these types will result in an error, unless the excess characters are
all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared
length, values of typeharacter will be space-padded; values of typearacter varying will

simply store the shorter string.

82

Chapter 8. Data Types

If one explicitly casts a value tcharacter varying(n) or character(n), then an over-length
value will be truncated tm characters without raising an error. (This too is required by the SQL
standard.)

Note: Prior to PostgreSQL 7.2, strings that were too long were always truncated without raising
an error, in either explicit or implicit casting contexts.

The notationsvarchar(n) and char(n) are aliases forcharacter varying(n) and
character(n), respectivelycharacter without length specifier is equivalent tbaracter(1)

If character varying is used without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL provides thext type, which stores strings of any length. Although the
typetext is notin the SQL standard, several other SQL database management systems have it as
well.

Values of typecharacter are physically padded with spaces to the specified wigd#nd are stored

and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values ofctygacter , and they will be removed

when converting &haracter value to one of the other string types. Note that trailing spaces
semantically significant inharacter varying andtext values.

The storage requirement for data of these types is 4 bytes plus the actual string, and in case of
character plus the padding. Long strings are compressed by the system automatically, so the phys-
ical requirement on disk may be less. Long values are also stored in background tables so they do not
interfere with rapid access to the shorter column values. In any case, the longest possible character
string that can be stored is about 1 GB. (The maximum value that will be allowadifothe data

type declaration is less than that. It wouldn’t be very useful to change this because with multibyte
character encodings the number of characters and bytes can be quite different anyway. If you desire
to store long strings with no specific upper limit, use or character varying without a length
specifier, rather than making up an arbitrary length limit.)

Tip: There are no performance differences between these three types, apart from the increased
storage size when using the blank-padded type. While character(n) has performance advan-
tages in some other database systems, it has no such advantages in PostgreSQL. In most situa-
tions text or character varying should be used instead.

Refer toSection 4.1.2.%or information about the syntax of string literals, andXbapter Jor infor-
mation about available operators and functions. The database character set determines the character
set used to store textual values; for more information on character set support, @éetitm 20.2

Example 8-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES ('ok’);

SELECT a, char_length(a) FROM testl; -- a
a | char_length
______ B R —
ok | 2

CREATE TABLE test2 (b varchar(5));
INSERT INTO test2 VALUES ('ok’);

83

Chapter 8. Data Types

INSERT INTO test2 VALUES ('good s
INSERT INTO test2 VALUES (too long’);
ERROR: value too long for type character varying(5)
INSERT INTO test2 VALUES (too long’:varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
_______ B S —
ok |
good |
too | | 5

0 Thechar_length function is discussed iSection 9.4

There are two other fixed-length character types in PostgreSQL, shotabie 8-5 Thename type
existsonly for storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constéAMEDATALENThe length is set at compile time (and

is therefore adjustable for special uses); the default maximum length may change in a future release.
The type'char" (note the quotes) is different froohar(1) in that it only uses one byte of storage.

Itis internally used in the system catalogs as a poor-man’s enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-character internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

Thebytea data type allows storage of binary strings; $able 8-6

Table 8-6. Binary Data Types

Name Storage Size Description
bytea 4 bytes plus the actual binary |variable-length binary string
string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
strings by two characteristics: First, binary strings specifically allow storing octets of value zero and
other “non-printable” octets (usually, octets outside the range 32 to 126). Character strings disallow
zero octets, and also disallow any other octet values and sequences of octet values that are invalid
according to the database’s selected character set encoding. Second, operations on binary strings
process the actual bytes, whereas the processing of character strings depends on locale settings. In
short, binary strings are appropriate for storing data that the programmer thinks of as “raw bytes”,
whereas character strings are appropriate for storing text.

When enteringhytea values, octets of certain valuesustbe escaped (but all octet valuegy be
escaped) when used as part of a string literal in an SQL statement. In general, to escape an octet, it
is converted into the three-digit octal number equivalent of its decimal octet value, and preceded by
two backslashe§able 8-7shows the characters that must be escaped, and gives the alternate escape
sequences where applicable.

84

Table 8-7.bytea

Literal Escaped Octets

Chapter 8. Data Types

Decimal Octet Description Escaped Input [Example Output
Value Representation Representation
0 zero octet '\\000' SELECT 000
'\\000'::bytea;
39 single quote \" or’\\o47’ SELECT '
'\"::bytea,;
92 backslash AN or SELECT \
'\\134’ "\W'::bytea;
0to 31 and 127 to['non-printable” \\ xxx (octal |SELECT \001
255 octets value) "\001"::bytea;

The requirement to escape “non-printable” octets actually varies depending on locale settings. In some
instances you can get away with leaving them unescaped. Note that the result in each of the examples
in Table 8-7was exactly one octet in length, even though the output representation of the zero octet
and backslash are more than one character.

The reason that you have to write so many backslashes, as sh@ahl&8-7 is that an input string

written as a string literal must pass through two parse phases in the PostgreSQL server. The first
backslash of each pair is interpreted as an escape character by the string-literal parser and is therefore
consumed, leaving the second backslash of the pair. The remaining backslash is then recognized by
the bytea input function as starting either a three digit octal value or escaping another backslash.
For example, a string literal passed to the servel@&l’ becomes00l after passing through

the string-literal parser. Th@01 is then sent to theytea input function, where it is converted to a

single octet with a decimal value of 1. Note that the apostrophe character is not treated specially by
bytea , so it follows the normal rules for string literals. (See aBaxtion 4.1.2.)

Bytea octets are also escaped in the output. In general, each “non-printable” octet is converted into

its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are rep-

resented by their standard representation in the client character set. The octet with decimal value 92
(backslash) has a special alternative output representation. DetailsTafgér8-8

Table 8-8.bytea Output Escaped Octets

Decimal Octet Description Escaped Output [Example Output Result
Value Representation
92 backslash \\ SELECT \\

'\\134"::bytea;

SELECT
'\\001'"::bytea;

0 to 31 and 127 to['non-printable” \001

255 octets

\ xxx (octal value)

32 to 126 client character seSELECT ~

representation [\\176'::bytea;

“printable” octets

Depending on the front end to PostgreSQL you use, you may have additional work to do in terms
of escaping and unescapihgtea strings. For example, you may also have to escape line feeds and
carriage returns if your interface automatically translates these.

85

Chapter 8. Data Types

The SQL standard defines a different binary string type, calsdBor BINARY LARGE OBJECT
The input format is different fronbytea , but the provided functions and operators are mostly the
same.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, showahile 8-9 The operations
available on these data types are describegkiction 9.9

Table 8-9. Date/Time Types

Name Storage Size |Description Low Value High Value Resolution
timestamp [8 bytes both date and 4713 BC 5874897 AD |1 microsecond
(p) 11 time 14 digits
without time

zone]

timestamp [8 bytes both date and 4713 BC 5874897 AD |1 microsecond
(p)] with time, with time 14 digits

time zone zone

interval [12 bytes time intervals |[-178000000 (178000000 1 microsecond
(p) 1 years years 14 digits

date 4 bytes dates only 4713 BC 32767 AD 1 day

time [(p)] [8bytes times of day [00:00:00.00 [23:59:59.99 |1 microsecond
[without only 14 digits

time zone]

time [(p)] [12 bytes times of day |00:00:00.00+1223:59:59.99-12/1 microsecond
with time only, with time 14 digits

zone zone

Note: Prior to PostgreSQL 7.3, writing just timestamp was equivalent to timestamp with time
zone . This was changed for SQL compliance.

time , timestamp , andinterval accept an optional precision valpewhich specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range gf is from O to 6 for theimestamp andinterval types.

Note: When timestamp values are stored as double precision floating-point numbers (currently
the default), the effective limit of precision may be less than 6. timestamp values are stored as
seconds before or after midnight 2000-01-01. Microsecond precision is achieved for dates within a
few years of 2000-01-01, but the precision degrades for dates further away. When timestamp val-
ues are stored as eight-byte integers (a compile-time option), microsecond precision is available
over the full range of values. However eight-byte integer timestamps have a more limited range
of dates than shown above: from 4713 BC up to 294276 AD. The same compile-time option also
determines whether time and interval values are stored as floating-point or eight-byte integers.
In the floating-point case, large interval values degrade in precision as the size of the interval
increases.

86

Chapter 8. Data Types

For thetime types, the allowed range pfis from 0 to 6 when eight-byte integer storage is used, or
from 0 to 10 when floating-point storage is used.

The typetime with time zone is defined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combinatiae oftime ,
timestamp without time zone , and timestamp with time zone should provide a
complete range of date/time functionality required by any application.

The typesabstime andreltime are lower precision types which are used internally. You are dis-
couraged from using these types in new applications and are encouraged to move any old ones over
when appropriate. Any or all of these internal types might disappear in a future release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including 1SO 8601,
SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of month, day, and
year in date input is ambiguous and there is support for specifying the expected ordering of these
fields. Set theDateStyleparameter tavDYto select month-day-year interpretatidniylYto select
day-month-year interpretation, ¥MDto select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requiresp-See
pendix Bfor the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer toSection 4.1.2.%or more information. SQL requires the following syntax

type [(p)]’ value

wherep in the optional precision specification is an integer corresponding to the number of fractional
digits in the seconds field. Precision can be specifiediftg , timestamp , andinterval types.

The allowed values are mentioned above. If no precision is specified in a constant specification, it
defaults to the precision of the literal value.

8.5.1.1. Dates
Table 8-10shows some possible inputs for tage type.

Table 8-10. Date Input

Example Description

January 8, 1999 unambiguous in angatestyle input mode

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

1/8/1999 January 8 ilmMDYmode; August 1 irDMYmode

1/18/1999 January 18 ilMDYmode; rejected in other modes

01/02/03 January 2, 2003 iMDYmode; February 1, 2003|in
DMYmode; February 3, 2001 iMDmode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 iryMDmode, else error

87

Chapter 8. Data Types

Example Description

08-Jan-99 January 8, except error rivibmode
Jan-08-99 January 8, except error ivDmode
19990108 ISO 8601; January 8, 1999 in any mode
990108 ISO 8601; January 8, 1999 in any mode
1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

8.5.1.2. Times

The time-of-day types aténe [(p)] without time zone andtime [(p)] with time

zone . Writing justtime is equivalent taime without time zone

Valid input for these types consists of a time of day followed by an optional time zone Tébé=
8-11andTable 8-12) If a time zone is specified in the input fome without time zone ,itis
silently ignored.

Table 8-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:.05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by name

Table 8-12. Time Zone Input

Example Description

PST Pacific Standard Time

-8:00 ISO-8601 offset for PST
-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC
z Short form ofzulu

Refer toAppendix Bfor a list of time zone names that are recognized for input.

88

Chapter 8. Data Types

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of a concatenation of a date and a time, followed by
an optional time zone, followed by an optiomd) or BC. (Alternatively, AD'BC can appear before the
time zone, but this is not the preferred ordering.) Thus

1999-01-08 04:05:06

and

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the wide-spread format

January 8 04:05:06 1999 PST

is supported.
The SQL standard differentiatéimestamp without time zone andtimestamp with time
zone literals by the existence of a “+”; or “-”. Hence, according to the standard,

TIMESTAMP ’'2004-10-19 10:23:54’

is atimestamp without time zone , while

TIMESTAMP ’'2004-10-19 10:23:54+02’

is a timestamp with time zone . PostgreSQL differs from the standard by requiring that
timestamp with time zone literals be explicitly typed:

TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02’

If a literal is not explicitly indicated as being dfnestamp with time zone , PostgreSQL will
silently ignore any time zone indication in the literal. That is, the resulting date/time value is derived
from the date/time fields in the input value, and is not adjusted for time zone.

Fortimestamp with time zone , the internally stored value is always in UTC (Universal Coordi-
nated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time
zone is stated in the input string, then it is assumed to be in the time zone indicated by the system’s
timezoneparameter, and is converted to UTC using the offset fotithezone zone.

When atimestamp with time zone value is output, it is always converted from UTC to the
currenttimezone zone, and displayed as local time in that zone. To see the time in another time
zone, either changéenezone or use theAT TIME ZONEconstruct (se&ection 9.9.8

Conversions betweertimestamp without time zone and timestamp with time zone
normally assume that thémestamp without time zone value should be taken or given as
timezone local time. A different zone reference can be specified for the conversion ASINGME
ZONE

8.5.1.4. Intervals

interval ~ values can be written with the following syntax:

[@] quantity unit [quantity unit ..] [direction]

89

Chapter 8. Data Types

Where:quantity is a number (possibly signedynit is second , minute , hour , day, week,
month, year , decade, century , millennium , or abbreviations or plurals of these units;
direction can beago or empty. The at sign@) is optional noise. The amounts of different units
are implicitly added up with appropriate sign accounting.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example,1 12:59:10’ is read the same &b day 12 hours 59 min 10 sec’

The optional precisiop should be between 0 and 6, and defaults to the precision of the input literal.

8.5.1.5. Special Values

PostgreSQL supports several special date/time input values for convenience, as shabie i8-

13. The valuesnfinity and -infinity are specially represented inside the system and will be
displayed the same way; but the others are simply notational shorthands that will be converted to
ordinary date/time values when read. (In particidaty and related strings are converted to a specific

time value as soon as they are read.) All of these values need to be written in single quotes when used
as constants in SQL commands.

Table 8-13. Special Date/Time Inputs

Input String \Valid Types Description
epoch date , timestamp 1970-01-01 00:(
infinity timestamp later than all oth
-infinity timestamp earlier than all o
now date , time , timestamp current transacti
today date , timestamp midnight today
tomorrow date , timestamp midnight tomorr
yesterday date , timestamp midnight yesterc
allballs time 00:00:00.00 UT(

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data typeCURRENT_DATECURRENT_TIME CURRENT_TIMESTAMA.OCALTIME
LOCALTIMESTAMPThe latter four accept an optional precision specification. S&etion 9.9.9

Note however that these are SQL functions andhateecognized as data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES, and German, using the comn&#i datestyle . The default is the ISO
format. (The SQL standard requires the use of the ISO 8601 format. The name of the “SQL” output
format is a historical accidentTable 8-14shows examples of each output style. The output of the
date andtime types is of course only the date or time part in accordance with the given examples.

Table 8-14. Date/Time Output Styles

Style Specification Description Example
ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08
SQL traditional style 12/17/1997 07:37:16.00 PST

90

Chapter 8. Data Types

Style Specification Description Example
POSTGRES original style Wed Dec 17 07:37:16 1997 PST
German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (Seetion 8.5.%or how this setting also affects inter-
pretation of input valuesJable 8-15shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day /month /year 17/12/1997 15:37:16.00 CET
SQL, MDY month /day /year 12/17/1997 07:37:16.00 PST
Postgres, DMY day /month /year Wed 17 Dec 07:37:16 1997 PST

interval output looks like the input format, except that units ldemtury or week are converted
to years and days aragjo is converted to an appropriate sign. In ISO mode the output looks like

[quantity unit [.. 111 days] [hours : minutes :seconds]

The date/time styles can be selected by the user usingihedatestyle command, th®ateStyle
parameter in th@ostgresgl.conf configuration file, or theeGDATESTYLENvironment variable
on the server or client. The formatting functimnchar (seeSection 9.8is also available as a more
flexible way to format the date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL currently
supports daylight-savings rules over the time period 1902 through 2038 (corresponding to the full
range of conventional Unix system time). Times outside that range are taken to be in “standard time”
for the selected time zone, no matter what part of the year they fall in.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

- Although thedate type does not have an associated time zoneijritee type can. Time zones in
the real world have little meaning unless associated with a date as well as a time, since the offset
may vary through the year with daylight-saving time boundaries.

« The default time zone is specified as a constant numeric offset from UTC. Itis therefore not possible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We recommemat using the typeime with time zone (though it is
supported by PostgreSQL for legacy applications and for compliance with the SQL standard). Post-
greSQL assumes your local time zone for any type containing only date or time.

91

Chapter 8. Data Types

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in
the zone specified by thanezoneconfiguration parameter before being displayed to the client.

Thetimezoneconfiguration parameter can be set in thedistgresqgl.conf , orin any of the other
standard ways described 8ection 16.4There are also several special ways to set it:

« If timezone is not specified ipostgresgl.conf nor as a postmaster command-line switch, the
server attempts to use the value of tfreenvironment variable as the default time zoneT4fis
not defined or is not any of the time zone names known to PostgreSQL, the server attempts to de-
termine the operating system'’s default time zone by checking the behavior of the C library function
localtime() . The default time zone is selected as the closest match among PostgreSQL’s known
time zones.

