
PostgreSQL 8.0.0 Documentation

The PostgreSQL Global Development Group

PostgreSQL 8.0.0 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2005 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2005 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents
Preface..i

1. What is PostgreSQL?...i
2. A Brief History of PostgreSQL...ii

2.1. The Berkeley POSTGRES Project...ii
2.2. Postgres95...ii
2.3. PostgreSQL..iii

3. Conventions..iii
4. Further Information.. iv
5. Bug Reporting Guidelines.. iv

5.1. Identifying Bugs.. iv
5.2. What to report...v
5.3. Where to report bugs..vii

I. Tutorial ...1

1. Getting Started..1
1.1. Installation..1
1.2. Architectural Fundamentals..1
1.3. Creating a Database..2
1.4. Accessing a Database...3

2. The SQL Language...6
2.1. Introduction..6
2.2. Concepts...6
2.3. Creating a New Table...6
2.4. Populating a Table With Rows...7
2.5. Querying a Table..8
2.6. Joins Between Tables..10
2.7. Aggregate Functions...12
2.8. Updates...13
2.9. Deletions...14

3. Advanced Features..15
3.1. Introduction..15
3.2. Views..15
3.3. Foreign Keys...15
3.4. Transactions..16
3.5. Inheritance..18
3.6. Conclusion..19

II. The SQL Language..21

4. SQL Syntax...23
4.1. Lexical Structure...23

4.1.1. Identifiers and Key Words..23
4.1.2. Constants..24

4.1.2.1. String Constants..24
4.1.2.2. Dollar-Quoted String Constants..25
4.1.2.3. Bit-String Constants..26
4.1.2.4. Numeric Constants..26
4.1.2.5. Constants of Other Types..27

4.1.3. Operators..27
4.1.4. Special Characters..28
4.1.5. Comments..28

iii

4.1.6. Lexical Precedence..29
4.2. Value Expressions...30

4.2.1. Column References..31
4.2.2. Positional Parameters...31
4.2.3. Subscripts...31
4.2.4. Field Selection...32
4.2.5. Operator Invocations..32
4.2.6. Function Calls..32
4.2.7. Aggregate Expressions...33
4.2.8. Type Casts..33
4.2.9. Scalar Subqueries...34
4.2.10. Array Constructors...34
4.2.11. Row Constructors...36
4.2.12. Expression Evaluation Rules...37

5. Data Definition..38
5.1. Table Basics..38
5.2. Default Values..39
5.3. Constraints..40

5.3.1. Check Constraints..40
5.3.2. Not-Null Constraints..42
5.3.3. Unique Constraints...42
5.3.4. Primary Keys..43
5.3.5. Foreign Keys..44

5.4. System Columns...46
5.5. Inheritance..48
5.6. Modifying Tables..50

5.6.1. Adding a Column...50
5.6.2. Removing a Column..51
5.6.3. Adding a Constraint...51
5.6.4. Removing a Constraint..51
5.6.5. Changing a Column’s Default Value..52
5.6.6. Changing a Column’s Data Type...52
5.6.7. Renaming a Column..52
5.6.8. Renaming a Table..53

5.7. Privileges..53
5.8. Schemas..54

5.8.1. Creating a Schema...54
5.8.2. The Public Schema..55
5.8.3. The Schema Search Path..55
5.8.4. Schemas and Privileges..56
5.8.5. The System Catalog Schema...57
5.8.6. Usage Patterns..57
5.8.7. Portability...57

5.9. Other Database Objects..58
5.10. Dependency Tracking...58

6. Data Manipulation...60
6.1. Inserting Data...60
6.2. Updating Data...61
6.3. Deleting Data..61

7. Queries..63
7.1. Overview..63
7.2. Table Expressions...63

iv

7.2.1. TheFROMClause..64
7.2.1.1. Joined Tables...64
7.2.1.2. Table and Column Aliases...67
7.2.1.3. Subqueries...68
7.2.1.4. Table Functions...68

7.2.2. TheWHEREClause..69
7.2.3. TheGROUP BYandHAVINGClauses...70

7.3. Select Lists..72
7.3.1. Select-List Items..72
7.3.2. Column Labels...73
7.3.3.DISTINCT ..73

7.4. Combining Queries...74
7.5. Sorting Rows..74
7.6.LIMIT andOFFSET...75

8. Data Types...77
8.1. Numeric Types..78

8.1.1. Integer Types..79
8.1.2. Arbitrary Precision Numbers...79
8.1.3. Floating-Point Types..80
8.1.4. Serial Types..81

8.2. Monetary Types..82
8.3. Character Types..82
8.4. Binary Data Types..84
8.5. Date/Time Types...86

8.5.1. Date/Time Input...87
8.5.1.1. Dates..87
8.5.1.2. Times...88
8.5.1.3. Time Stamps..88
8.5.1.4. Intervals...89
8.5.1.5. Special Values...90

8.5.2. Date/Time Output..90
8.5.3. Time Zones..91
8.5.4. Internals..92

8.6. Boolean Type..92
8.7. Geometric Types...93

8.7.1. Points...93
8.7.2. Line Segments..94
8.7.3. Boxes..94
8.7.4. Paths...94
8.7.5. Polygons...94
8.7.6. Circles..95

8.8. Network Address Types..95
8.8.1.inet ...95
8.8.2.cidr ...96
8.8.3.inet vs.cidr ..96
8.8.4.macaddr ..97

8.9. Bit String Types..97
8.10. Arrays...98

8.10.1. Declaration of Array Types..98
8.10.2. Array Value Input...98
8.10.3. Accessing Arrays...100
8.10.4. Modifying Arrays...101

v

8.10.5. Searching in Arrays..104
8.10.6. Array Input and Output Syntax..104

8.11. Composite Types..105
8.11.1. Declaration of Composite Types..106
8.11.2. Composite Value Input...107
8.11.3. Accessing Composite Types..107
8.11.4. Modifying Composite Types..108
8.11.5. Composite Type Input and Output Syntax...108

8.12. Object Identifier Types...109
8.13. Pseudo-Types..111

9. Functions and Operators...113
9.1. Logical Operators...113
9.2. Comparison Operators..113
9.3. Mathematical Functions and Operators..115
9.4. String Functions and Operators..118
9.5. Binary String Functions and Operators..126
9.6. Bit String Functions and Operators..127
9.7. Pattern Matching..128

9.7.1.LIKE ...128
9.7.2.SIMILAR TO Regular Expressions..129
9.7.3. POSIX Regular Expressions..130

9.7.3.1. Regular Expression Details...131
9.7.3.2. Bracket Expressions..133
9.7.3.3. Regular Expression Escapes..134
9.7.3.4. Regular Expression Metasyntax..136
9.7.3.5. Regular Expression Matching Rules...138
9.7.3.6. Limits and Compatibility..139
9.7.3.7. Basic Regular Expressions..139

9.8. Data Type Formatting Functions..140
9.9. Date/Time Functions and Operators...145

9.9.1.EXTRACT, date_part ...148
9.9.2.date_trunc ..151
9.9.3.AT TIME ZONE..151
9.9.4. Current Date/Time...152

9.10. Geometric Functions and Operators...153
9.11. Network Address Functions and Operators..157
9.12. Sequence Manipulation Functions...158
9.13. Conditional Expressions...160

9.13.1.CASE...160
9.13.2.COALESCE..161
9.13.3.NULLIF ...162

9.14. Array Functions and Operators..162
9.15. Aggregate Functions...163
9.16. Subquery Expressions..165

9.16.1.EXISTS...165
9.16.2.IN ...166
9.16.3.NOT IN...166
9.16.4.ANY/SOME...167
9.16.5.ALL ...168
9.16.6. Row-wise Comparison...168

9.17. Row and Array Comparisons...169
9.17.1.IN ...169

vi

9.17.2.NOT IN...169
9.17.3.ANY/SOME(array)...170
9.17.4.ALL (array)...170
9.17.5. Row-wise Comparison...170

9.18. Set Returning Functions...170
9.19. System Information Functions...171
9.20. System Administration Functions..176

10. Type Conversion..179
10.1. Overview..179
10.2. Operators..180
10.3. Functions..183
10.4. Value Storage..185
10.5.UNION, CASE, andARRAYConstructs...186

11. Indexes..188
11.1. Introduction..188
11.2. Index Types...189
11.3. Multicolumn Indexes..190
11.4. Unique Indexes...190
11.5. Indexes on Expressions..191
11.6. Operator Classes...192
11.7. Partial Indexes..193
11.8. Examining Index Usage..195

12. Concurrency Control...197
12.1. Introduction..197
12.2. Transaction Isolation..197

12.2.1. Read Committed Isolation Level...198
12.2.2. Serializable Isolation Level..199

12.2.2.1. Serializable Isolation versus True Serializability........................200
12.3. Explicit Locking...200

12.3.1. Table-Level Locks..201
12.3.2. Row-Level Locks...202
12.3.3. Deadlocks...203

12.4. Data Consistency Checks at the Application Level..203
12.5. Locking and Indexes...204

13. Performance Tips..206
13.1. UsingEXPLAIN ..206
13.2. Statistics Used by the Planner..209
13.3. Controlling the Planner with ExplicitJOIN Clauses..210
13.4. Populating a Database..212

13.4.1. Disable Autocommit..212
13.4.2. UseCOPY..212
13.4.3. Remove Indexes...213
13.4.4. Increasemaintenance_work_mem ..213
13.4.5. Increasecheckpoint_segments ..213
13.4.6. RunANALYZEAfterwards..213

III. Server Administration ...214

14. Installation Instructions...216
14.1. Short Version..216
14.2. Requirements..216
14.3. Getting The Source...218
14.4. If You Are Upgrading...218

vii

14.5. Installation Procedure...219
14.6. Post-Installation Setup..225

14.6.1. Shared Libraries...225
14.6.2. Environment Variables...226

14.7. Supported Platforms...226
15. Client-Only Installation on Windows..232
16. Server Run-time Environment..233

16.1. The PostgreSQL User Account..233
16.2. Creating a Database Cluster...233
16.3. Starting the Database Server...234

16.3.1. Server Start-up Failures...235
16.3.2. Client Connection Problems..236

16.4. Run-time Configuration..237
16.4.1. File Locations...238
16.4.2. Connections and Authentication..239

16.4.2.1. Connection Settings...239
16.4.2.2. Security and Authentication..240

16.4.3. Resource Consumption..241
16.4.3.1. Memory...241
16.4.3.2. Free Space Map...242
16.4.3.3. Kernel Resource Usage...242
16.4.3.4. Cost-Based Vacuum Delay..243
16.4.3.5. Background Writer..243

16.4.4. Write Ahead Log..244
16.4.4.1. Settings..244
16.4.4.2. Checkpoints...245
16.4.4.3. Archiving...246

16.4.5. Query Planning..246
16.4.5.1. Planner Method Configuration..246
16.4.5.2. Planner Cost Constants..247
16.4.5.3. Genetic Query Optimizer..248
16.4.5.4. Other Planner Options...248

16.4.6. Error Reporting and Logging...249
16.4.6.1. Where to log..249
16.4.6.2. When To Log...251
16.4.6.3. What To Log..252

16.4.7. Runtime Statistics..254
16.4.7.1. Statistics Monitoring...254
16.4.7.2. Query and Index Statistics Collector...254

16.4.8. Client Connection Defaults..255
16.4.8.1. Statement Behavior...255
16.4.8.2. Locale and Formatting...256
16.4.8.3. Other Defaults...257

16.4.9. Lock Management...258
16.4.10. Version and Platform Compatibility..258

16.4.10.1. Previous PostgreSQL Versions..258
16.4.10.2. Platform and Client Compatibility..259

16.4.11. Preset Options..259
16.4.12. Customized Options...260
16.4.13. Developer Options...261
16.4.14. Short Options...262

16.5. Managing Kernel Resources...263

viii

16.5.1. Shared Memory and Semaphores..263
16.5.2. Resource Limits...267
16.5.3. Linux Memory Overcommit..268

16.6. Shutting Down the Server...269
16.7. Secure TCP/IP Connections with SSL...270
16.8. Secure TCP/IP Connections with SSH Tunnels...270

17. Database Users and Privileges..272
17.1. Database Users...272
17.2. User Attributes..273
17.3. Groups..273
17.4. Privileges..274
17.5. Functions and Triggers...274

18. Managing Databases...276
18.1. Overview..276
18.2. Creating a Database..276
18.3. Template Databases..277
18.4. Database Configuration..278
18.5. Destroying a Database..279
18.6. Tablespaces...279

19. Client Authentication..281
19.1. Thepg_hba.conf file ...281
19.2. Authentication methods..285

19.2.1. Trust authentication..285
19.2.2. Password authentication...286
19.2.3. Kerberos authentication...286
19.2.4. Ident-based authentication...287

19.2.4.1. Ident Authentication over TCP/IP...287
19.2.4.2. Ident Authentication over Local Sockets....................................288
19.2.4.3. Ident Maps...288

19.2.5. PAM authentication..289
19.3. Authentication problems..289

20. Localization...290
20.1. Locale Support..290

20.1.1. Overview..290
20.1.2. Behavior...291
20.1.3. Problems..291

20.2. Character Set Support...292
20.2.1. Supported Character Sets...292
20.2.2. Setting the Character Set..293
20.2.3. Automatic Character Set Conversion Between Server and Client...........294
20.2.4. Further Reading...296

21. Routine Database Maintenance Tasks...297
21.1. Routine Vacuuming..297

21.1.1. Recovering disk space..297
21.1.2. Updating planner statistics...298
21.1.3. Preventing transaction ID wraparound failures.......................................299

21.2. Routine Reindexing..301
21.3. Log File Maintenance...301

22. Backup and Restore..303
22.1. SQL Dump..303

22.1.1. Restoring the dump..303
22.1.2. Using pg_dumpall..304

ix

22.1.3. Handling large databases...304
22.1.4. Caveats...305

22.2. File system level backup...305
22.3. On-line backup and point-in-time recovery (PITR)...306

22.3.1. Setting up WAL archiving..307
22.3.2. Making a Base Backup..309
22.3.3. Recovering with an On-line Backup..310

22.3.3.1. Recovery Settings..311
22.3.4. Timelines..312
22.3.5. Caveats...313

22.4. Migration Between Releases..313
23. Monitoring Database Activity...315

23.1. Standard Unix Tools...315
23.2. The Statistics Collector...315

23.2.1. Statistics Collection Configuration..316
23.2.2. Viewing Collected Statistics..316

23.3. Viewing Locks..320
24. Monitoring Disk Usage...321

24.1. Determining Disk Usage..321
24.2. Disk Full Failure...322

25. Write-Ahead Logging (WAL)...323
25.1. Benefits of WAL...323
25.2. WAL Configuration..323
25.3. Internals..325

26. Regression Tests..326
26.1. Running the Tests...326
26.2. Test Evaluation...327

26.2.1. Error message differences..327
26.2.2. Locale differences..327
26.2.3. Date and time differences..328
26.2.4. Floating-point differences..328
26.2.5. Row ordering differences...328
26.2.6. The “random” test..329

26.3. Platform-specific comparison files...329

IV. Client Interfaces ...331

27. libpq - C Library...333
27.1. Database Connection Control Functions..333
27.2. Connection Status Functions..339
27.3. Command Execution Functions...342

27.3.1. Main Functions..342
27.3.2. Retrieving Query Result Information..348
27.3.3. Retrieving Result Information for Other Commands..............................351
27.3.4. Escaping Strings for Inclusion in SQL Commands.................................352
27.3.5. Escaping Binary Strings for Inclusion in SQL Commands.....................353

27.4. Asynchronous Command Processing...354
27.5. Cancelling Queries in Progress..357
27.6. The Fast-Path Interface...358
27.7. Asynchronous Notification...359
27.8. Functions Associated with theCOPYCommand..360

27.8.1. Functions for SendingCOPYData..361
27.8.2. Functions for ReceivingCOPYData...362

x

27.8.3. Obsolete Functions forCOPY...363
27.9. Control Functions...365
27.10. Notice Processing...365
27.11. Environment Variables...366
27.12. The Password File..368
27.13. SSL Support..368
27.14. Behavior in Threaded Programs...368
27.15. Building libpq Programs...369
27.16. Example Programs..370

28. Large Objects..379
28.1. History..379
28.2. Implementation Features..379
28.3. Client Interfaces..379

28.3.1. Creating a Large Object...379
28.3.2. Importing a Large Object...380
28.3.3. Exporting a Large Object...380
28.3.4. Opening an Existing Large Object...380
28.3.5. Writing Data to a Large Object..380
28.3.6. Reading Data from a Large Object..381
28.3.7. Seeking in a Large Object..381
28.3.8. Obtaining the Seek Position of a Large Object..381
28.3.9. Closing a Large Object Descriptor..381
28.3.10. Removing a Large Object..381

28.4. Server-Side Functions...382
28.5. Example Program...382

29. ECPG - Embedded SQL in C..388
29.1. The Concept..388
29.2. Connecting to the Database Server...388
29.3. Closing a Connection...389
29.4. Running SQL Commands...390
29.5. Choosing a Connection...391
29.6. Using Host Variables..391

29.6.1. Overview..391
29.6.2. Declare Sections...392
29.6.3.SELECT INTOandFETCH INTO..392
29.6.4. Indicators..393

29.7. Dynamic SQL...394
29.8. Using SQL Descriptor Areas..394
29.9. Error Handling..396

29.9.1. Setting Callbacks...396
29.9.2. sqlca...398
29.9.3.SQLSTATEvs SQLCODE..399

29.10. Including Files..401
29.11. Processing Embedded SQL Programs..402
29.12. Library Functions...402
29.13. Internals..403

30. The Information Schema...406
30.1. The Schema..406
30.2. Data Types..406
30.3.information_schema_catalog_name ...406
30.4.applicable_roles ..407
30.5.check_constraints ...407

xi

30.6.column_domain_usage ...407
30.7.column_privileges ...408
30.8.column_udt_usage ..409
30.9.columns ...409
30.10.constraint_column_usage ..413
30.11.constraint_table_usage ...414
30.12.data_type_privileges ...414
30.13.domain_constraints ...415
30.14.domain_udt_usage ..415
30.15.domains ...416
30.16.element_types ..419
30.17.enabled_roles ..421
30.18.key_column_usage ..422
30.19.parameters ...422
30.20.referential_constraints ..425
30.21.role_column_grants ...426
30.22.role_routine_grants ...426
30.23.role_table_grants ...427
30.24.role_usage_grants ...428
30.25.routine_privileges ...428
30.26.routines ...429
30.27.schemata ...433
30.28.sql_features ..434
30.29.sql_implementation_info ..434
30.30.sql_languages ..435
30.31.sql_packages ..436
30.32.sql_sizing ...436
30.33.sql_sizing_profiles ...437
30.34.table_constraints ...437
30.35.table_privileges ..438
30.36.tables ...438
30.37.triggers ...439
30.38.usage_privileges ..440
30.39.view_column_usage ...441
30.40.view_table_usage ..442
30.41.views ...442

V. Server Programming...444

31. Extending SQL..446
31.1. How Extensibility Works..446
31.2. The PostgreSQL Type System..446

31.2.1. Base Types...446
31.2.2. Composite Types..446
31.2.3. Domains...447
31.2.4. Pseudo-Types...447
31.2.5. Polymorphic Types..447

31.3. User-Defined Functions..447
31.4. Query Language (SQL) Functions...448

31.4.1. SQL Functions on Base Types...449
31.4.2. SQL Functions on Composite Types...450
31.4.3. SQL Functions as Table Sources...453
31.4.4. SQL Functions Returning Sets..454

xii

31.4.5. Polymorphic SQL Functions...455
31.5. Function Overloading...456
31.6. Function Volatility Categories..456
31.7. Procedural Language Functions...457
31.8. Internal Functions...458
31.9. C-Language Functions..458

31.9.1. Dynamic Loading...458
31.9.2. Base Types in C-Language Functions..459
31.9.3. Calling Conventions Version 0 for C-Language Functions.....................462
31.9.4. Calling Conventions Version 1 for C-Language Functions.....................464
31.9.5. Writing Code..466
31.9.6. Compiling and Linking Dynamically-Loaded Functions........................467
31.9.7. Extension Building Infrastructure..469
31.9.8. Composite-Type Arguments in C-Language Functions...........................471
31.9.9. Returning Rows (Composite Types) from C-Language Functions..........472
31.9.10. Returning Sets from C-Language Functions..473
31.9.11. Polymorphic Arguments and Return Types...478

31.10. User-Defined Aggregates...479
31.11. User-Defined Types..481
31.12. User-Defined Operators..484
31.13. Operator Optimization Information..485

31.13.1.COMMUTATOR..485
31.13.2.NEGATOR..486
31.13.3.RESTRICT..486
31.13.4.JOIN ...487
31.13.5.HASHES...487
31.13.6.MERGES(SORT1, SORT2, LTCMP, GTCMP)..488

31.14. Interfacing Extensions To Indexes..489
31.14.1. Index Methods and Operator Classes..490
31.14.2. Index Method Strategies..490
31.14.3. Index Method Support Routines..491
31.14.4. An Example...492
31.14.5. Cross-Data-Type Operator Classes..495
31.14.6. System Dependencies on Operator Classes...495
31.14.7. Special Features of Operator Classes...496

32. Triggers...497
32.1. Overview of Trigger Behavior..497
32.2. Visibility of Data Changes..498
32.3. Writing Trigger Functions in C..499
32.4. A Complete Example...501

33. The Rule System...505
33.1. The Query Tree...505
33.2. Views and the Rule System..507

33.2.1. HowSELECTRules Work..507
33.2.2. View Rules in Non-SELECTStatements..512
33.2.3. The Power of Views in PostgreSQL..513
33.2.4. Updating a View...513

33.3. Rules onINSERT, UPDATE, andDELETE...513
33.3.1. How Update Rules Work...514

33.3.1.1. A First Rule Step by Step..515
33.3.2. Cooperation with Views...518

33.4. Rules and Privileges...523

xiii

33.5. Rules and Command Status..524
33.6. Rules versus Triggers...525

34. Procedural Languages...528
34.1. Installing Procedural Languages..528

35. PL/pgSQL - SQL Procedural Language...530
35.1. Overview..530

35.1.1. Advantages of Using PL/pgSQL...531
35.1.2. Supported Argument and Result Data Types...531

35.2. Tips for Developing in PL/pgSQL..532
35.2.1. Handling of Quotation Marks..532

35.3. Structure of PL/pgSQL...534
35.4. Declarations..535

35.4.1. Aliases for Function Parameters..535
35.4.2. Copying Types...537
35.4.3. Row Types..537
35.4.4. Record Types...538
35.4.5.RENAME...538

35.5. Expressions...538
35.6. Basic Statements...539

35.6.1. Assignment..540
35.6.2.SELECT INTO..540
35.6.3. Executing an Expression or Query With No Result.................................541
35.6.4. Doing Nothing At All..541
35.6.5. Executing Dynamic Commands..542
35.6.6. Obtaining the Result Status..543

35.7. Control Structures...544
35.7.1. Returning From a Function..544

35.7.1.1.RETURN..544
35.7.1.2.RETURN NEXT...544

35.7.2. Conditionals...545
35.7.2.1.IF-THEN ..545
35.7.2.2.IF-THEN-ELSE ...546
35.7.2.3.IF-THEN-ELSE IF ...546
35.7.2.4.IF-THEN-ELSIF-ELSE ..546
35.7.2.5.IF-THEN-ELSEIF-ELSE ..547

35.7.3. Simple Loops...547
35.7.3.1.LOOP..547
35.7.3.2.EXIT ..547
35.7.3.3.WHILE..548
35.7.3.4.FOR(integer variant)..549

35.7.4. Looping Through Query Results...549
35.7.5. Trapping Errors..550

35.8. Cursors..551
35.8.1. Declaring Cursor Variables..551
35.8.2. Opening Cursors..552

35.8.2.1.OPEN FOR SELECT...552
35.8.2.2.OPEN FOR EXECUTE..552
35.8.2.3. Opening a Bound Cursor...553

35.8.3. Using Cursors...553
35.8.3.1.FETCH..553
35.8.3.2.CLOSE..553
35.8.3.3. Returning Cursors...554

xiv

35.9. Errors and Messages...555
35.10. Trigger Procedures...556
35.11. Porting from Oracle PL/SQL..561

35.11.1. Porting Examples...561
35.11.2. Other Things to Watch For...567

35.11.2.1. Implicit Rollback after Exceptions..567
35.11.2.2.EXECUTE..567
35.11.2.3. Optimizing PL/pgSQL Functions..567

35.11.3. Appendix..568
36. PL/Tcl - Tcl Procedural Language..571

36.1. Overview..571
36.2. PL/Tcl Functions and Arguments...571
36.3. Data Values in PL/Tcl...572
36.4. Global Data in PL/Tcl..573
36.5. Database Access from PL/Tcl..573
36.6. Trigger Procedures in PL/Tcl...575
36.7. Modules and theunknown command...577
36.8. Tcl Procedure Names...577

37. PL/Perl - Perl Procedural Language..578
37.1. PL/Perl Functions and Arguments..578
37.2. Database Access from PL/Perl...580
37.3. Data Values in PL/Perl..581
37.4. Global Values in PL/Perl..581
37.5. Trusted and Untrusted PL/Perl...582
37.6. PL/Perl Triggers...583
37.7. Limitations and Missing Features..584

38. PL/Python - Python Procedural Language..585
38.1. PL/Python Functions..585
38.2. Trigger Functions...586
38.3. Database Access...586

39. Server Programming Interface..588
39.1. Interface Functions...588

SPI_connect...588
SPI_finish...590
SPI_push..591
SPI_pop..592
SPI_execute..593
SPI_exec...596
SPI_prepare..597
SPI_getargcount...599
SPI_getargtypeid..600
SPI_is_cursor_plan..601
SPI_execute_plan...602
SPI_execp...604
SPI_cursor_open..605
SPI_cursor_find..606
SPI_cursor_fetch..607
SPI_cursor_move...608
SPI_cursor_close..609
SPI_saveplan..610

39.2. Interface Support Functions...611
SPI_fname..611

xv

SPI_fnumber..612
SPI_getvalue..613
SPI_getbinval...614
SPI_gettype..615
SPI_gettypeid...616
SPI_getrelname..617

39.3. Memory Management..618
SPI_palloc..618
SPI_repalloc...620
SPI_pfree..621
SPI_copytuple..622
SPI_returntuple..623
SPI_modifytuple..624
SPI_freetuple..626
SPI_freetuptable...627
SPI_freeplan...628

39.4. Visibility of Data Changes..629
39.5. Examples..629

VI. Reference...632

I. SQL Commands...634
ABORT..635
ALTER AGGREGATE..637
ALTER CONVERSION..639
ALTER DATABASE ...640
ALTER DOMAIN ...642
ALTER FUNCTION...644
ALTER GROUP..646
ALTER INDEX ...648
ALTER LANGUAGE..650
ALTER OPERATOR...651
ALTER OPERATOR CLASS..652
ALTER SCHEMA...653
ALTER SEQUENCE...654
ALTER TABLE ...656
ALTER TABLESPACE...662
ALTER TRIGGER..664
ALTER TYPE..665
ALTER USER...666
ANALYZE ...669
BEGIN...671
CHECKPOINT..673
CLOSE..674
CLUSTER...675
COMMENT...678
COMMIT...681
COPY..682
CREATE AGGREGATE...689
CREATE CAST...692
CREATE CONSTRAINT TRIGGER...695
CREATE CONVERSION...696
CREATE DATABASE...698

xvi

CREATE DOMAIN...700
CREATE FUNCTION...702
CREATE GROUP..706
CREATE INDEX...708
CREATE LANGUAGE...711
CREATE OPERATOR..713
CREATE OPERATOR CLASS...716
CREATE RULE...719
CREATE SCHEMA..722
CREATE SEQUENCE..724
CREATE TABLE..727
CREATE TABLE AS..737
CREATE TABLESPACE...739
CREATE TRIGGER..741
CREATE TYPE...744
CREATE USER...750
CREATE VIEW...753
DEALLOCATE ...756
DECLARE...757
DELETE..760
DROP AGGREGATE..762
DROP CAST...763
DROP CONVERSION..764
DROP DATABASE...765
DROP DOMAIN...766
DROP FUNCTION...767
DROP GROUP..768
DROP INDEX...769
DROP LANGUAGE..770
DROP OPERATOR...771
DROP OPERATOR CLASS..773
DROP RULE...774
DROP SCHEMA...775
DROP SEQUENCE...776
DROP TABLE...777
DROP TABLESPACE...779
DROP TRIGGER..780
DROP TYPE..781
DROP USER...782
DROP VIEW...784
END...785
EXECUTE...786
EXPLAIN ..788
FETCH..791
GRANT ...795
INSERT...800
LISTEN ...803
LOAD ..805
LOCK ..806
MOVE..809
NOTIFY...811
PREPARE..813

xvii

REINDEX..815
RELEASE SAVEPOINT...818
RESET...820
REVOKE...821
ROLLBACK ..824
ROLLBACK TO SAVEPOINT...825
SAVEPOINT...827
SELECT..829
SELECT INTO..840
SET..842
SET CONSTRAINTS...845
SET SESSION AUTHORIZATION..846
SET TRANSACTION...848
SHOW...850
START TRANSACTION..852
TRUNCATE..853
UNLISTEN..854
UPDATE..856
VACUUM ..859

II. PostgreSQL Client Applications..862
clusterdb..863
createdb..866
createlang...869
createuser...872
dropdb..875
droplang...878
dropuser...880
ecpg..883
pg_config...885
pg_dump..887
pg_dumpall..894
pg_restore..898
psql..904
vacuumdb...927

III. PostgreSQL Server Applications..930
initdb..931
ipcclean..934
pg_controldata...935
pg_ctl...936
pg_resetxlog..940
postgres..942
postmaster..946

VII. Internals ...951

40. Overview of PostgreSQL Internals...953
40.1. The Path of a Query..953
40.2. How Connections are Established..953
40.3. The Parser Stage...954

40.3.1. Parser..954
40.3.2. Transformation Process..955

40.4. The PostgreSQL Rule System..955
40.5. Planner/Optimizer...955

xviii

40.5.1. Generating Possible Plans..956
40.6. Executor..957

41. System Catalogs..958
41.1. Overview..958
41.2.pg_aggregate ..959
41.3.pg_am ...959
41.4.pg_amop ...961
41.5.pg_amproc ...961
41.6.pg_attrdef ...962
41.7.pg_attribute ..962
41.8.pg_cast ...965
41.9.pg_class ...966
41.10.pg_constraint ..969
41.11.pg_conversion ..970
41.12.pg_database ..971
41.13.pg_depend ...972
41.14.pg_description ..974
41.15.pg_group ...974
41.16.pg_index ...975
41.17.pg_inherits ..976
41.18.pg_language ..976
41.19.pg_largeobject ..977
41.20.pg_listener ..978
41.21.pg_namespace ..978
41.22.pg_opclass ...979
41.23.pg_operator ..979
41.24.pg_proc ...981
41.25.pg_rewrite ...983
41.26.pg_shadow ...983
41.27.pg_statistic ..984
41.28.pg_tablespace ..986
41.29.pg_trigger ...986
41.30.pg_type ...987
41.31. System Views...993
41.32.pg_indexes ...994
41.33.pg_locks ...994
41.34.pg_rules ...996
41.35.pg_settings ..996
41.36.pg_stats ...997
41.37.pg_tables ...999
41.38.pg_user ...1000
41.39.pg_views ...1000

42. Frontend/Backend Protocol...1002
42.1. Overview..1002

42.1.1. Messaging Overview..1002
42.1.2. Extended Query Overview...1003
42.1.3. Formats and Format Codes..1003

42.2. Message Flow...1004
42.2.1. Start-Up..1004
42.2.2. Simple Query...1006
42.2.3. Extended Query...1007
42.2.4. Function Call..1010

xix

42.2.5. COPY Operations..1010
42.2.6. Asynchronous Operations..1011
42.2.7. Cancelling Requests in Progress..1012
42.2.8. Termination..1013
42.2.9. SSL Session Encryption...1013

42.3. Message Data Types...1014
42.4. Message Formats..1014
42.5. Error and Notice Message Fields...1030
42.6. Summary of Changes since Protocol 2.0..1031

43. PostgreSQL Coding Conventions...1033
43.1. Formatting..1033
43.2. Reporting Errors Within the Server..1033
43.3. Error Message Style Guide...1035

43.3.1. What goes where..1035
43.3.2. Formatting..1036
43.3.3. Quotation marks...1036
43.3.4. Use of quotes..1036
43.3.5. Grammar and punctuation..1037
43.3.6. Upper case vs. lower case..1037
43.3.7. Avoid passive voice..1037
43.3.8. Present vs past tense...1037
43.3.9. Type of the object...1038
43.3.10. Brackets..1038
43.3.11. Assembling error messages..1038
43.3.12. Reasons for errors..1038
43.3.13. Function names..1038
43.3.14. Tricky words to avoid..1039
43.3.15. Proper spelling...1039
43.3.16. Localization..1040

44. Native Language Support..1041
44.1. For the Translator...1041

44.1.1. Requirements...1041
44.1.2. Concepts...1041
44.1.3. Creating and maintaining message catalogs..1042
44.1.4. Editing the PO files..1043

44.2. For the Programmer..1044
44.2.1. Mechanics..1044
44.2.2. Message-writing guidelines...1045

45. Writing A Procedural Language Handler...1046
46. Genetic Query Optimizer..1048

46.1. Query Handling as a Complex Optimization Problem.......................................1048
46.2. Genetic Algorithms..1048
46.3. Genetic Query Optimization (GEQO) in PostgreSQL.......................................1049

46.3.1. Future Implementation Tasks for PostgreSQL GEQO..........................1050
46.4. Further Reading..1050

47. Index Cost Estimation Functions..1051
48. GiST Indexes...1054

48.1. Introduction..1054
48.2. Extensibility..1054
48.3. Implementation...1054
48.4. Limitations..1055
48.5. Examples..1055

xx

49. Database Physical Storage..1057
49.1. Database File Layout..1057
49.2. TOAST...1058
49.3. Database Page Layout..1060

50. BKI Backend Interface..1063
50.1. BKI File Format...1063
50.2. BKI Commands..1063
50.3. Example..1064

VIII. Appendixes ...1065

A. PostgreSQL Error Codes..1066
B. Date/Time Support...1073

B.1. Date/Time Input Interpretation..1073
B.2. Date/Time Key Words..1074
B.3. History of Units...1088

C. SQL Key Words..1090
D. SQL Conformance...1109

D.1. Supported Features..1110
D.2. Unsupported Features..1120

E. Release Notes...1128
E.1. Release 8.0...1128

E.1.1. Overview...1128
E.1.2. Migration to version 8.0..1129
E.1.3. Deprecated Features..1130
E.1.4. Changes...1131

E.1.4.1. Performance Improvements..1131
E.1.4.2. Server Changes...1133
E.1.4.3. Query Changes..1134
E.1.4.4. Object Manipulation Changes..1136
E.1.4.5. Utility Command Changes..1137
E.1.4.6. Data Type and Function Changes...1138
E.1.4.7. Server-Side Language Changes..1140
E.1.4.8. psql Changes...1141
E.1.4.9. pg_dump Changes...1141
E.1.4.10. libpq Changes...1142
E.1.4.11. Source Code Changes...1142
E.1.4.12. Contrib Changes...1144

E.2. Release 7.4.6..1144
E.2.1. Migration to version 7.4.6...1144
E.2.2. Changes...1144

E.3. Release 7.4.5..1145
E.3.1. Migration to version 7.4.5...1145
E.3.2. Changes...1145

E.4. Release 7.4.4..1146
E.4.1. Migration to version 7.4.4...1146
E.4.2. Changes...1146

E.5. Release 7.4.3..1146
E.5.1. Migration to version 7.4.3...1147
E.5.2. Changes...1147

E.6. Release 7.4.2..1147
E.6.1. Migration to version 7.4.2...1148
E.6.2. Changes...1149

xxi

E.7. Release 7.4.1..1149
E.7.1. Migration to version 7.4.1...1150
E.7.2. Changes...1150

E.8. Release 7.4...1151
E.8.1. Overview...1151
E.8.2. Migration to version 7.4..1153
E.8.3. Changes...1154

E.8.3.1. Server Operation Changes..1154
E.8.3.2. Performance Improvements..1155
E.8.3.3. Server Configuration Changes..1157
E.8.3.4. Query Changes..1158
E.8.3.5. Object Manipulation Changes..1159
E.8.3.6. Utility Command Changes..1160
E.8.3.7. Data Type and Function Changes...1161
E.8.3.8. Server-Side Language Changes..1163
E.8.3.9. psql Changes...1163
E.8.3.10. pg_dump Changes...1164
E.8.3.11. libpq Changes...1165
E.8.3.12. JDBC Changes..1165
E.8.3.13. Miscellaneous Interface Changes...1166
E.8.3.14. Source Code Changes...1166
E.8.3.15. Contrib Changes...1167

E.9. Release 7.3.8..1167
E.9.1. Migration to version 7.3.8...1168
E.9.2. Changes...1168

E.10. Release 7.3.7..1168
E.10.1. Migration to version 7.3.7...1168
E.10.2. Changes...1168

E.11. Release 7.3.6..1169
E.11.1. Migration to version 7.3.6...1169
E.11.2. Changes...1169

E.12. Release 7.3.5..1170
E.12.1. Migration to version 7.3.5...1170
E.12.2. Changes...1170

E.13. Release 7.3.4..1171
E.13.1. Migration to version 7.3.4...1171
E.13.2. Changes...1171

E.14. Release 7.3.3..1171
E.14.1. Migration to version 7.3.3...1171
E.14.2. Changes...1171

E.15. Release 7.3.2..1173
E.15.1. Migration to version 7.3.2...1174
E.15.2. Changes...1174

E.16. Release 7.3.1..1175
E.16.1. Migration to version 7.3.1...1175
E.16.2. Changes...1175

E.17. Release 7.3...1175
E.17.1. Overview...1176
E.17.2. Migration to version 7.3..1176
E.17.3. Changes...1177

E.17.3.1. Server Operation...1177
E.17.3.2. Performance..1177

xxii

E.17.3.3. Privileges...1178
E.17.3.4. Server Configuration...1178
E.17.3.5. Queries..1179
E.17.3.6. Object Manipulation...1179
E.17.3.7. Utility Commands...1180
E.17.3.8. Data Types and Functions...1181
E.17.3.9. Internationalization...1183
E.17.3.10. Server-side Languages..1183
E.17.3.11. psql..1183
E.17.3.12. libpq..1184
E.17.3.13. JDBC...1184
E.17.3.14. Miscellaneous Interfaces...1184
E.17.3.15. Source Code..1185
E.17.3.16. Contrib..1186

E.18. Release 7.2.6..1187
E.18.1. Migration to version 7.2.6...1187
E.18.2. Changes...1187

E.19. Release 7.2.5..1187
E.19.1. Migration to version 7.2.5...1188
E.19.2. Changes...1188

E.20. Release 7.2.4..1188
E.20.1. Migration to version 7.2.4...1188
E.20.2. Changes...1188

E.21. Release 7.2.3..1189
E.21.1. Migration to version 7.2.3...1189
E.21.2. Changes...1189

E.22. Release 7.2.2..1189
E.22.1. Migration to version 7.2.2...1189
E.22.2. Changes...1189

E.23. Release 7.2.1..1190
E.23.1. Migration to version 7.2.1...1190
E.23.2. Changes...1190

E.24. Release 7.2...1191
E.24.1. Overview...1191
E.24.2. Migration to version 7.2..1191
E.24.3. Changes...1192

E.24.3.1. Server Operation...1192
E.24.3.2. Performance..1193
E.24.3.3. Privileges...1193
E.24.3.4. Client Authentication..1193
E.24.3.5. Server Configuration...1193
E.24.3.6. Queries..1194
E.24.3.7. Schema Manipulation...1194
E.24.3.8. Utility Commands...1195
E.24.3.9. Data Types and Functions...1195
E.24.3.10. Internationalization...1196
E.24.3.11. PL/pgSQL...1196
E.24.3.12. PL/Perl..1197
E.24.3.13. PL/Tcl...1197
E.24.3.14. PL/Python...1197
E.24.3.15. psql..1197
E.24.3.16. libpq..1197

xxiii

E.24.3.17. JDBC...1197
E.24.3.18. ODBC...1198
E.24.3.19. ECPG..1199
E.24.3.20. Misc. Interfaces...1199
E.24.3.21. Build and Install..1199
E.24.3.22. Source Code..1200
E.24.3.23. Contrib..1200

E.25. Release 7.1.3..1201
E.25.1. Migration to version 7.1.3...1201
E.25.2. Changes...1201

E.26. Release 7.1.2..1201
E.26.1. Migration to version 7.1.2...1201
E.26.2. Changes...1201

E.27. Release 7.1.1..1201
E.27.1. Migration to version 7.1.1...1202
E.27.2. Changes...1202

E.28. Release 7.1...1202
E.28.1. Migration to version 7.1..1203
E.28.2. Changes...1203

E.29. Release 7.0.3..1206
E.29.1. Migration to version 7.0.3...1207
E.29.2. Changes...1207

E.30. Release 7.0.2..1208
E.30.1. Migration to version 7.0.2...1208
E.30.2. Changes...1208

E.31. Release 7.0.1..1208
E.31.1. Migration to version 7.0.1...1208
E.31.2. Changes...1208

E.32. Release 7.0...1209
E.32.1. Migration to version 7.0..1209
E.32.2. Changes...1210

E.33. Release 6.5.3..1216
E.33.1. Migration to version 6.5.3...1216
E.33.2. Changes...1216

E.34. Release 6.5.2..1216
E.34.1. Migration to version 6.5.2...1216
E.34.2. Changes...1216

E.35. Release 6.5.1..1217
E.35.1. Migration to version 6.5.1...1217
E.35.2. Changes...1217

E.36. Release 6.5...1218
E.36.1. Migration to version 6.5..1219

E.36.1.1. Multiversion Concurrency Control...1219
E.36.2. Changes...1219

E.37. Release 6.4.2..1222
E.37.1. Migration to version 6.4.2...1223
E.37.2. Changes...1223

E.38. Release 6.4.1..1223
E.38.1. Migration to version 6.4.1...1223
E.38.2. Changes...1223

E.39. Release 6.4...1224
E.39.1. Migration to version 6.4..1224

xxiv

E.39.2. Changes...1225
E.40. Release 6.3.2..1228

E.40.1. Changes...1228
E.41. Release 6.3.1..1229

E.41.1. Changes...1229
E.42. Release 6.3...1230

E.42.1. Migration to version 6.3..1231
E.42.2. Changes...1231

E.43. Release 6.2.1..1234
E.43.1. Migration from version 6.2 to version 6.2.1..1235
E.43.2. Changes...1235

E.44. Release 6.2...1235
E.44.1. Migration from version 6.1 to version 6.2...1235
E.44.2. Migration from version 1.x to version 6.2..1236
E.44.3. Changes...1236

E.45. Release 6.1.1..1238
E.45.1. Migration from version 6.1 to version 6.1.1..1238
E.45.2. Changes...1238

E.46. Release 6.1...1238
E.46.1. Migration to version 6.1..1239
E.46.2. Changes...1239

E.47. Release 6.0...1241
E.47.1. Migration from version 1.09 to version 6.0...1241
E.47.2. Migration from pre-1.09 to version 6.0...1241
E.47.3. Changes...1241

E.48. Release 1.09...1243
E.49. Release 1.02...1243

E.49.1. Migration from version 1.02 to version 1.02.1......................................1244
E.49.2. Dump/Reload Procedure...1244
E.49.3. Changes...1245

E.50. Release 1.01...1245
E.50.1. Migration from version 1.0 to version 1.01...1245
E.50.2. Changes...1247

E.51. Release 1.0...1247
E.51.1. Changes...1248

E.52. Postgres95 Release 0.03...1248
E.52.1. Changes...1249

E.53. Postgres95 Release 0.02...1251
E.53.1. Changes...1251

E.54. Postgres95 Release 0.01...1251
F. The CVS Repository...1253

F.1. Getting The Source Via Anonymous CVS...1253
F.2. CVS Tree Organization..1254
F.3. Getting The Source Via CVSup..1255

F.3.1. Preparing A CVSup Client System..1256
F.3.2. Running a CVSup Client...1256
F.3.3. Installing CVSup..1258
F.3.4. Installation from Sources...1259

G. Documentation...1261
G.1. DocBook..1261
G.2. Tool Sets..1261

G.2.1. Linux RPM Installation...1262

xxv

G.2.2. FreeBSD Installation...1262
G.2.3. Debian Packages...1263
G.2.4. Manual Installation from Source...1263

G.2.4.1. Installing OpenJade..1263
G.2.4.2. Installing the DocBook DTD Kit...1264
G.2.4.3. Installing the DocBook DSSSL Style Sheets.............................1264
G.2.4.4. Installing JadeTeX..1265

G.2.5. Detection byconfigure ..1265
G.3. Building The Documentation..1265

G.3.1. HTML...1266
G.3.2. Manpages..1266
G.3.3. Print Output via JadeTex...1266
G.3.4. Print Output via RTF...1267
G.3.5. Plain Text Files..1268
G.3.6. Syntax Check..1268

G.4. Documentation Authoring...1268
G.4.1. Emacs/PSGML..1269
G.4.2. Other Emacs modes..1270

G.5. Style Guide..1270
G.5.1. Reference Pages..1270

H. External Projects..1273
H.1. Externally Developed Interfaces..1273
H.2. Extensions..1274

Bibliography ..1275

Index...1277

xxvi

List of Tables
4-1. Operator Precedence (decreasing)...29
8-1. Data Types...77
8-2. Numeric Types...78
8-3. Monetary Types...82
8-4. Character Types...82
8-5. Special Character Types..84
8-6. Binary Data Types...84
8-7.bytea Literal Escaped Octets...84
8-8.bytea Output Escaped Octets...85
8-9. Date/Time Types..86
8-10. Date Input..87
8-11. Time Input...88
8-12. Time Zone Input..88
8-13. Special Date/Time Inputs..90
8-14. Date/Time Output Styles...90
8-15. Date Order Conventions..91
8-16. Geometric Types..93
8-17. Network Address Types..95
8-18.cidr Type Input Examples...96
8-19. Object Identifier Types..110
8-20. Pseudo-Types...111
9-1. Comparison Operators...113
9-2. Mathematical Operators..115
9-3. Mathematical Functions..116
9-4. Trigonometric Functions...117
9-5. SQL String Functions and Operators..118
9-6. Other String Functions..119
9-7. Built-in Conversions..123
9-8. SQL Binary String Functions and Operators..126
9-9. Other Binary String Functions..126
9-10. Bit String Operators...127
9-11. Regular Expression Match Operators..130
9-12. Regular Expression Atoms..131
9-13. Regular Expression Quantifiers...132
9-14. Regular Expression Constraints..133
9-15. Regular Expression Character-Entry Escapes...134
9-16. Regular Expression Class-Shorthand Escapes..135
9-17. Regular Expression Constraint Escapes..136
9-18. Regular Expression Back References..136
9-19. ARE Embedded-Option Letters..137
9-20. Formatting Functions..140
9-21. Template Patterns for Date/Time Formatting..141
9-22. Template Pattern Modifiers for Date/Time Formatting...142
9-23. Template Patterns for Numeric Formatting...143
9-24.to_char Examples...144
9-25. Date/Time Operators...145
9-26. Date/Time Functions...146
9-27.AT TIME ZONEVariants...151
9-28. Geometric Operators...154

xxvii

9-29. Geometric Functions...155
9-30. Geometric Type Conversion Functions...156
9-31.cidr andinet Operators...157
9-32.cidr andinet Functions...158
9-33.macaddr Functions...158
9-34. Sequence Functions...159
9-35.array Operators...162
9-36.array Functions...163
9-37. Aggregate Functions..163
9-38. Series Generating Functions..171
9-39. Session Information Functions..172
9-40. Access Privilege Inquiry Functions...173
9-41. Schema Visibility Inquiry Functions...174
9-42. System Catalog Information Functions...175
9-43. Comment Information Functions..176
9-44. Configuration Settings Functions..177
9-45. Backend Signalling Functions...177
9-46. Backup Control Functions...177
12-1. SQL Transaction Isolation Levels...197
16-1. Short option key..262
16-2. System V IPC parameters..263
20-1. Server Character Sets..292
20-2. Client/Server Character Set Conversions..294
23-1. Standard Statistics Views..316
23-2. Statistics Access Functions...318
30-1.information_schema_catalog_name Columns...407
30-2.applicable_roles Columns...407
30-3.check_constraints Columns...407
30-4.column_domain_usage Columns..408
30-5.column_privileges Columns...408
30-6.column_udt_usage Columns...409
30-7.columns Columns..410
30-8.constraint_column_usage Columns..413
30-9.constraint_table_usage Columns..414
30-10.data_type_privileges Columns..414
30-11.domain_constraints Columns...415
30-12.domain_udt_usage Columns...416
30-13.domains Columns..416
30-14.element_types Columns...419
30-15.enabled_roles Columns...421
30-16.key_column_usage Columns...422
30-17.parameters Columns..422
30-18.referential_constraints Columns..425
30-19.role_column_grants Columns...426
30-20.role_routine_grants Columns..426
30-21.role_table_grants Columns...427
30-22.role_usage_grants Columns...428
30-23.routine_privileges Columns...428
30-24.routines Columns..429
30-25.schemata Columns..433
30-26.sql_features Columns..434
30-27.sql_implementation_info Columns..434

xxviii

30-28.sql_languages Columns...435
30-29.sql_packages Columns..436
30-30.sql_sizing Columns..436
30-31.sql_sizing_profiles Columns..437
30-32.table_constraints Columns...437
30-33.table_privileges Columns...438
30-34.tables Columns...438
30-35.triggers Columns..439
30-36.usage_privileges Columns...440
30-37.view_column_usage Columns...441
30-38.view_table_usage Columns...442
30-39.views Columns...442
31-1. Equivalent C Types for Built-In SQL Types...461
31-2. B-tree Strategies..490
31-3. Hash Strategies..491
31-4. R-tree Strategies..491
31-5. B-tree Support Functions...491
31-6. Hash Support Functions..492
31-7. R-tree Support Functions...492
31-8. GiST Support Functions..492
41-1. System Catalogs..958
41-2.pg_aggregate Columns..959
41-3.pg_am Columns...960
41-4.pg_amop Columns..961
41-5.pg_amproc Columns..961
41-6.pg_attrdef Columns..962
41-7.pg_attribute Columns..962
41-8.pg_cast Columns..965
41-9.pg_class Columns..966
41-10.pg_constraint Columns...969
41-11.pg_conversion Columns...970
41-12.pg_database Columns..971
41-13.pg_depend Columns..972
41-14.pg_description Columns...974
41-15.pg_group Columns..974
41-16.pg_index Columns..975
41-17.pg_inherits Columns..976
41-18.pg_language Columns..977
41-19.pg_largeobject Columns...978
41-20.pg_listener Columns..978
41-21.pg_namespace Columns..979
41-22.pg_opclass Columns..979
41-23.pg_operator Columns..980
41-24.pg_proc Columns..981
41-25.pg_rewrite Columns..983
41-26.pg_shadow Columns..984
41-27.pg_statistic Columns..985
41-28.pg_tablespace Columns...986
41-29.pg_trigger Columns..987
41-30.pg_type Columns..988
41-31. System Views..994
41-32.pg_indexes Columns..994

xxix

41-33.pg_locks Columns..995
41-34.pg_rules Columns..996
41-35.pg_settings Columns..996
41-36.pg_stats Columns..997
41-37.pg_tables Columns..999
41-38.pg_user Columns..1000
41-39.pg_views Columns..1000
49-1. Contents ofPGDATA..1057
49-2. Overall Page Layout..1060
49-3. PageHeaderData Layout..1060
49-4. HeapTupleHeaderData Layout..1061
A-1. PostgreSQL Error Codes..1066
B-1. Month Names..1074
B-2. Day of the Week Names...1074
B-3. Date/Time Field Modifiers..1075
B-4. Time Zone Abbreviations for Input..1075
B-5. Australian Time Zone Abbreviations for Input..1078
B-6. Time Zone Names for Settingtimezone ..1078
C-1. SQL Key Words..1090

List of Figures
46-1. Structured Diagram of a Genetic Algorithm...1049

List of Examples
8-1. Using the character types..83
8-2. Using theboolean type..93
8-3. Using the bit string types...97
10-1. Exponentiation Operator Type Resolution..181
10-2. String Concatenation Operator Type Resolution...182
10-3. Absolute-Value and Negation Operator Type Resolution...182
10-4. Rounding Function Argument Type Resolution..184
10-5. Substring Function Type Resolution...184
10-6.character Storage Type Conversion..186
10-7. Type Resolution with Underspecified Types in a Union...187
10-8. Type Resolution in a Simple Union...187
10-9. Type Resolution in a Transposed Union..187
11-1. Setting up a Partial Index to Exclude Common Values...193
11-2. Setting up a Partial Index to Exclude Uninteresting Values..193
11-3. Setting up a Partial Unique Index..194
19-1. Examplepg_hba.conf entries..284
19-2. An examplepg_ident.conf file ..288
27-1. libpq Example Program 1..370
27-2. libpq Example Program 2..372
27-3. libpq Example Program 3..375
28-1. Large Objects with libpq Example Program...382
34-1. Manual Installation of PL/pgSQL...529
35-1. A PL/pgSQL Trigger Procedure..557

xxx

35-2. A PL/pgSQL Trigger Procedure For Auditing..558
35-3. A PL/pgSQL Trigger Procedure For Maintaining A Summary Table....................................559
35-4. Porting a Simple Function from PL/SQL to PL/pgSQL...561
35-5. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL....................562
35-6. Porting a Procedure With String Manipulation andOUTParameters from PL/SQL to PL/pgSQL

564
35-7. Porting a Procedure from PL/SQL to PL/pgSQL..565

xxxi

Preface
This book is the official documentation of PostgreSQL. It is being written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

• Part Iis an informal introduction for new users.

• Part IIdocuments the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

• Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

• Part IVdescribes the programming interfaces for PostgreSQL client programs.

• Part V contains information for advanced users about the extensibility capabilities of the server.
Topics are, for instance, user-defined data types and functions.

• Part VIcontains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

• Part VII contains assorted information that may be of use to PostgreSQL developers.

1. What is PostgreSQL?
PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.21, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL:2003 standard and offers many modern features:

• complex queries
• foreign keys
• triggers
• views
• transactional integrity
• multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

• data types
• functions
• operators
• aggregate functions
• index methods

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html

i

Preface

• procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by everyone
free of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL
The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over a decade of devel-
opment behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented inThe design of POSTGRESand the definition of the initial data
model appeared inThe POSTGRES data model. The design of the rule system at that time was de-
scribed inThe design of the POSTGRES rules system. The rationale and architecture of the storage
manager were detailed inThe design of the POSTGRES storage system.

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES, was released to a few external users in June 1989. In response
to a critique of the first rule system (A commentary on the POSTGRES rules system), the rule system
was redesigned (On Rules, Procedures, Caching and Views in Database Systems) and Version 2 was
released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for
multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix2, which is now owned by IBM3.) picked up the code
and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
20004 scientific computing project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

ii

Preface

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

• The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregate functions were re-implemented. Support for theGROUP BY

query clause was also added.

• A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

• A new front-end library,libpgtcl , supported Tcl-based clients. A sample shell,pgtclsh , pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

• The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

• The instance-level rule system was removed. Rules were still available as rewrite rules.

• A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

• GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found inAppendix E.

3. Conventions
This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasized initalics. Everything that represents
input or output of the computer, in particular commands, program code, and screen output, is shown
in a monospaced font (example). Within such passages, italics (example) indicate placeholders;
you must insert an actual value instead of the placeholder. On occasion, parts of program code are
emphasized in bold face (example), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)
Braces ({ and}) and vertical lines (|) indicate that you must choose one alternative. Dots (...) mean
that the preceding element can be repeated.

iii

Preface

Where it enhances the clarity, SQL commands are preceded by the prompt=>, and shell commands
are preceded by the prompt$. Normally, prompts are not shown, though.

An administratoris generally a person who is in charge of installing and running the server. Auser
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information
Besides the documentation, that is, this book, there are other resources about PostgreSQL:

FAQs

The FAQ list contains continuously updated answers to frequently asked questions.

READMEs

READMEfiles are available for most contributed packages.

Web Site

The PostgreSQL web site5 carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines
When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5. http://www.postgresql.org

iv

Preface

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

• A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

• A program produces the wrong output for any given input.

• A program refuses to accept valid input (as defined in the documentation).

• A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

• PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

• The exact sequence of stepsfrom program start-upnecessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bareSELECT statement without the preceding
CREATE TABLEand INSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your~/.psqlrc start-up file.)
An easy start at this file is to use pg_dump to dump out the table declarations and data needed to set
the scene, then add the problem query. You are encouraged to minimize the size of your example,
but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

v

Preface

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

• The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all de-
tails are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

• The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

• Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

• Anything you did at all differently from the installation instructions.

• The PostgreSQL version. You can run the commandSELECT version(); to find out the version
of the server you are connected to. Most executable programs also support a--version option; at
leastpostmaster --version andpsql --version should work. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. If you run a prepack-
aged version, such as RPMs, say so, including any subversion the package may have. If you are
talking about a CVS snapshot, mention that, including its date and time.