« The SQL command&ET TIME ZONEsets the time zone for the session. This is an alternative
spelling of SET TIMEZONE TQvith a more SQL-spec-compatible syntax.

- The PGTZenvironment variable, if set at the client, is used by libpq applications to s&&Ta
TIME ZONEcommand to the server upon connection.

Refer toAppendix Bfor a list of available time zones.

8.5.4. Internals

PostgreSQL uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713 BC to far into the future, using the assumption
that the length of the year is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough
to warrant coding into a date/time handler.

8.6. Boolean Type

PostgreSQL provides the standard SQL typelean . boolean can have one of only two states:
“true” or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:

TRUE
"
‘true’
Yy
yes
L

’

’)

For the “false” state, the following values can be used:

FALSE
lfl
'false’
n
no
o

’)

92

Chapter 8. Data Types

Using the key word§RUEandFALSE s preferred (and SQL-compliant).

Example 8-2. Using theboolean type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, ’sic est’);
INSERT INTO testl VALUES (FALSE, 'non est);
SELECT * FROM testl;

a | b
R S —

t | sic est

f | non est

SELECT * FROM testl WHERE a;
a | b

R S

t | sic est

Example 8-Xhows thaboolean values are output using the letterandf .

Tip: Values of the boolean type cannot be cast directly to other types (e.g., CAST (boolval
AS integer) does not work). This can be accomplished using the CASEexpression: CASE WHEN
boolval THEN 'value if true’ ELSE ‘value if false’ END . See Section 9.13.

boolean uses 1 byte of storage.

8.7. Geometric Types

Geometric data types represent two-dimensional spatial objedike 8-16hows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other

types.

Table 8-16. Geometric Types

Name Storage Size Representation Description

point 16 bytes Point on the plane (X,y)

line 32 bytes Infinite line (not fully |((x1,y1),(x2,y2))
implemented)

Iseg 32 bytes Finite line segment |((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to|((x1,y1),...)
polygon)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to ((x1,y1),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center and

radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explaiSedtion 9.10

93

Chapter 8. Data Types

8.7.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values pbtype
are specified using the following syntax:

wherex andy are the respective coordinates as floating-point numbers.

8.7.2. Line Segments

Line segmentsigeg) are represented by pairs of points. Values of tigeg are specified using the
following syntax:

((Cxx,y1),(x2,vy2))
(xt, y1),(x2,vy2)
x1, yl1 X2, y2

where(x1, y1) and(x2, y2) are the end points of the line segment.

8.7.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Valuesbhoktygpe
specified using the following syntax:

(Cxx,vy1),(x2,vy2))
(xt, y1),(x2, y2)
x1, yl1 X2, y2

where(x1, y1) and(x2, y2) are any two opposite corners of the box.

Boxes are output using the first syntax. The corners are reordered on input to store the upper right
corner, then the lower left corner. Other corners of the box can be entered, but the lower left and upper
right corners are determined from the input and stored.

8.7.4. Paths

Paths are represented by lists of connected points. Paths agrehevhere the first and last points
in the list are not considered connected,ctobsed where the first and last points are considered
connected.

Values of typepath are specified using the following syntax:

(C xx, y1), ..., (xn , yn))
[C x2, y1), ..., (xn ., yn)]
(x¥, y1), .., (Xn , yn)
(x1, y1 Xn , yn)
x1 , yl Xn , yn

where the points are the end points of the line segments comprising the path. Square bjjagkets (
indicate an open path, while parenthegg9 {ndicate a closed path.

Paths are output using the first syntax.

94

Chapter 8. Data Types

8.7.5. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons should probably
be considered equivalent to closed paths, but are stored differently and have their own set of support
routines.

Values of typepolygon are specified using the following syntax:

(Cx1, yl), ... (xn ., yn))
(x1, y1), .., (Xn , yn)
(x1, y1 xn , yn)
x1 , vyl Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.7.6. Circles

Circles are represented by a center point and a radius. Values dfitylee are specified using the
following syntax:

where(x, y) is the center and is the radius of the circle.

Circles are output using the first syntax.

8.8. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shoabier8-17 It
is preferable to use these types instead of plain text types to store network addresses, because these
types offer input error checking and several specialized operators and functiose(sen 9.1}

Table 8-17. Network Address Types

Name Storage Size Description

cidr 12 or 24 bytes IPv4 and IPv6 networks

inet 12 or 24 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sortingnet

8.8.1. inet

Theinet

or cidr

data types, IPv4 addresses will always sort before IPv6 addresses, includ-
ing IPv4 addresses encapsulated or mapped into IPv6 addresses, such as ::10.2.3.4 or ::ffff::10.4.3.2.

type holds an IPv4 or IPv6 host address, and optionally the identity of the subnetitis in, all

in one field. The subnet identity is represented by stating how many bits of the host address represent
the network address (the “netmask”). If the netmask is 32 and the address is IPv4, then the value does

95

Chapter 8. Data Types

not indicate a subnet, only a single host. In IPv6, the address length is 128 bits, so 128 bits specify
a unique host address. Note that if you want to accept networks only, you should e thigype
rather tharinet .

The input format for this type iaddress/ly = whereaddress is an IPv4 or IPv6 address agdis
the number of bits in the netmask. If the part is left off, then the netmask is 32 for IPv4 and 128
for IPv6, so the value represents just a single host. On displayythgortion is suppressed if the
netmask specifies a single host.

8.8.2. cidr

Thecidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networlsl@essly where
address is the network represented as an IPv4 or IPv6 addressy andhe number of bits in the
netmask. Ify is omitted, it is calculated using assumptions from the older classful network numbering
system, except that it will be at least large enough to include all of the octets written in the input. It is
an error to specify a network address that has bits set to the right of the specified netmask.

Table 8-18shows some examples.

Table 8-18.cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64
2001:4f8:3:ba:2e0:81ff:fe22:d 1200 PRAf8:3:ba:2e0:81ff:fe22:d 120 PRAf8:3:ba:2e0:81ff:fe22:d1f1
::ffff:1.2.3.0/120 :offff:1.2.3.0/120 offff:1.2.3/120
::ffff:1.2.3.0/128 offff:1.2.3.0/128 offff:1.2.3.0/128

8.8.3. inet vs. cidr

The essential difference betweieat andcidr data types is thabet accepts values with nonzero
bits to the right of the netmask, whereadr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host , text , and
abbrev .

96

Chapter 8. Data Types

8.8.4. macaddr

Themacaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC ad-
dresses are used for other purposes as well). Input is accepted in various customary formats, including

'08002b:010203’

'08002b-010203'

'0800.2b01.0203’

'08-00-2b-01-02-03’

'08:00:2h:01:02:03’
which would all specify the same address. Upper and lower case is accepted for the thigitsgh
f. Output is always in the last of the forms shown.

The directorycontrib/mac in the PostgreSQL source distribution contains tools that can be used to
map MAC addresses to hardware manufacturer names.

8.9. Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two
SQL bit typeshit(n) andbit varying(n), wheren is a positive integer.

bit type data must match the lengthexactly; it is an error to attempt to store shorter or longer bit
strings.bit varying data is of variable length up to the maximum lengtHonger strings will be
rejected. Writingoit without a length is equivalent tot(1) , whilebit varying without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit(n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
to bit varying(n), it will be truncated on the right if it is more than n bits.

Note: Prior to PostgreSQL 7.2, bit data was always silently truncated or zero-padded on the
right, with or without an explicit cast. This was changed to comply with the SQL standard.

Refer toSection 4.1.2.3or information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; Seetion 9.6

Example 8-3. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B'00’);
INSERT INTO test VALUES (B'10’, B'101’);
ERROR: hit string length 2 does not match type bit(3)
INSERT INTO test VALUES (B’10:bit(3), B'101");
SELECT * FROM test;

a | b

97

Chapter 8. Data Types

_____ R

101 | 00
100 | 101
8.10. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in or user-defined base type can be created. (Arrays of composite types or domains
are not yet supported, however.)

8.10.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (

name text,
pay_by_quarter integer[],
schedule text[][]

);

As shown, an array data type is named by appending square brggkets the data type name of
the array elements. The above command will create a table nsamethp with a column of type
text (name), a one-dimensional array of tyfreger (pay_by_quarter), which represents the
employee’s salary by quarter, and a two-dimensional arragxof (schedule), which represents
the employee’s weekly schedule.

The syntax folCREATE TABLRllows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]

)
However, the current implementation does not enforce the array size limits — the behavior is the same
as for arrays of unspecified length.

Actually, the current implementation does not enforce the declared number of dimensions either.
Arrays of a particular element type are all considered to be of the same type, regardless of size or
number of dimensions. So, declaring number of dimensions or sizEREATE TABLHS simply
documentation, it does not affect runtime behavior.

An alternative syntax, which conforms to the SQL:1999 standard, may be used for one-dimensional
arrays.pay_by quarter could have been defined as:

pay_by quarter integer ARRAY[4],

This syntax requires an integer constant to denote the array size. As before, however, PostgreSQL
does not enforce the size restriction.

8.10.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and
separate them by commas. (If you know C, this is not unlike the C syntax for initializing structures.)

98

Chapter 8. Data Types

You may put double quotes around any element value, and must do so if it contains commas or curly
braces. (More details appear below.) Thus, the general format of an array constant is the following:

{ wvall delim val2 delim o ¥

wheredelim is the delimiter character for the type, as recorded ipdtsype entry. Among the
standard data types provided in the PostgreSQL distribution,dypaises a semicolon | but all

the others use comma)(Eachval is either a constant of the array element type, or a subarray. An
example of an array constant is

'{{1,2,3},{4,5,6}.{7,8,9}}

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.5The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show SOm@ISERT statements.

INSERT INTO sal_emp
VALUES (BIll’,
{10000, 10000, 10000, 10000},
{{"meeting"”, "lunch"}, {"meeting"}});
ERROR: multidimensional arrays must have array expressions with matching dimensions

Note that multidimensional arrays must have matching extents for each dimension. A mismatch
causes an error report.

INSERT INTO sal_emp
VALUES (BIll’,
{10000, 10000, 10000, 10000},
{{"meeting"”, "lunch"}, {"training", "presentation"}}");

INSERT INTO sal_emp
VALUES (Carol’,
{20000, 25000, 25000, 25000},
{{"breakfast"”, "consulting"}, {"meeting"”, "lunch"}});

A limitation of the present array implementation is that individual elements of an array cannot be
SQL null values. The entire array can be set to null, but you can’'t have an array with some elements
null and some not.

The result of the previous two inserts looks like this:

SELECT * FROM sal_emp;
name | pay_by_quarter | schedule

+ +
Bill | {10000,10000,10000,10000} | {{meeting,lunch}{training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting},{meeting,lunch}}
(2 rows)

The ARRAYconstructor syntax may also be used:

INSERT INTO sal_emp
VALUES ('Bill’",

99

Chapter 8. Data Types

ARRAY[10000, 10000, 10000, 10000],
ARRAY[['meeting’, ’lunch’], [training’, 'presentation’]]);

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY/[['breakfast’, 'consulting’], ['meeting’, 'lunch]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literalRRAaconstructor
syntax is discussed in more detailS$ection 4.2.10

8.10.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array
at a time. This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses the one-
based numbering convention for arrays, that is, an arraygdéments starts witlrray[1] and ends
with array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by quarter

10000
25000

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing lower-bound : upper-bound for one or more array dimensions. For example, this query
retrieves the first item on Bill's schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill’;
schedule

{{meeting},{training}}
(1 row)

We could also have written

SELECT schedule[1:2][1] FROM sal_emp WHERE name = 'Bill’;

100

Chapter 8. Data Types

with the same result. An array subscripting operation is always taken to represent an array slice if
any of the subscripts are written in the fofower : upper . A lower bound of 1 is assumed for any
subscript where only one value is specified, as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill’;

schedule

{{meeting,lunch} {training,presentation}}
(1 row)

The current dimensions of any array value can be retrieved witarthg dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = 'Carol’;

array_dims

[1:2][1:1]
1 row)

array_dims produces aext result, which is convenient for people to read but perhaps not so
convenient for programs. Dimensions can also be retrievedanidly upper andarray_lower
which return the upper and lower bound of a specified array dimension, respectively.

SELECT array_upper(schedule, 1) FROM sal emp WHERE name = ’Carol’;

array_upper

8.10.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by quarter = '{25000,25000,27000,27000}
WHERE name = 'Carol’;

or using theARRAYexpression syntax:

UPDATE sal_emp SET pay_by quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

An array may also be updated at a single element:

UPDATE sal_emp SET pay_by quarter[4] = 15000
WHERE name = 'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by quarter[1:2] = '{27000,27000}
WHERE name = ’'Carol’;

101

Chapter 8. Data Types

A stored array value can be enlarged by assigning to an element adjacent to those already present,
or by assigning to a slice that is adjacent to or overlaps the data already present. For example, if
arraymyarray currently has 4 elements, it will have five elements after an update that assigns to
myarray[5] . Currently, enlargement in this fashion is only allowed for one-dimensional arrays, not
multidimensional arrays.

Array slice assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign towyarray[-2:7] to create an array with subscript values running from -2 to 7.

New array values can also be constructed by using the concatenation opgrator,

SELECT ARRAY[1,2] || ARRAYI[34];
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAYI[1,2],[3,4]];
?column?

{{5.6},{1.2}.{3.4}}
(2 row)

The concatenation operator allows a single element to be pushed on to the beginning or end of a
one-dimensional array. It also accepts tWalimensional arrays, or aN-dimensional and ahl+1-
dimensional array.

When a single element is pushed on to the beginning of a one-dimensional array, the result is an
array with a lower bound subscript equal to the right-hand operand’s lower bound subscript, minus
one. When a single element is pushed on to the end of a one-dimensional array, the result is an array
retaining the lower bound of the left-hand operand. For example:

SELECT array_dims(1 || ARRAY[2,3]);
array_dims

SELECT array_dims(ARRAY[1,2] || 3);
array_dims

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand’s outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

102

Chapter 8. Data Types

SELECT array_dims(ARRAY[[1,2].[3.4]] || ARRAY[[5,6].,[7.8],[9,01]):
array_dims

i)
(1 row)

When anN-dimensional array is pushed on to the beginning or end &f-elrdimensional array, the
result is analogous to the element-array case above. Ratimensional sub-array is essentially an
element of theN+1-dimensional array’s outer dimension. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
array_dims

202
(1 row)

An array can also be constructed by using the functiamay prepend , array_append

or array_cat . The first two only support one-dimensional arrays, buty cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over
direct use of these functions. In fact, the functions are primarily for use in implementing the
concatenation operator. However, they may be directly useful in the creation of user-defined
aggregates. Some examples:

SELECT array_prepend(1, ARRAY][2,3]);
array_prepend

SELECT array_append(ARRAY[1,2], 3);
array_append

SELECT array_cat(ARRAY[L1,2], ARRAYI[3,4]);
array_cat

1234
(1 row)

SELECT array_cat(ARRAY([[1,2],[3,4]], ARRAY/[5,6]);
array_cat

{{1.2},{3.4}.{5.6}}
1 row)

SELECT array_cat(ARRAY[5,6], ARRAY([1,2],[3,4]]);
array_cat

{{5.6}.{1,2}.{3,4}}

103

Chapter 8. Data Types

8.10.5. Searching in Arrays

To search for a value in an array, you must check each value of the array. This can be done by hand,
if you know the size of the array. For example:

SELECT * FROM sal_ emp WHERE pay_by quarter[1] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_quarter[3] 10000 OR
pay_by_quarter[4] 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
uncertain. An alternative method is describe>ction 9.17The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you could find rows where the array had all values equal to 10000 with:

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Tip: Arrays are not sets; searching for specific array elements may be a sign of database misde-
sign. Consider using a separate table with a row for each item that would be an array element.
This will be easier to search, and is likely to scale up better to large numbers of elements.

8.10.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure.
The decoration consists of curly bracgésand}) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comnbait(can be something else: it

is determined by theypdelim setting for the array’s element type. (Among the standard data types
provided in the PostgreSQL distribution, tyjpex uses a semicolon but all the others use comma.)

In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces,
and delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings

or contain curly braces, delimiter characters, double quotes, backslashes, or white space. Double
guotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either presence or absence of quotes. (This is a change in behavior from pre-7.2
PostgreSQL releases.)