If your version is older than 8.0.0 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

vi

Preface

• Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you
have installation problems then information about the toolchain on your machine (compiler, make,
and so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the back-
end server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server
process is quite different from crash of the parent “postmaster” process; please don’t say “the post-
master crashed” when you mean a single backend process went down, nor vice versa. Also, client
programs such as the interactive frontend “psql” are completely separate from the backend. Please try
to be specific about whether the problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsql-bugs@postgresql.org >. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site
http://www.postgresql.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresql.org > mailing list.

Do not send bug reports to any of the user mailing lists, such as <pgsql-sql@postgresql.org >
or <pgsql-general@postgresql.org >. These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list
<pgsql-hackers@postgresql.org >. This list is for discussing the development of PostgreSQL,
and it would be nice if we could keep the bug reports separate. We might choose to take up a
discussion about your bug report onpgsql-hackers , if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql-docs@postgresql.org >. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org >, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug-report web form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail . For more information send mail to <majordomo@postgresql.org > with the single word
help in the body of the message.

vii

Preface

viii

I. Tutorial
Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to readingPart II to gain a
more formal knowledge of the SQL language, orPart IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should also readPart III.

Chapter 1. Getting Started

1.1. Installation
Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer toChapter 14for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you may have some more work
to do. For example, if the database server machine is a remote machine, you will need to set the
PGHOSTenvironment variable to the name of the database server machine. The environment variable
PGPORTmay also have to be set. The bottom line is this: if you try to start an application program and
it complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals
Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

• A server process, which manages the database files, accepts connections to the database from client
applications, and performs actions on the database on behalf of the clients. The database server
program is calledpostmaster .

• The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. For that purpose
it starts (“forks”) a new process for each connection. From that point on, the client and the new
server process communicate without intervention by the originalpostmaster process. Thus, the

1

Chapter 1. Getting Started

postmaster is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database
The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next
section.

To create a new database, in this example namedmydb, you use the following command:

$ createdb mydb

This should produce as response:

CREATE DATABASE

If so, this step was successful and you can skip over the remainder of this section.

If you see a message similar to

createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or the search path was
not set correctly. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check back in the installa-
tion instructions to correct the situation.

Another response could be this:

createdb: could not connect to database template1: could not connect to server:
No such file or directory

Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started wherecreatedb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database template1: FATAL: user "joe" does not
exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, seeChapter 17for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usuallypostgres) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is

2

Chapter 1. Getting Started

different from your operating system user name; in that case you need to use the-U switch or set the
PGUSERenvironment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as.1

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
characters in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, simply type

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the databasemydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More aboutcreatedb anddropdb may be found increatedbanddropdbrespectively.

1.4. Accessing a Database
Once you have created a database, you can access it by:

• Running the PostgreSQL interactive terminal program, calledpsql, which allows you to interac-
tively enter, edit, and execute SQL commands.

• Using an existing graphical frontend tool like PgAccess or an office suite with ODBC support to
create and manipulate a database. These possibilities are not covered in this tutorial.

• Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further inPart IV.

You probably want to start uppsql , to try out the examples in this tutorial. It can be activated for the
mydb database by typing the command:

$ psql mydb

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. If you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same name
as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same
name as the operating system user that started the server, and it also happens that that user always has permission to create
databases. Instead of logging in as that user you can also specify the-U option everywhere to select a PostgreSQL user name
to connect as.

3

Chapter 1. Getting Started

If you leave off the database name then it will default to your user account name. You already discov-
ered this scheme in the previous section.

In psql , you will be greeted with the following message:

Welcome to psql 8.0.0, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with psql commands
\g or terminate with semicolon to execute query
\q to quit

mydb=>

The last line could also be

mydb=#

That would mean you are a database superuser, which is most likely the case if you installed Post-
greSQL yourself. Being a superuser means that you are not subject to access controls. For the purpose
of this tutorial this is not of importance.

If you encounter problems startingpsql then go back to the previous section. The diagnostics of
createdb andpsql are similar, and if the former worked the latter should work as well.

The last line printed out bypsql is the prompt, and it indicates thatpsql is listening to you and that
you can type SQL queries into a work space maintained bypsql . Try out these commands:

mydb=> SELECT version();
version

--
PostgreSQL 8.0.0 on i586-pc-linux-gnu, compiled by GCC 2.96

(1 row)

mydb=> SELECT current_date;
date

2002-08-31

(1 row)

mydb=> SELECT 2 + 2;
?column?

4

(1 row)

The psql program has a number of internal commands that are not SQL commands. They begin
with the backslash character, “\ ”. Some of these commands were listed in the welcome message. For
example, you can get help on the syntax of various PostgreSQL SQL commands by typing:

mydb=> \h

To get out ofpsql , type

mydb=> \q

4

Chapter 1. Getting Started

andpsql will quit and return you to your command shell. (For more internal commands, type\? at
the psql prompt.) The full capabilities ofpsql are documented inpsql. If PostgreSQL is installed
correctly you can also typeman psql at the operating system shell prompt to see the documentation.
In this tutorial we will not use these features explicitly, but you can use them yourself when you see
fit.

5

Chapter 2. The SQL Language

2.1. Introduction
This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, includingUnderstanding the New SQLandA Guide to the
SQL Standard. You should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a database namedmydb, as described in
the previous chapter, and have started psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/ . To use those files, first change to that directory and run make:

$ cd /src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. (You
must use GNU make for this — it may be named something different on your system, often gmake.)
Then, to start the tutorial, do the following:

$ cd /src/tutorial
$ psql -s mydb
...

mydb=> \i basics.sql

The \i command reads in commands from the specified file. The-s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the filebasics.sql .

2.2. Concepts
PostgreSQL is arelational database management system(RDBMS). That means it is a system for
managing data stored inrelations. Relation is essentially a mathematical term fortable. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection ofrows. Each row of a given table has the same set of named
columns, and each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a databasecluster.

6

Chapter 2. The SQL Language

2.3. Creating a New Table
You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (
city varchar(80),
temp_lo int, -- low temperature
temp_hi int, -- high temperature
prcp real, -- precipitation
date date

);

You can enter this intopsql with the line breaks.psql will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) may be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashes (“-- ”) in-
troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar(80) specifies a data type that can store arbitrary character strings up to 80 characters in
length.int is the normal integer type.real is a type for storing single precision floating-point num-
bers.date should be self-explanatory. (Yes, the column of typedate is also nameddate . This may
be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL typesint , smallint , real , double precision ,
char(N) , varchar(N) , date , time , timestamp , andinterval , as well as other types of general
utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of
user-defined data types. Consequently, type names are not syntactical key words, except where
required to support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar(80),
location point

);

Thepoint type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLEtablename ;

2.4. Populating a Table With Rows
The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, ’1994-11-27’);

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (’), as in the example. Thedate type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

7

Chapter 2. The SQL Language

Thepoint type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ’(-194.0, 53.0)’);

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, ’1994-11-29’);

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, ’Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.

Please enter all the commands shown above so you have some data to work with in the following
sections.

You could also have usedCOPYto load large amounts of data from flat-text files. This is usually
faster because theCOPYcommand is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM ’/home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more about theCOPYcommand inCOPY.

2.5. Querying a Table
To retrieve data from a table, the table isqueried. An SQLSELECTstatement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of tableweather , type:

SELECT * FROM weather;

Here* is a shorthand for “all columns”.1 So the same result would be had with:

SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------

San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29

(3 rows)

1. While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a
column to the table would change the results.

8

Chapter 2. The SQL Language

You can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
---------------+----------+------------

San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29

(3 rows)

Notice how theASclause is used to relabel the output column. (TheASclause is optional.)

A query can be “qualified” by adding aWHEREclause that specifies which rows are wanted. TheWHERE

clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression
is true are returned. The usual Boolean operators (AND, OR, andNOT) are allowed in the qualification.
For example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------

San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------

Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in
either order. But you’d always get the results shown above if you do

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

city

9

Chapter 2. The SQL Language

Hayward
San Francisco

(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by usingDISTINCT

andORDER BYtogether:2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables
Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called a
join query. As an example, say you wish to list all the weather records together with the location of
the associated city. To do that, we need to compare the city column of each row of the weather table
with the name column of all rows in the cities table, and select the pairs of rows where these values
match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner
than actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
---------------+---------+---------+------+------------+---------------+-----------

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

Observe two things about the result set:

• There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

• There are two columns containing the city name. This is correct because the lists of columns of the
weather and thecities table are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using* :

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities

2. In some database systems, including older versions of PostgreSQL, the implementation ofDISTINCT automatically orders
the rows and soORDER BYis redundant. But this is not required by the SQL standard, and current PostgreSQL doesn’t
guarantee thatDISTINCT causes the rows to be ordered.

10

Chapter 2. The SQL Language

WHERE city = name;

Exercise: Attempt to find out the semantics of this query when theWHEREclause is omitted.

Since the columns all had different names, the parser automatically found out which table they belong
to, but it is good style to fully qualify column names in join queries:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location

FROM weather, cities
WHERE cities.name = weather.city;

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan theweather table and for each row to find the matchingcities row. If no matching row
is found we want some “empty values” to be substituted for thecities table’s columns. This kind
of query is called anouter join. (The joins we have seen so far are inner joins.) The command looks
like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
---------------+---------+---------+------+------------+---------------+-----------

Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called aleft outer joinbecause the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called aself join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
compare thetemp_lo and temp_hi columns of eachweather row to thetemp_lo and temp_hi

columns of all otherweather rows. We can do this with the following query:

SELECT W1.city, W1.temp_lo AS low, W1.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE W1.temp_lo < W2.temp_lo
AND W1.temp_hi > W2.temp_hi;

city | low | high | city | low | high

11

Chapter 2. The SQL Language

---------------+-----+------+---------------+-----+------
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50

(2 rows)

Here we have relabeled the weather table asW1andW2to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
FROM weather w, cities c
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions
Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute thecount , sum, avg (average),max (maximum) andmin (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with

SELECT max(temp_lo) FROM weather;

max

46
(1 row)

If we wanted to know what city (or cities) that reading occurred in, we might try

SELECT city FROM weather WHERE temp_lo = max(temp_lo); WRONG

but this will not work since the aggregatemax cannot be used in theWHEREclause. (This restriction
exists because theWHEREclause determines the rows that will go into the aggregation stage; so it has
to be evaluated before aggregate functions are computed.) However, as is often the case the query can
be restated to accomplish the intended result, here by using asubquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

city

San Francisco
(1 row)

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination withGROUP BYclauses. For example, we can get the
maximum low temperature observed in each city with

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

12

Chapter 2. The SQL Language

city | max
---------------+-----

Hayward | 37
San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows usingHAVING:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max(temp_lo) < 40;

city | max
---------+-----

Hayward | 37
(1 row)

which gives us the same results for only the cities that have alltemp_lo values below 40. Finally, if
we only care about cities whose names begin with “S”, we might do

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE ’S%’ ➊

GROUP BY city
HAVING max(temp_lo) < 40;

➊ TheLIKE operator does pattern matching and is explained inSection 9.7.

It is important to understand the interaction between aggregates and SQL’sWHEREand HAVING

clauses. The fundamental difference betweenWHEREandHAVING is this: WHEREselects input rows
before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereasHAVINGselects group rows after groups and aggregates are computed. Thus, the
WHEREclause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other hand, theHAVING clause al-
ways contains aggregate functions. (Strictly speaking, you are allowed to write aHAVINGclause that
doesn’t use aggregates, but it’s wasteful. The same condition could be used more efficiently at the
WHEREstage.)

In the previous example, we can apply the city name restriction inWHERE, since it needs no aggregate.
This is more efficient than adding the restriction toHAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail theWHEREcheck.

2.8. Updates
You can update existing rows using theUPDATEcommand. Suppose you discover the temperature
readings are all off by 2 degrees as of November 28. You may update the data as follows:

UPDATE weather
SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > ’1994-11-28’;

13

Chapter 2. The SQL Language

Look at the new state of the data:

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------

San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29

(3 rows)

2.9. Deletions
Rows can be removed from a table using theDELETEcommand. Suppose you are no longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’Hayward’;

All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------

San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form

DELETE FROMtablename ;

Without a qualification,DELETEwill remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

14

Chapter 3. Advanced Features

3.1. Introduction
In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found inChapter 2to change or improve them, so it
will be of advantage if you have read that chapter. Some examples from this chapter can also be found
in advanced.sql in the tutorial directory. This file also contains some example data to load, which
is not repeated here. (Refer toSection 2.1for how to use the file.)

3.2. Views
Refer back to the queries inSection 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create aviewover the query, which gives a name to the query that you can refer
to like an ordinary table.

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location

FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which may change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys
Recall theweather andcities tables fromChapter 2. Consider the following problem: You want
to make sure that no one can insert rows in theweather table that do not have a matching entry
in the cities table. This is called maintaining thereferential integrityof your data. In simplistic
database systems this would be implemented (if at all) by first looking at thecities table to check
if a matching record exists, and then inserting or rejecting the newweather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar(80) primary key,
location point

);

15

Chapter 3. Advanced Features

CREATE TABLE weather (
city varchar(80) references cities(city),
temp_lo int,
temp_hi int,
prcp real,
date date

);

Now try inserting an invalid record:

INSERT INTO weather VALUES (’Berkeley’, 45, 53, 0.0, ’1994-11-28’);

ERROR: insert or update on table "weather" violates foreign key constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you toChapter 5for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions
Transactionsare a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from
Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;

UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’Alice’);

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;

UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into atransactiongives us this guarantee. A transaction is said to
beatomic: from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly

16

Chapter 3. Advanced Features

thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN andCOMMITcommands. So our banking transaction would actually look like

BEGIN;
UPDATE accounts SET balance = balance - 100.00

WHERE name = ’Alice’;
-- etc etc
COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the commandROLLBACKinstead ofCOMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue aBEGIN command, then each individual statement has an implicitBEGIN and (if successful)
COMMITwrapped around it. A group of statements surrounded byBEGIN andCOMMITis sometimes
called atransaction block.

Note: Some client libraries issue BEGIN and COMMITcommands automatically, so that you may
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint withSAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction’s database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to
other sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s
account, only to find later that we should have credited Wally’s account. We could do it using save-
points like this:

17

Chapter 3. Advanced Features

BEGIN;
UPDATE accounts SET balance = balance - 100.00

WHERE name = ’Alice’;
SAVEPOINT my_savepoint;
UPDATE accounts SET balance = balance + 100.00

WHERE name = ’Bob’;
-- oops ... forget that and use Wally’s account
ROLLBACK TO my_savepoint;
UPDATE accounts SET balance = balance + 100.00

WHERE name = ’Wally’;
COMMIT;

This example is, of course, oversimplified, but there’s a lot of control to be had over a transaction
block through the use of savepoints. Moreover,ROLLBACK TOis the only way to regain control of a
transaction block that was put in aborted state by the system due to an error, short of rolling it back
completely and starting again.

3.5. Inheritance
Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A tablecities and a tablecapitals . Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you’re really clever you
might invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
altitude int, -- (in ft)
state char(2)

);

CREATE TABLE non_capitals (
name text,
population real,
altitude int -- (in ft)

);

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals

UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (
name text,
population real,
altitude int -- (in ft)

);

18

Chapter 3. Advanced Features

CREATE TABLE capitals (
state char(2)

) INHERITS (cities);

In this case, a row ofcapitals inheritsall columns (name, population , andaltitude) from its
parent, cities . The type of the columnname is text , a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a
table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 ft.:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
-----------+----------

Las Vegas | 2174
Mariposa | 1953
Madison | 845

(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude of 500 ft. or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
-----------+----------

Las Vegas | 2174
Mariposa | 1953

(2 rows)

Here theONLYbeforecities indicates that the query should be run over only thecities table, and
not tables belowcities in the inheritance hierarchy. Many of the commands that we have already
discussed —SELECT, UPDATE, andDELETE— support thisONLYnotation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints
or foreign keys, which limits its usefulness. See Section 5.5 for more detail.

3.6. Conclusion
PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

19

Chapter 3. Advanced Features

If you feel you need more introductory material, please visit the PostgreSQL web site1 for links to
more resources.

1. http://www.postgresql.org

20

II. The SQL Language
This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
commands. The rest treats several aspects that are important for tuning a database for optimal perfor-
mance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should look intoPart VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to readPart Ifirst. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax
This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how the SQL commands are applied to define and modify
data.

We also advise users who are already familiar with SQL to read this chapter carefully because there
are several rules and concepts that are implemented inconsistently among SQL databases or that are
specific to PostgreSQL.

4.1. Lexical Structure
SQL input consists of a sequence ofcommands. A command is composed of a sequence oftokens,
terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be akey word, an identifier, a quoted identifier, a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

Additionally, commentscan occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance theUPDATEcommand always requires aSET token to appear in a certain position, and this
particular variation ofINSERT also requires aVALUESin order to be complete. The precise syntax
rules for each command are described inPart VI.

4.1.1. Identifiers and Key Words

Tokens such asSELECT, UPDATE, or VALUESin the example above are examples ofkey words, that
is, words that have a fixed meaning in the SQL language. The tokensMY_TABLEandA are exam-
ples of identifiers. They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C.

SQL identifiers and key words must begin with a letter (a-z , but also letters with diacritical marks
and non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be
letters, underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use may render applications less portable. The

23

Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more thanNAMEDATALEN-1 characters of an identifier; longer names can be
written in commands, but they will be truncated. By default,NAMEDATALENis 64 so the maximum
identifier length is 63. If this limit is problematic, it can be raised by changing theNAMEDATALEN

constant insrc/include/postgres_ext.h .

Identifier and key word names are case insensitive. Therefore

UPDATE MY_TABLE SET A = 5;

can equivalently be written as

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my_table SET a = 5;

There is a second kind of identifier: thedelimited identifieror quoted identifier. It is formed by en-
closing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an
identifier, never a key word. So"select" could be used to refer to a column or table named “select”,
whereas an unquotedselect would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character other than a double quote itself. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiersFOO, foo , and"foo" are considered the same by PostgreSQL, but
"Foo" and"FOO" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus,foo should be equivalent to"FOO" not "foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds ofimplicitly-typed constantsin PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (’), for
example’This is a string’ . The standard-compliant way of writing a single-quote character
within a string constant is to write two adjacent single quotes, e.g.’Dianne”s horse’ . PostgreSQL

24

Chapter 4. SQL Syntax

also allows single quotes to be escaped with a backslash (\), so for example the same string could be
written ’Dianne\’s horse’ .

Another PostgreSQL extension is that C-style backslash escapes are available:\b is a backspace,
\f is a form feed,\n is a newline,\r is a carriage return,\t is a tab, and\ xxx , wherexxx is an
octal number, is a byte with the corresponding code. (It is your responsibility that the byte sequences
you create are valid characters in the server character set encoding.) Any other character following a
backslash is taken literally. Thus, to include a backslash in a string constant, write two backslashes.

The character with the code zero cannot be in a string constant.

Two string constants that are only separated by whitespacewith at least one newlineare concatenated
and effectively treated as if the string had been written in one constant. For example:

SELECT ’foo’
’bar’;

is equivalent to

SELECT ’foobar’;

but

SELECT ’foo’ ’bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne’s horse”
using dollar quoting:

$$Dianne’s horse$$
$SomeTag$Dianne’s horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always writ-
ten literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
This is most commonly used in writing function definitions. For example:

$function$
BEGIN

RETURN ($1 ~ q[\t\r\n\v\\]q);
END;
$function$

25

Chapter 4. SQL Syntax

Here, the sequenceq[\t\r\n\v\\]q represents a dollar-quoted literal string[\t\r\n\v\\] ,
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter$function$, it is just some more characters within
the constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, sotagString contenttag is correct,
but TAGString contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written as four
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

4.1.2.3. Bit-String Constants

Bit-string constants look like regular string constants with aB (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g.,B’1001’ . The only characters allowed
within bit-string constants are0 and1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leadingX (upper
or lower case), e.g.,X’1FF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.4. Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits .[digits][e[+-] digits]
[digits]. digits [e[+-] digits]
digits e[+-] digits

wheredigits is one or more decimal digits (0 through 9). At least one digit must be before or after
the decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is
present. There may not be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42
3.5
4.
.001
5e2
1.925e-3

26

Chapter 4. SQL Syntax

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in typeinteger (32 bits); otherwise it is presumed to be typebigint

if its value fits in typebigint (64 bits); otherwise it is taken to be typenumeric . Constants that
contain decimal points and/or exponents are always initially presumed to be typenumeric .

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated as typereal (float4)
by writing

REAL ’1.23’ -- string style
1.23::REAL -- PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.5. Constants of Other Types

A constant of anarbitrary type can be entered using any one of the following notations:

type ’ string ’
’ string ’:: type
CAST (’ string ’ AS type)

The string constant’s text is passed to the input conversion routine for the type calledtype . The result
is a constant of the indicated type. The explicit type cast may be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

typename (’ string ’)

but not all type names may be used in this way; seeSection 4.2.8for details.

The :: , CAST() , and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed inSection 4.2.8. But the formtype ’ string ’ can only be used
to specify the type of a literal constant. Another restriction ontype ’ string ’ is that it does not
work for array types; use:: or CAST() to specify the type of an array constant.

4.1.3. Operators

An operator name is a sequence of up toNAMEDATALEN-1 (63 by default) characters from the follow-
ing list:

+ - * / < > = ~ ! @ # % ^ & | ‘ ?

There are a few restrictions on operator names, however:

27

Chapter 4. SQL Syntax

• -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multiple-character operator name cannot end in+ or - , unless the name also contains at least one
of these characters:

~ ! @ # % ^ & | ‘ ?

For example,@- is an allowed operator name, but*- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named@, you cannot writeX*@Y; you must writeX* @Yto ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

• A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a
function definition or a prepared statement. In other contexts the dollar sign may be part of an
identifier or a dollar-quoted string constant.

• Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

• Brackets ([]) are used to select the elements of an array. SeeSection 8.10for more information on
arrays.

• Commas (,) are used in some syntactical constructs to separate the elements of a list.

• The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

• The colon (:) is used to select “slices” from arrays. (SeeSection 8.10.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

• The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of theCOUNTaggregate function.

• The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the
end of the line, e.g.:

-- This is a standard SQL comment

28

Chapter 4. SQL Syntax

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment */
*/

where the comment begins with/* and extends to the matching occurrence of*/ . These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that may contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Lexical Precedence

Table 4-1shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators is
hard-wired into the parser. This may lead to non-intuitive behavior; for example the Boolean operators
< and> have a different precedence than the Boolean operators<= and>=. Also, you will sometimes
need to add parentheses when using combinations of binary and unary operators. For instance

SELECT 5 ! - 6;

will be parsed as

SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4-1. Operator Precedence (decreasing)

Operator/Element Associativity Description

. left table/column name separator

:: left PostgreSQL-style typecast

[] left array element selection

- right unary minus

^ left exponentiation

* / % left multiplication, division, modulo

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS

UNKNOWN, IS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

29

Chapter 4. SQL Syntax

Operator/Element Associativity Description

BETWEEN range containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

< > less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in theOPERATORsyntax, as for example in

SELECT 3 OPERATOR(pg_catalog.+) 4;

theOPERATORconstruct is taken to have the default precedence shown inTable 4-1for “any other”
operator. This is true no matter which specific operator name appears insideOPERATOR().

4.2. Value Expressions
Value expressions are used in a variety of contexts, such as in the target list of theSELECTcommand,
as new column values inINSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called ascalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also calledscalar expressions(or even
simplyexpressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

• A constant or literal value.

• A column reference.

• A positional parameter reference, in the body of a function definition or prepared statement.

• A subscripted expression.

• A field selection expression.

• An operator invocation.

• A function call.

• An aggregate expression.

• A type cast.

• A scalar subquery.

• An array constructor.

• A row constructor.

• Another value expression in parentheses, useful to group subexpressions and override precedence.

30

Chapter 4. SQL Syntax

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location inChapter 9. An example is theIS NULL clause.

We have already discussed constants inSection 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form

correlation . columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a
table defined by means of aFROMclause, or one of the key wordsNEWor OLD. (NEWandOLDcan
only appear in rewrite rules, while other correlation names can be used in any SQL statement.) The
correlation name and separating dot may be omitted if the column name is unique across all the tables
being used in the current query. (See alsoChapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

$number

For example, consider the definition of a function,dept , as

CREATE FUNCTION dept(text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the$1 will be replaced by the first function argument when the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression [subscript]

or multiple adjacent elements (an “array slice”) can be extracted by writing

expression [lower_subscript : upper_subscript]

(Here, the brackets[] are meant to appear literally.) Eachsubscript is itself an expression,
which must yield an integer value.

31

Chapter 4. SQL Syntax

In general the arrayexpression must be parenthesized, but the parentheses may be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multi-dimensional. For example,

mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]
(arrayfunction(a,b))[42]

The parentheses in the last example are required. SeeSection 8.10for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression . fieldname

In general the rowexpression must be parenthesized, but the parentheses may be omitted when
the expression to be selected from is just a table reference or positional parameter. For example,

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.)

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where theoperator token follows the syntax rules ofSection 4.1.3, or is one of the key wordsAND,
OR, andNOT, or is a qualified operator name in the form

OPERATOR(schema . operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user.Chapter 9describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function ([expression [, expression ...]])

For example, the following computes the square root of 2:

32

Chapter 4. SQL Syntax

sqrt(2)

The list of built-in functions is inChapter 9. Other functions may be added by the user.

4.2.7. Aggregate Expressions

An aggregate expressionrepresents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression)
aggregate_name (ALL expression)
aggregate_name (DISTINCT expression)
aggregate_name (*)

where aggregate_name is a previously defined aggregate (possibly qualified with a schema
name), andexpression is any value expression that does not itself contain an aggregate
expression.

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression yields a non-null value. (Actually, it is up to the aggregate function whether to ignore null
values or not — but all the standard ones do.) The second form is the same as the first, sinceALL

is the default. The third form invokes the aggregate for all distinct non-null values of the expression
found in the input rows. The last form invokes the aggregate once for each input row regardless of
null or non-null values; since no particular input value is specified, it is generally only useful for the
count() aggregate function.

For example,count(*) yields the total number of input rows;count(f1) yields the number of input
rows in whichf1 is non-null;count(distinct f1) yields the number of distinct non-null values
of f1 .

The predefined aggregate functions are described inSection 9.15. Other aggregate functions may be
added by the user.

An aggregate expression may only appear in the result list orHAVINGclause of aSELECTcommand.
It is forbidden in other clauses, such asWHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (seeSection 4.2.9andSection 9.16), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
argument contains only outer-level variables: the aggregate then belongs to the nearest such outer
level, and is evaluated over the rows of that query. The aggregate expression as a whole is then an
outer reference for the subquery it appears in, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result list orHAVINGclause applies with respect
to the query level that the aggregate belongs to.

4.2.8. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression :: type

33

Chapter 4. SQL Syntax

TheCASTsyntax conforms to SQL; the syntax with:: is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this is
subtly different from the use of casts with constants, as shown inSection 4.1.2.5. A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast may usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:

typename (expression)

However, this only works for types whose names are also valid as function names. For example,
double precision can’t be used this way, but the equivalentfloat8 can. Also, the names
interval , time , and timestamp can only be used in this fashion if they are double-quoted,
because of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to
inconsistencies and should probably be avoided in new applications. (The function-like syntax is
in fact just a function call. When one of the two standard cast syntaxes is used to do a run-time
conversion, it will internally invoke a registered function to perform the conversion. By convention,
these conversion functions have the same name as their output type, and thus the “function-like
syntax” is nothing more than a direct invocation of the underlying conversion function. Obviously,
this is not something that a portable application should rely on.)

4.2.9. Scalar Subqueries

A scalar subquery is an ordinarySELECTquery in parentheses that returns exactly one row with one
column. (SeeChapter 7for information about writing queries.) TheSELECTquery is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See alsoSection 9.16for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.10. Array Constructors

An array constructor is an expression that builds an array value from values for its member elements.
A simple array constructor consists of the key wordARRAY, a left square bracket[, one or more

34

Chapter 4. SQL Syntax

expressions (separated by commas) for the array element values, and finally a right square bracket] .
For example,

SELECT ARRAY[1,2,3+4];
array

{1,2,7}

(1 row)

The array element type is the common type of the member expressions, determined using the same
rules as forUNIONor CASEconstructs (seeSection 10.5).

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key wordARRAYmay be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
array

{{1,2},{3,4}}

(1 row)

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3,4}}

(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAYconstruct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, ’{{9,10},{11,12}}’::int[]] FROM arr;
array

--
{{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}

(1 row)

It is also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key wordARRAYfollowed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE ’bytea%’);
?column?

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}

(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element
for each row in the subquery result, with an element type matching that of the subquery’s output
column.

35

Chapter 4. SQL Syntax

The subscripts of an array value built withARRAYalways begin with one. For more information about
arrays, seeSection 8.10.

4.2.11. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) from values
for its member fields. A row constructor consists of the key wordROW, a left parenthesis, zero or
more expressions (separated by commas) for the row field values, and finally a right parenthesis. For
example,

SELECT ROW(1,2.5,’this is a test’);

The key wordROWis optional when there is more than one expression in the list.

By default, the value created by aROWexpression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast may be needed to avoid ambiguity. For example:

CREATE TABLE mytable(f1 int, f2 float, f3 text);

CREATE FUNCTION getf1(mytable) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

-- No cast needed since only one getf1() exists
SELECT getf1(ROW(1,2.5,’this is a test’));

getf1

1
(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);

CREATE FUNCTION getf1(myrowtype) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(ROW(1,2.5,’this is a test’));
ERROR: function getf1(record) is not unique

SELECT getf1(ROW(1,2.5,’this is a test’)::mytable);
getf1

1

(1 row)

SELECT getf1(CAST(ROW(11,’this is a test’,2.5) AS myrowtype));
getf1

11

(1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row values or test a row withIS NULL or IS NOT NULL, for example

SELECT ROW(1,2.5,’this is a test’) = ROW(1, 3, ’not the same’);

36

Chapter 4. SQL Syntax

SELECT ROW(a, b, c) IS NOT NULL FROM table;

For more detail seeSection 9.17. Row constructors can also be used in connection with subqueries,
as discussed inSection 9.16.

4.2.12. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote

SELECT true OR somefunc();

thensomefunc() would (probably) not be called at all. The same would be the case if one wrote

SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order inWHEREandHAVINGclauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOTcombinations) in those clauses may be reorganized in any manner allowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, aCASEconstruct (seeSection 9.13) may be used. For
example, this is an untrustworthy way of trying to avoid division by zero in aWHEREclause:

SELECT ... WHERE x <> 0 AND y/x > 1.5;

But this is safe:

SELECT ... WHERE CASE WHEN x<> 0 THEN y/x > 1.5 ELSE false END;

A CASEconstruct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would doubtless be best to sidestep the problem by
writing y > 1.5*x instead.)

37

Chapter 5. Data Definition
This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as views, functions, and triggers.

5.1. Table Basics
A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable -- it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in random order,
unless sorting is explicitly requested. This is covered inChapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation toChapter 8. Some of the frequently used data types areinteger for whole
numbers,numeric for possibly fractional numbers,text for character strings,date for dates,time

for time-of-day values, andtimestamp for values containing both date and time.

To create a table, you use the aptly namedCREATE TABLEcommand. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

);

This creates a table namedmy_first_table with two columns. The first column is named
first_column and has a data type oftext ; the second column has the namesecond_column and
the typeinteger . The table and column names follow the identifier syntax explained inSection
4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of data they store. So let’s look at a more realistic example:

CREATE TABLE products (
product_no integer,

38

Chapter 5. Data Definition

name text,
price numeric

);

(Thenumeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it using theDROP TABLEcommand. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script
files to unconditionally try to drop each table before creating it, ignoring the error messages.

If you need to modify a table that already exists look intoSection 5.6later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead toChapter 6and read the rest of
this chapter later.

5.2. Default Values
A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, the columns will be filled with their respective default values. A data manipu-
lation command can also request explicitly that a column be set to its default value, without having to
know what that value is. (Details about data manipulation commands are inChapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99

);

The default value may be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is that a timestamp column may have a default
of now() , so that it gets set to the time of row insertion. Another common example is generating a
“serial number” for each row. In PostgreSQL this is typically done by something like

CREATE TABLE products (
product_no integer DEFAULT nextval(’products_product_no_seq’) ,

39

Chapter 5. Data Definition

...
);

where thenextval() function supplies successive values from asequence object(seeSection 9.12).
This arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,
...

);

TheSERIAL shorthand is discussed further inSection 8.1.4.

5.3. Constraints
Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no data type that accepts only positive num-
bers. Another issue is that you might want to constrain column data with respect to other columns or
rows. For example, in a table containing product information, there should only be one row for each
product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0)

);

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECKfollowed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product_no integer,
name text,
price numeric CONSTRAINT positive_price CHECK (price > 0)

);

40

Chapter 5. Data Definition

So, to specify a named constraint, use the key wordCONSTRAINTfollowed by an identifier followed
by the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a
name for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price.

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

);

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be writ-
ten as table constraints, while the reverse is not necessarily possible, since a column constraint is
supposed to refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you
should follow it if you want your table definitions to work with other database systems.) The above
example could also be written as

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)

);

or even

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0 AND price > discounted_price)

);

It’s a matter of taste.

Names can be assigned to table constraints in just the same way as for column constraints:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),

41

Chapter 5. Data Definition

CONSTRAINT valid_discount CHECK (price > discounted_price)
);

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

);

A not-null constraint is always written as a column constraint. A not-null constraint is function-
ally equivalent to creating a check constraintCHECK (column_name IS NOT NULL), but in Post-
greSQL creating an explicit not-null constraint is more efficient. The drawback is that you cannot give
explicit names to not-null constraints created that way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

);

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULLconstraint has an inverse: theNULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column may be null. TheNULLconstraint is not defined in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

);

and then insert theNOTkey word where desired.

Tip: In most database designs the majority of columns should be marked not null.

42

Chapter 5. Data Definition

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with
respect to all the rows in the table. The syntax is

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

);

when written as a column constraint, and

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

);

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)

);

This specifies that the combination of values in the indicated columns is unique across the whole
table, though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

);

In general, a unique constraint is violated when there are two or more rows in the table where the val-
ues of all of the columns included in the constraint are equal. However, null values are not considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to store
an unlimited number of rows that contain a null value in at least one of the constrained columns. This
behavior conforms to the SQL standard, but we have heard that other SQL databases may not follow
this rule. So be careful when developing applications that are intended to be portable.

5.3.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null
constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,

43

Chapter 5. Data Definition

name text,
price numeric

);

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)

);

A primary key indicates that a column or group of columns can be used as a unique identifier for
rows in the table. (This is a direct consequence of the definition of a primary key. Note that a unique
constraint does not, by itself, provide a unique identifier because it does not exclude null values.) This
is useful both for documentation purposes and for client applications. For example, a GUI application
that allows modifying row values probably needs to know the primary key of a table to be able to
identify rows uniquely.

A table can have at most one primary key (while it can have many unique and not-null constraints).
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains thereferential integritybetween
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no) ,
quantity integer

);

44

Chapter 5. Data Definition

Now it is impossible to create orders withproduct_no entries that do not appear in the products
table.

We say that in this situation the orders table is thereferencingtable and the products table is the
referencedtable. Similarly, there are referencing and referenced columns.

You can also shorten the above command to

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products ,
quantity integer

);

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a integer PRIMARY KEY,
b integer,
c integer,
FOREIGN KEY (b, c) REFERENCES other_table (c1, c2)

);

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can contain more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,
...

);

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

);

Notice that the primary key overlaps with the foreign keys in the last table.

45

Chapter 5. Data Definition

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

• Disallow deleting a referenced product
• Delete the orders as well
• Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well.

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,
...

);

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

);

Restricting and cascading deletes are the two most common options.RESTRICTprevents deletion of
a referenced row.NO ACTIONmeans that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is thatNO ACTIONallows the check to be deferred until later
in the transaction, whereasRESTRICT does not.)CASCADEspecifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULLand SET DEFAULT. These cause the referencing columns to be set to nulls or default
values, respectively, when the referenced row is deleted. Note that these do not excuse you from
observing any constraints. For example, if an action specifiesSET DEFAULTbut the default value
would not satisfy the foreign key, the operation will fail.

Analogous toON DELETEthere is alsoON UPDATEwhich is invoked when a referenced column is
changed (updated). The possible actions are the same.

More information about updating and deleting data is inChapter 6.

Finally, we should mention that a foreign key must reference columns that either are a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documenta-
tion for CREATE TABLE.

46

Chapter 5. Data Definition

5.4. System Columns
Every table has severalsystem columnsthat are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns, just know they exist.

oid

The object identifier (object ID) of a row. This is a serial number that is automatically added by
PostgreSQL to all table rows (unless the table was created usingWITHOUT OIDS, in which case
this column is not present). This column is of typeoid (same name as the column); seeSection
8.12for more information about the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies, since without it, it’s difficult to tell which individual table a
row came from. Thetableoid can be joined against theoid column ofpg_class to obtain
the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is
an individual state of a row; each update of a row creates a new row version for the same logical
row.)

cmin

The command identifier (starting at zero) within the inserting transaction.

xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax

The command identifier within the deleting transaction, or zero.

ctid

The physical location of the row version within its table. Note that although thectid can be
used to locate the row version very quickly, a row’sctid will change each time it is updated or
moved byVACUUM FULL. Thereforectid is useless as a long-term row identifier. The OID, or
even better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
a table, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that a few additional precautions are taken:

• A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows.

• OIDs should never be assumed to be unique across tables; use the combination oftableoid and
row OID if you need a database-wide identifier.

47

Chapter 5. Data Definition

• The tables in question should be created usingWITH OIDS to ensure forward compatibility with
future releases of PostgreSQL. It is planned thatWITHOUT OIDSwill become the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; seeChapter
21for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
number of SQL commands, not number of rows processed.

5.5. Inheritance
Let’s create two tables. The capitals table contains state capitals which are also cities. Naturally, the
capitals table should inherit from cities.

CREATE TABLE cities (
name text,
population float,
altitude int -- (in ft)

);

CREATE TABLE capitals (
state char(2)

) INHERITS (cities);

In this case, a row of capitalsinheritsall attributes (name, population, and altitude) from its parent,
cities. State capitals have an extra attribute, state, that shows their state. In PostgreSQL, a table can
inherit from zero or more other tables, and a query can reference either all rows of a table or all rows
of a table plus all of its descendants.

Note: The inheritance hierarchy is actually a directed acyclic graph.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500ft:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
-----------+----------

Las Vegas | 2174
Mariposa | 1953
Madison | 845

48

Chapter 5. Data Definition

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500ft:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
-----------+----------

Las Vegas | 2174
Mariposa | 1953

Here the “ONLY” before cities indicates that the query should be run over only cities and not tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed --
SELECT, UPDATEandDELETE-- support this “ONLY” notation.

Deprecated: In previous versions of PostgreSQL, the default behavior was not to include child
tables in queries. This was found to be error prone and is also in violation of the SQL:1999
standard. Under the old syntax, to get the sub-tables you append * to the table name. For example

SELECT * from cities*;

You can still explicitly specify scanning child tables by appending * , as well as explicitly specify
not scanning child tables by writing “ONLY”. But beginning in version 7.1, the default behavior for
an undecorated table name is to scan its child tables too, whereas before the default was not to
do so. To get the old default behavior, set the configuration option SQL_Inheritance to off, e.g.,

SET SQL_Inheritance TO OFF;

or add a line in your postgresql.conf file.

In some cases you may wish to know which table a particular row originated from. There is a system
column calledtableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude
----------+-----------+----------

139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities c, pg_class p
WHERE c.altitude > 500 and c.tableoid = p.oid;

which returns:

49

Chapter 5. Data Definition

relname | name | altitude
----------+-----------+----------

cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables (plus any columns declared specifically for the child table).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and for-
eign key constraints only apply to single tables, not to their inheritance children. This is true on both
the referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above ex-
ample:

• If we declaredcities .name to beUNIQUEor aPRIMARY KEY, this would not stop thecapitals

table from having rows with names duplicating rows incities . And those duplicate rows would
by default show up in queries fromcities . In fact, by defaultcapitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint tocapitals , but this would not prevent duplication compared tocities .

• Similarly, if we were to specify thatcities .name REFERENCESsome other table, this constraint
would not automatically propagate tocapitals . In this case you could work around it by manually
adding the sameREFERENCESconstraint tocapitals .

• Specifying that another table’s columnREFERENCES cities(name) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable
care is needed in deciding whether inheritance is useful for your problem.

5.6. Modifying Tables
When you create a table and you realize that you made a mistake, or the requirements of the applica-
tion change, then you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
to existing tables. Note that this is conceptually distinct from altering the data contained in the table:
here we are interested in altering the definition, or structure, of the table.

You can

• Add columns,
• Remove columns,
• Add constraints,
• Remove constraints,
• Change default values,
• Change column data types,
• Rename columns,
• Rename tables.

All these actions are performed using theALTER TABLEcommand.

50

Chapter 5. Data Definition

5.6.1. Adding a Column

To add a column, use a command like this:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a
DEFAULTclause).

You can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> ”);

In fact all the options that can be applied to a column description inCREATE TABLEcan be used here.
Keep in mind however that the default value must satisfy the given constraints, or theADDwill fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

5.6.2. Removing a Column

To remove a column, use a command like this:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by addingCASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

SeeSection 5.10for a description of the general mechanism behind this.

5.6.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ”);
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.6.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Oth-
erwise the system assigned a generated name, which you need to find out. The psql command\d

51

Chapter 5. Data Definition

tablename can be helpful here; other interfaces might also provide a way to inspect table details.
Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like$2, don’t forget that you’ll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to addCASCADEif you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.6.5. Changing a Column’s Default Value

To set a new default for a column, use a command like this:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for futureINSERT

commands.

To remove any default value, use

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn’t been defined, because the default is implicitly the null value.

5.6.6. Changing a Column’s Data Type

To convert a column to a different data type, use a command like this:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If a more complex conversion is needed, you can add aUSINGclause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions may fail, or may produce surprising
results. It’s often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.6.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

52

Chapter 5. Data Definition

5.6.8. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

5.7. Privileges
When you create a database object, you become its owner. By default, only the owner of an object
can do anything with the object. In order to allow other users to use it,privilegesmust be granted.
(However, users that have the superuser attribute can always access any object.)

There are several different privileges:SELECT, INSERT, UPDATE, DELETE, RULE, REFERENCES,
TRIGGER, CREATE, TEMPORARY, EXECUTE, andUSAGE. The privileges applicable to a particular ob-
ject vary depending on the object’s type (table, function, etc). For complete information on the differ-
ent types of privileges supported by PostgreSQL, refer to theGRANT reference page. The following
sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.
There are corresponding ALTERcommands for other object types.

To assign privileges, theGRANTcommand is used. For example, ifjoe is an existing user, and
accounts is an existing table, the privilege to update the table can be granted with

GRANT UPDATE ON accounts TO joe;

To grant a privilege to a group, use this syntax:

GRANT SELECT ON accounts TO GROUP staff;

The special “user” namePUBLIC can be used to grant a privilege to every user on the system. Writing
ALL in place of a specific privilege grants all privileges that are relevant for the object type.

To revoke a privilege, use the fittingly namedREVOKEcommand:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to doDROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant
it in turn to others. If the grant option is subsequently revoked then all who received the privilege
from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT andREVOKEreference pages.

53

Chapter 5. Data Definition

5.8. Schemas
A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client con-
nection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more namedschemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, bothschema1 andmyschema may
contain tables namedmytable . Unlike databases, schemas are not rigidly separated: a user may
access objects in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

• To allow many users to use one database without interfering with each other.

• To organize database objects into logical groups to make them more manageable.

• Third-party applications can be put into separate schemas so they cannot collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.8.1. Creating a Schema

To create a schema, use the commandCREATE SCHEMA. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write aqualified nameconsisting of the schema name and
table name separated by a dot:

schema . table

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database . schema . table

can be used too, but at present this is just forpro formacompliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use

54

Chapter 5. Data Definition

CREATE TABLE myschema.mytable (
...

);

To drop a schema if it’s empty (all objects in it have been dropped), use

DROP SCHEMA myschema;

To drop a schema including all contained objects, use

DROP SCHEMA myschema CASCADE;

SeeSection 5.10for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMAschemaname AUTHORIZATION username ;

You can even omit the schema name, in which case the schema name will be the same as the user
name. SeeSection 5.8.6for how this can be useful.

Schema names beginning withpg_ are reserved for system purposes and may not be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default, such
tables (and other objects) are automatically put into a schema named “public”. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);

and

CREATE TABLE public.products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to byunqualified names, which consist of
just the table name. The system determines which table is meant by following asearch path, which is
a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if theCREATE TABLE

command does not specify a schema name.

To show the current search path, use the following command:

SHOW search_path;

55

Chapter 5. Data Definition

In the default setup this returns:

search_path

$user,public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use

SET search_path TO myschema,public;

(We omit the$user here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, sincemyschema is the first element in the path, new objects would by default be created in it.

We could also have written

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See alsoSection 9.19for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schema . operator)

This is needed to avoid syntactic ambiguity. An example is

SELECT 3 OPERATOR(pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner
of the schema needs to grant theUSAGEprivilege on the schema. To allow users to make use of the
objects in the schema, additional privileges may need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, theCREATE

privilege on the schema needs to be granted. Note that by default, everyone hasCREATEandUSAGE

56

Chapter 5. Data Definition

privileges on the schemapublic . This allows all users that are able to connect to a given database to
create objects in itspublic schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.8.5. The System Catalog Schema

In addition topublic and user-created schemas, each database contains apg_catalog schema,
which contains the system tables and all the built-in data types, functions, and operators.pg_catalog

is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searchedbeforesearching the path’s schemas. This ensures that built-in names will always be findable.
However, you may explicitly placepg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

In PostgreSQL versions before 7.3, table names beginning withpg_ were reserved. This is no longer
true: you may create such a table name if you wish, in any non-system schema. However, it’s best to
continue to avoid such names, to ensure that you won’t suffer a conflict if some future version defines
a system table named the same as your table. (With the default search path, an unqualified reference to
your table name would be resolved as the system table instead.) System tables will continue to follow
the convention of having names beginning withpg_ , so that they will not conflict with unqualified
user-table names so long as users avoid thepg_ prefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are
recommended and are easily supported by the default configuration:

• If you do not create any schemas then all users access the public schema implicitly. This simu-
lates the situation where schemas are not available at all. This setup is mainly recommended when
there is only a single user or a few cooperating users in a database. This setup also allows smooth
transition from the non-schema-aware world.

• You can create a schema for each user with the same name as that user. Recall that the default
search path starts with$user , which resolves to the user name. Therefore, if each user has a
separate schema, they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it
altogether), so users are truly constrained to their own schemas.

• To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the
names with a schema name, or they can put the additional schemas into their search path, as they
choose.

57

Chapter 5. Data Definition

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consist ofusername . tablename . This is how PostgreSQL
will effectively behave if you create a per-user schema for every user.

Also, there is no concept of apublic schema in the SQL standard. For maximum conformance to
the standard, you should not use (perhaps even remove) thepublic schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Other Database Objects
Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible.

• Views

• Functions and operators

• Data types and domains

• Triggers and rewrite rules

Detailed information on these topics appears inPart V.

5.10. Dependency Tracking
When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you will implicitly create a net of dependencies between the objects.
For instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered inSection 5.3.5, with the orders table depending on it, would result in an error message
such as this:

DROP TABLE products;

NOTICE: constraint orders_product_no_fkey on table orders depends on table products
ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run

DROP TABLE products CASCADE;

58

Chapter 5. Data Definition

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check whatDROP ... CASCADE will do, run
DROPwithout CASCADEand read theNOTICEmessages.)

All drop commands in PostgreSQL support specifyingCASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also writeRESTRICTinstead ofCASCADEto
get the default behavior, which is to prevent drops of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or CASCADEis required. No
database system actually enforces that rule, but whether the default behavior is RESTRICT or
CASCADEvaries across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL
versions prior to 7.3 are not maintained or created during the upgrade process. All other depen-
dency types will be properly created during an upgrade from a pre-7.3 database.

59

Chapter 6. Data Manipulation
The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We
also introduce ways to effect automatic data changes when certain events occur: triggers and rewrite
rules. The chapter after this will finally explain how to extract your long-lost data back out of the
database.

6.1. Inserting Data
When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row at a time. Even if you know only some
column values, a complete row must be created.

To create a new row, use theINSERT command. The command requires the table name and a value
for each of the columns of the table. For example, consider the products table fromChapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

);

An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid that you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example,

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

60

Chapter 6. Data Manipulation

Tip: To do “bulk loads”, that is, inserting a lot of data, take a look at the COPY command. It is not
as flexible as the INSERT command, but is more efficient.

6.2. Updating Data
The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To perform an update, you need three pieces of information:

1. The name of the table and column to update,
2. The new value of the column,
3. Which row(s) to update.

Recall fromChapter 5that SQL does not, in general, provide a unique identifier for rows. Therefore
it is not necessarily possible to directly specify which row to update. Instead, you specify which
conditions a row must meet in order to be updated. Only if you have a primary key in the table
(no matter whether you declared it or not) can you reliably address individual rows, by choosing a
condition that matches the primary key. Graphical database access tools rely on this fact to allow you
to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This may cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

Let’s look at that command in detail. First is the key wordUPDATEfollowed by the table name. As
usual, the table name may be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equals sign and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also
left out theWHEREclause. If it is omitted, it means that all rows in the table are updated. If it is
present, only those rows that match theWHEREcondition are updated. Note that the equals sign in
theSETclause is an assignment while the one in theWHEREclause is a comparison, but this does not
create any ambiguity. Of course, theWHEREcondition does not have to be an equality test. Many other
operators are available (seeChapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in anUPDATEcommand by listing more than one assignment
in theSETclause. For example:

UPDATE mytable SET a = 5, b = 3, c = 1 WHERE a > 0;

61

Chapter 6. Data Manipulation

6.3. Deleting Data
So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we explained that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use theDELETEcommand to remove rows; the syntax is very similar to theUPDATEcommand.
For instance, to remove all rows from the products table that have a price of 10, use

DELETE FROM products WHERE price = 10;

If you simply write

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

62

Chapter 7. Queries
The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data out of the database.

7.1. Overview
The process of retrieving or the command to retrieve data from a database is called aquery. In SQL
theSELECTcommand is used to specify queries. The general syntax of theSELECTcommand is

SELECT select_list FROMtable_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specifi-
cation.

The simplest kind of query has the form

SELECT * FROM table1;

Assuming that there is a table calledtable1 , this command would retrieve all rows and all columns
from table1 . (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to
extract individual values from the query result.) The select list specification* means all columns that
the table expression happens to provide. A select list can also select a subset of the available columns
or make calculations using the columns. For example, iftable1 has columns nameda, b, andc (and
perhaps others) you can make the following query:

SELECT a, b + c FROM table1;

(assuming thatb andc are of a numerical data type). SeeSection 7.3for more details.

FROM table1 is a particularly simple kind of table expression: it reads just one table. In general,
table expressions can be complex constructs of base tables, joins, and subqueries. But you can also
omit the table expression entirely and use theSELECTcommand as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random();

7.2. Table Expressions
A table expressioncomputes a table. The table expression contains aFROMclause that is optionally
followed byWHERE, GROUP BY, andHAVINGclauses. Trivial table expressions simply refer to a table
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optionalWHERE, GROUP BY, andHAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in theFROMclause. All these transforma-

63

Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The FROMClause

The FROM Clausederives a table from one or more other tables given in a comma-separated table
reference list.

FROMtable_reference [, table_reference [, ...]]

A table reference may be a table name (possibly schema-qualified), or a derived table such as a
subquery, a table join, or complex combinations of these. If more than one table reference is listed in
theFROMclause they are cross-joined (see below) to form the intermediate virtual table that may then
be subject to transformations by theWHERE, GROUP BY, andHAVINGclauses and is finally the result
of the overall table expression.

When a table reference names a table that is the supertable of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its subtable successors, unless the key word
ONLYprecedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types

Cross join

T1 CROSS JOIN T2

For each combination of rows fromT1 andT2, the derived table will contain a row consisting of
all columns inT1 followed by all columns inT2. If the tables have N and M rows respectively,
the joined table will have N * M rows.

FROMT1 CROSS JOIN T2 is equivalent toFROMT1, T2. It is also equivalent toFROMT1

INNER JOIN T2 ON TRUE(see below).

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The wordsINNER andOUTERare optional in all forms.INNER is the default;LEFT, RIGHT, and
FULL imply an outer join.

The join condition is specified in theONor USING clause, or implicitly by the wordNATURAL.
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

TheONclause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used in aWHEREclause. A pair of rows fromT1 andT2 match if theON

expression evaluates to true for them.

USINGis a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of aJOIN USING has one column for each of the equated

64

Chapter 7. Queries

pairs of input columns, followed by all of the other columns from each table. Thus,USING (a,

b, c) is equivalent toON (t1.a = t2.a AND t1.b = t2.b AND t1.c = t2.c) with the
exception that ifONis used there will be two columnsa, b, andc in the result, whereas with
USING there will be only one of each.

Finally, NATURALis a shorthand form ofUSING: it forms aUSING list consisting of exactly those
column names that appear in both input tables. As withUSING, these columns appear only once
in the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will unconditionally have a row for each row
in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Also, for each row of T2 that does not satisfy the join condition with any row in T1, a
joined row with null values in the columns of T1 is added.

Joins of all types can be chained together or nested: either or both ofT1 andT2 may be joined tables.
Parentheses may be used aroundJOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have tablest1

num | name
-----+------

1 | a
2 | b
3 | c

andt2

num | value
-----+-------

1 | xxx
3 | yyy
5 | zzz

65

Chapter 7. Queries

then we get the following results for the various joins:

=> SELECT * FROM t1 CROSS JOIN t2;
num | name | num | value

-----+------+-----+-------
1 | a | 1 | xxx
1 | a | 3 | yyy
1 | a | 5 | zzz
2 | b | 1 | xxx
2 | b | 3 | yyy
2 | b | 5 | zzz
3 | c | 1 | xxx
3 | c | 3 | yyy
3 | c | 5 | zzz

(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON t1.num = t2.num;
num | name | num | value

-----+------+-----+-------
1 | a | 1 | xxx
3 | c | 3 | yyy

(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
num | name | value

-----+------+-------
1 | a | xxx
3 | c | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
num | name | value

-----+------+-------
1 | a | xxx
3 | c | yyy

(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num;
num | name | num | value

-----+------+-----+-------
1 | a | 1 | xxx
2 | b | |
3 | c | 3 | yyy

(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
num | name | value

-----+------+-------
1 | a | xxx
2 | b |
3 | c | yyy

(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON t1.num = t2.num;
num | name | num | value

-----+------+-----+-------
1 | a | 1 | xxx

66

Chapter 7. Queries

3 | c | 3 | yyy
| | 5 | zzz

(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON t1.num = t2.num;
num | name | num | value

-----+------+-----+-------
1 | a | 1 | xxx
2 | b | |
3 | c | 3 | yyy

| | 5 | zzz
(4 rows)

The join condition specified withONcan also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num AND t2.value = ’xxx’;
num | name | num | value

-----+------+-----+-------
1 | a | 1 | xxx
2 | b | |
3 | c | |

(3 rows)

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. This is called atable alias.

To create a table alias, write

FROMtable_reference AS alias

or

FROMtable_reference alias

TheASkey word is noise.alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;

The alias becomes the new name of the table reference for the current query — it is no longer possible
to refer to the table by the original name. Thus

SELECT * FROM my_table AS m WHERE my_table.a > 5;

is not valid SQL syntax. What will actually happen (this is a PostgreSQL extension to the standard)
is that an implicit table reference is added to theFROMclause, so the query is processed as if it were
written as

67

Chapter 7. Queries

SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

which will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.,

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...

Additionally, an alias is required if the table reference is a subquery (seeSection 7.2.1.3).

Parentheses are used to resolve ambiguities. The following statement will assign the aliasb to the
result of the join, unlike the previous example:

SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROMtable_reference [AS] alias (column1 [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of aJOIN clause, using any of these forms, the alias hides the
original names within theJOIN . For example,

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

is valid SQL, but

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid: the table aliasa is not visible outside the aliasc .

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses andmustbe assigned a table
alias name. (SeeSection 7.2.1.2.) For example:

FROM (SELECT * FROM table1) AS alias_name

This example is equivalent toFROM table1 AS alias_name . More interesting cases, which can’t
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subquery in theFROM

clause of a query. Columns returned by table functions may be included inSELECT, JOIN , or WHERE

clauses in the same manner as a table, view, or subquery column.

68

Chapter 7. Queries

If a table function returns a base data type, the single result column is named like the function. If the
function returns a composite type, the result columns get the same names as the individual attributes
of the type.