By default, the lower bound index value of an array’s dimensions is set to one. If any of an array’s
dimensions has a lower bound index not equal to one, an additional decoration that indicates the
actual array dimensions will precede the array structure decoration. This decoration consists of square
brackets [[) around each array dimension’s lower and upper bounds, with a cojode{imiter
character in between. The array dimension decoration is followed by an equatsi§orexample:

SELECT 1 || ARRAY[2,3] AS array;

[0:2]={1,2,3}

104

Chapter 8. Data Types
1 row)
SELECT ARRAY[1,2] || ARRAY[[3,4]] AS array;

array

[0:1]1:2]={{1,2}.{3,4}}
(1 row)

This syntax can also be used to specify non-default array subscripts in an array literal. For example:

SELECT f1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT '[L:A][-2:-1][3:5]={{{1,2,3},{4,5,6}}} int] AS f1) AS ss;

el | e2

[S,
1] 6

(1 row)

As shown previously, when writing an array value you may write double quotes around any individual
array element. Yomustdo so if the element value would otherwise confuse the array-value parser. For
example, elements containing curly braces, commas (or whatever the delimiter character is), double
guotes, backslashes, or leading or trailing whitespace must be double-quoted. To put a double quote
or backslash in a quoted array element value, precede it with a backslash. Alternatively, you can use
backslash-escaping to protect all data characters that would otherwise be taken as array syntax.

You may write whitespace before a left brace or after a right brace. You may also write whitespace
before or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as an array. This doubles the number of backslashes you need. For example, to
insert a text array value containing a backslash and a double quote, you'd need to write

INSERT ... VALUES ({W","\"7});

The string-literal processor removes one level of backslashes, so that what arrives at the array-
value parser looks like {"\","\""} . In turn, the strings fed to the text data type’s input routine
become\ and " respectively. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored array element.) Dollar quoting (see Section 4.1.2.2)
may be used to avoid the need to double backslashes.

Tip: The ARRAYconstructor syntax (see Section 4.2.10) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In ARRAY individual element values
are written the same way they would be written when not members of an array.

105

Chapter 8. Data Types

8.11. Composite Types

A composite typeescribes the structure of a row or record,; it is in essence just a list of field names
and their data types. PostgreSQL allows values of composite types to be used in many of the same
ways that simple types can be used. For example, a column of a table can be declared to be of a
composite type.

8.11.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision

);

CREATE TYPE inventory_item AS (
name text,
supplier_id integer,
price numeric

);

The syntax is comparable @GREATE TABLEexcept that only field names and types can be specified;
no constraints (such &80T NULL can presently be included. Note that #h&keyword is essential;
without it, the system will think a quite different kind GREATE TYPEommand is meant, and you'll
get odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer

);
INSERT INTO on_hand VALUES (ROW(fuzzy dice’, 42, 1.99), 1000);
or functions:

CREATE FUNCTION price_extension(inventory_item, integer) RETURNS numeric
AS 'SELECT $1l.price * $2° LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand,;

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table’s row type. For example, had we said

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

);

then the sammventory_item composite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition

106

Chapter 8. Data Types

do not applyto values of the composite type outside the table. (A partial workaround is to use domain
types as members of composite types.)

8.11.2. Composite Value Input

To write a composite value as a literal constant, enclose the field values within parentheses and sepa-
rate them by commas. You may put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of a compaosite constant
is the following:

(- vall , val2 , ...
An example is
'("fuzzy dice",42,1.99)

which would be a valid value of theventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third
field:

'("fuzzy dice",42,)
If you want an empty string rather than NULL, write double quotes:
(",42,)

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discBsstidnn
4.1.2.5 The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary.)

The ROWexpression syntax may also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax, since you don’t have to worry about multiple
layers of quoting. We already used this method above:

ROW('fuzzy dice’, 42, 1.99)
ROW(", 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can simplify to

(fuzzy dice’, 42, 1.99)
(", 42, NULL)

TheROWexpression syntax is discussed in more deta8iéction 4.2.11

8.11.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it's so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields
from ouron_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

107

Chapter 8. Data Types

This will not work since the namigem is taken to be a table name, not a field name, per SQL syntax
rules. You must write it like this:

SELECT (item).name FROM on_hand WHERE (item).price > 9.99;
or if you need to use the table name as well (for instance in a multi-table query), like this:
SELECT (on_hand.item).name FROM on_hand WHERE (on_hand.item).price > 9.99;

Now the parenthesized object is correctly interpreted as a referenceitentheolumn, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of a function that returns a composite value, you'd need to write
something like

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will provoke a syntax error.

8.11.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));
UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omitROWthe second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ..;

Notice here that we don’'t need to (and indeed cannot) put parentheses around the column name
appearing just afteBET, but we do need parentheses when referencing the same column in the ex-
pression to the right of the equal sign.

And we can specify subfields as targetsIf8ERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

8.11.5. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parenthegsesd)) around the whole value, plus commas (
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses
it is considered part of the field value, and may or may not be significant depending on the input
conversion rules for the field data type. For example, in

(42y

108

Chapter 8. Data Types

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you may write double quotes around any in-
dividual field value. Younustdo so if the field value would otherwise confuse the composite-value
parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put a double quote or backslash in a quoted composite field value, precede it with
a backslash. (Also, a pair of double quotes within a double-quoted field value is taken to represent
a double quote character, analogously to the rules for single quotes in SQL literal strings.) Alterna-
tively, you can use backslash-escaping to protect all data characters that would otherwise be taken as
composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents
a NULL. To write a value that is an empty string rather than NULL, wtite

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as a composite. This doubles the number of backslashes you need. For example,
toinsertatext field containing a double quote and a backslash in a composite value, you'd need
to write

INSERT ... VALUES (("\W"\W"));

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\") . In turn, the string fed to the text data type’s input
routine becomes "\ . (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored composite field.) Dollar quoting (see Section
4.1.2.2) may be used to avoid the need to double backslashes.

Tip: The ROWconstructor syntax is usually easier to work with than the composite-literal syntax
when writing composite values in SQL commands. In ROWindividual field values are written the
same way they would be written when not members of a composite.

8.12. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
An OID system column is also added to user-created tables, unigsgOUT OIDIs specified when

the table is created, or thiefault_with_oidsonfiguration variable is set to false. Tyqd represents

an object identifier. There are also several alias typesifior regproc , regprocedure , regoper
regoperator , regclass , andregtype . Table 8-19%shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

109

Chapter 8. Data Types

Note: OIDs are included by default in user-created tables in PostgreSQL 8.0.0. However, this
behavior is likely to change in a future version of PostgreSQL. Eventually, user-created tables will
not include an OID system column unless WITH OIDSis specified when the table is created, or the
default_with_oids configuration variable is set to true. If your application requires the presence
of an OID system column in a table, it should specify WITH OIDS when that table is created to
ensure compatibility with future releases of PostgreSQL.

Theoid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that typeid would use. The alias types allow simplified lookup of OID values for
objects. For example, to examine thg attribute rows related to a tableytable , one could

write

SELECT * FROM pg_attribute WHERE attrelid = 'mytable’::regclass;
rather than

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable’);

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-
select would be needed to select the right OID if there are multiple tables naptside in differ-

ent schemas. Thegclass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting a table’s OlBgtgass

is handy for symbolic display of a numeric OID.

Table 8-19. Object Identifier Types

Name References Description \Value Example
oid any numeric object identifie564182
regproc pg_proc function name sum
regprocedure pg_proc function with argumentisum(int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument*(integer,integer)
types or -(NONE,integer)
regclass pg_class relation name pg_type
regtype pg_type data type name integer

All of the OID alias types accept schema-qualified names, and will display schema-qualified names
on output if the object would not be found in the current search path without being qualified. The
regproc andregoper alias types will only accept input names that are unique (not overloaded),
so they are of limited use; for most usegprocedure Or regoperator IS more appropriate. For
regoperator , unary operators are identified by writingpNEor the unused operand.

Another identifier type used by the systenxiis , or transaction (abbreviated xact) identifier. This is
the data type of the system columumsin andxmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the systemdigl , or command identifier. This is the data type of the

110

Chapter 8. Data Types

system columnsmin andcmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the systemtisg , or tuple identifier (row identifier). This is the data
type of the system columetid . A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within its table.

(The system columns are further explaine®irction 5.4

8.13. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-typesA pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data
type.Table 8-2dists the existing pseudo-types.

Table 8-20. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type whatever.

anyarray Indicates that a function accepts any array data
type (seeSection 31.2.5

anyelement Indicates that a function accepts any data type
(seeSection 31.2.p

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler A procedural language call handler is declared to
returnlanguage_handler

record Identifies a function returning an unspecified row
type.

trigger A trigger function is declared to retutrigger.

void Indicates that a function returns no value.

opaque /An obsolete type name that formerly served all
the above purposes.

Functions coded in C (whether built-in or dynamically loaded) may be declared to accept or return
any of these pseudo data types. It is up to the function author to ensure that the function will behave
safely when a pseudo-type is used as an argument type.

Functions coded in procedural languages may use pseudo-types only as allowed by their implemen-
tation languages. At present the procedural languages all forbid use of a pseudo-type as argument
type, and allow onlywoid andrecord as a result type (plusigger when the function is used as a
trigger). Some also support polymorphic functions using the tgpesrray andanyelement .

Theinternal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in a SQL query. If a function has at least one
internal -type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to

111

Chapter 8. Data Types

returninternal unless it has at least ofre¢ernal argument.

112

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as describ@aiinV. The psql commandsf and
\do can be used to show the list of all actually available functions and operators, respectively.

If you are concerned about portability then take note that most of the functions and operators de-
scribed in this chapter, with the exception of the most trivial arithmetic and comparison operators and
some explicitly marked functions, are not specified by the SQL standard. Some of the extended func-
tionality is present in other SQL database management systems, and in many cases this functionality
is compatible and consistent between the various implementations.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the
following truth tables:

a b a AND b a OR b
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operatoraNDandORare commutative, that is, you can switch the left and right operand without
affecting the result. But se8ection 4.2.1Zor more information about the order of evaluation of
subexpressions.

9.2. Comparison Operators

The usual comparison operators are available, showalihe 9-1

Table 9-1. Comparison Operators

113

Chapter 9. Functions and Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<> o0rl= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement !=
and <> operators that do different things.

Comparison operators are available for all data types where this makes sense. All comparison oper-
ators are binary operators that return values of typgean ; expressions lika < 2 < 3 are not
valid (because there is nooperator to compare a Boolean value widh

In addition to the comparison operators, the speRfIWEENONSstruct is available.
a BETWEENx ANDYy
is equivalent to
a >= x ANDa <=y
Similarly,
a NOT BETWEEM ANDy
is equivalent to
a<x ORa >y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite
the first one into the second one internally.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, constructs

expression ISNULL
expression NOTNULL

Do not write expression = NULL becauseNULL is not “equal to”NULL (The null value repre-
sents an unknown value, and it is not known whether two unknown values are equal.) This behavior
conforms to the SQL standard.

Tip: Some applications may expect that expression = NULL returns true if expression eval-
uates to the null value. It is highly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration

114

Chapter 9. Functions and Operators

variable is available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.
This was the default behavior in PostgreSQL releases 6.5 through 7.1.

The ordinary comparison operators yield null (signifying “unknown”) when either input is null. An-
other way to do comparisons is with ti& DISTINCT FROM construct:

expression IS DISTINCT FROM expression

For non-null inputs this is the same as the operator. However, when both inputs are null it will
return false, and when just one input is null it will return true. Thus it effectively acts as though null
were a normal data value, rather than “unknown”.

Boolean values can also be tested using the constructs

expression IS TRUE
expression IS NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null
input is treated as the logical value “unknown”. Notice tlg®atUNKNOWMNdIS NOT UNKNOWware
effectively the same a$ NULL andIS NOT NULL respectively, except that the input expression
must be of Boolean type.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without common math-
ematical conventions for all possible permutations (e.g., date/time types) we describe the actual be-
havior in subsequent sections.

Table 9-2shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result

+ addition 2 + 3 5

- subtraction 2 -3 -1

* multiplication 2 * 3 6

/ division (integer divisiod / 2 2
truncates results)

% modulo (remainder) 5 % 4 1

A exponentiation 2.0 ~ 3.0 3

|/ square root |/ 25.0 5

I/ cube root ||/ 27.0 3

! factorial 5 | 120

I factorial (prefix Il 5 120
operator)

@ absolute value @ -5.0 5

115

Chapter 9. Functions and Operators

Operator Description Example Result
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric
data types. The bitwise operators are also available for the bit stringliitpeendbit varying , as
shown inTable 9-10

Table 9-3shows the available mathematical functions. In the talpléndicatesdouble precision

Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;
accuracy and behavior in boundary cases may therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function Return Type Description Example Result
abs () (same ax) absolute value [abs(-17.4) 17.4
cbrt (dp) dp cube root cbrt(27.0) 3
ceil (dp or (same as input) [smallest integer nadeil(-42.8) -42
numeric) less than argument
ceiling (dp or (same as input) |smallest integer nateiling(-95.3) -95
numeric) less than argument
(alias forceil)
degrees (dp) dp radians to degreesdegrees(0.5) 28.6478897565412
exp(dp or (same as input) |exponential exp(1.0) 2.71828182845905
numeric)
floor (dp or (same as input) |largest integer not|floor(-42.8) -43
numeric) greater than
argument
In (dp or (same as input) |natural logarithm [In(2.0) 0.693147180559944
numeric)
log (dp or (same as input) |base 10 logarithm|log(100.0) 2
numeric)
log (b numeric , xjnumeric logarithm to basé og(2.0, 64.0) 6.0000000000
numeric)
mod(y, x) (same as argumemtemainder ofy//x |mod(9,4) 1
types)
pi () dp “m” constant pi() 3.14159265358979
power (a dp, b (dp a raised to the power(9.0, 729
dp) power ofb 3.0)

116

Chapter 9. Functions and Operators

Function Return Type Description Example Result

power (a numeric , numeric a raised to the power(9.0, 729

b numeric) power ofb 3.0)

radians (dp) dp degrees to radiansradians(45.0) 0.785398163397444
random () dp random value random()

between 0.0 and 1.0

round (dp or (same as input) [round to nearest [round(42.4) 42
numeric) integer
round (v numeric , numeric round tos decimal round(42.4382, 42.44
s integer) places 2)
setseed (dp) integer set seed for setseed(0.54823) (1177314959
subsequent
random() calls
sign (dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1, 0, +1)
sqrt (dp or (same as input) [square root sqrt(2.0) 1.4142135623731
numeric)
trunc (dp or (same as input) [truncate toward [trunc(42.8) 42
numeric) zero
trunc (v numeric , numeric truncate tos trunc(42.4382, 42.43
s integer) decimal places 2)
width_bucket (op |integer return the bucket tovidth_bucket(5.35, 3
numeric , bl which operand 0.024, 10.06,
numeric , b2 would be assigneds)
numeric , count in an equidepth
integer) histogram with

count buckets, an
upper bound ob1,

and a lower bound
of b2

Finally, Table 9-4shows the available trigonometric functions. All trigonometric functions take argu-
ments and return values of tygeuble precision

Table 9-4. Trigonometric Functions

Function Description

acos (X) inverse cosine

asin (X) inverse sine

atan (X) inverse tangent
atan2 (X, Yy) inverse tangent of/ y
cos (X) cosine

cot (X) cotangent

sin (X) sine

117

Chapter 9. Functions and Operators

Function Description
tan (x) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of all the typesaracter , character varying , andtext . Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of potential
effects of the automatic padding when using theracter type. Generally, the functions described

here also work on data of non-string types by converting that data to a string representation first. Some
functions also exist natively for the bit-string types.

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details afahbie 9-5 These functions are also implemented
using the regular syntax for function invocation. (Sable 9-6)

Table 9-5. SQL String Functions and Operators

Function Return Type Description Example Result
string || string text String 'Post’ || PostgreSQL
concatenation 'greSQL’
bit_length (string [integer Number of bits in |pit_length(jose’) 32
string
char_length (string injeger Number of char_length(jose’) |4
or characters in string
character_length string)
convert (string text Change encodinglconvert('PostgreSQLPostgreSQL’ in
using using specified |using Unicode (UTF-8)
conversion_name) conversion hame. iso_8859 1 to_utf_#@ncoding

Conversions can ke
defined byCREATE
CONVERSIONAIso
there are some
pre-defined
conversion names,
SeeTable 9-7for
available
conversion names,

lower (string) text Convert string to lower('TOM’) tom
lower case

octet_length (stringntéger Number of bytes irpctet_length(’jose’) 4
string

overlay (string text Replace substringoverlay('Txxxxas’ [Thomas

placing string placing 'hom’

from integer from 2 for 4)

[for integer 1])

118

Chapter 9. Functions and Operators

Function Return Type Description Example Result
position ('substring [integer Location of position('om’ 3
in string) specified substringn 'Thomas’)
substring (string ftext Extract substring substring('Thomas’ hom
[from integer] from 2 for 3)
[for integer])
substring (string ftext Extract substring substring('Thomas’ mas
from pattern) matching POSIX from '..$')
regular expression
substring (string ftext Extract substring [substring('Thomas’ joma
from pattern matching SQL from
for escape) regular expression%#"'o_a#"_’
for '#)
trim ([leading text Remove the trim(both "X’ Tom
| trailing | longest string from *XxTomxx’)
both] containing only the
[characters | characters (a
from string) space by default)
from the
start/end/both ends
of thestring
upper (string) text Convert string to upper(tom’) TOM
uppercase

Additional string manipulation functions are available and are listetalile 9-6 Some of them are
used internally to implement the SQL-standard string functions list@dlihe 9-5

Table 9-6. Other String Functions

Function Return Type Description Example Result
ascii (text) integer ASCII code of the [ascii(’x’) 120
first character of the
argument
btrim (string text Remove the btrim(’xyxtrimyyx’, {trim
text [, longest string 'Xy")
characters consisting only of
text) characters in
characters (a
space by default)
from the start and
end ofstring
chr (integer) text Character with thechr(65) A
given ASCII code

119

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

convert (string
text ,

[src_encoding
name,]
dest_encoding
name)

text

Convert string to
dest_encoding

The original
encoding is
specified by
src_encoding . If
src_encoding IS
omitted, database
encoding is
assumed.

convert(
‘text_in_unicode’,
'UNICODE,
'LATINT)

text_in_unicode
represented in 1ISO
8859-1 encoding

decode (string

text , type text

)

bytea

Decode binary da
from string
previously encode
with encode .
Parameter type is
same as irncode .

tiecode('MTIZAAE=’
'base64’)
d

123\000\001

encode (data
bytea , type
text)

text

Encode binary dakncode(

to ASCll-only
representation.
Supported types
are:base64 , hex,
escape .

'123\\000\001",
'base64’)

MTIzZAAE=

initcap (text)

text

Convert the first

initcap(’hi

letter of each wordTHOMAS?)

to uppercase and
the rest to
lowercase. Words
are sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

Hi Thomas

length (string
text)

integer

Number of
characters in
string

length(’jose’)

Ipad (string
text , length
integer [, fill

text])

text

Fill up thestring
to lengthlength

by prepending the
charactersill (a
space by default).
thestring is
already longer thal
length thenitis
truncated (on the

right).

Ipad(’hi’, 5,
'Xy')

If

=

xyxhi

120

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

Itrim (string
text |,
characters
text 1)

text

Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start of
string

Itrim('zzzytrim’,
lxyzl)

trim

md5(string text

)

text

Calculates the
MD5 hash of
string , returning
the result in
hexadecimal.

md5('abc’)

900150983cd24fb0
06963f7d28e17f72

pg_client_encoding

ngne

Current client
encoding name

pg_client_encoding(BQL_ASCII

quote_ident
text)

('string

text

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or woul
be case-folded).
Embedded quotes
are properly
doubled.

quote_ident('Foo
bar’)

"Foo bar"

quote_literal
text)

(striigxt

Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string. Embedded
quotes and
backslashes are
properly doubled.

quote_literal(
'OV'Reilly’)

'OReilly’

repeat (string
text ,
integer)

number

text

Repeastring the
specifiechumber
of times

repeat('Pg’,
4)

PgPgPgPg

replace (string
text , from text

to text)

text

Replace all
occurrences in
string of
substringfrom
with substringo .

replace(
'abcdefabcdef’,
’Cd’, 1xxx)

abXXefabXXef

121

Chapter 9. Functions and Operators

Function Return Type Description Example Result
rpad (string text Fill up thestring rpad(hi’, 5, hixyx
text , length to lengthlength 'Xy")
integer [, fill by appending the
text) charactersill (a

space by default). If

thestring is

already longer thap

length thenitis

truncated.
rtrim (string text Remove the rtrim(trimxxxx’, trim
text [, longest string 'X")
characters containing only
text]) characters from

characters (a

space by default)

from the end of

string
split_part (string ftext Splitstring on split_part(def
text , delimiter delimiter ~and [abc~@-~def~@-~ghil,
text , field return the given [~@~', 2)
integer) field (counting from

one)
strpos (string , ftext Location of strpos(high’, 2
substring) specified substringig’)

(same as

position(substring

in string), but

note the reversed

argument order)
substr (string , ftext Extract substring [substr(’alphabet’, [ph
from [, count]) (same as 3, 2)

substring(string

from from for

count))
to_ascii (text [, text Converttext to to_ascii(Karel’) Karel
encoding]) ASCII from another

encoding
to_hex (number text Convertnumber to to_hex(2147483647)rfffffff
integer or its equivalent
bigint) hexadecimal

representation
translate (string [text Any character in franslate('12345', |a23x5
text , from text string that '14', ax’)
to text) matches a character

in thefrom setis
replaced by the
corresponding
character in théo
set.

122

Chapter 9. Functions and Operators

Function Return Type Description Example Result
Notes:a. Theto_ascii function supports conversion frobnATINL , LATIN2 , LATIN9 , andWIN1250 encodings or

Table 9-7. Built-in Conversions

Conversion Name a Source Encoding Destination Encoding
ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utf 8 SQL_ASCII UNICODE
big5_to_euc_tw BIG5 EUC_TW
big5_to_mic BIG5 MULE_INTERNAL
big5_to_utf 8 BIG5 UNICODE
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf 8 EUC_CN UNICODE
euc_jp_to_mic EUC_JP MULE_INTERNAL
euc_jp_to_sjis EUC_JP SJIS
euc_jp_to_utf 8 EUC_JP UNICODE
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf_8 EUC_KR UNICODE
euc_tw_to_big5 EUC_TW BIG5
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utf 8 EUC_TW UNICODE
gb18030_to_utf 8 GB18030 UNICODE
gbk_to_utf 8 GBK UNICODE
iso_8859 10 to_utf 8 LATING UNICODE
iso_8859 13 to_utf 8 LATIN? UNICODE
iso_8859 14 to_utf 8 LATINS UNICODE
iso_8859 15 to_utf 8 LATING UNICODE
iso_8859 16 to_utf 8 LATIN10 UNICODE
iso_8859 1 to_mic LATIN1 MULE_INTERNAL
iso_8859 1 to_utf 8 LATIN1 UNICODE
iso_8859 2 to_mic LATIN2 MULE_INTERNAL
iso_8859 2 to_utf 8 LATIN2 UNICODE
iso_8859 2 to_windows_1250 [LATIN2 WIN1250
iso_8859 3 to_mic LATIN3 MULE_INTERNAL
iso_8859 3 to_utf 8 LATIN3 UNICODE
iso_8859 4 to_mic LATIN4 MULE_INTERNAL
iso_8859 4 to utf 8 LATIN4 UNICODE
iso_8859_5_ to_koi8_r ISO_8859_5 KOI8

iso_8859 5 to_mic ISO_8859 5 MULE_INTERNAL
iso_8859 5 to_utf 8 ISO_8859 5 UNICODE
iso_8859 5 to windows_1251 |[ISO_8859 5 WIN

123

Chapter 9. Functions and Operators

Conversion Name a

Source Encoding

Destination Encoding

iso_8859 5 to_windows_866 ISO_8859 5 ALT
iso_8859_6_to_utf 8 ISO_8859_6 UNICODE
iso_8859 7 to_utf 8 ISO_8859 7 UNICODE
iso_8859 8 to_utf 8 ISO_8859 8 UNICODE
iso_8859 9 to_utf 8 LATINS UNICODE
johab_to_utf 8 JOHAB UNICODE
koi8_r_to_iso_8859_5 KOI8 ISO_8859_5
koi8_r_to_mic KoI8 MULE_INTERNAL
koi8 r to utf 8 KOI8 UNICODE
koi8 r to windows_1251 KOI8 WIN
koi8_r_to_windows_866 KOI8 ALT
mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_big5 MULE_INTERNAL BIG5
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859 1 MULE_INTERNAL LATIN1
mic_to_iso_8859_2 MULE_INTERNAL LATIN2
mic_to_iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859_4 MULE_INTERNAL LATINA
mic_to_iso_8859 5 MULE_INTERNAL ISO_8859 5
mic_to_koi8_r MULE_INTERNAL KOI8
mic_to_sjis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN
mic_to_windows_866 MULE_INTERNAL ALT
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utf 8 SJIS UNICODE
tcvn_to_utf 8 TCVN UNICODE
uhc_to_utf 8 UHC UNICODE
utf_8 to_ascii UNICODE SQL_ASCII
utf_8 to_big5 UNICODE BIG5

utf 8 to_euc_cn UNICODE EUC_CN
utf_8 to_euc_jp UNICODE EUC_JP
utf_8 to_euc_kr UNICODE EUC_KR
utf_8 to_euc_tw UNICODE EUC_TW
utf_8_to_gh18030 UNICODE GB18030
utf_8 to_gbk UNICODE GBK

utf 8 to_iso_8859 1 UNICODE LATIN1

124

Chapter 9. Functions and Operators

Conversion Name a

Source Encoding

Destination Encoding

utf_8 to_iso_8859 10 UNICODE LATING
utf_8_to_iso_8859_13 UNICODE LATIN7
utf_8_to_iso_8859 14 UNICODE LATINS
utf_8_to_iso_8859 15 UNICODE LATIN9
utf_8_to_iso_8859_16 UNICODE LATIN1O
utf_8_to_iso_8859_2 UNICODE LATIN2

utf 8 to_iso_8859 3 UNICODE LATIN3
utf_8_to_iso_8859_4 UNICODE LATINA
utf_8_to_iso_8859 5 UNICODE ISO_8859_5
utf_8_to_iso_8859 6 UNICODE ISO_8859_6
utf_8_to_iso_8859 7 UNICODE ISO_8859_7
utf_8_to_iso_8859_8 UNICODE ISO_8859_8
utf 8 to_iso_8859 9 UNICODE LATINS
utf_8 to_johab UNICODE JOHAB
utf_8_to_koi8_r UNICODE KOI8
utf_8_to_sjis UNICODE SJIS

utf 8 to_tcvn UNICODE TCVN
utf_8_to_uhc UNICODE UHC

utf 8 to_windows_1250 UNICODE WIN1250
utf_8 to_windows_1251 UNICODE WIN
utf_8_to_windows_1256 UNICODE WIN1256

utf 8 to_windows_866 UNICODE ALT

utf 8 to_windows_874 UNICODE WIN874
windows_1250_to_iso_8859_2 |WIN1250 LATIN2
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf 8 WIN1250 UNICODE
windows_1251_to_iso_8859 5 |WIN ISO_8859_5
windows_1251 to koi8 r WIN KOI8
windows_1251 to_mic WIN MULE_INTERNAL
windows_1251_to_utf 8 WIN UNICODE
windows_1251_to_windows_866 WIN ALT
windows_1256_to_utf 8 WIN1256 UNICODE
windows_866_to_iso_8859 5 |ALT ISO_8859 5
windows_866_to_koi8 r ALT KOI8
windows_866_to_mic ALT MULE_INTERNAL
windows_866_to_utf 8 ALT UNICODE
windows_866_to_windows_1251 |ALT WIN

125

Chapter 9. Functions and Operators

Conversion Name a

Source Encoding

Destination Encoding

windows_874_to_utf 8

WIN874

UNICODE

Notes:a. The conversion names follow a standard naming scheme: The official name of the source encodint

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating valueskytégpe

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details afabife 9-8 Some functions are also implemented

using the regular syntax for function invocation. (Sable 9-9)

Table 9-8. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string || string bytea String "\WPost'::bytea \Post’'gres\000

concatenation I

'\\047gres\\000"::bytea

octet_length (stringntéger Number of bytes irpctet_length(5

binary string 'jo\\000se’::bytea)
position (' substring [integer Location of position("\000om'::bigtea
in string) specified substringn

'Th\\00Oomas’::bytea)

substring (string |oytea Extract substring isubstring('Th\\000onm800iytea
[from integer] from 2 for 3)
[for integer 1)
trim ([both] bytea Remove the trim(’\\000"::bytea [Tom
bytes from longest string from
string) containing only theé\\000Tom\\000'::bytea)

bytes inbytes

from the start and

end ofstring
get_byte (string |integer Extract byte from get_byte('Th\\000omH39:bytea,
offset) string. 4)
set_byte (string Joytea Set byte in string. [set_byte(' Th\\000onjak\0be@as
offset 4, 64)
newvalue)
get_bit (string , [integer Extract bit from get_bit(Th\\00Oomag:::bytea,
offset) string. 45)
set_bit (string , joytea Set bitin string. |set_bit(Th\\000omaFhiyeeamAs
offset 45, 0)
newvalue)

Additional binary string manipulation functions are available and are listéthble 9-9 Some of
them are used internally to implement the SQL-standard string functions lisTedbie 9-8

126

Chapter 9. Functions and Operators

Table 9-9. Other Binary String Functions

Function Return Type Description Example Result
btrim (string bytea Remove the btrim("\000trim\\00Olttioytea,
bytea , bytes longest string "\000"::bytea)

bytea) consisting only of

bytes inbytes
from the start and
end ofstring

length (string) [integer Length of binary |length(’jo\\000se’::bysea)

string
decode (string bytea Decode binary [decode(’123\\000458'23\000456
text , type text) string fromstring [escape’)

previously encoded

with encode .

Parameter type is
same as irncode .

encode (string text Encode binary lencode(’123\\00045A'28\a68456
bytea , type string to 'escape’)
text) ASCII-only
representation.
Supported types
are:base64 , hex,
escape .

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is
values of the typebit andbit varying . Aside from the usual comparison operators, the operators
shown inTable 9-10can be used. Bit string operands&{ , and# must be of equal length. When bit
shifting, the original length of the string is preserved, as shown in the examples.

Table 9-10. Bit String Operators

Operator Description Example Result

Il concatenation B'10001' || B'011’ 10001011

& bitwise AND B'10001" & 00001
B'01101’

| bitwise OR B'10001" | 11101
B'01101

bitwise XOR B'10001" # 11100
B'01101’

~ bitwise NOT ~ B’10001’ 01110

<< bitwise shift left B'10001" << 3 01000

>> bitwise shift right B'10001" >> 2 00100

The following SQL-standard functions work on bit strings as well as character strangsi ,

127

Chapter 9. Functions and Operators

bit_length , octet_length , position , substring

In addition, it is possible to cast integral values to and from tyipe Some examples:

44::bit(10) 0000101100
44::bit(3) 100

cast(-44 as bit(12)) 111111010100
'1110’::bit(4)::integer 14

Note that casting to just “bit” means castingoitfl) , and so it will deliver only the least significant
bit of the integer.

Note: Prior to PostgreSQL 8.0, casting an integer to bit(n) would copy the leftmost n bits of the
integer, whereas now it copies the rightmost n bits. Also, casting an integer to a bit string width
wider than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQL LIKE operator, the more receBtMILAR TO operator (added in SQL:1999), and POSIX-style
regular expressions. Additionally, a pattern matching funcsabstring , is available, using either
SIMILAR TO-style or POSIX-style regular expressions.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Everypattern defines a set of strings. TI&E expression returns true if tls#ring is contained
in the set of strings represented pgttern . (As expected, th&8lOT LIKE expression returns false
if LIKE returns true, and vice versa. An equivalent expressidiois (string LIKE pattern).)

If pattern does not contain percent signs or underscore, then the pattern only represents the string
itself; in that caseLIKE acts like the equals operator. An underscorgif pattern stands for
(matches) any single character; a percent sigmatches any string of zero or more characters.

Some examples:

'abc’ LIKE ’'abc’ true
‘abc’ LIKE 'a%’ true
‘abc’ LIKE '_ b’ true
'abc’ LIKE 'c¢’ false

LIKE pattern matches always cover the entire string. To match a sequence anywhere within a string,
the pattern must therefore start and end with a percent sign.