A table function may be aliased in theFROMclause, but it also may be left unaliased. If a function is
used in theFROMclause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;

$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
WHERE foosubid IN (select foosubid from getfoo(foo.fooid) z

where z.fooid = foo.fooid);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record . When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. Consider this example:

SELECT *
FROM dblink(’dbname=mydb’, ’select proname, prosrc from pg_proc’)

AS t1(proname name, prosrc text)
WHERE proname LIKE ’bytea%’;

The dblink function executes a remote query (seecontrib/dblink). It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in
the calling query so that the parser knows, for example, what* should expand to.

7.2.2. The WHEREClause

The syntax of theWHERE Clauseis

WHEREsearch_condition

wheresearch_condition is any value expression (seeSection 4.2) that returns a value of type
boolean .

After the processing of theFROMclause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (that is, if the result is false or null) it is discarded. The search condition typically references
at least some column of the table generated in theFROMclause; this is not required, but otherwise the
WHEREclause will be fairly useless.

69

Chapter 7. Queries

Note: The join condition of an inner join can be written either in the WHEREclause or in the JOIN

clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5

or perhaps even

FROM a NATURAL JOIN b WHERE b.val> 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROMclause is
probably not as portable to other SQL database management systems. For outer joins there is no
choice in any case: they must be done in the FROMclause. An ON/USING clause of an outer join is
not equivalent to a WHEREcondition, because it determines the addition of rows (for unmatched
input rows) as well as the removal of rows from the final result.

Here are some examples ofWHEREclauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROM t2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10) AND 100

SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)

fdt is the table derived in theFROMclause. Rows that do not meet the search condition of theWHERE

clause are eliminated fromfdt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also howfdt is referenced
in the subqueries. Qualifyingc1 asfdt.c1 is only necessary ifc1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner
queries.

7.2.3. The GROUP BYand HAVINGClauses

After passing theWHEREfilter, the derived input table may be subject to grouping, using theGROUP

BYclause, and elimination of group rows using theHAVINGclause.

SELECT select_list
FROM ...
[WHERE ...]
GROUP BYgrouping_column_reference [, grouping_column_reference]...

The GROUP BY Clauseis used to group together those rows in a table that share the same values
in all the columns listed. The order in which the columns are listed does not matter. The effect is to
combine each set of rows sharing common values into one group row that is representative of all rows

70

Chapter 7. Queries

in the group. This is done to eliminate redundancy in the output and/or compute aggregates that apply
to these groups. For instance:

=> SELECT * FROM test1;
x | y

---+---
a | 3
c | 2
b | 5
a | 1

(4 rows)

=> SELECT x FROM test1 GROUP BY x;
x

a
b
c

(3 rows)

In the second query, we could not have writtenSELECT * FROM test1 GROUP BY x, because
there is no single value for the columny that could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not used in the grouping cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM test1 GROUP BY x;
x | sum

---+-----
a | 4
b | 5
c | 2

(3 rows)

Heresum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be found inSection 9.15.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the DISTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales on all
products).

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columnsproduct_id , p.name , andp.price must be in theGROUP BYclause
since they are referenced in the query select list. (Depending on how exactly the products table is
set up, name and price may be fully dependent on the product ID, so the additional groupings could
theoretically be unnecessary, but this is not implemented yet.) The columns.units does not have to
be in theGROUP BYlist since it is only used in an aggregate expression (sum(...)), which represents

71

Chapter 7. Queries

the sales of a product. For each product, the query returns a summary row about all sales of the
product.

In strict SQL,GROUP BYcan only group by columns of the source table but PostgreSQL extends this
to also allowGROUP BYto group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped using aGROUP BYclause, but then only certain groups are of interest, the
HAVINGclause can be used, much like aWHEREclause, to eliminate groups from a grouped table. The
syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in theHAVINGclause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING sum(y) > 3;
x | sum

---+-----
a | 4
b | 5

(2 rows)

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING x < ’c’;
x | sum

---+-----
a | 4
b | 5

(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, theWHEREclause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), while theHAVINGclause restricts the output to
groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

7.3. Select Lists
As shown in the previous section, the table expression in theSELECTcommand constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by theselect list. The select list determines whichcolumnsof the
intermediate table are actually output.

72

Chapter 7. Queries

7.3.1. Select-List Items

The simplest kind of select list is* which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defined inSection 4.2). For
instance, it could be a list of column names:

SELECT a, b, c FROM ...

The columns namesa, b, andc are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained inSection 7.2.1.2. The name space available in
the select list is the same as in theWHEREclause, unless grouping is used, in which case it is the same
as in theHAVINGclause.

If more than one table has a column of the same name, the table name must also be given, as in

SELECT tbl1.a, tbl2.a, tbl1.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbl1.*, tbl2.a FROM ...

(See alsoSection 7.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of theFROMclause; they could be constant arithmetic expressions
as well, for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for further processing. The “further processing” in
this case is an optional sort specification and the client application (e.g., column headers for display).
For example:

SELECT a AS value, b + c AS sum FROM ...

If no output column name is specified usingAS, the system assigns a default name. For simple column
references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

Note: The naming of output columns here is different from that done in the FROMclause (see
Section 7.2.1.2). This pipeline will in fact allow you to rename the same column twice, but the
name chosen in the select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table may optionally be subject to the elimination
of duplicate rows. TheDISTINCT key word is written directly afterSELECTto specify this:

SELECT DISTINCT select_list ...

73

Chapter 7. Queries

(Instead ofDISTINCT the key wordALL can be used to specify the default behavior of retaining all
rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list ...

Hereexpression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at theDISTINCT filter. (DISTINCT ON

processing occurs afterORDER BYsorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use ofGROUP BYand
subqueries inFROMthe construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries
The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

query1 UNION [ALL] query2
query1 INTERSECT [ALL] query2
query1 EXCEPT [ALL] query2

query1 andquery2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

query1 UNION query2 UNION query3

which really says

(query1 UNION query2) UNION query3

UNIONeffectively appends the result ofquery2 to the result ofquery1 (although there is no guaran-
tee that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate
rows from its result, in the same way asDISTINCT , unlessUNION ALL is used.

INTERSECT returns all rows that are both in the result ofquery1 and in the result ofquery2 .
Duplicate rows are eliminated unlessINTERSECT ALLis used.

EXCEPTreturns all rows that are in the result ofquery1 but not in the result ofquery2 . (This
is sometimes called thedifferencebetween two queries.) Again, duplicates are eliminated unless
EXCEPT ALLis used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they return the same number of columns and the corresponding
columns have compatible data types, as described inSection 10.5.

74

Chapter 7. Queries

7.5. Sorting Rows
After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

TheORDER BYclause specifies the sort order:

SELECT select_list
FROMtable_expression
ORDER BYcolumn1 [ASC | DESC] [, column2 [ASC | DESC] ...]

column1 , etc., refer to select list columns. These can be either the output name of a column (see
Section 7.3.2) or the number of a column. Some examples:

SELECT a, b FROM table1 ORDER BY a;
SELECT a + b AS sum, c FROM table1 ORDER BY sum;
SELECT a, sum(b) FROM table1 GROUP BY a ORDER BY 1;

As an extension to the SQL standard, PostgreSQL also allows ordering by arbitrary expressions:

SELECT a, b FROM table1 ORDER BY a + b;

References to column names of theFROMclause that are not present in the select list are also allowed:

SELECT a FROM table1 ORDER BY b;

But these extensions do not work in queries involvingUNION, INTERSECT, or EXCEPT, and are not
portable to other SQL databases.

Each column specification may be followed by an optionalASCor DESCto set the sort direction to
ascending or descending.ASCorder is the default. Ascending order puts smaller values first, where
“smaller” is defined in terms of the< operator. Similarly, descending order is determined with the>

operator.1

If more than one sort column is specified, the later entries are used to sort rows that are equal under
the order imposed by the earlier sort columns.

7.6. LIMIT and OFFSET

LIMIT andOFFSETallow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROMtable_expression
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows).LIMIT ALL is the same as omitting theLIMIT clause.

1. Actually, PostgreSQL uses thedefault B-tree operator classfor the column’s data type to determine the sort ordering for
ASCandDESC. Conventionally, data types will be set up so that the< and> operators correspond to this sort ordering, but a
user-defined data type’s designer could choose to do something different.

75

Chapter 7. Queries

OFFSETsays to skip that many rows before beginning to return rows.OFFSET 0 is the same as
omitting theOFFSETclause. If bothOFFSETandLIMIT appear, thenOFFSETrows are skipped before
starting to count theLIMIT rows that are returned.

When usingLIMIT , it is important to use anORDER BYclause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You may be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specifiedORDER BY.

The query optimizer takesLIMIT into account when generating a query plan, so you are very likely
to get different plans (yielding different row orders) depending on what you give forLIMIT and
OFFSET. Thus, using differentLIMIT /OFFSETvalues to select different subsets of a query resultwill
give inconsistent resultsunless you enforce a predictable result ordering withORDER BY. This is not
a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unlessORDER BYis used to constrain the order.

The rows skipped by anOFFSETclause still have to be computed inside the server; therefore a large
OFFSETcan be inefficient.

76

Chapter 8. Data Types
PostgreSQL has a rich set of native data types available to users. Users may add new types to Post-
greSQL using theCREATE TYPEcommand.

Table 8-1shows all the built-in general-purpose data types. Most of the alternative names listed in
the “Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but they are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in the plane

bytea binary data (“byte array”)

character varying [(n)

]

varchar [(n)] variable-length character string

character [(n)] char [(n)] fixed-length character string

cidr IPv4 or IPv6 network address

circle circle in the plane

date calendar date (year, month, day)

double precision float8 double precision floating-point
number

inet IPv4 or IPv6 host address

integer int , int4 signed four-byte integer

interval [(p)] time span

line infinite line in the plane

lseg line segment in the plane

macaddr MAC address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path in the plane

point geometric point in the plane

polygon closed geometric path in the
plane

real float4 single precision floating-point
number

smallint int2 signed two-byte integer

serial serial4 autoincrementing four-byte
integer

77

Chapter 8. Data Types

Name Aliases Description

text variable-length character string

time [(p)] [without

time zone]

time of day

time [(p)] with time

zone

timetz time of day, including time zone

timestamp [(p)] [

without time zone]

date and time

timestamp [(p)] with

time zone

timestamptz date and time, including time
zone

Compatibility: The following types (or spellings thereof) are specified by SQL: bit , bit varying ,
boolean , char , character varying , character , varchar , date , double precision , integer ,
interval , numeric , decimal , real , smallint , time (with or without time zone), timestamp (with
or without time zone).

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as geometric paths, or have several possibilities for formats, such as the date and time
types. Some of the input and output functions are not invertible. That is, the result of an output func-
tion may lose accuracy when compared to the original input.

8.1. Numeric Types
Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decimals.Table 8-2lists the available types.

Table 8-2. Numeric Types

Name Storage Size Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes usual choice for integer-2147483648 to
+2147483647

bigint 8 bytes large-range integer -9223372036854775808
to
9223372036854775807

decimal variable user-specified precision,
exact

no limit

numeric variable user-specified precision,
exact

no limit

real 4 bytes variable-precision,
inexact

6 decimal digits
precision

double precision 8 bytes variable-precision,
inexact

15 decimal digits
precision

serial 4 bytes autoincrementing integer1 to 2147483647

78

Chapter 8. Data Types

Name Storage Size Description Range

bigserial 8 bytes large autoincrementing
integer

1 to
9223372036854775807

The syntax of constants for the numeric types is described inSection 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer toChapter 9for more information.
The following sections describe the types in detail.

8.1.1. Integer Types

The typessmallint , integer , andbigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The typeinteger is the usual choice, as it offers the best balance between range, storage size, and
performance. Thesmallint type is generally only used if disk space is at a premium. Thebigint

type should only be used if theinteger range is not sufficient, because the latter is definitely faster.

Thebigint type may not function correctly on all platforms, since it relies on compiler support for
eight-byte integers. On a machine without such support,bigint acts the same asinteger (but still
takes up eight bytes of storage). However, we are not aware of any reasonable platform where this is
actually the case.

SQL only specifies the integer typesinteger (or int) andsmallint . The typebigint , and the
type namesint2 , int4 , andint8 are extensions, which are shared with various other SQL database
systems.

8.1.2. Arbitrary Precision Numbers

The typenumeric can store numbers with up to 1000 digits of precision and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where exact-
ness is required. However, arithmetic onnumeric values is very slow compared to the integer types,
or to the floating-point types described in the next section.

In what follows we use these terms: Thescaleof a numeric is the count of decimal digits in the
fractional part, to the right of the decimal point. Theprecisionof a numeric is the total count of
significant digits in the whole number, that is, the number of digits to both sides of the decimal point.
So the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a
scale of zero.

Both the maximum precision and the maximum scale of anumeric column can be configured. To
declare a column of typenumeric use the syntax

NUMERIC(precision , scale)

The precision must be positive, the scale zero or positive. Alternatively,

NUMERIC(precision)

selects a scale of 0. Specifying

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce

79

Chapter 8. Data Types

input values to any particular scale, whereasnumeric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you’re concerned about portability, always specify the precision and scale
explicitly.)

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense thenumeric type
is more akin tovarchar(n) than tochar(n) .)

In addition to ordinary numeric values, thenumeric type allows the special valueNaN, meaning “not-
a-number”. Any operation onNaNyields anotherNaN. When writing this value as a constant in a SQL
command, you must put quotes around it, for exampleUPDATE table SET x = ’NaN’ . On input,
the stringNaN is recognized in a case-insensitive manner.

The typesdecimal andnumeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data typesreal anddouble precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and printing back out a value may show slight discrepancies. Man-
aging these errors and how they propagate through calculations is the subject of an entire branch of
mathematics and computer science and will not be discussed further here, except for the following
points:

• If you require exact storage and calculations (such as for monetary amounts), use thenumeric

type instead.

• If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

• Comparing two floating-point values for equality may or may not work as expected.

On most platforms, thereal type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. Thedouble precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
may take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity

-Infinity

NaN

80

Chapter 8. Data Types

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, re-
spectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values
will probably not work as expected.) When writing these values as constants in a SQL command, you
must put quotes around them, for exampleUPDATE table SET x = ’Infinity’ . On input, these
strings are recognized in a case-insensitive manner.

PostgreSQL also supports the SQL-standard notationsfloat andfloat(p) for specifying inexact
numeric types. Here,p specifies the minimum acceptable precision in binary digits. PostgreSQL
acceptsfloat(1) to float(24) as selecting thereal type, whilefloat(25) to float(53) select
double precision . Values ofp outside the allowed range draw an error.float with no precision
specified is taken to meandouble precision .

Note: Prior to PostgreSQL 7.4, the precision in float(p) was taken to mean so many decimal
digits. This has been corrected to match the SQL standard, which specifies that the precision is
measured in binary digits. The assumption that real and double precision have exactly 24 and
53 bits in the mantissa respectively is correct for IEEE-standard floating point implementations.
On non-IEEE platforms it may be off a little, but for simplicity the same ranges of p are used on
all platforms.

8.1.4. Serial Types

The data typesserial andbigserial are not true types, but merely a notational convenience for
setting up unique identifier columns (similar to theAUTO_INCREMENTproperty supported by some
other databases). In the current implementation, specifying

CREATE TABLEtablename (
colname SERIAL

);

is equivalent to specifying:

CREATE SEQUENCEtablename _colname _seq;
CREATE TABLEtablename (

colname integer DEFAULT nextval(’ tablename _colname _seq’) NOT NULL
);

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. ANOT NULLconstraint is applied to ensure that a null value cannot be explicitly
inserted, either. In most cases you would also want to attach aUNIQUEor PRIMARY KEYconstraint
to prevent duplicate values from being inserted by accident, but this is not automatic.

Note: Prior to PostgreSQL 7.3, serial implied UNIQUE. This is no longer automatic. If you wish
a serial column to be in a unique constraint or a primary key, it must now be specified, same as
with any other data type.

To insert the next value of the sequence into theserial column, specify that theserial column
should be assigned its default value. This can be done either by excluding the column from the list of
columns in theINSERT statement, or through the use of theDEFAULTkey word.

The type namesserial and serial4 are equivalent: both createinteger columns. The type
namesbigserial andserial8 work just the same way, except that they create abigint column.

81

Chapter 8. Data Types

bigserial should be used if you anticipate the use of more than 231 identifiers over the lifetime of
the table.

The sequence created for aserial column is automatically dropped when the owning column is
dropped, and cannot be dropped otherwise. (This was not true in PostgreSQL releases before 7.3.
Note that this automatic drop linkage will not occur for a sequence created by reloading a dump from
a pre-7.3 database; the dump file does not contain the information needed to establish the dependency
link.) Furthermore, this dependency between sequence and column is made only for theserial

column itself. If any other columns reference the sequence (perhaps by manually calling thenextval

function), they will be broken if the sequence is removed. Using aserial column’s sequence in
such a fashion is considered bad form; if you wish to feed several columns from the same sequence
generator, create the sequence as an independent object.

8.2. Monetary Types

Note: The money type is deprecated. Use numeric or decimal instead, in combination with the
to_char function.

The money type stores a currency amount with a fixed fractional precision; seeTable 8-3. Input is
accepted in a variety of formats, including integer and floating-point literals, as well as “typical”
currency formatting, such as’$1,000.00’ . Output is generally in the latter form but depends on the
locale.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 4 bytes currency amount -21474836.48 to
+21474836.47

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n) , varchar(n) variable-length with limit

character(n) , char(n) fixed-length, blank padded

text variable unlimited length

Table 8-4shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types:character varying(n) andcharacter(n) , wheren
is a positive integer. Both of these types can store strings up ton characters in length. An attempt to
store a longer string into a column of these types will result in an error, unless the excess characters are
all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared
length, values of typecharacter will be space-padded; values of typecharacter varying will
simply store the shorter string.

82

Chapter 8. Data Types

If one explicitly casts a value tocharacter varying(n) or character(n) , then an over-length
value will be truncated ton characters without raising an error. (This too is required by the SQL
standard.)

Note: Prior to PostgreSQL 7.2, strings that were too long were always truncated without raising
an error, in either explicit or implicit casting contexts.

The notations varchar(n) and char(n) are aliases forcharacter varying(n) and
character(n) , respectively.character without length specifier is equivalent tocharacter(1) .
If character varying is used without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL provides thetext type, which stores strings of any length. Although the
type text is not in the SQL standard, several other SQL database management systems have it as
well.

Values of typecharacter are physically padded with spaces to the specified widthn, and are stored
and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values of typecharacter , and they will be removed
when converting acharacter value to one of the other string types. Note that trailing spacesare
semantically significant incharacter varying andtext values.

The storage requirement for data of these types is 4 bytes plus the actual string, and in case of
character plus the padding. Long strings are compressed by the system automatically, so the phys-
ical requirement on disk may be less. Long values are also stored in background tables so they do not
interfere with rapid access to the shorter column values. In any case, the longest possible character
string that can be stored is about 1 GB. (The maximum value that will be allowed forn in the data
type declaration is less than that. It wouldn’t be very useful to change this because with multibyte
character encodings the number of characters and bytes can be quite different anyway. If you desire
to store long strings with no specific upper limit, usetext or character varying without a length
specifier, rather than making up an arbitrary length limit.)

Tip: There are no performance differences between these three types, apart from the increased
storage size when using the blank-padded type. While character(n) has performance advan-
tages in some other database systems, it has no such advantages in PostgreSQL. In most situa-
tions text or character varying should be used instead.

Refer toSection 4.1.2.1for information about the syntax of string literals, and toChapter 9for infor-
mation about available operators and functions. The database character set determines the character
set used to store textual values; for more information on character set support, refer toSection 20.2.

Example 8-1. Using the character types

CREATE TABLE test1 (a character(4));
INSERT INTO test1 VALUES (’ok’);
SELECT a, char_length(a) FROM test1; -- ➊

a | char_length

------+-------------

ok | 2

CREATE TABLE test2 (b varchar(5));
INSERT INTO test2 VALUES (’ok’);

83

Chapter 8. Data Types

INSERT INTO test2 VALUES (’good ’);
INSERT INTO test2 VALUES (’too long’);
ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;

b | char_length

-------+-------------

ok | 2

good | 5

too l | 5

➊ Thechar_length function is discussed inSection 9.4.

There are two other fixed-length character types in PostgreSQL, shown inTable 8-5. Thename type
existsonly for storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constantNAMEDATALEN. The length is set at compile time (and
is therefore adjustable for special uses); the default maximum length may change in a future release.
The type"char" (note the quotes) is different fromchar(1) in that it only uses one byte of storage.
It is internally used in the system catalogs as a poor-man’s enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description

"char" 1 byte single-character internal type

name 64 bytes internal type for object names

8.4. Binary Data Types
Thebytea data type allows storage of binary strings; seeTable 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 4 bytes plus the actual binary
string

variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
strings by two characteristics: First, binary strings specifically allow storing octets of value zero and
other “non-printable” octets (usually, octets outside the range 32 to 126). Character strings disallow
zero octets, and also disallow any other octet values and sequences of octet values that are invalid
according to the database’s selected character set encoding. Second, operations on binary strings
process the actual bytes, whereas the processing of character strings depends on locale settings. In
short, binary strings are appropriate for storing data that the programmer thinks of as “raw bytes”,
whereas character strings are appropriate for storing text.

When enteringbytea values, octets of certain valuesmustbe escaped (but all octet valuesmaybe
escaped) when used as part of a string literal in an SQL statement. In general, to escape an octet, it
is converted into the three-digit octal number equivalent of its decimal octet value, and preceded by
two backslashes.Table 8-7shows the characters that must be escaped, and gives the alternate escape
sequences where applicable.

84

Chapter 8. Data Types

Table 8-7.bytea Literal Escaped Octets

Decimal Octet
Value

Description Escaped Input
Representation

Example Output
Representation

0 zero octet ’\\000’ SELECT

’\\000’::bytea;

\000

39 single quote ’\” or ’\\047’ SELECT

’\”::bytea;

’

92 backslash ’\\\\’ or
’\\134’

SELECT

’\\\\’::bytea;

\\

0 to 31 and 127 to
255

“non-printable”
octets

’\\ xxx’ (octal
value)

SELECT

’\\001’::bytea;

\001

The requirement to escape “non-printable” octets actually varies depending on locale settings. In some
instances you can get away with leaving them unescaped. Note that the result in each of the examples
in Table 8-7was exactly one octet in length, even though the output representation of the zero octet
and backslash are more than one character.

The reason that you have to write so many backslashes, as shown inTable 8-7, is that an input string
written as a string literal must pass through two parse phases in the PostgreSQL server. The first
backslash of each pair is interpreted as an escape character by the string-literal parser and is therefore
consumed, leaving the second backslash of the pair. The remaining backslash is then recognized by
the bytea input function as starting either a three digit octal value or escaping another backslash.
For example, a string literal passed to the server as’\\001’ becomes\001 after passing through
the string-literal parser. The\001 is then sent to thebytea input function, where it is converted to a
single octet with a decimal value of 1. Note that the apostrophe character is not treated specially by
bytea , so it follows the normal rules for string literals. (See alsoSection 4.1.2.1.)

Bytea octets are also escaped in the output. In general, each “non-printable” octet is converted into
its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are rep-
resented by their standard representation in the client character set. The octet with decimal value 92
(backslash) has a special alternative output representation. Details are inTable 8-8.

Table 8-8.bytea Output Escaped Octets

Decimal Octet
Value

Description Escaped Output
Representation

Example Output Result

92 backslash \\ SELECT

’\\134’::bytea;

\\

0 to 31 and 127 to
255

“non-printable”
octets

\ xxx (octal value) SELECT

’\\001’::bytea;

\001

32 to 126 “printable” octets client character set
representation

SELECT

’\\176’::bytea;

~

Depending on the front end to PostgreSQL you use, you may have additional work to do in terms
of escaping and unescapingbytea strings. For example, you may also have to escape line feeds and
carriage returns if your interface automatically translates these.

85

Chapter 8. Data Types

The SQL standard defines a different binary string type, calledBLOBor BINARY LARGE OBJECT.
The input format is different frombytea , but the provided functions and operators are mostly the
same.

8.5. Date/Time Types
PostgreSQL supports the full set of SQL date and time types, shown inTable 8-9. The operations
available on these data types are described inSection 9.9.

Table 8-9. Date/Time Types

Name Storage Size Description Low Value High Value Resolution

timestamp [

(p)] [

without time

zone]

8 bytes both date and
time

4713 BC 5874897 AD 1 microsecond /
14 digits

timestamp [

(p)] with

time zone

8 bytes both date and
time, with time
zone

4713 BC 5874897 AD 1 microsecond /
14 digits

interval [

(p)]

12 bytes time intervals -178000000
years

178000000
years

1 microsecond /
14 digits

date 4 bytes dates only 4713 BC 32767 AD 1 day

time [(p)]

[without

time zone]

8 bytes times of day
only

00:00:00.00 23:59:59.99 1 microsecond /
14 digits

time [(p)]

with time

zone

12 bytes times of day
only, with time
zone

00:00:00.00+1223:59:59.99-121 microsecond /
14 digits

Note: Prior to PostgreSQL 7.3, writing just timestamp was equivalent to timestamp with time

zone . This was changed for SQL compliance.

time , timestamp , andinterval accept an optional precision valuep which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range ofp is from 0 to 6 for thetimestamp andinterval types.

Note: When timestamp values are stored as double precision floating-point numbers (currently
the default), the effective limit of precision may be less than 6. timestamp values are stored as
seconds before or after midnight 2000-01-01. Microsecond precision is achieved for dates within a
few years of 2000-01-01, but the precision degrades for dates further away. When timestamp val-
ues are stored as eight-byte integers (a compile-time option), microsecond precision is available
over the full range of values. However eight-byte integer timestamps have a more limited range
of dates than shown above: from 4713 BC up to 294276 AD. The same compile-time option also
determines whether time and interval values are stored as floating-point or eight-byte integers.
In the floating-point case, large interval values degrade in precision as the size of the interval
increases.

86

Chapter 8. Data Types

For thetime types, the allowed range ofp is from 0 to 6 when eight-byte integer storage is used, or
from 0 to 10 when floating-point storage is used.

The type time with time zone is defined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination ofdate , time ,
timestamp without time zone , and timestamp with time zone should provide a
complete range of date/time functionality required by any application.

The typesabstime andreltime are lower precision types which are used internally. You are dis-
couraged from using these types in new applications and are encouraged to move any old ones over
when appropriate. Any or all of these internal types might disappear in a future release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601,
SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of month, day, and
year in date input is ambiguous and there is support for specifying the expected ordering of these
fields. Set theDateStyleparameter toMDYto select month-day-year interpretation,DMYto select
day-month-year interpretation, orYMDto select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. SeeAp-
pendix Bfor the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer toSection 4.1.2.5for more information. SQL requires the following syntax

type [(p)] ’ value ’

wherep in the optional precision specification is an integer corresponding to the number of fractional
digits in the seconds field. Precision can be specified fortime , timestamp , and interval types.
The allowed values are mentioned above. If no precision is specified in a constant specification, it
defaults to the precision of the literal value.

8.5.1.1. Dates

Table 8-10shows some possible inputs for thedate type.

Table 8-10. Date Input

Example Description

January 8, 1999 unambiguous in anydatestyle input mode

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

1/8/1999 January 8 inMDYmode; August 1 inDMYmode

1/18/1999 January 18 inMDYmode; rejected in other modes

01/02/03 January 2, 2003 inMDYmode; February 1, 2003 in
DMYmode; February 3, 2001 inYMDmode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 inYMDmode, else error

87

Chapter 8. Data Types

Example Description

08-Jan-99 January 8, except error inYMDmode

Jan-08-99 January 8, except error inYMDmode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

8.5.1.2. Times

The time-of-day types aretime [(p)] without time zone andtime [(p)] with time

zone . Writing just time is equivalent totime without time zone .

Valid input for these types consists of a time of day followed by an optional time zone. (SeeTable
8-11andTable 8-12.) If a time zone is specified in the input fortime without time zone , it is
silently ignored.

Table 8-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value

04:05 PM same as 16:05; input hour must be <= 12

04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by name

Table 8-12. Time Zone Input

Example Description

PST Pacific Standard Time

-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form ofzulu

Refer toAppendix Bfor a list of time zone names that are recognized for input.

88

Chapter 8. Data Types

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of a concatenation of a date and a time, followed by
an optional time zone, followed by an optionalADor BC. (Alternatively,AD/BCcan appear before the
time zone, but this is not the preferred ordering.) Thus

1999-01-08 04:05:06

and

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the wide-spread format

January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiatestimestamp without time zone and timestamp with time

zone literals by the existence of a “+”; or “-”. Hence, according to the standard,

TIMESTAMP ’2004-10-19 10:23:54’

is a timestamp without time zone , while

TIMESTAMP ’2004-10-19 10:23:54+02’

is a timestamp with time zone . PostgreSQL differs from the standard by requiring that
timestamp with time zone literals be explicitly typed:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02’

If a literal is not explicitly indicated as being oftimestamp with time zone , PostgreSQL will
silently ignore any time zone indication in the literal. That is, the resulting date/time value is derived
from the date/time fields in the input value, and is not adjusted for time zone.