128

Chapter 9. Functions and Operators

To match a literal underscore or percent sign without matching other characters, the respective char-
acter inpattern must be preceded by the escape character. The default escape character is the
backslash but a different one may be selected by using$l@PEclause. To match the escape char-
acter itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in an SQL statement. Thus, writing a pattern
that actually matches a literal backslash means writing four backslashes in the statement. You can
avoid this by selecting a different escape character @8BAPE then a backslash is not special to

LIKE anymore. (But it is still special to the string literal parser, so you still need two of them.)

It's also possible to select no escape character by wriE BGAPE " This effectively disables the
escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signs in the pattern.

The key wordILIKE can be used instead ofKE to make the match case-insensitive according to
the active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator-~ is equivalent toLIKE , and~~* corresponds toLIKE . There are als¢~~ and
I~~* operators that represeNOT LIKE andNOT ILIKE , respectively. All of these operators are
PostgreSQL-specific.

9.7.2. SIMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern = [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. Itis much likeLIKE , except that it interprets the pattern using the SQL standard’s definition of
aregular expression. SQL regular expressions are a curious cross betearotation and common
regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression practice, wherein the pattern may match any part of the string.
Also like LIKE , SIMILAR TO uses_and%as wildcard characters denoting any single character and
any string, respectively (these are comparableaod.* in POSIX regular expressions).

In addition to these facilities borrowed fromKE , SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

- | denotes alternation (either of two alternatives).

- * denotes repetition of the previous item zero or more times.

- + denotes repetition of the previous item one or more times.

- Parenthese§ may be used to group items into a single logical item.

- A bracket expressiop..] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition @nd{...}) are not provided, though they exist in POSIX. Also, the
dot (.) is not a metacharacter.

As with LIKE , a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified \EBCAPE

Some examples:

‘abc’ SIMILAR TO ’'abc’ true

129

Chapter 9. Functions and Operators

‘abc’ SIMILAR TO '@ false
'abc’ SIMILAR TO '%(b|d)%’ true
‘abc’ SIMILAR TO ’(b|c)%’ false

The substring function with three parameterssubstring(string from pattern for
escape-character), provides extraction of a substring that matches an SQL regular expression
pattern. As withSIMILAR TO, the specified pattern must match to the entire data string, else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by a double)qiddte (

text matching the portion of the pattern between these markers is returned.

Some examples:

substring('foobar’ from '%#"o_b#"%’ for '#) oob
substring('foobar’ from '#'o_b#"'%’ for '#’) NULL

9.7.3. POSIX Regular Expressions

Table 9-11lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression, caé@mas’ ~ '.*thomas.”
sensitive

~* Matches regular expression, cag@mas’ ~* '*Thomas.*
insensitive

I~ Does not match regular 'thomas’ !~ '*Thomas.*
expression, case sensitive

1~* Does not match regular 'thomas’ !~* ’*vadim.*
expression, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching thakehand
SIMILAR TO operators. Many Unix tools such egrep , sed, orawk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular sej. A string is said to match a regular expression if it is a member of the regular set described
by the regular expression. As withKE , pattern characters match string characters exactly unless
they are special characters in the regular expression language — but regular expressions use different
special characters thankE does. UnlikeLIKE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

‘abc’ ~ 'abc’ true
‘abc’ ~ na’ true
‘abc’ ~ '(b|d) true
‘abc’ ~ "b|c) false

130

Chapter 9. Functions and Operators

Thesubstring function with two parametersubstring(sting from pattern), provides ex-

traction of a substring that matches a POSIX regular expression pattern. It returns null if there is no
match, otherwise the portion of the text that matched the pattern. But if the pattern contains any paren-
theses, the portion of the text that matched the first parenthesized subexpression (the one whose left
parenthesis comes first) is returned. You can put parentheses around the whole expression if you want
to use parentheses within it without triggering this exception. If you need parentheses in the pattern
before the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring('foobar’ from ’0.b’) oob
substring('foobar’ from 'o(.)b’) o]

PostgreSQL'’s regular expressions are implemented using a package written by Henry Spencer. Much
of the description of regular expressions below is copied verbatim from his manual entry.

9.7.3.1. Regular Expression Details

Regular expressions (REs), as defined in POSIX 1003.2, come in two fextesidedREs or EREs
(roughly those okgrep), andbasicREs or BREs (roughly those efl). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used anyway due to their availability in programming languages such as Perl and Tcl. REs
using these non-POSIX extensions are callddancedrEs or AREs in this documentation. AREs

are almost an exact superset of EREs, but BREs have several notational incompatibilities (as well as
being much more limited). We first describe the ARE and ERE forms, noting features that apply only
to AREs, and then describe how BREs differ.

Note: The form of regular expressions accepted by PostgreSQL can be chosen by setting the
regex_flavor run-time parameter. The usual setting is advanced , but one might choose extended
for maximum backwards compatibility with pre-7.4 releases of PostgreSQL.

A regular expression is defined as one or mior@ches separated by . It matches anything that
matches one of the branches.

A branch is zero or morgquantified atom®r constraints concatenated. It matches a match for the
first, followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is aatompossibly followed by a singlquantifier Without a quantifier, it matches

a match for the atom. With a quantifier, it can match some number of matches of the at@tonAn
can be any of the possibilities shownTable 9-12 The possible quantifiers and their meanings are
shown inTable 9-13

A constraintmatches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it may not be followed by a quantifier. The simple
constraints are shown ifable 9-14 some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom Description

131

Chapter 9. Functions and Operators

Atom

Description

(re)

(wherere is any regular expression) matches
match forre , with the match noted for possible
reporting

(?: re)

(a “non-capturing” set of parentheses) (AREs
only)

matches any single character

[chars]

abracket expressigmmatching any one of the
chars (seeSection 9.7.3.2or more detail)

\k

(wherek is a non-alphanumeric character)
matches that character taken as an ordinary

\c

wherec is alphanumeric (possibly followed by
other characters) is ascapeseeSection 9.7.3.3
(AREs only; in EREs and BREs, this match®s

matches the left-brace charactemhen followed
by a digit, it is the beginning of hound (see
below)

wherex is a single character with no other
significance, matches that character

An RE may not end with .

Note: Remember that the backslash (\) already has a special meaning in PostgreSQL string
literals. To write a pattern constant that contains a backslash, you must write two backslashes in

the statement.

Table 9-13. Regular Expression Quantifiers

=

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{m a sequence of exactipmatches of the atom

{m} a sequence ahor more matches of the atom

{mn} a sequence ahthroughn (inclusive) matches @
the atommmay not exceed

*? non-greedy version of

+? non-greedy version of

?2? non-greedy version of

{m? non-greedy version dfn}

{m}? non-greedy version dfm}

{mn}? non-greedy version dfm n}

132

character, e.g\ matches a backslash characte

when followed by a character other than a digjt,

a

as above, but the match is not noted for reporting

=

Chapter 9. Functions and Operators
The forms usind ... } are known asounds The numbersnandn within a bound are unsigned
decimal integers with permissible values from 0 to 255 inclusive.

Non-greedyquantifiers (available in AREs only) match the same possibilities as their correspond-
ing normal @reedy counterparts, but prefer the smallest number rather than the largest number of
matches. SeBection 9.7.3.50r more detail.

Note: A quantifier cannot immediately follow another quantifier. A quantifier cannot begin an
expression or subexpression or follow ~ or | .

Table 9-14. Regular Expression Constraints

Constraint Description

N matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookaheadhatches at any point where|a
substring matchinge begins (AREs only)

(?! re) negative lookaheathatches at any point where
no substring matchinge begins (AREs only)

Lookahead constraints may not contdiack referencegseeSection 9.7.3.8 and all parentheses
within them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expressiois a list of characters enclosed[in. It normally matches any single character
from the list (but see below). If the list begins with it matches any single characteot from the
rest of the list. If two characters in the list are separated [lthis is shorthand for the full range of
characters between those two (inclusive) in the collating sequencg-e]g. in ASCII matches any
decimal digit. It is illegal for two ranges to share an endpoint,ge . Ranges are very collating-
sequence-dependent, so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (following a possib)e To include a

literal - , make it the first or last character, or the second endpoint of a range. To use a literal

the first endpoint of a range, enclose it[in and.] to make it a collating element (see below).
With the exception of these characters, some combinations ugsee next paragraphs), and escapes
(AREs only), all other special characters lose their special significance within a bracket expression.
In particular,\ is not special when following ERE or BRE rules, though it is special (as introducing
an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that col-
lates as if it were a single character, or a collating-sequence name for either) enclpseghith.]

stands for the sequence of characters of that collating element. The sequence is a single element of
the bracket expression’s list. A bracket expression containing a multiple-character collating element
can thus match more than one character, e.qg. if the collating sequence inacthdesllating element,

then the RHE[.ch.]]*c matches the first five charactersabthcc .

Note: PostgreSQL currently has no multi-character collating elements. This information describes
possible future behavior.

133

Chapter 9. Functions and Operators

Within a bracket expression, a collating element encloséd iand=] is an equivalence class, stand-

ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If
there are no other equivalent collating elements, the treatment is as if the enclosing delimitérs were
and.] .) For example, ib and” are the members of an equivalence class, fres]] |, [=*=]] ,
and[o”] are all synonymous. An equivalence class may not be an endpoint of a range.

Within a bracket expression, the name of a character class enclogedaimd:] stands for the list

of all characters belonging to that class. Standard character class namesuatie:alpha , blank |,

cntrl , digit , graph ,lower ,print ,punct ,space ,upper ,xdigit .These stand forthe character
classes defined in ctype. A locale may provide others. A character class may not be used as an endpoint
of arange.

There are two special cases of bracket expressions: the bracket exprfissiaris and[: >:]]

are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word characters that is neither preceded nor followed by word characters.
A word character is aalnum character (as defined by ctype) or an underscore. This is an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software
intended to be portable to other systems. The constraint escapes described below are usually preferable
(they are no more standard, but are certainly easier to type).

9.7.3.3. Regular Expression Escapes

Escapesare special sequences beginning wittiollowed by an alphanumeric character. Escapes
come in several varieties: character entry, class shorthands, constraint escapes, and back references.
A\ followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. In
ERES, there are no escapes: outside a bracket expressidoll@aved by an alphanumeric character

merely stands for that character as an ordinary character, and inside a bracket expreissam,

ordinary character. (The latter is the one actual incompatibility between EREs and ARES.)

Character-entry escapexist to make it easier to specify non-printing and otherwise inconvenient
characters in REs. They are showrTable 9-15

Class-shorthand escapesovide shorthands for certain commonly-used character classes. They are
shown inTable 9-16

A constraint escapés a constraint, matching the empty string if specific conditions are met, written
as an escape. They are showTable 9-17

A back referencé\ n) matches the same string matched by the previous parenthesized subexpression
specified by the number (seeTable 9-18. For example([bc])\1 matchesbb or cc but notbc

or cb. The subexpression must entirely precede the back reference in the RE. Subexpressions are
numbered in the order of their leading parentheses. Non-capturing parentheses do not define subex-
pressions.

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern
as an SQL string constant. For example:

123 ~ 'M\d{3} true

Table 9-15. Regular Expression Character-Entry Escapes

Escape Description

134

Chapter 9. Functions and Operators

Uue

)

|

S

is

Hexadecimal digits are-9, a-f , andA-F. Octal digits are-7.

The character-entry escapes are always taken as ordinary characters. For agampsd, in ASCII,
but\135 does not terminate a bracket expression.

Table 9-16. Regular Expression Class-Shorthand Escapes

Escape Description

\d [:digit:]]

\s [[:space:]]

\w [[:alnum:]_] (note underscore is included)
\D [M[:digit:]]

\S [“[:space:]]

135

Escape Description

\a alert (bell) character, asin C

\b backspace, asin C

\B synonym fon to help reduce the need for
backslash doubling

\c X (whereX is any character) the character whos
low-order 5 bits are the same as thos&opéand
whose other bits are all zero

\e the character whose collating-sequence name is
ESG or failing that, the character with octal val
033

\f form feed, asin C

\n newline, asin C

\r carriage return, asin C

\t horizontal tab, as in C

\u Wxyz (wherewxyz is exactly four hexadecimal digits
the Unicode character+wxyz in the local byte
ordering

\U stuvwxyz (wherestuvwxyz is exactly eight hexadecima
digits) reserved for a somewhat-hypothetical
Unicode extension to 32 bits

\v vertical tab, asin C

\x hhh (wherehhh is any sequence of hexadecimal
digits) the character whose hexadecimal value
0xhhh (a single character no matter how many
hexadecimal digits are used)

\0 the character whose valueds

\ Xy (wherexy is exactly two octal digits, and is not a
back referencethe character whose octal value
oxy

\ Xyz (wherexyz is exactly three octal digits, and is
not aback referencethe character whose octal
value isOxyz

Chapter 9. Functions and Operators

Escape Description
\W [*:alnum:]_] (note underscore is included

Within bracket expressiong] , \s , and\w lose their outer brackets, akd, \S , and\w are illegal.
(So, for examplefa-c\d] is equivalent tda-c[:digit:]] . Also, [a-c\D] , which is equivalent
to [a-c[:digit:]] ,isillegal.)

Table 9-17. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.%or how this differs fronm)

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning
or end of a word

\Z matches only at the end of the string (S=tion
9.7.3.5for how this differs front)

A word is defined as in the specification [ff <:]] and[: >:]] above. Constraint escapes are
illegal within bracket expressions.

Table 9-18. Regular Expression Back References

Escape Description

\m (wheremis a nonzero digit) a back reference tp
themith subexpression

\ mnn (wheremis a nonzero digit, andn is some morg

digits, and the decimal valuannis not greater
than the number of closing capturing parentheses
seen so far) a back reference to thanth
subexpression

Note: There is an inherent historical ambiguity between octal character-entry escapes and back
references, which is resolved by heuristics, as hinted at above. A leading zero always indicates
an octal escape. A single non-zero digit, not followed by another digit, is always taken as a back
reference. A multi-digit sequence not starting with a zero is taken as a back reference if it comes
after a suitable subexpression (i.e. the number is in the legal range for a back reference), and
otherwise is taken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syn-
tactic facilities available.

Normally the flavor of RE being used is determineddxyex_flavor . However, this can be overrid-
den by adirector prefix. If an RE begins with**: | the rest of the RE is taken as an ARE regardless

136

Chapter 9. Functions and Operators

of regex_flavor . If an RE begins with**= | the rest of the RE is taken to be a literal string, with
all characters considered ordinary characters.

An ARE may begin withembedded options sequencé? xyz) (wherexyz is one or more alpha-

betic characters) specifies options affecting the rest of the RE. These options override any previously
determined options (including both the RE flavor and case sensitivity). The available option letters
are shown inrable 9-19

Table 9-19. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)
e rest of RE is an ERE

i case-insensitive matching (s8ection 9.7.3.p
(overrides operator type)

m historical synonym fon

n newline-sensitive matching (s&ection 9.7.3.p

P partial newline-sensitive matching (s8ection
9.7.3.5

q rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”)
matching (se&ection 9.7.3.p

X expanded syntax (see below)

Embedded options take effect at théerminating the sequence. They may appear only at the start of
an ARE (after the**: director if any).

In addition to the usuatight) RE syntax, in which all characters are significant, there iexgranded
syntax, available by specifying the embeddexption. In the expanded syntax, white-space characters

in the RE are ignored, as are all characters betwegarad the following newline (or the end of the

RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

- awhite-space character pipreceded by is retained
- white space oft within a bracket expression is retained
- white space and comments cannot appear within multi-character symbols, gach as

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequ@wctit) (wherettt is any text not
containing g) is a comment, completely ignored. Again, this is not allowed between the characters of
multi-character symbols, like: . Such comments are more a historical artifact than a useful facility,
and their use is deprecated; use the expanded syntax instead.

137

Chapter 9. Functions and Operators

Noneof these metasyntax extensions is available if an inittal director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE isgreedyor non-greedy

Whether an RE is greedy or not is determined by the following rules:

- Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

- Adding parentheses around an RE does not change its greediness.

« A quantified atom with a fixed-repetition quantifi€¢mg or { n}?) has the same greediness (possi-
bly none) as the atom itself.

« A quantified atom with other normal quantifiers (includipin n} with mequal ton) is greedy
(prefers longest match).

« A quantified atom with a non-greedy quantifier (includ{mg n}? with mequal ton) is non-greedy
(prefers shortest match).