For timestamp with time zone , the internally stored value is always in UTC (Universal Coordi-
nated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time
zone is stated in the input string, then it is assumed to be in the time zone indicated by the system’s
timezoneparameter, and is converted to UTC using the offset for thetimezone zone.

When atimestamp with time zone value is output, it is always converted from UTC to the
currenttimezone zone, and displayed as local time in that zone. To see the time in another time
zone, either changetimezone or use theAT TIME ZONEconstruct (seeSection 9.9.3).

Conversions betweentimestamp without time zone and timestamp with time zone

normally assume that thetimestamp without time zone value should be taken or given as
timezone local time. A different zone reference can be specified for the conversion usingAT TIME

ZONE.

8.5.1.4. Intervals

interval values can be written with the following syntax:

[@] quantity unit [quantity unit ...] [direction]

89

Chapter 8. Data Types

Where:quantity is a number (possibly signed);unit is second , minute , hour , day , week,
month , year , decade , century , millennium , or abbreviations or plurals of these units;
direction can beago or empty. The at sign (@) is optional noise. The amounts of different units
are implicitly added up with appropriate sign accounting.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example,’1 12:59:10’ is read the same as’1 day 12 hours 59 min 10 sec’ .

The optional precisionp should be between 0 and 6, and defaults to the precision of the input literal.

8.5.1.5. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown inTable 8-
13. The valuesinfinity and -infinity are specially represented inside the system and will be
displayed the same way; but the others are simply notational shorthands that will be converted to
ordinary date/time values when read. (In particular,now and related strings are converted to a specific
time value as soon as they are read.) All of these values need to be written in single quotes when used
as constants in SQL commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date , timestamp 1970-01-01 00:00:00+00 (Unix system time zero)

infinity timestamp later than all other time stamps

-infinity timestamp earlier than all other time stamps

now date , time , timestamp current transaction’s start time

today date , timestamp midnight today

tomorrow date , timestamp midnight tomorrow

yesterday date , timestamp midnight yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type:CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. The latter four accept an optional precision specification. (SeeSection 9.9.4.)
Note however that these are SQL functions and arenot recognized as data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES, and German, using the commandSET datestyle . The default is the ISO
format. (The SQL standard requires the use of the ISO 8601 format. The name of the “SQL” output
format is a historical accident.)Table 8-14shows examples of each output style. The output of the
date andtime types is of course only the date or time part in accordance with the given examples.

Table 8-14. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST

90

Chapter 8. Data Types

Style Specification Description Example

POSTGRES original style Wed Dec 17 07:37:16 1997 PST

German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (SeeSection 8.5.1for how this setting also affects inter-
pretation of input values.)Table 8-15shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day /month /year 17/12/1997 15:37:16.00 CET

SQL, MDY month /day /year 12/17/1997 07:37:16.00 PST

Postgres, DMY day /month /year Wed 17 Dec 07:37:16 1997 PST

interval output looks like the input format, except that units likecentury or week are converted
to years and days andago is converted to an appropriate sign. In ISO mode the output looks like

[quantity unit [...]] [days] [hours : minutes : seconds]

The date/time styles can be selected by the user using theSET datestyle command, theDateStyle
parameter in thepostgresql.conf configuration file, or thePGDATESTYLEenvironment variable
on the server or client. The formatting functionto_char (seeSection 9.8) is also available as a more
flexible way to format the date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL currently
supports daylight-savings rules over the time period 1902 through 2038 (corresponding to the full
range of conventional Unix system time). Times outside that range are taken to be in “standard time”
for the selected time zone, no matter what part of the year they fall in.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

• Although thedate type does not have an associated time zone, thetime type can. Time zones in
the real world have little meaning unless associated with a date as well as a time, since the offset
may vary through the year with daylight-saving time boundaries.

• The default time zone is specified as a constant numeric offset from UTC. It is therefore not possible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We recommendnot using the typetime with time zone (though it is
supported by PostgreSQL for legacy applications and for compliance with the SQL standard). Post-
greSQL assumes your local time zone for any type containing only date or time.

91

Chapter 8. Data Types

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in
the zone specified by thetimezoneconfiguration parameter before being displayed to the client.

Thetimezoneconfiguration parameter can be set in the filepostgresql.conf , or in any of the other
standard ways described inSection 16.4. There are also several special ways to set it:

• If timezone is not specified inpostgresql.conf nor as a postmaster command-line switch, the
server attempts to use the value of theTZ environment variable as the default time zone. IfTZ is
not defined or is not any of the time zone names known to PostgreSQL, the server attempts to de-
termine the operating system’s default time zone by checking the behavior of the C library function
localtime() . The default time zone is selected as the closest match among PostgreSQL’s known
time zones.

• The SQL commandSET TIME ZONEsets the time zone for the session. This is an alternative
spelling ofSET TIMEZONE TOwith a more SQL-spec-compatible syntax.

• The PGTZenvironment variable, if set at the client, is used by libpq applications to send aSET

TIME ZONEcommand to the server upon connection.

Refer toAppendix Bfor a list of available time zones.

8.5.4. Internals

PostgreSQL uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713 BC to far into the future, using the assumption
that the length of the year is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough
to warrant coding into a date/time handler.

8.6. Boolean Type
PostgreSQL provides the standard SQL typeboolean . boolean can have one of only two states:
“true” or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:

TRUE

’t’

’true’

’y’

’yes’

’1’

For the “false” state, the following values can be used:

FALSE

’f’

’false’

’n’

’no’

’0’

92

Chapter 8. Data Types

Using the key wordsTRUEandFALSE is preferred (and SQL-compliant).

Example 8-2. Using theboolean type

CREATE TABLE test1 (a boolean, b text);
INSERT INTO test1 VALUES (TRUE, ’sic est’);
INSERT INTO test1 VALUES (FALSE, ’non est’);
SELECT * FROM test1;

a | b
---+---------

t | sic est
f | non est

SELECT * FROM test1 WHERE a;
a | b

---+---------
t | sic est

Example 8-2shows thatboolean values are output using the letterst andf .

Tip: Values of the boolean type cannot be cast directly to other types (e.g., CAST (boolval

AS integer) does not work). This can be accomplished using the CASEexpression: CASE WHEN

boolval THEN ’value if true’ ELSE ’value if false’ END . See Section 9.13.

boolean uses 1 byte of storage.

8.7. Geometric Types
Geometric data types represent two-dimensional spatial objects.Table 8-16shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other
types.

Table 8-16. Geometric Types

Name Storage Size Representation Description

point 16 bytes Point on the plane (x,y)

line 32 bytes Infinite line (not fully
implemented)

((x1,y1),(x2,y2))

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to
polygon)

((x1,y1),...)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to
closed path)

((x1,y1),...)

circle 24 bytes Circle <(x,y),r> (center and
radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained inSection 9.10.

93

Chapter 8. Data Types

8.7.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of typepoint

are specified using the following syntax:

(x , y)
x , y

wherex andy are the respective coordinates as floating-point numbers.

8.7.2. Line Segments

Line segments (lseg) are represented by pairs of points. Values of typelseg are specified using the
following syntax:

((x1 , y1) , (x2 , y2))
(x1 , y1) , (x2 , y2)

x1 , y1 , x2 , y2

where(x1 , y1) and(x2 , y2) are the end points of the line segment.

8.7.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of typebox are
specified using the following syntax:

((x1 , y1) , (x2 , y2))
(x1 , y1) , (x2 , y2)

x1 , y1 , x2 , y2

where(x1 , y1) and(x2 , y2) are any two opposite corners of the box.

Boxes are output using the first syntax. The corners are reordered on input to store the upper right
corner, then the lower left corner. Other corners of the box can be entered, but the lower left and upper
right corners are determined from the input and stored.

8.7.4. Paths

Paths are represented by lists of connected points. Paths can beopen, where the first and last points
in the list are not considered connected, orclosed, where the first and last points are considered
connected.

Values of typepath are specified using the following syntax:

((x1 , y1) , ... , (xn , yn))
[(x1 , y1) , ... , (xn , yn)]

(x1 , y1) , ... , (xn , yn)
(x1 , y1 , ... , xn , yn)

x1 , y1 , ... , xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([])
indicate an open path, while parentheses (()) indicate a closed path.

Paths are output using the first syntax.

94

Chapter 8. Data Types

8.7.5. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons should probably
be considered equivalent to closed paths, but are stored differently and have their own set of support
routines.

Values of typepolygon are specified using the following syntax:

((x1 , y1) , ... , (xn , yn))
(x1 , y1) , ... , (xn , yn)
(x1 , y1 , ... , xn , yn)

x1 , y1 , ... , xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.7.6. Circles

Circles are represented by a center point and a radius. Values of typecircle are specified using the
following syntax:

< (x , y) , r >

((x , y) , r)
(x , y) , r

x , y , r

where(x , y) is the center andr is the radius of the circle.

Circles are output using the first syntax.

8.8. Network Address Types
PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown inTable 8-17. It
is preferable to use these types instead of plain text types to store network addresses, because these
types offer input error checking and several specialized operators and functions (seeSection 9.11).

Table 8-17. Network Address Types

Name Storage Size Description

cidr 12 or 24 bytes IPv4 and IPv6 networks

inet 12 or 24 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sortinginet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, includ-
ing IPv4 addresses encapsulated or mapped into IPv6 addresses, such as ::10.2.3.4 or ::ffff::10.4.3.2.

8.8.1. inet

Theinet type holds an IPv4 or IPv6 host address, and optionally the identity of the subnet it is in, all
in one field. The subnet identity is represented by stating how many bits of the host address represent
the network address (the “netmask”). If the netmask is 32 and the address is IPv4, then the value does

95

Chapter 8. Data Types

not indicate a subnet, only a single host. In IPv6, the address length is 128 bits, so 128 bits specify
a unique host address. Note that if you want to accept networks only, you should use thecidr type
rather thaninet .

The input format for this type isaddress/y whereaddress is an IPv4 or IPv6 address andy is
the number of bits in the netmask. If the/y part is left off, then the netmask is 32 for IPv4 and 128
for IPv6, so the value represents just a single host. On display, the/y portion is suppressed if the
netmask specifies a single host.

8.8.2. cidr

Thecidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks isaddress/y where
address is the network represented as an IPv4 or IPv6 address, andy is the number of bits in the
netmask. Ify is omitted, it is calculated using assumptions from the older classful network numbering
system, except that it will be at least large enough to include all of the octets written in the input. It is
an error to specify a network address that has bits set to the right of the specified netmask.

Table 8-18shows some examples.

Table 8-18.cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)

192.168.100.128/25 192.168.100.128/25 192.168.100.128/25

192.168/24 192.168.0.0/24 192.168.0/24

192.168/25 192.168.0.0/25 192.168.0.0/25

192.168.1 192.168.1.0/24 192.168.1/24

192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64

2001:4f8:3:ba:2e0:81ff:fe22:d1f1/1282001:4f8:3:ba:2e0:81ff:fe22:d1f1/1282001:4f8:3:ba:2e0:81ff:fe22:d1f1

::ffff:1.2.3.0/120 ::ffff:1.2.3.0/120 ::ffff:1.2.3/120

::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128

8.8.3. inet vs. cidr

The essential difference betweeninet andcidr data types is thatinet accepts values with nonzero
bits to the right of the netmask, whereascidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host , text , and
abbrev .

96

Chapter 8. Data Types

8.8.4. macaddr

Themacaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC ad-
dresses are used for other purposes as well). Input is accepted in various customary formats, including

’08002b:010203’

’08002b-010203’

’0800.2b01.0203’

’08-00-2b-01-02-03’

’08:00:2b:01:02:03’

which would all specify the same address. Upper and lower case is accepted for the digitsa through
f . Output is always in the last of the forms shown.

The directorycontrib/mac in the PostgreSQL source distribution contains tools that can be used to
map MAC addresses to hardware manufacturer names.

8.9. Bit String Types
Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two
SQL bit types:bit(n) andbit varying(n) , wheren is a positive integer.

bit type data must match the lengthn exactly; it is an error to attempt to store shorter or longer bit
strings.bit varying data is of variable length up to the maximum lengthn; longer strings will be
rejected. Writingbit without a length is equivalent tobit(1) , whilebit varying without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit(n) , it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
to bit varying(n) , it will be truncated on the right if it is more than n bits.

Note: Prior to PostgreSQL 7.2, bit data was always silently truncated or zero-padded on the
right, with or without an explicit cast. This was changed to comply with the SQL standard.

Refer toSection 4.1.2.3for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; seeSection 9.6.

Example 8-3. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00’);
INSERT INTO test VALUES (B’10’, B’101’);
ERROR: bit string length 2 does not match type bit(3)

INSERT INTO test VALUES (B’10’::bit(3), B’101’);
SELECT * FROM test;

a | b

97

Chapter 8. Data Types

-----+-----

101 | 00

100 | 101

8.10. Arrays
PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in or user-defined base type can be created. (Arrays of composite types or domains
are not yet supported, however.)

8.10.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_quarter integer[],
schedule text[][]

);

As shown, an array data type is named by appending square brackets ([]) to the data type name of
the array elements. The above command will create a table namedsal_emp with a column of type
text (name), a one-dimensional array of typeinteger (pay_by_quarter), which represents the
employee’s salary by quarter, and a two-dimensional array oftext (schedule), which represents
the employee’s weekly schedule.

The syntax forCREATE TABLEallows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]

);

However, the current implementation does not enforce the array size limits — the behavior is the same
as for arrays of unspecified length.

Actually, the current implementation does not enforce the declared number of dimensions either.
Arrays of a particular element type are all considered to be of the same type, regardless of size or
number of dimensions. So, declaring number of dimensions or sizes inCREATE TABLEis simply
documentation, it does not affect runtime behavior.

An alternative syntax, which conforms to the SQL:1999 standard, may be used for one-dimensional
arrays.pay_by_quarter could have been defined as:

pay_by_quarter integer ARRAY[4],

This syntax requires an integer constant to denote the array size. As before, however, PostgreSQL
does not enforce the size restriction.

8.10.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and
separate them by commas. (If you know C, this is not unlike the C syntax for initializing structures.)

98

Chapter 8. Data Types

You may put double quotes around any element value, and must do so if it contains commas or curly
braces. (More details appear below.) Thus, the general format of an array constant is the following:

’{ val1 delim val2 delim ... }’

wheredelim is the delimiter character for the type, as recorded in itspg_type entry. Among the
standard data types provided in the PostgreSQL distribution, typebox uses a semicolon (;) but all
the others use comma (,). Eachval is either a constant of the array element type, or a subarray. An
example of an array constant is

’{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.5. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show someINSERT statements.

INSERT INTO sal_emp
VALUES (’Bill’,
’{10000, 10000, 10000, 10000}’,
’{{"meeting", "lunch"}, {"meeting"}}’);

ERROR: multidimensional arrays must have array expressions with matching dimensions

Note that multidimensional arrays must have matching extents for each dimension. A mismatch
causes an error report.

INSERT INTO sal_emp
VALUES (’Bill’,
’{10000, 10000, 10000, 10000}’,
’{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES (’Carol’,
’{20000, 25000, 25000, 25000}’,
’{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

A limitation of the present array implementation is that individual elements of an array cannot be
SQL null values. The entire array can be set to null, but you can’t have an array with some elements
null and some not.

The result of the previous two inserts looks like this:

SELECT * FROM sal_emp;
name | pay_by_quarter | schedule

-------+---------------------------+---
Bill | {10000,10000,10000,10000} | {{meeting,lunch},{training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting},{meeting,lunch}}

(2 rows)

TheARRAYconstructor syntax may also be used:

INSERT INTO sal_emp
VALUES (’Bill’,

99

Chapter 8. Data Types

ARRAY[10000, 10000, 10000, 10000],
ARRAY[[’meeting’, ’lunch’], [’training’, ’presentation’]]);

INSERT INTO sal_emp
VALUES (’Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY[[’breakfast’, ’consulting’], [’meeting’, ’lunch’]]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. TheARRAYconstructor
syntax is discussed in more detail inSection 4.2.10.

8.10.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array
at a time. This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[1] <> pay_by_quarter[2];

name

Carol
(1 row)

The array subscript numbers are written within square brackets. By default PostgreSQL uses the one-
based numbering convention for arrays, that is, an array ofn elements starts witharray[1] and ends
with array[n] .

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000

(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing lower-bound : upper-bound for one or more array dimensions. For example, this query
retrieves the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’Bill’;

schedule

{{meeting},{training}}
(1 row)

We could also have written

SELECT schedule[1:2][1] FROM sal_emp WHERE name = ’Bill’;

100

Chapter 8. Data Types

with the same result. An array subscripting operation is always taken to represent an array slice if
any of the subscripts are written in the formlower : upper . A lower bound of 1 is assumed for any
subscript where only one value is specified, as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = ’Bill’;

schedule

{{meeting,lunch},{training,presentation}}
(1 row)

The current dimensions of any array value can be retrieved with thearray_dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = ’Carol’;

array_dims

[1:2][1:1]
(1 row)

array_dims produces atext result, which is convenient for people to read but perhaps not so
convenient for programs. Dimensions can also be retrieved witharray_upper andarray_lower ,
which return the upper and lower bound of a specified array dimension, respectively.

SELECT array_upper(schedule, 1) FROM sal_emp WHERE name = ’Carol’;

array_upper

2
(1 row)

8.10.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}’
WHERE name = ’Carol’;

or using theARRAYexpression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’Carol’;

An array may also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = ’Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1:2] = ’{27000,27000}’
WHERE name = ’Carol’;

101

Chapter 8. Data Types

A stored array value can be enlarged by assigning to an element adjacent to those already present,
or by assigning to a slice that is adjacent to or overlaps the data already present. For example, if
arraymyarray currently has 4 elements, it will have five elements after an update that assigns to
myarray[5] . Currently, enlargement in this fashion is only allowed for one-dimensional arrays, not
multidimensional arrays.

Array slice assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign tomyarray[-2:7] to create an array with subscript values running from -2 to 7.

New array values can also be constructed by using the concatenation operator,|| .

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?

{1,2,3,4}

(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
?column?

{{5,6},{1,2},{3,4}}

(1 row)

The concatenation operator allows a single element to be pushed on to the beginning or end of a
one-dimensional array. It also accepts twoN-dimensional arrays, or anN-dimensional and anN+1-
dimensional array.

When a single element is pushed on to the beginning of a one-dimensional array, the result is an
array with a lower bound subscript equal to the right-hand operand’s lower bound subscript, minus
one. When a single element is pushed on to the end of a one-dimensional array, the result is an array
retaining the lower bound of the left-hand operand. For example:

SELECT array_dims(1 || ARRAY[2,3]);
array_dims

[0:2]

(1 row)

SELECT array_dims(ARRAY[1,2] || 3);
array_dims

[1:3]

(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand’s outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]

(1 row)

102

Chapter 8. Data Types

SELECT array_dims(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]]);
array_dims

[1:5][1:2]

(1 row)

When anN-dimensional array is pushed on to the beginning or end of anN+1-dimensional array, the
result is analogous to the element-array case above. EachN-dimensional sub-array is essentially an
element of theN+1-dimensional array’s outer dimension. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
array_dims

[0:2][1:2]

(1 row)

An array can also be constructed by using the functionsarray_prepend , array_append ,
or array_cat . The first two only support one-dimensional arrays, butarray_cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over
direct use of these functions. In fact, the functions are primarily for use in implementing the
concatenation operator. However, they may be directly useful in the creation of user-defined
aggregates. Some examples:

SELECT array_prepend(1, ARRAY[2,3]);
array_prepend

{1,2,3}

(1 row)

SELECT array_append(ARRAY[1,2], 3);
array_append

{1,2,3}

(1 row)

SELECT array_cat(ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}

(1 row)

SELECT array_cat(ARRAY[[1,2],[3,4]], ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5,6}}

(1 row)

SELECT array_cat(ARRAY[5,6], ARRAY[[1,2],[3,4]]);
array_cat

{{5,6},{1,2},{3,4}}

103

Chapter 8. Data Types

8.10.5. Searching in Arrays

To search for a value in an array, you must check each value of the array. This can be done by hand,
if you know the size of the array. For example:

SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_quarter[3] = 10000 OR
pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
uncertain. An alternative method is described inSection 9.17. The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you could find rows where the array had all values equal to 10000 with:

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Tip: Arrays are not sets; searching for specific array elements may be a sign of database misde-
sign. Consider using a separate table with a row for each item that would be an array element.
This will be easier to search, and is likely to scale up better to large numbers of elements.

8.10.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comma (,) but can be something else: it
is determined by thetypdelim setting for the array’s element type. (Among the standard data types
provided in the PostgreSQL distribution, typebox uses a semicolon (;) but all the others use comma.)
In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces,
and delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings
or contain curly braces, delimiter characters, double quotes, backslashes, or white space. Double
quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either presence or absence of quotes. (This is a change in behavior from pre-7.2
PostgreSQL releases.)

By default, the lower bound index value of an array’s dimensions is set to one. If any of an array’s
dimensions has a lower bound index not equal to one, an additional decoration that indicates the
actual array dimensions will precede the array structure decoration. This decoration consists of square
brackets ([]) around each array dimension’s lower and upper bounds, with a colon (:) delimiter
character in between. The array dimension decoration is followed by an equal sign (=). For example:

SELECT 1 || ARRAY[2,3] AS array;

array

[0:2]={1,2,3}

104

Chapter 8. Data Types

(1 row)

SELECT ARRAY[1,2] || ARRAY[[3,4]] AS array;

array

[0:1][1:2]={{1,2},{3,4}}
(1 row)

This syntax can also be used to specify non-default array subscripts in an array literal. For example:

SELECT f1[1][-2][3] AS e1, f1[1][-1][5] AS e2
FROM (SELECT ’[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}’::int[] AS f1) AS ss;

e1 | e2
----+----

1 | 6
(1 row)

As shown previously, when writing an array value you may write double quotes around any individual
array element. Youmustdo so if the element value would otherwise confuse the array-value parser. For
example, elements containing curly braces, commas (or whatever the delimiter character is), double
quotes, backslashes, or leading or trailing whitespace must be double-quoted. To put a double quote
or backslash in a quoted array element value, precede it with a backslash. Alternatively, you can use
backslash-escaping to protect all data characters that would otherwise be taken as array syntax.

You may write whitespace before a left brace or after a right brace. You may also write whitespace
before or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as an array. This doubles the number of backslashes you need. For example, to
insert a text array value containing a backslash and a double quote, you’d need to write

INSERT ... VALUES (’{"\\\\","\\""}’);

The string-literal processor removes one level of backslashes, so that what arrives at the array-
value parser looks like {"\\","\""} . In turn, the strings fed to the text data type’s input routine
become \ and " respectively. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored array element.) Dollar quoting (see Section 4.1.2.2)
may be used to avoid the need to double backslashes.

Tip: The ARRAYconstructor syntax (see Section 4.2.10) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In ARRAY, individual element values
are written the same way they would be written when not members of an array.

105

Chapter 8. Data Types

8.11. Composite Types
A composite typedescribes the structure of a row or record; it is in essence just a list of field names
and their data types. PostgreSQL allows values of composite types to be used in many of the same
ways that simple types can be used. For example, a column of a table can be declared to be of a
composite type.

8.11.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision

);

CREATE TYPE inventory_item AS (
name text,
supplier_id integer,
price numeric

);

The syntax is comparable toCREATE TABLE, except that only field names and types can be specified;
no constraints (such asNOT NULL) can presently be included. Note that theAS keyword is essential;
without it, the system will think a quite different kind ofCREATE TYPEcommand is meant, and you’ll
get odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer

);

INSERT INTO on_hand VALUES (ROW(’fuzzy dice’, 42, 1.99), 1000);

or functions:

CREATE FUNCTION price_extension(inventory_item, integer) RETURNS numeric
AS ’SELECT $1.price * $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table’s row type. For example, had we said

CREATE TABLE inventory_item (
name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

);

then the sameinventory_item composite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition

106

Chapter 8. Data Types

do not applyto values of the composite type outside the table. (A partial workaround is to use domain
types as members of composite types.)

8.11.2. Composite Value Input

To write a composite value as a literal constant, enclose the field values within parentheses and sepa-
rate them by commas. You may put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of a composite constant
is the following:

’(val1 , val2 , ...)’

An example is

’("fuzzy dice",42,1.99)’

which would be a valid value of theinventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third
field:

’("fuzzy dice",42,)’

If you want an empty string rather than NULL, write double quotes:

’("",42,)’

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed inSection
4.1.2.5. The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary.)

The ROWexpression syntax may also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax, since you don’t have to worry about multiple
layers of quoting. We already used this method above:

ROW(’fuzzy dice’, 42, 1.99)
ROW(”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can simplify to

(’fuzzy dice’, 42, 1.99)
(”, 42, NULL)

TheROWexpression syntax is discussed in more detail inSection 4.2.11.

8.11.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields
from ouron_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

107

Chapter 8. Data Types

This will not work since the nameitem is taken to be a table name, not a field name, per SQL syntax
rules. You must write it like this:

SELECT (item).name FROM on_hand WHERE (item).price > 9.99;

or if you need to use the table name as well (for instance in a multi-table query), like this:

SELECT (on_hand.item).name FROM on_hand WHERE (on_hand.item).price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to theitem column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of a function that returns a composite value, you’d need to write
something like

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will provoke a syntax error.

8.11.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));

UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omitsROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name
appearing just afterSET, but we do need parentheses when referencing the same column in the ex-
pression to the right of the equal sign.

And we can specify subfields as targets forINSERT, too:

INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

8.11.5. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses
it is considered part of the field value, and may or may not be significant depending on the input
conversion rules for the field data type. For example, in

’(42)’

108

Chapter 8. Data Types

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you may write double quotes around any in-
dividual field value. Youmustdo so if the field value would otherwise confuse the composite-value
parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put a double quote or backslash in a quoted composite field value, precede it with
a backslash. (Also, a pair of double quotes within a double-quoted field value is taken to represent
a double quote character, analogously to the rules for single quotes in SQL literal strings.) Alterna-
tively, you can use backslash-escaping to protect all data characters that would otherwise be taken as
composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents
a NULL. To write a value that is an empty string rather than NULL, write"" .

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as a composite. This doubles the number of backslashes you need. For example,
to insert a text field containing a double quote and a backslash in a composite value, you’d need
to write

INSERT ... VALUES (’("\\"\\\\")’);

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\") . In turn, the string fed to the text data type’s input
routine becomes "\ . (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored composite field.) Dollar quoting (see Section
4.1.2.2) may be used to avoid the need to double backslashes.

Tip: The ROWconstructor syntax is usually easier to work with than the composite-literal syntax
when writing composite values in SQL commands. In ROW, individual field values are written the
same way they would be written when not members of a composite.

8.12. Object Identifier Types
Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
An OID system column is also added to user-created tables, unlessWITHOUT OIDSis specified when
the table is created, or thedefault_with_oidsconfiguration variable is set to false. Typeoid represents
an object identifier. There are also several alias types foroid : regproc , regprocedure , regoper ,
regoperator , regclass , andregtype . Table 8-19shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

109

Chapter 8. Data Types

Note: OIDs are included by default in user-created tables in PostgreSQL 8.0.0. However, this
behavior is likely to change in a future version of PostgreSQL. Eventually, user-created tables will
not include an OID system column unless WITH OIDSis specified when the table is created, or the
default_with_oids configuration variable is set to true. If your application requires the presence
of an OID system column in a table, it should specify WITH OIDS when that table is created to
ensure compatibility with future releases of PostgreSQL.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that typeoid would use. The alias types allow simplified lookup of OID values for
objects. For example, to examine thepg_attribute rows related to a tablemytable , one could
write

SELECT * FROM pg_attribute WHERE attrelid = ’mytable’::regclass;

rather than

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = ’mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-
select would be needed to select the right OID if there are multiple tables namedmytable in differ-
ent schemas. Theregclass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting a table’s OID toregclass

is handy for symbolic display of a numeric OID.

Table 8-19. Object Identifier Types

Name References Description Value Example

oid any numeric object identifier564182

regproc pg_proc function name sum

regprocedure pg_proc function with argument
types

sum(int4)

regoper pg_operator operator name +

regoperator pg_operator operator with argument
types

*(integer,integer)

or -(NONE,integer)

regclass pg_class relation name pg_type

regtype pg_type data type name integer

All of the OID alias types accept schema-qualified names, and will display schema-qualified names
on output if the object would not be found in the current search path without being qualified. The
regproc and regoper alias types will only accept input names that are unique (not overloaded),
so they are of limited use; for most usesregprocedure or regoperator is more appropriate. For
regoperator , unary operators are identified by writingNONEfor the unused operand.