« A branch — that is, an RE that has no top-leiedperator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

- An RE consisting of two or more branches connected by tbperator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done
in such a way that the branch, or whole RE, matches the longest or shortest possible sabstring

a whole Once the length of the entire match is determined, the part of it that matches any particu-
lar subexpression is determined on the basis of the greediness attribute of that subexpression, with
subexpressions starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING(XY1234Z’, "Y*([0-9K1,3})));

Result: 123
SELECT SUBSTRING('XY1234Z’, 'Y*?([0-9{1,3})");
Result: 1

In the first case, the RE as a whole is greedy bec&wude greedy. It can match beginning at thie

and it matches the longest possible string starting thereYiie3. The output is the parenthesized
part of that, or123. In the second case, the RE as a whole is non-greedy begsise non-greedy.

It can match beginning at the¢ and it matches the shortest possible string starting thereyl.erThe
subexpressiofp-9]{1,3} is greedy but it cannot change the decision as to the overall match length;
so it is forced to match just.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed to
“eat” relative to each other.

138

Chapter 9. Functions and Operators

The quantifierd1,1} and{1,1}? can be used to force greediness or non-greediness, respectively,
on a subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For examples* matches the three middle charactersabbbc ;
(week|wee)(night|knights) matches all ten characters afeeknights ; when (.*).* is
matched againstbc the parenthesized subexpression matches all three characters; an@hen

is matched againdic both the whole RE and the parenthesized subexpression match an empty
string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.gx becomegxX] . When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, g]g. becomegxX] and[*x] become$ xX]

If newline-sensitive matching is specified,and bracket expressions usifigwill never match the
newline character (so that matches will never cross newlines unless the RE explicitly arranges it) and
~and$ will match the empty string after and before a newline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escapesd\Z continue to match beginning

or end of stringonly.

If partial newline-sensitive matching is specified, this affectand bracket expressions as with
newline-sensitive matching, but noands.

Ifinverse partial newline-sensitive matching is specified, this affeetsd$ as with newline-sensitive
matching, but not and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs in-
tended to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is\tltides not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREsthesyntax of directors likewise is outside

the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them
up, and a few Perl extensions are not present. Incompatibilities of note indlyde , the lack of

special treatment for a trailing newline, the addition of complemented bracket expressions to the
things affected by newline-sensitive matching, the restrictions on parentheses and back references in
lookahead constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4
releases of PostgreSQL.:

- In AREs,\ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs,\ remains a special character witHn, so a literal within a bracket expression must
be written\\ .

While these differences are unlikely to create a problem for most applications, you can avoid them if
necessary by settinggex_flavor to extended .

139

Chapter 9. Functions and Operators

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respedts+, and? are ordinary characters and there is no equiva-
lent for their functionality. The delimiters for bounds &eand\} , with { and} by themselves ordi-
nary characters. The parentheses for nested subexpressignhsaaid) , with (and) by themselves
ordinary characterg. is an ordinary character except at the beginning of the RE or the beginning of
a parenthesized subexpressigtis an ordinary character except at the end of the RE or the end of a
parenthesized subexpression, and an ordinary character if it appears at the beginning of the RE or
the beginning of a parenthesized subexpression (after a possible leadigally, single-digit back
references are available, and and\ > are synonyms fofl: <:]] and[: >:]] respectively; no
other escapes are available.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data type$able 9-20lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

Table 9-20. Formatting Functions

Function Return Type Description Example
to_char (timestamp , fext convert time stamp to to_char(current_timestamp,
text) string 'HH12:MI:SS)
to_char (interval text convert interval to stringo_char(interval
text) '15h 2m 12s’,
'HH24:MI:SS")
to_char (int , text) fext convert integer to stringo_char(125,
'999")
to_char (double text convert real/double o _char(125.8::real,
precision , text) precision to string '999D9')
to_char (numeric , text convert numeric to string_char(-125.8,
text) '999D99S")
to_date (text , text) [date convert string to date to_date('05 Dec 2000’
'DD Mon YYYY’)
to_timestamp (text , ftimestamp with convert string to time fto_timestamp('05 Dec 2000,
text) time zone stamp ‘DD Mon YYYY’)
to_number (text , numeric convert string to numeTo_number(’lZ,454.8-’,
text) '99G999D9S’)
Warning:to_char (interval , text) is deprecated and should not be used in newly-written code. It

will be removed in the next version.

In an output template string (fes_char), there are certain patterns that are recognized and replaced
with appropriately-formatted data from the value to be formatted. Any text that is not a template
pattern is simply copied verbatim. Similarly, in an input template string (for anythingbcitar),
template patterns identify the parts of the input data string to be looked at and the values to be found
there.

140

Chapter 9. Functions and Operators

Table 9-21shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

M minute (00-59)

SS second (00-59)

MS millisecond (000-999)

us microsecond (000000-999999)
SSSS seconds past midnight (0-86399)

AMor A.M. or PMor P.M.

meridian indicator (uppercase)

amora.m. Or pmor p.m.

meridian indicator (lowercase)

Y,YYY year (4 and more digits) with comma
YYYY lyear (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

IYYY ISO year (4 and more digits)

IYY last 3 digits of ISO year

Y last 2 digits of ISO year

last digits of ISO year

BCorB.C. or ADorA.D.

era indicator (uppercase)

bc orb.c. orad ora.d.

era indicator (lowercase)

MONTH

full uppercase month name (blank-padded to 9

chars)

Month full mixed-case month name (blank-padded to
chars)

month full lowercase month name (blank-padded to 9
chars)

MON abbreviated uppercase month name (3 chars)

Mon abbreviated mixed-case month name (3 chars

mon abbreviated lowercase month name (3 chars)

MM month number (01-12)

DAY full uppercase day name (blank-padded to 9
chars)

Day full mixed-case day name (blank-padded to 9
chars)

day full lowercase day name (blank-padded to 9 ch

DY abbreviated uppercase day nhame (3 chars)

Dy abbreviated mixed-case day name (3 chars)

141

ars)

Chapter 9. Functions and Operators

Pattern Description

dy abbreviated lowercase day nhame (3 chars)

DDD day of year (001-366)

DD day of month (01-31)

D day of week (1-7; Sunday is 1)

w week of month (1-5) (The first week starts on the
first day of the month.)

WwW week number of year (1-53) (The first week starts
on the first day of the year.)

W ISO week number of year (The first Thursday of
the new year is in week 1.)

CC century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q quarter

RM month in Roman numerals (I-XII; I=January)
(uppercase)

rm month in Roman numerals (i-xii; i=January)
(lowercase)

TZ time-zone name (uppercase)

tz time-zone name (lowercase)

Certain modifiers may be applied to any template pattern to alter its behavior. For examighsth
is theMonth pattern with theeMmodifier. Table 9-22shows the modifier patterns for date/time for-
matting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example

FMprefix fill mode (suppress padding [FMMonth
blanks and zeroes)

TH suffix uppercase ordinal number suff@DTH

th suffix lowercase ordinal number suffipDth

FX prefix fixed format global option (see|FX Month DD Day
usage notes)

SP suffix spell mode (not yet DDSP
implemented)

Usage notes for date/time formatting:

« FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output

of a pattern be fixed-width.

+ to_timestamp and to_date skip multiple blank spaces in the input string if
the FX option is not used.FX must be specified as the first item in the template.
For example to_timestamp('2000 JUN’, 'YYYY MON) is correct, but
to_timestamp(’2000 JUN’, "FXYYYY MON’) returns an error, becausge timestamp
expects one space only.

142

Chapter 9. Functions and Operators

Ordinary text is allowed imo_char templates and will be output literally. You can put a substring

in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in"Hello Year "YYYY’ , theYYYYwill be replaced by the year data, but the single

in Year will not be.

If you want to have a double quote in the output you must precede it with a backslash, for exam-
ple’\'YYYY Month\\" . (Two backslashes are necessary because the backslash already has a
special meaning in a string constant.)

The YYYY conversion from string taimestamp or date has a restriction if you use a year
with more than 4 digits. You must use some non-digit character or template \aftey,
otherwise the year is always interpreted as 4 digits. For example (with the year 20000):
to_date('’200001131’, 'YYYYMMDD’) will be interpreted as a 4-digit year; instead use

a non-digit separator after the year, like_date('’20000-1131", 'YYYY-MMDD") or
to_date('’20000Nov31’, 'YYYYMonDD’)

Millisecond (M9 and microsecondJS) values in a conversion from string timestamp are used

as part of the seconds after the decimal point. For exampiienestamp('12:3', 'SS:MS’)

is not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means
for the formatSS:MS, the input values2:3 , 12:30 , and12:300 specify the same number of
milliseconds. To get three milliseconds, one must1&603 , which the conversion counts as 12

+ 0.003 = 12.003 seconds.

Here is a more complex example:to_timestamp(’15:12:02.020.001230’,
"HH:MI:SS.MS.US’) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

to_char 's day of the week humbering (see the 'D’ formatting pattern) is different from that of the
extract function.

Table 9-23shows the template patterns available for formatting numeric values.

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description

9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number0)
PL plus sign in specified position (if number 0)
SG plus/minus sign in specified position

RN roman numeral (input between 1 and 3999)
THor th ordinal number suffix

143

Chapter 9. Functions and Operators

Pattern Description
\Y shift specified number of digits (see notes)
EEEE scientific notation (not implemented yet)

Usage notes for numeric formatting:

- A sign formatted usin@G PL, or Ml is not anchored to the number; for examptechar(-12,

’'S9999') produces

-12' , butto_char(-12, 'MI9999")

implementation does not allow the useMifahead 0B, but rather requires thatprecedemi.

produces- 12' . The Oracle

« 9 results in a value with the same number of digits as theresrdf a digit is not available it
outputs a space.

- THdoes not convert values less than zero and does not convert fractional numbers.

« PL, SG andTHare PostgreSQL extensions.

.V effectively multiplies the input values b30” n, wheren is the number of digits followingy.
to_char does not support the use ¥fcombined with a decimal point. (E.g9.9v99 is not

allowed.)

Table 9-24shows some examples of the use ofthehar function.

Table 9-24.to_char

Examples

Expression

Result

to_char(current_timestamp,
'Day, DD HH12:MI:SS’)

'Tuesday , 06 05:39:18’

to_char(current_timestamp,

'FMDay, FMDD HH12:MI:SS’)

'Tuesday, 6 05:39:18

to_char(-0.1, '99.99") 10
to_char(-0.1, 'FM9.99") -1
to_char(0.1, '0.9) " 0.1
to_char(12, '9990999.9") 0012.0’
to_char(12, 'FM9990999.9’) '0012.
to_char(485, '999") ' 485’
to_char(-485, '999’) '-485’
to_char(485, '9 9 9) '4 85
to_char(1485, '9,999") ' 1,485’
to_char(1485, '9G999) " 1 485
to_char(148.5, '999.999’) ' 148.500°
to_char(148.5, 'FM999.999") '148.5'
to_char(148.5, 'FM999.990") '148.500°
to_char(148.5, '999D999’) ' 148,500’
to_char(3148.5, '9G999D999’) ' 3 148,500’
to_char(-485, '999S’) '485-’
to_char(-485, '999MI’) '485-’

144

Chapter 9. Functions and Operators

Expression Result
to_char(485, '999MI’) '485
to_char(485, 'FM999MI’) ‘485’
to_char(485, 'PL999) '+485’
to_char(485, 'SG999’) '+485’
to_char(-485, 'SG999’) '-485’
to_char(-485, '9SG99) '4-85’
to_char(-485, '999PR’) - <485>’
to_char(485, 'L999) 'DM 485
to_char(485, 'RN’) ' CDLXXXV'
to_char(485, 'FMRN’) 'CDLXXXV’

to_char(5.2, 'FMRN’) 'V’
to_char(482, '999th’") " 482nd’
to_char(485, ™Good number:"999’) '‘Good number: 485’

to_char(485.8, 'Pre: 485 Post: .800’
"'Pre:"999" Post:" .999’)

to_char(12, '99V999) " 12000’
to_char(12.4, '99V999") ' 12400’
to_char(12.45, '99V9) ' 125’

9.9. Date/Time Functions and Operators

Table 9-26shows the available functions for date/time value processing, with details appearing in
the following subsectionslable 9-25illustrates the behaviors of the basic arithmetic operaters (

*, etc.). For formatting functions, refer ®ection 9.8 You should be familiar with the background
information on date/time data types frddection 8.5

All the functions and operators described below that take ortimestamp inputs actually come
in two variants: one that takeéisne with time zone ortimestamp with time zone , and one
that takestime without time zone or timestamp without time zone . For brevity, these
variants are not shown separately. Also, thand* operators come in commutative pairs (for ex-
ample both date + integer and integer + date); we show only one of each such pair.

Table 9-25. Date/Time Operators

Operator Example Result

+ date '2001-09-28" + date '2001-10-05’
integer '7’

+ date '2001-09-28" + timestamp '2001-09-28
interval '1 hour’ 01:00°

+ date '2001-09-28' + time timestamp '2001-09-28
'03:00’ 03:00’

+ interval 'l day’ + interval '1 day 01:00’
interval '1 hour’

145

Chapter 9. Functions and Operators

'3 hours’

Operator Example Result

+ timestamp '2001-09-28 timestamp '2001-09-29
01:00" + interval '23 00:00’
hours’

+ time '01:00" + interval time '04:00°

- interval '23 hours’

interval ’-23:00’

date '2001-10-01' - date
'2001-09-28’

integer '3’

date '2001-10-01' -
integer 7’

date '2001-09-24’

date '2001-09-28' -
interval '1 hour’

timestamp '2001-09-27
23:00’

time '05:00" - time
'03:00’

interval '02:00’

time '05:00" - interval
'2 hours’

time '03:00’

timestamp '2001-09-28
23:00" - interval '23
hours’

timestamp '2001-09-28
00:00’

interval '1 day’ -
interval '1 hour’

interval '23:00’

timestamp '2001-09-29
03:00" - timestamp
'2001-09-27 12:00°

interval '1 day 15:00’

interval '1 hour’ *
double precision '3.5’

interval '03:30’

interval '1 hour’ /
double precision '1.5’

interval '00:40’

Table 9-26. Date/Time Functions

Function Return Type Description Example Result
age (timestamp , |interval Subtract argumentage(timestamp 43 years 9
timestamp) producing a '2001-04-10’, mons 27 days
“symbolic” result timestamp
that uses years and 957-06-13")
months
age (timestamp) [interval Subtract from age(timestamp 43 years 8
current_date '1957-06-13") mons 3 days
current_date date Today's date; see
Section 9.9.4
current_time time with time Time of day; see
zone Section 9.9.4

current_timestamp

timestamp with
time zone

Date and time; see

Section 9.9.4

146

Chapter 9. Functions and Operators

time; seeSection

9.9.4

Function Return Type Description Example Result
date_part (text , [double Get subfield date_part(hour’, 20
timestamp) precision (equivalent to timestamp
extract); see '2001-02-16
Section 9.9.1 20:38:40")
date_part (text , [double Get subfield date_part(month’, 3
interval) precision (equivalent to interval '2
extract); see years 3
Section 9.9.1 months’)
date_trunc (text , timestamp Truncate to date_trunc(’hour’, [2001-02-16
timestamp) specified precisiorntimestamp 20:00:00
see als®ection [2001-02-16
9.9.2 20:38:40")
extract (field double Get subfield; see |extract(hour 20
from timestamp) [precision Section 9.9.1 from timestamp
'2001-02-16
20:38:40")
extract (field double Get subfield; see extract(month 3
from interval) |precision Section 9.9.1 from interval
'2 years 3
months’)
isfinite ~ (timestampbQolean Test for finite time fisfinite(timestamp ftrue
stamp (not equal t¢2001-02-16
infinity) 21:28:30")
isfinite ~ (interval [Joolean Test for finite isfinite(interval true
interval '4 hours’)
localtime time Time of day; see
Section 9.9.4
localtimestamp timestamp Date and time; see
Section 9.9.4
now() timestamp with Current date and
time zone time (equivalent to
current_timestamp |);
seeSection 9.9.4
timeofday() text Current date and

In addition to these functions, the S@VERLAPSperator is supported:

(startl
(startl

This expression yields true when two time periods (defined by their endpoints) overlap, false when
they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a

lengthl

endl) OVERLAPS (start2 ,
) OVERLAPS (start2

date, time, or time stamp followed by an interval.

end2)
length2)

SELECT (DATE ’'2001-02-16', DATE '2001-12-21) OVERLAPS
(DATE '2001-10-30°, DATE '2002-10-30’);

Result: true

SELECT (DATE ’'2001-02-16’, INTERVAL '100 days’) OVERLAPS

147

Chapter 9. Functions and Operators

(DATE '2001-10-30', DATE '2002-10-30");
Result: false

9.9.1. EXTRACT date_part

EXTRACT (ield FROMsource)

Theextract function retrieves subfields such as year or hour from date/time valoesce must
be a value expression of typieestamp , time , orinterval . (Expressions of typdate will be
cast totimestamp and can therefore be used as wdik)d is an identifier or string that selects
what field to extract from the source value. Téaract function returns values of typgouble
precision . The following are valid field names:

century
The century
SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13");

Result: 20
SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time.
This definition applies to all Gregorian calendar countries. There is no century number 0, you
go from -1 to 1. If you disagree with this, please write your complaint to: Pope, Cathedral Saint-
Peter of Roma, Vatican.

PostgreSQL releases before 8.0 did not follow the conventional numbering of centuries, but just
returned the year field divided by 100.

day
The day (of the month) field (1 - 31)
SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 16
decade
The year field divided by 10
SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 200
dow
The day of the week (0 - 6; Sunday is 0) (fonestamp values only)
SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 5
Note thatextract s day of the week numbering is different from that of thechar function.
doy

The day of the year (1 - 365/366) (fomestamp values only)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 47

148

Chapter 9. Functions and Operators

epoch

Fordate andtimestamp values, the number of seconds since 1970-01-01 00:00:00-00 (can be
negative); forinterval ~ values, the total number of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-08");
Result: 982384720
SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours’);
Result: 442800

Here is how you can convert an epoch value back to a time stamp:
SELECT TIMESTAMP WITH TIME ZONE ’epoch’ + 982384720 * INTERVAL 'l second’;

hour
The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 20

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes full
seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5");
Result: 28500000

millennium
The millennium

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 3

Years in the 1900s are in the second millennium. The third millennium starts January 1, 2001.

PostgreSQL releases before 8.0 did not follow the conventional numbering of millennia, but just
returned the year field divided by 1000.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full
seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME ’17:12:28.5%;
Result: 28500

minute
The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 38

month

Fortimestamp values, the number of the month within the year (1 - 12) jd@rval values
the number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months’);
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months’);

149

Chapter 9. Functions and Operators

Result: 1
quarter

The quarter of the year (1 - 4) that the day is in ({forestamp values only)

SELECT EXTRACT(QUARTER FROM TIMESTAMP ’'2001-02-16 20:38:40%;
Result: 1

second
The seconds field, including fractional parts (0)59
SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 40
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5’);
Result: 285
timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones
east of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset
timezone_minute

The minute component of the time zone offset
week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of
a year contains January 4 of that year. (The 1SO-8601 week starts on Monday.) In other words,
the first Thursday of a year is in week 1 of that year. {foestamp values only)

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 7

year

The year field. Keep in mind there is BOAD, so subtractin@@Cyears fromADyears should be
done with care.

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2001

Theextract function is primarily intended for computational processing. For formatting date/time
values for display, seSection 9.8

Thedate_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract

date_part(’ field ', source)

Note that here theld parameter needs to be a string value, not a name. The valid field names for
date_part are the same as fextract

SELECT date_part('day’, TIMESTAMP ’'2001-02-16 20:38:40);
Result: 16

60 if leap seconds are implemented by the operating system

150

Chapter 9. Functions and Operators

SELECT date_part(hour’, INTERVAL ’4 hours 3 minutes’);
Result: 4

9.9.2. date_trunc

The functiondate_trunc is conceptually similar to theunc function for numbers.

date_trunc(’ field ', source)

source is a value expression of typienestamp orinterval . (Values of typedate andtime are
cast automatically, ttimestamp or interval respectively.¥ield selects to which precision to
truncate the input value. The return value is of tyipeestamp orinterval with all fields that are
less significant than the selected one set to zero (or one, for day and month).

Valid values forfield are:

microseconds
milliseconds
second
minute

hour

day

week

month

year
decade
century
millennium

Examples:

SELECT date_trunc(hour’, TIMESTAMP '2001-02-16 20:38:40’);
Result: 2001-02-16 20:00:00

SELECT date_trunc(year’, TIMESTAMP '2001-02-16 20:38:40’);
Result: 2001-01-01 00:00:00

9.9.3. AT TIME ZONE

The AT TIME ZONEconstruct allows conversions of time stamps to different time zoradse 9-27
shows its variants.

Table 9-27.AT TIME ZONEVariants

Expression Return Type Description
timestamp without time zone timestamp with time zone Convert local time in given time
AT TIME ZONE zone zone to UTC

151

Chapter 9. Functions and Operators

Expression Return Type Description

timestamp with time zone timestamp without time Convert UTC to local time in
AT TIME ZONE zone zone given time zone

time with time zone AT time with time zone Convert local time across time
TIME ZONE zone zones

In these expressions, the desired time zzoe can be specified either as a text string (R8T)

or as an interval (e.gINTERVAL -08:00'). In the text case, the available zone names are those
shown inTable B-4 (It would be useful to support the more general names showalite B-§ but

this is not yet implemented.)

Examples (supposing that the local time zone$38PD7):

SELECT TIMESTAMP °'2001-02-16 20:38:40° AT TIME ZONE 'MST’;
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE ’'MST’
Result: 2001-02-16 18:38:40

The first example takes a zone-less time stamp and interprets it as MST time (UTC-7) to produce a
UTC time stamp, which is then rotated to PST (UTC-8) for display. The second example takes a time
stamp specified in EST (UTC-5) and converts it to local time in MST (UTC-7).

The function timezone (zone, timestamp) is equivalent to the SQL-conforming construct
timestamp AT TIME ZONEzone.

9.9.4. Current Date/Time

The following functions are available to obtain the current date and/or time:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP (recision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIMEand CURRENT_TIMESTAMRIeliver values with time zonelOCALTIME and
LOCALTIMESTAMRIeliver values without time zone.

CURRENT_TIME CURRENT_TIMESTAMRLOCALTIME and LOCALTIMESTAMPcan optionally be
given a precision parameter, which causes the result to be rounded to that many fractional digits in
the seconds field. Without a precision parameter, the result is given to the full available precision.

Note: Prior to PostgreSQL 7.2, the precision parameters were unimplemented, and the result was
always given in integer seconds.

Some examples:

SELECT CURRENT_TIME;

152

Chapter 9. Functions and Operators

Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

The functionnow() is the traditional PostgreSQL equivalent?®ORRENT_TIMESTAMP

There is also the functiotimeofday() , which for historical reasons returngext string rather
than atimestamp value:

SELECT timeofday();
Result: Sat Feb 17 19:07:32.000126 2001 EST

It is important to know thaCURRENT_TIMESTAM&nd related functions return the start time of the
current transaction; their values do not change during the transaction. This is considered a feature:
the intent is to allow a single transaction to have a consistent notion of the “current” time, so that
multiple modifications within the same transaction bear the same time stiarapiday() returns

the wall-clock time and does advance during transactions.

Note: Other database systems may advance these values more frequently.

All the date/time data types also accept the special literal wvaueto specify the current date and
time. Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP ’'now’;

Tip: You do not want to use the third form when specifying a DEFAULTclause while creating a
table. The system will convert now to a timestamp as soon as the constant is parsed, so that
when the default value is needed, the time of the table creation would be used! The first two
forms will not be evaluated until the default value is used, because they are function calls. Thus
they will give the desired behavior of defaulting to the time of row insertion.

153

Chapter 9. Functions and Operators

9.10. Geometric Functions and Operators

The geometric typesoint , box, Iseg , line , path , polygon , andcircle have alarge set of native
support functions and operators, showTable 9-28 Table 9-29 andTable 9-30

Table 9-28. Geometric Operators

Operator Description Example
+ Translation box ’((0,0),(1,1)) +
point '(2.0,0)’
Translation box ’((0,0),(1,1)) -
point '(2.0,0)’
* Scaling/rotation box '((0,0),(1,1)) *
point '(2.0,0)’
/ Scaling/rotation box ’((0,0),(2,2))" /
point '(2.0,0)’
Point or box of intersection '((1,-1),(-1,1))
[((1,1),(-1,-1))
Number of points in pathor |# ’((1,0),(0,1),(-1,0))’
polygon
@-@ Length or circumference @-@ path ’((0,0),(1,0))’
@@ Center @@ circle '((0,0),10)
#H Closest point to first operand opoint '(0,0)" ## Iseg
second operand '((2,0),(0,2))
<-> Distance between circle ’((0,0),1) <->
circle '((5,0),1)
&& Overlaps? box '((0,0),(1,1)) &&
box ’((0,0),(2,2))
&< Does not extend to the right ofbhox ’((0,0),(1,1)) & <
box ’((0,0),(2,2))
&> Does not extend to the left of? box ’((0,0),(3,3))" & >
box '((0,0),(2,2))’
<< Is left of? circle ’((0,0),1)’ <<
circle ’((5,0),1)
>> Is right of? circle '((5,0),1) >>
circle '((0,0),1)
<M Is below? circle ’((0,0),1) <M
circle '((0,5),1)’
>N Is above? circle ’((0,5),1) >"
circle '((0,0),1)
%3 Intersects? Iseg '((-1,0),(1,0))" ?#
box '((-2,-2),(2,2))
?- Is horizontal? ?- Iseg '((-1,0),(1,0))
?-)Are horizontally aligned? point '(1,0)' ?- point
'(0,0)
? Is vertical? ?| Iseg ’'((-1,0),(1,0))

154

Chapter 9. Functions and Operators

Operator Description Example
?| Are vertically aligned? point '(0,1)’ ?| point
'(0,0)’
?-| Is perpendicular? Iseg ’((0,0),(0,1)) ?-|
Iseg '((0,0),(1,0))
?|| /Are parallel? Iseg ’((-1,0),(1,0))’
?|| Iseg
'((-1,2),(1,.2))
~ Contains? circle ’((0,0),2)" ~
point '(1,1)
@ Contained in or on? point '(1,1) @ circle
'((0,0).2)
~= Same as? polygon '((0,0),(1,1))’
~= polygon
((1,1).0,0))
Table 9-29. Geometric Functions
Function Return Type Description Example
area (object) double precision area area(box
'((0,0),(1,2)))
box_intersect (box, |pox intersection box box_intersect(box
box) '((0,0),(1,1))",box
'((0.5,0.5),(2,2)))
center (object) point center center(box
'((0,0),(1,2)))
diameter (circle) double precision diameter of circle diameter(circle
'((0,0),2.0)")
height (box) double precision \vertical size of box height(box
'((0,0),(1,1)))
isclosed (path) boolean a closed path? isclosed(path
'((0,0),(1,1),(2,0)))
isopen (path) boolean an open path? isopen(path
1(0,0),(1,1),(2,0)])
length (object) double precision length length(path
'((-1,0),(1,0)))
npoints (path) integer number of points npoints(path
1(0,0),(1,1),(2,0)])
npoints (polygon) integer number of points npoints(polygon
'((1,1),(0,0)))
pclose (path) path convert path to closed [pclose(path
1(0,0),(1,1),(2,0)])

155

Chapter 9. Functions and Operators

Function Return Type Description Example

popen (path) path convert path to open [popen(path
'((0,0),(1,1),(2,0)))

radius (circle) double precision radius of circle radius(circle
'((0,0),2.0)")

width (box) double precision horizontal size of box width(box
'((0,0),(1,1)))

Table 9-30. Geometric Type Conversion Functions

Function Return Type Description Example

box (circle) box circle to box box(circle
'((0,0),2.0)")

box (point , point) box points to box box(point ’(0,0)’,
point ’(1,1))

box (polygon) box polygon to box box(polygon
'((0,0),(1,1),(2,0)))

circle (box) circle box to circle circle(box
'((0,0),(1,2)))

circle (point , double [ircle point and radius to circleircle(point

precision) '(0,0)", 2.0)

Iseg (box) Iseg box diagonal to line |lseg(box

segment '((-1,0),(1,0)))

Iseg (point , point) |seg points to line segment |lseg(point
'(-1,0)’, point
'(1,0))

path (polygon) point polygon to path path(polygon
'((0,0),(1,1),(2,0)))

point (circle) point center of circle point(circle
'((0,0),2.0)")

point (lIseg , Iseg) point intersection point(Ilseg
'((-1,0),(1,0))",
Iseg
'((-2,-2),(2,2)))

point (polygon) point center of polygon point(polygon
'((0,0),(1,1),(2,0)))

polygon (box) polygon box to 4-point polygon polygon(box
'((0,0),(1,1)))

polygon (circle) polygon circle to 12-point polygon(circle

polygon '((0,0),2.0)")
polygon (npts , polygon circle tonpts -point |polygon(12, circle
circle) polygon '((0,0),2.0)")

156

Chapter 9. Functions and Operators

Function Return Type Description Example
polygon (path) polygon path to polygon polygon(path
'((0,0),(1,1),(2,0)))

It is possible to access the two component numbers it as though it were an array with
indices 0 and 1. For example,tip is apoint column therSELECT p[0] FROM t retrieves the X
coordinate andJPDATE t SET p[1] = ... changes the Y coordinate. In the same way, a value of
typebox orlseg may be treated as an array of tyaint values.

The area function works for the typesox, circle , and path . The area function only
works on thepath data type if the points in theath are non-intersecting. For example,

the path '((0,0),(0,1),(2,1),(2,2),(1,2),(1,0),(0,0))::PATH
won't work, however, the following visually identical path
'((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(1,1),(1,0),(0,0))"::PATH will work. If

the concept of an intersecting versus non-intersegtity is confusing, draw both of the above
path s side by side on a piece of graph paper.

9.11. Network Address Functions and Operators

Table 9-31shows the operators available for thidr andinet types. The operators<, <<=,
>>, and>>= test for subnet inclusion. They consider only the network parts of the two addresses,
ignoring any host part, and determine whether one network part is identical to or a subnet of the other.

Table 9-31.cidr andinet Operators

Operator Description Example

< is less than inet '192.168.1.5' <
inet '192.168.1.6’

<= is less than or equal inet '192.168.1.5' <=
inet '192.168.1.5’

= equals inet '192.168.1.5" =
inet '192.168.1.5’

>= is greater or equal inet '192.168.1.5’ >=
inet '192.168.1.5’

> is greater than inet '192.168.1.5' >
inet '192.168.1.4’

<> is not equal inet '192.168.1.5' <>
inet '192.168.1.4’

<< is contained within inet '192.168.1.5' <<
inet '192.168.1/24’

<<= is contained within or equals inet '192.168.1/24’ <<=
inet '192.168.1/24’

>> contains inet '192.168.1/24’ >>
inet '192.168.1.5’

>>= contains or equals inet '192.168.1/24’ >>=
inet '192.168.1/24’

Table 9-32shows the functions available for use with tkier andinet types. Thehost , text |,

157

Chapter 9. Functions and Operators

andabbrev functions are primarily intended to offer alternative display formats. You can cast a text
value toinet using normal casting syntaixiet(expression) or colname :inet

Table 9-32.cidr andinet Functions

Function Return Type Description Example Result

broadcast (inet) [inet broadcast addressbroadcast('192.168.[1.822168.1.255/24
for network

host (inet) text extract IP addresshost('192.168.1.5/24192.168.1.5
as text

masklen (inet) integer extract netmask |masklen(’192.168.1,3/£24")
length

set_masklen (inet inet set netmask lengthset_masklen('192.1682.5681'1.5/16

integer) for inet value 16)

netmask (inet) inet construct netmaskinetmask('192.168.1|3851955.255.0
for network

hostmask (inet) [inet construct host magtostmask('192.168.2Z820/30’)
for network

network (inet) cidr extract network pafrtetwork('192.168.1.8/22:168.1.0/24
of address

text (inet) text extract IP addresstext(inet 192.168.1.5/32
and netmask length92.168.1.5’)
as text

abbrev (inet) text abbreviated displaghbbrev(cidr 10.1/16
format as text '10.1.0.0/16")

family (inet) integer extract family of family(::1") 6
addressy for IPv4,
6 for IPvV6

Table 9-33 shows the functions available for use with theacaddr type. The function
trunc (macaddr) returns a MAC address with the last 3 bytes set to zero. This can be used to
associate the remaining prefix with a manufacturer. The direatonyrib/mac in the source
distribution contains some utilities to create and maintain such an association table.