Another identifier type used by the system isxid , or transaction (abbreviated xact) identifier. This is
the data type of the system columnsxmin andxmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system iscid , or command identifier. This is the data type of the

110

Chapter 8. Data Types

system columnscmin andcmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system istid , or tuple identifier (row identifier). This is the data
type of the system columnctid . A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within its table.

(The system columns are further explained inSection 5.4.)

8.13. Pseudo-Types
The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data
type.Table 8-20lists the existing pseudo-types.

Table 8-20. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type whatever.

anyarray Indicates that a function accepts any array data
type (seeSection 31.2.5).

anyelement Indicates that a function accepts any data type
(seeSection 31.2.5).

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler A procedural language call handler is declared to
returnlanguage_handler .

record Identifies a function returning an unspecified row
type.

trigger A trigger function is declared to returntrigger.

void Indicates that a function returns no value.

opaque An obsolete type name that formerly served all
the above purposes.

Functions coded in C (whether built-in or dynamically loaded) may be declared to accept or return
any of these pseudo data types. It is up to the function author to ensure that the function will behave
safely when a pseudo-type is used as an argument type.

Functions coded in procedural languages may use pseudo-types only as allowed by their implemen-
tation languages. At present the procedural languages all forbid use of a pseudo-type as argument
type, and allow onlyvoid andrecord as a result type (plustrigger when the function is used as a
trigger). Some also support polymorphic functions using the typesanyarray andanyelement .

The internal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in a SQL query. If a function has at least one
internal -type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to

111

Chapter 8. Data Types

returninternal unless it has at least oneinternal argument.

112

Chapter 9. Functions and Operators
PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described inPart V. The psql commands\df and
\do can be used to show the list of all actually available functions and operators, respectively.

If you are concerned about portability then take note that most of the functions and operators de-
scribed in this chapter, with the exception of the most trivial arithmetic and comparison operators and
some explicitly marked functions, are not specified by the SQL standard. Some of the extended func-
tionality is present in other SQL database management systems, and in many cases this functionality
is compatible and consistent between the various implementations.

9.1. Logical Operators
The usual logical operators are available:

AND

OR

NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the
following truth tables:

a b a AND b a OR b

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL NULL NULL NULL

a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operatorsANDandORare commutative, that is, you can switch the left and right operand without
affecting the result. But seeSection 4.2.12for more information about the order of evaluation of
subexpressions.

9.2. Comparison Operators
The usual comparison operators are available, shown inTable 9-1.

Table 9-1. Comparison Operators

113

Chapter 9. Functions and Operators

Operator Description

< less than

> greater than

<= less than or equal to

>= greater than or equal to

= equal

<> or != not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement !=

and <> operators that do different things.

Comparison operators are available for all data types where this makes sense. All comparison oper-
ators are binary operators that return values of typeboolean ; expressions like1 < 2 < 3 are not
valid (because there is no< operator to compare a Boolean value with3).

In addition to the comparison operators, the specialBETWEENconstruct is available.

a BETWEENx AND y

is equivalent to

a >= x AND a <= y

Similarly,

a NOT BETWEENx AND y

is equivalent to

a < x OR a > y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite
the first one into the second one internally.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, constructs

expression ISNULL
expression NOTNULL

Do not write expression = NULL becauseNULL is not “equal to”NULL. (The null value repre-
sents an unknown value, and it is not known whether two unknown values are equal.) This behavior
conforms to the SQL standard.

Tip: Some applications may expect that expression = NULL returns true if expression eval-
uates to the null value. It is highly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration

114

Chapter 9. Functions and Operators

variable is available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL .
This was the default behavior in PostgreSQL releases 6.5 through 7.1.

The ordinary comparison operators yield null (signifying “unknown”) when either input is null. An-
other way to do comparisons is with theIS DISTINCT FROM construct:

expression IS DISTINCT FROM expression

For non-null inputs this is the same as the<> operator. However, when both inputs are null it will
return false, and when just one input is null it will return true. Thus it effectively acts as though null
were a normal data value, rather than “unknown”.

Boolean values can also be tested using the constructs

expression IS TRUE
expression IS NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null
input is treated as the logical value “unknown”. Notice thatIS UNKNOWNandIS NOT UNKNOWNare
effectively the same asIS NULL and IS NOT NULL, respectively, except that the input expression
must be of Boolean type.

9.3. Mathematical Functions and Operators
Mathematical operators are provided for many PostgreSQL types. For types without common math-
ematical conventions for all possible permutations (e.g., date/time types) we describe the actual be-
havior in subsequent sections.

Table 9-2shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result

+ addition 2 + 3 5

- subtraction 2 - 3 -1

* multiplication 2 * 3 6

/ division (integer division
truncates results)

4 / 2 2

% modulo (remainder) 5 % 4 1

^ exponentiation 2.0 ^ 3.0 8

|/ square root |/ 25.0 5

||/ cube root ||/ 27.0 3

! factorial 5 ! 120

!! factorial (prefix
operator)

!! 5 120

@ absolute value @ -5.0 5

115

Chapter 9. Functions and Operators

Operator Description Example Result

& bitwise AND 91 & 15 11

| bitwise OR 32 | 3 35

bitwise XOR 17 # 5 20

~ bitwise NOT ~1 -2

<< bitwise shift left 1 << 4 16

>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric
data types. The bitwise operators are also available for the bit string typesbit andbit varying , as
shown inTable 9-10.

Table 9-3shows the available mathematical functions. In the table,dp indicatesdouble precision .
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;
accuracy and behavior in boundary cases may therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function Return Type Description Example Result

abs (x) (same asx) absolute value abs(-17.4) 17.4

cbrt (dp) dp cube root cbrt(27.0) 3

ceil (dp or

numeric)

(same as input) smallest integer not
less than argument

ceil(-42.8) -42

ceiling (dp or

numeric)

(same as input) smallest integer not
less than argument
(alias forceil)

ceiling(-95.3) -95

degrees (dp) dp radians to degreesdegrees(0.5) 28.6478897565412

exp (dp or

numeric)

(same as input) exponential exp(1.0) 2.71828182845905

floor (dp or

numeric)

(same as input) largest integer not
greater than
argument

floor(-42.8) -43

ln (dp or

numeric)

(same as input) natural logarithm ln(2.0) 0.693147180559945

log (dp or

numeric)

(same as input) base 10 logarithm log(100.0) 2

log (b numeric , x

numeric)

numeric logarithm to baseb log(2.0, 64.0) 6.0000000000

mod(y , x) (same as argument
types)

remainder ofy /x mod(9,4) 1

pi () dp “π” constant pi() 3.14159265358979

power (a dp , b

dp)

dp a raised to the
power ofb

power(9.0,

3.0)

729

116

Chapter 9. Functions and Operators

Function Return Type Description Example Result

power (a numeric ,

b numeric)

numeric a raised to the
power ofb

power(9.0,

3.0)

729

radians (dp) dp degrees to radiansradians(45.0) 0.785398163397448

random () dp random value
between 0.0 and 1.0

random()

round (dp or

numeric)

(same as input) round to nearest
integer

round(42.4) 42

round (v numeric ,

s integer)

numeric round tos decimal
places

round(42.4382,

2)

42.44

setseed (dp) integer set seed for
subsequent
random() calls

setseed(0.54823) 1177314959

sign (dp or

numeric)

(same as input) sign of the
argument (-1, 0, +1)

sign(-8.4) -1

sqrt (dp or

numeric)

(same as input) square root sqrt(2.0) 1.4142135623731

trunc (dp or

numeric)

(same as input) truncate toward
zero

trunc(42.8) 42

trunc (v numeric ,

s integer)

numeric truncate tos
decimal places

trunc(42.4382,

2)

42.43

width_bucket (op

numeric , b1

numeric , b2

numeric , count

integer)

integer return the bucket to
which operand

would be assigned
in an equidepth
histogram with
count buckets, an
upper bound ofb1,
and a lower bound
of b2

width_bucket(5.35,

0.024, 10.06,

5)

3

Finally, Table 9-4shows the available trigonometric functions. All trigonometric functions take argu-
ments and return values of typedouble precision .

Table 9-4. Trigonometric Functions

Function Description

acos (x) inverse cosine

asin (x) inverse sine

atan (x) inverse tangent

atan2 (x , y) inverse tangent ofx / y

cos (x) cosine

cot (x) cotangent

sin (x) sine

117

Chapter 9. Functions and Operators

Function Description

tan (x) tangent

9.4. String Functions and Operators
This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of all the typescharacter , character varying , andtext . Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of potential
effects of the automatic padding when using thecharacter type. Generally, the functions described
here also work on data of non-string types by converting that data to a string representation first. Some
functions also exist natively for the bit-string types.

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details are inTable 9-5. These functions are also implemented
using the regular syntax for function invocation. (SeeTable 9-6.)

Table 9-5. SQL String Functions and Operators

Function Return Type Description Example Result

string || string text String
concatenation

’Post’ ||

’greSQL’

PostgreSQL

bit_length (string)integer Number of bits in
string

bit_length(’jose’) 32

char_length (string)

or
character_length (string)

integer Number of
characters in string

char_length(’jose’) 4

convert (string

using

conversion_name)

text Change encoding
using specified
conversion name.
Conversions can be
defined byCREATE

CONVERSION. Also
there are some
pre-defined
conversion names.
SeeTable 9-7for
available
conversion names.

convert(’PostgreSQL’

using

iso_8859_1_to_utf_8)

’PostgreSQL’ in
Unicode (UTF-8)
encoding

lower (string) text Convert string to
lower case

lower(’TOM’) tom

octet_length (string)integer Number of bytes in
string

octet_length(’jose’) 4

overlay (string

placing string

from integer

[for integer])

text Replace substringoverlay(’Txxxxas’

placing ’hom’

from 2 for 4)

Thomas

118

Chapter 9. Functions and Operators

Function Return Type Description Example Result

position (substring

in string)

integer Location of
specified substring

position(’om’

in ’Thomas’)

3

substring (string

[from integer]

[for integer])

text Extract substring substring(’Thomas’

from 2 for 3)

hom

substring (string

from pattern)

text Extract substring
matching POSIX
regular expression

substring(’Thomas’

from ’...$’)

mas

substring (string

from pattern

for escape)

text Extract substring
matching SQL
regular expression

substring(’Thomas’

from

’%#"o_a#"_’

for ’#’)

oma

trim ([leading

| trailing |

both]

[characters]

from string)

text Remove the
longest string
containing only the
characters (a
space by default)
from the
start/end/both ends
of thestring .

trim(both ’x’

from ’xTomxx’)

Tom

upper (string) text Convert string to
uppercase

upper(’tom’) TOM

Additional string manipulation functions are available and are listed inTable 9-6. Some of them are
used internally to implement the SQL-standard string functions listed inTable 9-5.

Table 9-6. Other String Functions

Function Return Type Description Example Result

ascii (text) integer ASCII code of the
first character of the
argument

ascii(’x’) 120

btrim (string

text [,

characters

text])

text Remove the
longest string
consisting only of
characters in
characters (a
space by default)
from the start and
end ofstring .

btrim(’xyxtrimyyx’,

’xy’)

trim

chr (integer) text Character with the
given ASCII code

chr(65) A

119

Chapter 9. Functions and Operators

Function Return Type Description Example Result

convert (string

text ,

[src_encoding

name,]

dest_encoding

name)

text Convert string to
dest_encoding .
The original
encoding is
specified by
src_encoding . If
src_encoding is
omitted, database
encoding is
assumed.

convert(

’text_in_unicode’,

’UNICODE’,

’LATIN1’)

text_in_unicode

represented in ISO
8859-1 encoding

decode (string

text , type text)

bytea Decode binary data
from string

previously encoded
with encode .
Parameter type is
same as inencode .

decode(’MTIzAAE=’,

’base64’)

123\000\001

encode (data

bytea , type

text)

text Encode binary data
to ASCII-only
representation.
Supported types
are:base64 , hex ,
escape .

encode(

’123\\000\\001’,

’base64’)

MTIzAAE=

initcap (text) text Convert the first
letter of each word
to uppercase and
the rest to
lowercase. Words
are sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’hi

THOMAS’)

Hi Thomas

length (string

text)

integer Number of
characters in
string .

length(’jose’) 4

lpad (string

text , length

integer [, fill

text])

text Fill up thestring

to lengthlength

by prepending the
charactersfill (a
space by default). If
thestring is
already longer than
length then it is
truncated (on the
right).

lpad(’hi’, 5,

’xy’)

xyxhi

120

Chapter 9. Functions and Operators

Function Return Type Description Example Result

ltrim (string

text [,

characters

text])

text Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start of
string .

ltrim(’zzzytrim’,

’xyz’)

trim

md5(string text) text Calculates the
MD5 hash of
string , returning
the result in
hexadecimal.

md5(’abc’) 900150983cd24fb0

d6963f7d28e17f72

pg_client_encoding ()name Current client
encoding name

pg_client_encoding()SQL_ASCII

quote_ident (string

text)

text Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or would
be case-folded).
Embedded quotes
are properly
doubled.

quote_ident(’Foo

bar’)

"Foo bar"

quote_literal (string

text)

text Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string. Embedded
quotes and
backslashes are
properly doubled.

quote_literal(

’O\’Reilly’)

’O”Reilly’

repeat (string

text , number

integer)

text Repeatstring the
specifiednumber

of times

repeat(’Pg’,

4)

PgPgPgPg

replace (string

text , from text ,

to text)

text Replace all
occurrences in
string of
substringfrom

with substringto .

replace(

’abcdefabcdef’,

’cd’, ’XX’)

abXXefabXXef

121

Chapter 9. Functions and Operators

Function Return Type Description Example Result

rpad (string

text , length

integer [, fill

text])

text Fill up thestring

to lengthlength

by appending the
charactersfill (a
space by default). If
thestring is
already longer than
length then it is
truncated.

rpad(’hi’, 5,

’xy’)

hixyx

rtrim (string

text [,

characters

text])

text Remove the
longest string
containing only
characters from
characters (a
space by default)
from the end of
string .

rtrim(’trimxxxx’,

’x’)

trim

split_part (string

text , delimiter

text , field

integer)

text Split string on
delimiter and
return the given
field (counting from
one)

split_part(

’abc~@~def~@~ghi’,

’~@~’, 2)

def

strpos (string ,

substring)

text Location of
specified substring
(same as
position(substring

in string) , but
note the reversed
argument order)

strpos(’high’,

’ig’)

2

substr (string ,

from [, count])

text Extract substring
(same as
substring(string

from from for

count))

substr(’alphabet’,

3, 2)

ph

to_ascii (text [,

encoding])

text Converttext to
ASCII from another
encodinga

to_ascii(’Karel’) Karel

to_hex (number

integer or

bigint)

text Convertnumber to
its equivalent
hexadecimal
representation

to_hex(2147483647)7fffffff

translate (string

text , from text ,

to text)

text Any character in
string that
matches a character
in the from set is
replaced by the
corresponding
character in theto
set.

translate(’12345’,

’14’, ’ax’)

a23x5

122

Chapter 9. Functions and Operators

Function Return Type Description Example Result

Notes:a. The to_ascii function supports conversion fromLATIN1 , LATIN2 , LATIN9 , andWIN1250 encodings only.

Table 9-7. Built-in Conversions

Conversion Name a Source Encoding Destination Encoding

ascii_to_mic SQL_ASCII MULE_INTERNAL

ascii_to_utf_8 SQL_ASCII UNICODE

big5_to_euc_tw BIG5 EUC_TW

big5_to_mic BIG5 MULE_INTERNAL

big5_to_utf_8 BIG5 UNICODE

euc_cn_to_mic EUC_CN MULE_INTERNAL

euc_cn_to_utf_8 EUC_CN UNICODE

euc_jp_to_mic EUC_JP MULE_INTERNAL

euc_jp_to_sjis EUC_JP SJIS

euc_jp_to_utf_8 EUC_JP UNICODE

euc_kr_to_mic EUC_KR MULE_INTERNAL

euc_kr_to_utf_8 EUC_KR UNICODE

euc_tw_to_big5 EUC_TW BIG5

euc_tw_to_mic EUC_TW MULE_INTERNAL

euc_tw_to_utf_8 EUC_TW UNICODE

gb18030_to_utf_8 GB18030 UNICODE

gbk_to_utf_8 GBK UNICODE

iso_8859_10_to_utf_8 LATIN6 UNICODE

iso_8859_13_to_utf_8 LATIN7 UNICODE

iso_8859_14_to_utf_8 LATIN8 UNICODE

iso_8859_15_to_utf_8 LATIN9 UNICODE

iso_8859_16_to_utf_8 LATIN10 UNICODE

iso_8859_1_to_mic LATIN1 MULE_INTERNAL

iso_8859_1_to_utf_8 LATIN1 UNICODE

iso_8859_2_to_mic LATIN2 MULE_INTERNAL

iso_8859_2_to_utf_8 LATIN2 UNICODE

iso_8859_2_to_windows_1250 LATIN2 WIN1250

iso_8859_3_to_mic LATIN3 MULE_INTERNAL

iso_8859_3_to_utf_8 LATIN3 UNICODE

iso_8859_4_to_mic LATIN4 MULE_INTERNAL

iso_8859_4_to_utf_8 LATIN4 UNICODE

iso_8859_5_to_koi8_r ISO_8859_5 KOI8

iso_8859_5_to_mic ISO_8859_5 MULE_INTERNAL

iso_8859_5_to_utf_8 ISO_8859_5 UNICODE

iso_8859_5_to_windows_1251 ISO_8859_5 WIN

123

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding

iso_8859_5_to_windows_866 ISO_8859_5 ALT

iso_8859_6_to_utf_8 ISO_8859_6 UNICODE

iso_8859_7_to_utf_8 ISO_8859_7 UNICODE

iso_8859_8_to_utf_8 ISO_8859_8 UNICODE

iso_8859_9_to_utf_8 LATIN5 UNICODE

johab_to_utf_8 JOHAB UNICODE

koi8_r_to_iso_8859_5 KOI8 ISO_8859_5

koi8_r_to_mic KOI8 MULE_INTERNAL

koi8_r_to_utf_8 KOI8 UNICODE

koi8_r_to_windows_1251 KOI8 WIN

koi8_r_to_windows_866 KOI8 ALT

mic_to_ascii MULE_INTERNAL SQL_ASCII

mic_to_big5 MULE_INTERNAL BIG5

mic_to_euc_cn MULE_INTERNAL EUC_CN

mic_to_euc_jp MULE_INTERNAL EUC_JP

mic_to_euc_kr MULE_INTERNAL EUC_KR

mic_to_euc_tw MULE_INTERNAL EUC_TW

mic_to_iso_8859_1 MULE_INTERNAL LATIN1

mic_to_iso_8859_2 MULE_INTERNAL LATIN2

mic_to_iso_8859_3 MULE_INTERNAL LATIN3

mic_to_iso_8859_4 MULE_INTERNAL LATIN4

mic_to_iso_8859_5 MULE_INTERNAL ISO_8859_5

mic_to_koi8_r MULE_INTERNAL KOI8

mic_to_sjis MULE_INTERNAL SJIS

mic_to_windows_1250 MULE_INTERNAL WIN1250

mic_to_windows_1251 MULE_INTERNAL WIN

mic_to_windows_866 MULE_INTERNAL ALT

sjis_to_euc_jp SJIS EUC_JP

sjis_to_mic SJIS MULE_INTERNAL

sjis_to_utf_8 SJIS UNICODE

tcvn_to_utf_8 TCVN UNICODE

uhc_to_utf_8 UHC UNICODE

utf_8_to_ascii UNICODE SQL_ASCII

utf_8_to_big5 UNICODE BIG5

utf_8_to_euc_cn UNICODE EUC_CN

utf_8_to_euc_jp UNICODE EUC_JP

utf_8_to_euc_kr UNICODE EUC_KR

utf_8_to_euc_tw UNICODE EUC_TW

utf_8_to_gb18030 UNICODE GB18030

utf_8_to_gbk UNICODE GBK

utf_8_to_iso_8859_1 UNICODE LATIN1

124

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding

utf_8_to_iso_8859_10 UNICODE LATIN6

utf_8_to_iso_8859_13 UNICODE LATIN7

utf_8_to_iso_8859_14 UNICODE LATIN8

utf_8_to_iso_8859_15 UNICODE LATIN9

utf_8_to_iso_8859_16 UNICODE LATIN10

utf_8_to_iso_8859_2 UNICODE LATIN2

utf_8_to_iso_8859_3 UNICODE LATIN3

utf_8_to_iso_8859_4 UNICODE LATIN4

utf_8_to_iso_8859_5 UNICODE ISO_8859_5

utf_8_to_iso_8859_6 UNICODE ISO_8859_6

utf_8_to_iso_8859_7 UNICODE ISO_8859_7

utf_8_to_iso_8859_8 UNICODE ISO_8859_8

utf_8_to_iso_8859_9 UNICODE LATIN5

utf_8_to_johab UNICODE JOHAB

utf_8_to_koi8_r UNICODE KOI8

utf_8_to_sjis UNICODE SJIS

utf_8_to_tcvn UNICODE TCVN

utf_8_to_uhc UNICODE UHC

utf_8_to_windows_1250 UNICODE WIN1250

utf_8_to_windows_1251 UNICODE WIN

utf_8_to_windows_1256 UNICODE WIN1256

utf_8_to_windows_866 UNICODE ALT

utf_8_to_windows_874 UNICODE WIN874

windows_1250_to_iso_8859_2 WIN1250 LATIN2

windows_1250_to_mic WIN1250 MULE_INTERNAL

windows_1250_to_utf_8 WIN1250 UNICODE

windows_1251_to_iso_8859_5 WIN ISO_8859_5

windows_1251_to_koi8_r WIN KOI8

windows_1251_to_mic WIN MULE_INTERNAL

windows_1251_to_utf_8 WIN UNICODE

windows_1251_to_windows_866 WIN ALT

windows_1256_to_utf_8 WIN1256 UNICODE

windows_866_to_iso_8859_5 ALT ISO_8859_5

windows_866_to_koi8_r ALT KOI8

windows_866_to_mic ALT MULE_INTERNAL

windows_866_to_utf_8 ALT UNICODE

windows_866_to_windows_1251 ALT WIN

125

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding

windows_874_to_utf_8 WIN874 UNICODE

Notes:a. The conversion names follow a standard naming scheme: The official name of the source encoding with all non-alphanumeric characters replaced by underscores followed by_to_ followed by the equally processed destination encoding name. Therefore the names might deviate from the customary encoding names.

9.5. Binary String Functions and Operators
This section describes functions and operators for examining and manipulating values of typebytea .

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details are inTable 9-8. Some functions are also implemented
using the regular syntax for function invocation. (SeeTable 9-9.)

Table 9-8. SQL Binary String Functions and Operators

Function Return Type Description Example Result

string || string bytea String
concatenation

’\\\\Post’::bytea

||

’\\047gres\\000’::bytea

\\Post’gres\000

octet_length (string)integer Number of bytes in
binary string

octet_length(

’jo\\000se’::bytea)

5

position (substring

in string)

integer Location of
specified substring

position(’\\000om’::bytea

in

’Th\\000omas’::bytea)

3

substring (string

[from integer]

[for integer])

bytea Extract substring substring(’Th\\000omas’::bytea

from 2 for 3)

h\000o

trim ([both]

bytes from

string)

bytea Remove the
longest string
containing only the
bytes inbytes

from the start and
end ofstring

trim(’\\000’::bytea

from

’\\000Tom\\000’::bytea)

Tom

get_byte (string ,
offset)

integer Extract byte from
string.

get_byte(’Th\\000omas’::bytea,

4)

109

set_byte (string ,
offset ,
newvalue)

bytea Set byte in string. set_byte(’Th\\000omas’::bytea,

4, 64)

Th\000o@as

get_bit (string ,
offset)

integer Extract bit from
string.

get_bit(’Th\\000omas’::bytea,

45)

1

set_bit (string ,
offset ,
newvalue)

bytea Set bit in string. set_bit(’Th\\000omas’::bytea,

45, 0)

Th\000omAs

Additional binary string manipulation functions are available and are listed inTable 9-9. Some of
them are used internally to implement the SQL-standard string functions listed inTable 9-8.

126

Chapter 9. Functions and Operators

Table 9-9. Other Binary String Functions

Function Return Type Description Example Result

btrim (string

bytea , bytes

bytea)

bytea Remove the
longest string
consisting only of
bytes inbytes

from the start and
end ofstring .

btrim(’\\000trim\\000’::bytea,

’\\000’::bytea)

trim

length (string) integer Length of binary
string

length(’jo\\000se’::bytea)5

decode (string

text , type text)

bytea Decode binary
string fromstring

previously encoded
with encode .
Parameter type is
same as inencode .

decode(’123\\000456’,

’escape’)

123\000456

encode (string

bytea , type

text)

text Encode binary
string to
ASCII-only
representation.
Supported types
are:base64 , hex ,
escape .

encode(’123\\000456’::bytea,

’escape’)

123\000456

9.6. Bit String Functions and Operators
This section describes functions and operators for examining and manipulating bit strings, that is
values of the typesbit andbit varying . Aside from the usual comparison operators, the operators
shown inTable 9-10can be used. Bit string operands of&, | , and# must be of equal length. When bit
shifting, the original length of the string is preserved, as shown in the examples.

Table 9-10. Bit String Operators

Operator Description Example Result

|| concatenation B’10001’ || B’011’ 10001011

& bitwise AND B’10001’ &

B’01101’

00001

| bitwise OR B’10001’ |

B’01101’

11101

bitwise XOR B’10001’

B’01101’

11100

~ bitwise NOT ~ B’10001’ 01110

<< bitwise shift left B’10001’ << 3 01000

>> bitwise shift right B’10001’ >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings:length ,

127

Chapter 9. Functions and Operators

bit_length , octet_length , position , substring .

In addition, it is possible to cast integral values to and from typebit . Some examples:

44::bit(10) 0000101100
44::bit(3) 100
cast(-44 as bit(12)) 111111010100
’1110’::bit(4)::integer 14

Note that casting to just “bit” means casting tobit(1) , and so it will deliver only the least significant
bit of the integer.

Note: Prior to PostgreSQL 8.0, casting an integer to bit(n) would copy the leftmost n bits of the
integer, whereas now it copies the rightmost n bits. Also, casting an integer to a bit string width
wider than the integer itself will sign-extend on the left.

9.7. Pattern Matching
There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQL LIKE operator, the more recentSIMILAR TO operator (added in SQL:1999), and POSIX-style
regular expressions. Additionally, a pattern matching function,substring , is available, using either
SIMILAR TO-style or POSIX-style regular expressions.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Everypattern defines a set of strings. TheLIKE expression returns true if thestring is contained
in the set of strings represented bypattern . (As expected, theNOT LIKE expression returns false
if LIKE returns true, and vice versa. An equivalent expression isNOT (string LIKE pattern) .)

If pattern does not contain percent signs or underscore, then the pattern only represents the string
itself; in that caseLIKE acts like the equals operator. An underscore (_) in pattern stands for
(matches) any single character; a percent sign (%) matches any string of zero or more characters.

Some examples:

’abc’ LIKE ’abc’ true
’abc’ LIKE ’a%’ true
’abc’ LIKE ’_b_’ true
’abc’ LIKE ’c’ false

LIKE pattern matches always cover the entire string. To match a sequence anywhere within a string,
the pattern must therefore start and end with a percent sign.

128

Chapter 9. Functions and Operators

To match a literal underscore or percent sign without matching other characters, the respective char-
acter inpattern must be preceded by the escape character. The default escape character is the
backslash but a different one may be selected by using theESCAPEclause. To match the escape char-
acter itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in an SQL statement. Thus, writing a pattern
that actually matches a literal backslash means writing four backslashes in the statement. You can
avoid this by selecting a different escape character withESCAPE; then a backslash is not special to
LIKE anymore. (But it is still special to the string literal parser, so you still need two of them.)

It’s also possible to select no escape character by writingESCAPE ”. This effectively disables the
escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signs in the pattern.

The key wordILIKE can be used instead ofLIKE to make the match case-insensitive according to
the active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator~~ is equivalent toLIKE , and ~~* corresponds toILIKE . There are also!~~ and
!~~* operators that representNOT LIKE and NOT ILIKE , respectively. All of these operators are
PostgreSQL-specific.

9.7.2. SIMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is much likeLIKE , except that it interprets the pattern using the SQL standard’s definition of
a regular expression. SQL regular expressions are a curious cross betweenLIKE notation and common
regular expression notation.