Table 9-33.macaddr Functions

Function Return Type Description Example Result
trunc (macaddr) |macaddr set last 3 bytes to trunc(macaddr 12:34:56:00:00:00
zero '12:34:56:78:90:ab’)

The macaddr type also supports the standard relational operators<g, etc.) for lexicographical
ordering.

9.12. Sequence Manipulation Functions

This section describes PostgreSQL's functions for operatingeguence objectSequence objects
(also called sequence generators or just sequences) are special single-row tables creargAvith
SEQUENCEA sequence object is usually used to generate unique identifiers for rows of a table. The

158

Chapter 9. Functions and Operators

sequence functions, listed fable 9-34 provide simple, multiuser-safe methods for obtaining suc-
cessive sequence values from sequence objects.

Table 9-34. Sequence Functions

Function Return Type Description

nextval (text) bigint)Advance sequence and return
new value

currval (text) bigint Return value most recently
obtained withnextval

setval (text , bigint) bigint Set sequence’s current value

setval (text , bigint bigint Set sequence’s current value gnd

boolean) is_called flag

For largely historical reasons, the sequence to be operated on by a sequence-function call is specified
by a text-string argument. To achieve some compatibility with the handling of ordinary SQL names,
the sequence functions convert their argument to lowercase unless the string is double-quoted. Thus

nextval('foo’) operates on sequence foo
nextval(’FOQO’) operates on sequence foo
nextval("Foo™) operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval(’myschema.foo’) operates on myschema.foo
nextval("'myschema".foo’) same as above
nextval(’foo’) searches search path for foo

Of course, the text argument can be the result of an expression, not only a simple literal, which is
occasionally useful.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even
if multiple sessions executextval concurrently, each will safely receive a distinct sequence
value.

currval

Return the value most recently obtainedrmxtval for this sequence in the current session.

(An error is reported ifiextval has never been called for this sequence in this session.) Notice
that because this is returning a session-local value, it gives a predictable answer whether or not
other sessions have executexttval ~ since the current session did.

setval

Reset the sequence object's counter value. The two-parameter form sets the sequence’s
last_value field to the specified value and setsikscalled field to true , meaning that

the nextnextval ~ will advance the sequence before returning a value. In the three-parameter
form,is_called may be set eitharue orfalse . Ifit’'s settofalse ,the nexmnextval will

return exactly the specified value, and sequence advancement commences with the following
nextval . For example,

SELECT setval('foo’, 42); Next nextval will return 43
SELECT setval('foo’, 42, true); Same as above

159

Chapter 9. Functions and Operators

SELECT setval('foo’, 42, false); Next nextval will return 42

The result returned byetval s just the value of its second argument.

Important: To avoid blocking of concurrent transactions that obtain numbers from the same se-
guence, a nextval operation is never rolled back; that is, once a value has been fetched it is con-
sidered used, even if the transaction that did the nextval later aborts. This means that aborted
transactions may leave unused “holes” in the sequence of assigned values. setval operations
are never rolled back, either.

If a sequence object has been created with default parametergal calls on it will return suc-
cessive values beginning with 1. Other behaviors can be obtained by using special parameters in the
CREATE SEQUENCEommand; see its command reference page for more information.

9.13. Conditional Expressions
This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions you might want to
consider writing a stored procedure in a more expressive programming language.

9.13.1. CASE

The SQLCASEexpression is a generic conditional expression, similar to if/else statements in other
languages:

CASE WHENMondition THEN result
[WHEN ..]
[ELSE result]

END

CASEclauses can be used wherever an expression is ealidlition is an expression that returns a
boolean result. If the result is true then the value of th&SEexpression is theesult that follows

the condition. If the result is false any subsequ&htENclauses are searched in the same manner. If
noWHENonNdition s true then the value of the case expression isg¢kalt in theELSEclause.

If the ELSE clause is omitted and no condition matches, the result is null.

An example:

SELECT * FROM test;

SELECT a,

160

Chapter 9. Functions and Operators

CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’'two’

ELSE ’other’
END
FROM test;

a | case
R S

1| one
2 | two

3 | other

The data types of all theesult ~ expressions must be convertible to a single output typeS8eton
10.5for more detail.

The following “simple” CASEexpression is a specialized variant of the general form above:

CASE expression
WHENvalue THEN result

[WHEN ..
[ELSE result]
END

Theexpression is computed and compared to all thalue specifications in th&vHENlauses
until one is found that is equal. If no match is found, theult in theELSEclause (or a null value)
is returned. This is similar to thevitch statementin C.

The example above can be written using the singASEsyntax:

SELECT a,
CASE a WHEN 1 THEN ‘’one’
WHEN 2 THEN ’two’

ELSE ’other’
END
FROM test;

a | case
R S

1| one
2 | two

3 | other

A CASEexpression does not evaluate any subexpressions that are not needed to determine the result.
For example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x> 0 THEN y/x > 1.5 ELSE false END,;

161

Chapter 9. Functions and Operators

9.13.2. COALESCE

COALESCEvalue [, ...])

The COALESCHunction returns the first of its arguments that is not null. Null is returned only if
all arguments are null. This is often useful to substitute a default value for null values when data is
retrieved for display, for example:

SELECT COALESCE(description, short_description, ’'(none)’) ...

Like a CASEexpressionCOALESCEvill not evaluate arguments that are not needed to determine the
result; that is, arguments to the right of the first non-null argument are not evaluated.

9.13.3. NULLIF
NULLIF (valuel , value2)

TheNULLIF function returns a null value if and onlyvluel andvalue2 are equal. Otherwise it
returnsvaluel . This can be used to perform the inverse operation o€tbaL ESCExample given
above:

SELECT NULLIF(value, ’'(none)’) ...

9.14. Array Functions and Operators

Table 9-35shows the operators available toray types.

Table 9-35.array Operators

Operator Description Example Result

= equal IARRAY[1.1,2.1,3.1]::int[] t
= ARRAY[1,2,3]

<> not equal ARRAY[1,2,3] <>
IARRAY/[1,2,4]

< less than ARRAY[1,2,3] < t
IARRAY([1,2,4]

> greater than ARRAY[1,4,3] > t
IARRAY[1,2,4]

<= less than or equal ARRAY[1,2,3] <= t
IARRAY[1,2,3]

>= greater than or equal |ARRAY[1,4,3] >= t
IARRAY/[1,4,3]

Il array-to-array IARRAY[1,2,3] || {1,2,3,4,5,6}

concatenation IARRAY[4,5,6]

162

Chapter 9. Functions and Operators

concatenation

Operator Description Example Result

Il array-to-array IARRAY[1,2,3] || {{1,2,3},{4,5,6},{7,8,9}}
concatenation IARRAY([4,5,6],[7,8,9]]

Il element-to-array 3 || ARRAY[4,5,6] {3,4,5,6}
concatenation

Il array-to-element IARRAY[4,5,6] || 7 {4,5,6,7}

SeeSection 8.1Gor more details about array operator behavior.

Table 9-36shows the functions available for use with array types. Seaion 8.1Gor more discus-
sion and examples of the use of these functions.

Table 9-36.array Functions

Function Return Type Description Example Result
array_cat anyarray concatenate two |array_cat(ARRAY[1,2.3,3,4,5}
(anyarray arrays IARRAY[4,5])
anyarray)
array_append anyarray append an elemenarray_append(ARRAY([2,2],
(anyarray totheendofan [3)
anyelement) array
array_prepend anyarray append an elemenarray_prepend(1, ({1,2,3}
(anyelement to the beginning ofARRAY([2,3])
anyarray) an array
array_dims text returns a text array_dims(array[[1,2132][1:3]
(anyarray) representation of [[4,5,6]])
array’s dimensiong
array_lower integer returns lower bounaray lower(array _pjepend(0,
(anyarray of the requested |ARRAY[1,2,3)),
integer) array dimension [1)
array_upper integer returns upper bourgray_upper(ARRAY41,2,3,4],
(anyarray of the requested 1)
integer) array dimension
array_to_string text concatenates arraprray_to_string(arrayf#f~2~"~3
(anyarray , text) elementsusing 2, 3], ~*~)
provided delimiter
string_to_array text[] splits string into istring_to_array({xx,yy,zz}
(text , text) array elements [xx~"~yy~"~zz’,
using provided [~"~)
delimiter

9.15. Aggregate Functions

Aggregate functionsompute a single result value from a set of input valdahle 9-37shows the
built-in aggregate functions. The special syntax considerations for aggregate functions are explained
in Section 4.2.7ConsultSection 2.#or additional introductory information.

163

Table 9-37. Aggregate Functions

Chapter 9.

Functions and Operators

Function Argument Type Return Type Description
avg(expression) smallint ,integer , |numeric for any integethe average (arithmetic
bigint , real ,double type argumentjouble |mean) of all input values
precision , numeric , [precision fora
or interval floating-point argument,
otherwise the same as
the argument data type
smallint ,integer , |same as argument datthe bitwise AND of alll
bit_and(expression)bigint , orbit type non-null input values, ar
null if none
smallint ,integer , |same as argument datthe bitwise OR of all
bit or(expression) |pigint , orhit type non-null input values, ar
null if none
bool bool true if all input values
bool_and(expression |) are true, otherwise falsg
bool bool true if at least one input
bool_or(expression) \value is true, otherwise|
false
count(*) bigint number of input values
count(expression) jany bigint number of input values
for which the value of
expression is not
null
every(expression) |bool bool equivalent tcbool_and

max(expression) any numeric, string, or same as argument typemaximum value of
date/time type expression across all
input values
min(expression) any numeric, string, or same as argument typeminimum value of
date/time type expression across all
input values
smallint ,integer , |double precision sample standard
stddev(expression) |pigint ,real ,double [for floating-point deviation of the input
precision , or arguments, otherwise (values
numeric numeric
sum(expression) smallint ,integer , |bigint for smallint sum ofexpression
bigint ,real ,double |[orinteger arguments,across all input values
precision , numeric , [numeric for bigint
or interval argumentsdouble
precision for

floating-point argument
otherwise the same as
the argument data type

(g

164

Chapter 9. Functions and Operators

Function Argument Type Return Type Description
smallint ,integer , |double precision sample variance of the
variance (expression pigint ,real , double ffor floating-point input values (square of
precision , or arguments, otherwise the sample standard
numeric numeric deviation)

It should be noted that except fasunt , these functions return a null value when no rows are selected.
In particular,sum of no rows returns null, not zero as one might expect. ddatesce function may
be used to substitute zero for null when necessary.

Note: Boolean aggregates bool_and and bool_or correspond to standard SQL aggregates
every and any or some. As for any and some, it seems that there is an ambiguity built into the
standard syntax:

SELECT bl = ANY((SELECT b2 FROM t2 ..)) FROM t1 ..;

Here ANY can be considered both as leading to a subquery or as an aggregate if the select
expression returns 1 row. Thus the standard name cannot be given to these aggregates.

Note: Users accustomed to working with other SQL database management systems may be
surprised by the performance characteristics of certain aggregate functions in PostgreSQL when
the aggregate is applied to the entire table (in other words, no WHERElause is specified). In
particular, a query like

SELECT min(col) FROM sometable;

will be executed by PostgreSQL using a sequential scan of the entire table. Other database sys-
tems may optimize queries of this form to use an index on the column, if one is available. Similarly,
the aggregate functions max() and count() always require a sequential scan if applied to the en-
tire table in PostgreSQL.

PostgreSQL cannot easily implement this optimization because it also allows for user-defined ag-
gregate queries. Since min() , max() , and count() are defined using a generic API for aggregate
functions, there is no provision for special-casing the execution of these functions under certain
circumstances.

Fortunately, there is a simple workaround for min() and max() . The query shown below is equiv-
alent to the query above, except that it can take advantage of a B-tree index if there is one present
on the column in question.

SELECT col FROM sometable ORDER BY col ASC LIMIT 1;

A similar query (obtained by substituting DESCfor ASCin the query above) can be used in the
place of max() .

Unfortunately, there is no similarly trivial query that can be used to improve the performance of
count() when applied to the entire table.

9.16. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the
expression forms documented in this section return Boolean (true/false) results.

165

Chapter 9. Functions and Operators

9.16.1. EXISTS
EXISTS (subquery)

The argument oEXISTS is an arbitrarySELECTstatement, osubquery The subquery is evaluated
to determine whether it returns any rows. If it returns at least one row, the re&Xt9fS is “true”;
if the subquery returns no rows, the resulEXiSTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during
any one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has any side effects (such
as calling sequence functions); whether the side effects occur or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents of those
rows, the output list of the subquery is nhormally uninteresting. A common coding convention is to
write all EXISTS tests in the formEXISTS(SELECT 1 WHERE ...) . There are exceptions to this

rule however, such as subqueries that INM&ERSECT.

This simple example is like an inner join @al2 , but it produces at most one output row for each
tabl row, even if there are multiple matchingp2 rows:

SELECT coll FROM tabl
WHERE EXISTS(SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

9.16.2. IN

expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The nésust ‘tfue” if

any equal subquery row is found. The result is “false” if no equal row is found (including the special
case where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of theconstruct will be null, not false. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor IN (subquery)

The left-hand side of this form af is a row constructor, as describedSection 4.2.11The right-

hand side is a parenthesized subquery, which must return exactly as many columns as there are ex-
pressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The resulthfis “true” if any equal subquery row is found. The

result is “false” if no equal row is found (including the special case where the subquery returns no
rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the row results are either unequal or null, with at least one null,
then the result ofN is null.

166

Chapter 9. Functions and Operators

9.16.3. NOT IN
expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-
hand expression is evaluated and compared to each row of the subquery result. The KSTItINf

is “true” if only unequal subquery rows are found (including the special case where the subquery
returns no rows). The result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of the®T IN construct will be null, not true. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.
row_constructor NOT IN (subquery)

The left-hand side of this form ofOT INis a row constructor, as describedSection 4.2.11The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The resulNaT INis “true” if only unequal subquery rows are

found (including the special case where the subquery returns no rows). The result is “false” if any
equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the row results are either unequal or null, with at least one null,
then the result oROT INis null.

9.16.4. ANYSOME

expression operator ANY (subquery)
expression operator SOME 6ubquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using ttepghador |

which must yield a Boolean result. The resultafyis “true” if any true result is obtained. The result

is “false” if no true result is found (including the special case where the subquery returns no rows).

SOMESs a synonym foANY. IN is equivalent to= ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of theANY construct will be null, not false. This is in accordance with SQL's normal rules
for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)
row_constructor operator SOME 6ubquery)

The left-hand side of this form oANY is a row constructor, as described $ection 4.2.11The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result, using the giegrerator . Presently, only= and <> operators

are allowed in row-wis@&NY constructs. The result &NYis “true” if any equal or unequal row is

167

Chapter 9. Functions and Operators

found, respectively. The result is “false” if no such row is found (including the special case where the
subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If there is at least one null row result, then the resAntafannot be

false; it will be true or null.

9.16.5. ALL
expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using ttepgirator

which must yield a Boolean result. The resultAlfL is “true” if all rows yield true (including the
special case where the subquery returns no rows). The result is “false” if any false result is found.

NOT INis equivalent to<> ALL.

Note that if there are no failures but at least one right-hand row yields null for the operator’s result,
the result of theALL construct will be null, not true. This is in accordance with SQL's normal rules
for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.
row_constructor operator ALL (subquery)

The left-hand side of this form oALL is a row constructor, as described $®ction 4.2.11The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result, using the gieperator . Presently, only- and<> operators are
allowed in row-wiseALL queries. The result afLL is “true” if all subquery rows are equal or unequal,
respectively (including the special case where the subquery returns no rows). The result is “false” if
any row is found to be unequal or equal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If there is at least one null row result, then the resillt afannot be

true; it will be false or null.

9.16.6. Row-wise Comparison
row_constructor operator ('subquery)

The left-hand side is a row constructor, as describefkiction 4.2.11The right-hand side is a paren-
thesized subquery, which must return exactly as many columns as there are expressions in the left-
hand row. Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the
result is taken to be null.) The left-hand side is evaluated and compared row-wise to the single sub-
guery result row. Presently, onyand<> operators are allowed in row-wise comparisons. The result

is “true” if the two rows are equal or unequal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows

168

Chapter 9. Functions and Operators

are unequal if any corresponding members are non-null and unequal; otherwise the result of the row
comparison is unknown (null).

9.17. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The fo