Like LIKE , the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression practice, wherein the pattern may match any part of the string.
Also like LIKE , SIMILAR TO uses_ and%as wildcard characters denoting any single character and
any string, respectively (these are comparable to. and.* in POSIX regular expressions).

In addition to these facilities borrowed fromLIKE , SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

• | denotes alternation (either of two alternatives).

• * denotes repetition of the previous item zero or more times.

• + denotes repetition of the previous item one or more times.

• Parentheses() may be used to group items into a single logical item.

• A bracket expression[...] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition (? and{...}) are not provided, though they exist in POSIX. Also, the
dot (.) is not a metacharacter.

As with LIKE , a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified withESCAPE.

Some examples:

’abc’ SIMILAR TO ’abc’ true

129

Chapter 9. Functions and Operators

’abc’ SIMILAR TO ’a’ false
’abc’ SIMILAR TO ’%(b|d)%’ true
’abc’ SIMILAR TO ’(b|c)%’ false

The substring function with three parameters,substring(string from pattern for

escape-character) , provides extraction of a substring that matches an SQL regular expression
pattern. As withSIMILAR TO, the specified pattern must match to the entire data string, else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by a double quote ("). The
text matching the portion of the pattern between these markers is returned.

Some examples:

substring(’foobar’ from ’%#"o_b#"%’ for ’#’) oob
substring(’foobar’ from ’#"o_b#"%’ for ’#’) NULL

9.7.3. POSIX Regular Expressions

Table 9-11lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression, case
sensitive

’thomas’ ~ ’.*thomas.*’

~* Matches regular expression, case
insensitive

’thomas’ ~* ’.*Thomas.*’

!~ Does not match regular
expression, case sensitive

’thomas’ !~ ’.*Thomas.*’

!~* Does not match regular
expression, case insensitive

’thomas’ !~* ’.*vadim.*’

POSIX regular expressions provide a more powerful means for pattern matching than theLIKE and
SIMILAR TO operators. Many Unix tools such asegrep , sed , orawk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string is said to match a regular expression if it is a member of the regular set described
by the regular expression. As withLIKE , pattern characters match string characters exactly unless
they are special characters in the regular expression language — but regular expressions use different
special characters thanLIKE does. UnlikeLIKE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

’abc’ ~ ’abc’ true
’abc’ ~ ’^a’ true
’abc’ ~ ’(b|d)’ true
’abc’ ~ ’^(b|c)’ false

130

Chapter 9. Functions and Operators

Thesubstring function with two parameters,substring(string from pattern) , provides ex-
traction of a substring that matches a POSIX regular expression pattern. It returns null if there is no
match, otherwise the portion of the text that matched the pattern. But if the pattern contains any paren-
theses, the portion of the text that matched the first parenthesized subexpression (the one whose left
parenthesis comes first) is returned. You can put parentheses around the whole expression if you want
to use parentheses within it without triggering this exception. If you need parentheses in the pattern
before the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring(’foobar’ from ’o.b’) oob
substring(’foobar’ from ’o(.)b’) o

PostgreSQL’s regular expressions are implemented using a package written by Henry Spencer. Much
of the description of regular expressions below is copied verbatim from his manual entry.

9.7.3.1. Regular Expression Details

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms:extendedREs or EREs
(roughly those ofegrep), andbasicREs or BREs (roughly those ofed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used anyway due to their availability in programming languages such as Perl and Tcl. REs
using these non-POSIX extensions are calledadvancedREs or AREs in this documentation. AREs
are almost an exact superset of EREs, but BREs have several notational incompatibilities (as well as
being much more limited). We first describe the ARE and ERE forms, noting features that apply only
to AREs, and then describe how BREs differ.

Note: The form of regular expressions accepted by PostgreSQL can be chosen by setting the
regex_flavor run-time parameter. The usual setting is advanced , but one might choose extended

for maximum backwards compatibility with pre-7.4 releases of PostgreSQL.

A regular expression is defined as one or morebranches, separated by| . It matches anything that
matches one of the branches.

A branch is zero or morequantified atomsor constraints, concatenated. It matches a match for the
first, followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is anatompossibly followed by a singlequantifier. Without a quantifier, it matches
a match for the atom. With a quantifier, it can match some number of matches of the atom. Anatom
can be any of the possibilities shown inTable 9-12. The possible quantifiers and their meanings are
shown inTable 9-13.

A constraintmatches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it may not be followed by a quantifier. The simple
constraints are shown inTable 9-14; some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom Description

131

Chapter 9. Functions and Operators

Atom Description

(re) (wherere is any regular expression) matches a
match forre , with the match noted for possible
reporting

(?: re) as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs
only)

. matches any single character

[chars] abracket expression, matching any one of the
chars (seeSection 9.7.3.2for more detail)

\ k (wherek is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.g.\\ matches a backslash character

\ c wherec is alphanumeric (possibly followed by
other characters) is anescape, seeSection 9.7.3.3
(AREs only; in EREs and BREs, this matchesc)

{ when followed by a character other than a digit,
matches the left-brace character{ ; when followed
by a digit, it is the beginning of abound (see
below)

x wherex is a single character with no other
significance, matches that character

An RE may not end with\ .

Note: Remember that the backslash (\) already has a special meaning in PostgreSQL string
literals. To write a pattern constant that contains a backslash, you must write two backslashes in
the statement.

Table 9-13. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{ m} a sequence of exactlymmatches of the atom

{ m,} a sequence ofmor more matches of the atom

{ m, n} a sequence ofmthroughn (inclusive) matches of
the atom;mmay not exceedn

? non-greedy version of

+? non-greedy version of+

?? non-greedy version of?

{ m}? non-greedy version of{ m}

{ m,}? non-greedy version of{ m,}

{ m, n}? non-greedy version of{ m, n}

132

Chapter 9. Functions and Operators

The forms using{ ... } are known asbounds. The numbersmandn within a bound are unsigned
decimal integers with permissible values from 0 to 255 inclusive.

Non-greedyquantifiers (available in AREs only) match the same possibilities as their correspond-
ing normal (greedy) counterparts, but prefer the smallest number rather than the largest number of
matches. SeeSection 9.7.3.5for more detail.

Note: A quantifier cannot immediately follow another quantifier. A quantifier cannot begin an
expression or subexpression or follow ^ or | .

Table 9-14. Regular Expression Constraints

Constraint Description

^ matches at the beginning of the string

$ matches at the end of the string

(?= re) positive lookaheadmatches at any point where a
substring matchingre begins (AREs only)

(?! re) negative lookaheadmatches at any point where
no substring matchingre begins (AREs only)

Lookahead constraints may not containback references(seeSection 9.7.3.3), and all parentheses
within them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expressionis a list of characters enclosed in[] . It normally matches any single character
from the list (but see below). If the list begins with^ , it matches any single characternot from the
rest of the list. If two characters in the list are separated by- , this is shorthand for the full range of
characters between those two (inclusive) in the collating sequence, e.g.[0-9] in ASCII matches any
decimal digit. It is illegal for two ranges to share an endpoint, e.g.a-c-e . Ranges are very collating-
sequence-dependent, so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (following a possible^). To include a
literal - , make it the first or last character, or the second endpoint of a range. To use a literal- as
the first endpoint of a range, enclose it in[. and .] to make it a collating element (see below).
With the exception of these characters, some combinations using[(see next paragraphs), and escapes
(AREs only), all other special characters lose their special significance within a bracket expression.
In particular,\ is not special when following ERE or BRE rules, though it is special (as introducing
an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that col-
lates as if it were a single character, or a collating-sequence name for either) enclosed in[. and.]

stands for the sequence of characters of that collating element. The sequence is a single element of
the bracket expression’s list. A bracket expression containing a multiple-character collating element
can thus match more than one character, e.g. if the collating sequence includes ach collating element,
then the RE[[.ch.]]*c matches the first five characters ofchchcc .

Note: PostgreSQL currently has no multi-character collating elements. This information describes
possible future behavior.

133

Chapter 9. Functions and Operators

Within a bracket expression, a collating element enclosed in[= and=] is an equivalence class, stand-
ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If
there are no other equivalent collating elements, the treatment is as if the enclosing delimiters were[.

and.] .) For example, ifo and^ are the members of an equivalence class, then[[=o=]] , [[=^=]] ,
and[o^] are all synonymous. An equivalence class may not be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in[: and :] stands for the list
of all characters belonging to that class. Standard character class names are:alnum , alpha , blank ,
cntrl , digit , graph , lower , print , punct , space , upper , xdigit . These stand for the character
classes defined in ctype. A locale may provide others. A character class may not be used as an endpoint
of a range.

There are two special cases of bracket expressions: the bracket expressions[[: <:]] and[[: >:]]

are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word characters that is neither preceded nor followed by word characters.
A word character is analnum character (as defined by ctype) or an underscore. This is an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software
intended to be portable to other systems. The constraint escapes described below are usually preferable
(they are no more standard, but are certainly easier to type).

9.7.3.3. Regular Expression Escapes

Escapesare special sequences beginning with\ followed by an alphanumeric character. Escapes
come in several varieties: character entry, class shorthands, constraint escapes, and back references.
A \ followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. In
EREs, there are no escapes: outside a bracket expression, a\ followed by an alphanumeric character
merely stands for that character as an ordinary character, and inside a bracket expression,\ is an
ordinary character. (The latter is the one actual incompatibility between EREs and AREs.)

Character-entry escapesexist to make it easier to specify non-printing and otherwise inconvenient
characters in REs. They are shown inTable 9-15.

Class-shorthand escapesprovide shorthands for certain commonly-used character classes. They are
shown inTable 9-16.

A constraint escapeis a constraint, matching the empty string if specific conditions are met, written
as an escape. They are shown inTable 9-17.

A back reference(\ n) matches the same string matched by the previous parenthesized subexpression
specified by the numbern (seeTable 9-18). For example,([bc])\1 matchesbb or cc but notbc

or cb . The subexpression must entirely precede the back reference in the RE. Subexpressions are
numbered in the order of their leading parentheses. Non-capturing parentheses do not define subex-
pressions.

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern
as an SQL string constant. For example:

’123’ ~ ’^\\d{3}’ true

Table 9-15. Regular Expression Character-Entry Escapes

Escape Description

134

Chapter 9. Functions and Operators

Escape Description

\a alert (bell) character, as in C

\b backspace, as in C

\B synonym for\ to help reduce the need for
backslash doubling

\c X (whereX is any character) the character whose
low-order 5 bits are the same as those ofX, and
whose other bits are all zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

\f form feed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\u wxyz (wherewxyz is exactly four hexadecimal digits)
the Unicode characterU+wxyz in the local byte
ordering

\U stuvwxyz (wherestuvwxyz is exactly eight hexadecimal
digits) reserved for a somewhat-hypothetical
Unicode extension to 32 bits

\v vertical tab, as in C

\x hhh (wherehhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
0xhhh (a single character no matter how many
hexadecimal digits are used)

\0 the character whose value is0

\ xy (wherexy is exactly two octal digits, and is not a
back reference) the character whose octal value is
0xy

\ xyz (wherexyz is exactly three octal digits, and is
not aback reference) the character whose octal
value is0xyz

Hexadecimal digits are0-9, a-f , andA-F. Octal digits are0-7.

The character-entry escapes are always taken as ordinary characters. For example,\135 is] in ASCII,
but \135 does not terminate a bracket expression.

Table 9-16. Regular Expression Class-Shorthand Escapes

Escape Description

\d [[:digit:]]

\s [[:space:]]

\w [[:alnum:]_] (note underscore is included)

\D [^[:digit:]]

\S [^[:space:]]

135

Chapter 9. Functions and Operators

Escape Description

\W [^[:alnum:]_] (note underscore is included)

Within bracket expressions,\d , \s , and\w lose their outer brackets, and\D , \S , and\W are illegal.
(So, for example,[a-c\d] is equivalent to[a-c[:digit:]] . Also, [a-c\D] , which is equivalent
to [a-c^[:digit:]] , is illegal.)

Table 9-17. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.5for how this differs from̂)

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning
or end of a word

\Z matches only at the end of the string (seeSection
9.7.3.5for how this differs from$)

A word is defined as in the specification of[[: <:]] and [[: >:]] above. Constraint escapes are
illegal within bracket expressions.

Table 9-18. Regular Expression Back References

Escape Description

\ m (wheremis a nonzero digit) a back reference to
them’th subexpression

\ mnn (wheremis a nonzero digit, andnn is some more
digits, and the decimal valuemnn is not greater
than the number of closing capturing parentheses
seen so far) a back reference to themnn’th
subexpression

Note: There is an inherent historical ambiguity between octal character-entry escapes and back
references, which is resolved by heuristics, as hinted at above. A leading zero always indicates
an octal escape. A single non-zero digit, not followed by another digit, is always taken as a back
reference. A multi-digit sequence not starting with a zero is taken as a back reference if it comes
after a suitable subexpression (i.e. the number is in the legal range for a back reference), and
otherwise is taken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syn-
tactic facilities available.

Normally the flavor of RE being used is determined byregex_flavor . However, this can be overrid-
den by adirector prefix. If an RE begins with***: , the rest of the RE is taken as an ARE regardless

136

Chapter 9. Functions and Operators

of regex_flavor . If an RE begins with***= , the rest of the RE is taken to be a literal string, with
all characters considered ordinary characters.

An ARE may begin withembedded options: a sequence(? xyz) (wherexyz is one or more alpha-
betic characters) specifies options affecting the rest of the RE. These options override any previously
determined options (including both the RE flavor and case sensitivity). The available option letters
are shown inTable 9-19.

Table 9-19. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)

e rest of RE is an ERE

i case-insensitive matching (seeSection 9.7.3.5)
(overrides operator type)

m historical synonym forn

n newline-sensitive matching (seeSection 9.7.3.5)

p partial newline-sensitive matching (seeSection
9.7.3.5)

q rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”)
matching (seeSection 9.7.3.5)

x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They may appear only at the start of
an ARE (after the***: director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is anexpanded
syntax, available by specifying the embeddedx option. In the expanded syntax, white-space characters
in the RE are ignored, as are all characters between a# and the following newline (or the end of the
RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

• a white-space character or# preceded by\ is retained

• white space or# within a bracket expression is retained

• white space and comments cannot appear within multi-character symbols, such as(?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence(?# ttt) (wherettt is any text not
containing a)) is a comment, completely ignored. Again, this is not allowed between the characters of
multi-character symbols, like(?: . Such comments are more a historical artifact than a useful facility,
and their use is deprecated; use the expanded syntax instead.

137

Chapter 9. Functions and Operators

Noneof these metasyntax extensions is available if an initial***= director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE isgreedyor non-greedy.

Whether an RE is greedy or not is determined by the following rules:

• Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

• Adding parentheses around an RE does not change its greediness.

• A quantified atom with a fixed-repetition quantifier ({ m} or { m}?) has the same greediness (possi-
bly none) as the atom itself.

• A quantified atom with other normal quantifiers (including{ m, n} with mequal ton) is greedy
(prefers longest match).

• A quantified atom with a non-greedy quantifier (including{ m, n}? with mequal ton) is non-greedy
(prefers shortest match).

• A branch — that is, an RE that has no top-level| operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

• An RE consisting of two or more branches connected by the| operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done
in such a way that the branch, or whole RE, matches the longest or shortest possible substringas
a whole. Once the length of the entire match is determined, the part of it that matches any particu-
lar subexpression is determined on the basis of the greediness attribute of that subexpression, with
subexpressions starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING(’XY1234Z’, ’Y*([0-9]{1,3})’);
Result: 123

SELECT SUBSTRING(’XY1234Z’, ’Y*?([0-9]{1,3})’);
Result: 1

In the first case, the RE as a whole is greedy becauseY* is greedy. It can match beginning at theY,
and it matches the longest possible string starting there, i.e.,Y123. The output is the parenthesized
part of that, or123 . In the second case, the RE as a whole is non-greedy becauseY*? is non-greedy.
It can match beginning at theY, and it matches the shortest possible string starting there, i.e.,Y1. The
subexpression[0-9]{1,3} is greedy but it cannot change the decision as to the overall match length;
so it is forced to match just1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed to
“eat” relative to each other.

138

Chapter 9. Functions and Operators

The quantifiers{1,1} and{1,1}? can be used to force greediness or non-greediness, respectively,
on a subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For example:bb* matches the three middle characters ofabbbc ;
(week|wee)(night|knights) matches all ten characters ofweeknights ; when (.*).* is
matched againstabc the parenthesized subexpression matches all three characters; and when(a*)*

is matched againstbc both the whole RE and the parenthesized subexpression match an empty
string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.g.x becomes[xX] . When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, e.g.[x] becomes[xX] and[^x] becomes[^xX] .

If newline-sensitive matching is specified,. and bracket expressions using^ will never match the
newline character (so that matches will never cross newlines unless the RE explicitly arranges it) and
^and$ will match the empty string after and before a newline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escapes\A and\Z continue to match beginning
or end of stringonly.

If partial newline-sensitive matching is specified, this affects. and bracket expressions as with
newline-sensitive matching, but not^ and$.

If inverse partial newline-sensitive matching is specified, this affects^ and$ as with newline-sensitive
matching, but not. and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs in-
tended to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that\ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs; the*** syntax of directors likewise is outside
the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them
up, and a few Perl extensions are not present. Incompatibilities of note include\b , \B , the lack of
special treatment for a trailing newline, the addition of complemented bracket expressions to the
things affected by newline-sensitive matching, the restrictions on parentheses and back references in
lookahead constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4
releases of PostgreSQL:

• In AREs,\ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

• In AREs, \ remains a special character within[] , so a literal\ within a bracket expression must
be written\\ .

While these differences are unlikely to create a problem for most applications, you can avoid them if
necessary by settingregex_flavor to extended .

139

Chapter 9. Functions and Operators

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects.| , +, and? are ordinary characters and there is no equiva-
lent for their functionality. The delimiters for bounds are\{ and\} , with { and} by themselves ordi-
nary characters. The parentheses for nested subexpressions are\(and\) , with (and) by themselves
ordinary characters.̂ is an ordinary character except at the beginning of the RE or the beginning of
a parenthesized subexpression,$ is an ordinary character except at the end of the RE or the end of a
parenthesized subexpression, and* is an ordinary character if it appears at the beginning of the RE or
the beginning of a parenthesized subexpression (after a possible leading^). Finally, single-digit back
references are available, and\ < and\ > are synonyms for[[: <:]] and[[: >:]] respectively; no
other escapes are available.

9.8. Data Type Formatting Functions
The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types.Table 9-20lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

Table 9-20. Formatting Functions

Function Return Type Description Example

to_char (timestamp ,

text)

text convert time stamp to
string

to_char(current_timestamp,

’HH12:MI:SS’)

to_char (interval ,

text)

text convert interval to stringto_char(interval

’15h 2m 12s’,

’HH24:MI:SS’)

to_char (int , text) text convert integer to stringto_char(125,

’999’)

to_char (double

precision , text)

text convert real/double
precision to string

to_char(125.8::real,

’999D9’)

to_char (numeric ,

text)

text convert numeric to stringto_char(-125.8,

’999D99S’)

to_date (text , text) date convert string to date to_date(’05 Dec 2000’,

’DD Mon YYYY’)

to_timestamp (text ,

text)

timestamp with

time zone

convert string to time
stamp

to_timestamp(’05 Dec 2000’,

’DD Mon YYYY’)

to_number (text ,

text)

numeric convert string to numericto_number(’12,454.8-’,

’99G999D9S’)

Warning:to_char (interval , text) is deprecated and should not be used in newly-written code. It
will be removed in the next version.

In an output template string (forto_char), there are certain patterns that are recognized and replaced
with appropriately-formatted data from the value to be formatted. Any text that is not a template
pattern is simply copied verbatim. Similarly, in an input template string (for anything butto_char),
template patterns identify the parts of the input data string to be looked at and the values to be found
there.

140

Chapter 9. Functions and Operators

Table 9-21shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

US microsecond (000000-999999)

SSSS seconds past midnight (0-86399)

AMor A.M. or PMor P.M. meridian indicator (uppercase)

amor a.m. or pmor p.m. meridian indicator (lowercase)

Y,YYY year (4 and more digits) with comma

YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

IYYY ISO year (4 and more digits)

IYY last 3 digits of ISO year

IY last 2 digits of ISO year

I last digits of ISO year

BCor B.C. or ADor A.D. era indicator (uppercase)

bc or b.c. or ad or a.d. era indicator (lowercase)

MONTH full uppercase month name (blank-padded to 9
chars)

Month full mixed-case month name (blank-padded to 9
chars)

month full lowercase month name (blank-padded to 9
chars)

MON abbreviated uppercase month name (3 chars)

Mon abbreviated mixed-case month name (3 chars)

mon abbreviated lowercase month name (3 chars)

MM month number (01-12)

DAY full uppercase day name (blank-padded to 9
chars)

Day full mixed-case day name (blank-padded to 9
chars)

day full lowercase day name (blank-padded to 9 chars)

DY abbreviated uppercase day name (3 chars)

Dy abbreviated mixed-case day name (3 chars)

141

Chapter 9. Functions and Operators

Pattern Description

dy abbreviated lowercase day name (3 chars)

DDD day of year (001-366)

DD day of month (01-31)

D day of week (1-7; Sunday is 1)

W week of month (1-5) (The first week starts on the
first day of the month.)

WW week number of year (1-53) (The first week starts
on the first day of the year.)

IW ISO week number of year (The first Thursday of
the new year is in week 1.)

CC century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q quarter

RM month in Roman numerals (I-XII; I=January)
(uppercase)

rm month in Roman numerals (i-xii; i=January)
(lowercase)

TZ time-zone name (uppercase)

tz time-zone name (lowercase)

Certain modifiers may be applied to any template pattern to alter its behavior. For example,FMMonth

is theMonth pattern with theFMmodifier.Table 9-22shows the modifier patterns for date/time for-
matting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example

FMprefix fill mode (suppress padding
blanks and zeroes)

FMMonth

THsuffix uppercase ordinal number suffixDDTH

th suffix lowercase ordinal number suffixDDth

FX prefix fixed format global option (see
usage notes)

FX Month DD Day

SPsuffix spell mode (not yet
implemented)

DDSP

Usage notes for date/time formatting:

• FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of a pattern be fixed-width.

• to_timestamp and to_date skip multiple blank spaces in the input string if
the FX option is not used.FX must be specified as the first item in the template.
For example to_timestamp(’2000 JUN’, ’YYYY MON’) is correct, but
to_timestamp(’2000 JUN’, ’FXYYYY MON’) returns an error, becauseto_timestamp

expects one space only.

142

Chapter 9. Functions and Operators

• Ordinary text is allowed into_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in’"Hello Year "YYYY’ , theYYYYwill be replaced by the year data, but the singleY

in Year will not be.

• If you want to have a double quote in the output you must precede it with a backslash, for exam-
ple ’\\"YYYY Month\\"’ . (Two backslashes are necessary because the backslash already has a
special meaning in a string constant.)

• The YYYY conversion from string totimestamp or date has a restriction if you use a year
with more than 4 digits. You must use some non-digit character or template afterYYYY,
otherwise the year is always interpreted as 4 digits. For example (with the year 20000):
to_date(’200001131’, ’YYYYMMDD’) will be interpreted as a 4-digit year; instead use
a non-digit separator after the year, liketo_date(’20000-1131’, ’YYYY-MMDD’) or
to_date(’20000Nov31’, ’YYYYMonDD’) .

• Millisecond (MS) and microsecond (US) values in a conversion from string totimestamp are used
as part of the seconds after the decimal point. For exampleto_timestamp(’12:3’, ’SS:MS’)

is not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means
for the formatSS:MS, the input values12:3 , 12:30 , and12:300 specify the same number of
milliseconds. To get three milliseconds, one must use12:003 , which the conversion counts as 12
+ 0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp(’15:12:02.020.001230’,

’HH:MI:SS.MS.US’) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

• to_char ’s day of the week numbering (see the ’D’ formatting pattern) is different from that of the
extract function.

Table 9-23shows the template patterns available for formatting numeric values.

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description

9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number< 0)

PL plus sign in specified position (if number> 0)

SG plus/minus sign in specified position

RN roman numeral (input between 1 and 3999)

THor th ordinal number suffix

143

Chapter 9. Functions and Operators

Pattern Description

V shift specified number of digits (see notes)

EEEE scientific notation (not implemented yet)

Usage notes for numeric formatting:

• A sign formatted usingSG, PL, or MI is not anchored to the number; for example,to_char(-12,

’S9999’) produces’ -12’ , but to_char(-12, ’MI9999’) produces’- 12’ . The Oracle
implementation does not allow the use ofMI ahead of9, but rather requires that9 precedeMI.

• 9 results in a value with the same number of digits as there are9s. If a digit is not available it
outputs a space.

• THdoes not convert values less than zero and does not convert fractional numbers.

• PL, SG, andTHare PostgreSQL extensions.

• V effectively multiplies the input values by10^ n, wheren is the number of digits followingV.
to_char does not support the use ofV combined with a decimal point. (E.g.,99.9V99 is not
allowed.)

Table 9-24shows some examples of the use of theto_char function.

Table 9-24.to_char Examples

Expression Result

to_char(current_timestamp,

’Day, DD HH12:MI:SS’)

’Tuesday , 06 05:39:18’

to_char(current_timestamp,

’FMDay, FMDD HH12:MI:SS’)

’Tuesday, 6 05:39:18’

to_char(-0.1, ’99.99’) ’ -.10’

to_char(-0.1, ’FM9.99’) ’-.1’

to_char(0.1, ’0.9’) ’ 0.1’

to_char(12, ’9990999.9’) ’ 0012.0’

to_char(12, ’FM9990999.9’) ’0012.’

to_char(485, ’999’) ’ 485’

to_char(-485, ’999’) ’-485’

to_char(485, ’9 9 9’) ’ 4 8 5’

to_char(1485, ’9,999’) ’ 1,485’

to_char(1485, ’9G999’) ’ 1 485’

to_char(148.5, ’999.999’) ’ 148.500’

to_char(148.5, ’FM999.999’) ’148.5’

to_char(148.5, ’FM999.990’) ’148.500’

to_char(148.5, ’999D999’) ’ 148,500’

to_char(3148.5, ’9G999D999’) ’ 3 148,500’

to_char(-485, ’999S’) ’485-’

to_char(-485, ’999MI’) ’485-’

144

Chapter 9. Functions and Operators

Expression Result

to_char(485, ’999MI’) ’485 ’

to_char(485, ’FM999MI’) ’485’

to_char(485, ’PL999’) ’+485’

to_char(485, ’SG999’) ’+485’

to_char(-485, ’SG999’) ’-485’

to_char(-485, ’9SG99’) ’4-85’

to_char(-485, ’999PR’) ’ <485>’

to_char(485, ’L999’) ’DM 485

to_char(485, ’RN’) ’ CDLXXXV’

to_char(485, ’FMRN’) ’CDLXXXV’

to_char(5.2, ’FMRN’) ’V’

to_char(482, ’999th’) ’ 482nd’

to_char(485, ’"Good number:"999’) ’Good number: 485’

to_char(485.8,

’"Pre:"999" Post:" .999’)

’Pre: 485 Post: .800’

to_char(12, ’99V999’) ’ 12000’

to_char(12.4, ’99V999’) ’ 12400’

to_char(12.45, ’99V9’) ’ 125’

9.9. Date/Time Functions and Operators
Table 9-26shows the available functions for date/time value processing, with details appearing in
the following subsections.Table 9-25illustrates the behaviors of the basic arithmetic operators (+,
* , etc.). For formatting functions, refer toSection 9.8. You should be familiar with the background
information on date/time data types fromSection 8.5.

All the functions and operators described below that taketime or timestamp inputs actually come
in two variants: one that takestime with time zone or timestamp with time zone , and one
that takestime without time zone or timestamp without time zone . For brevity, these
variants are not shown separately. Also, the+ and * operators come in commutative pairs (for ex-
ample both date + integer and integer + date); we show only one of each such pair.

Table 9-25. Date/Time Operators

Operator Example Result

+ date ’2001-09-28’ +

integer ’7’

date ’2001-10-05’

+ date ’2001-09-28’ +

interval ’1 hour’

timestamp ’2001-09-28

01:00’

+ date ’2001-09-28’ + time

’03:00’

timestamp ’2001-09-28

03:00’

+ interval ’1 day’ +

interval ’1 hour’

interval ’1 day 01:00’

145

Chapter 9. Functions and Operators

Operator Example Result

+ timestamp ’2001-09-28

01:00’ + interval ’23

hours’

timestamp ’2001-09-29

00:00’

+ time ’01:00’ + interval

’3 hours’

time ’04:00’

- - interval ’23 hours’ interval ’-23:00’

- date ’2001-10-01’ - date

’2001-09-28’

integer ’3’

- date ’2001-10-01’ -

integer ’7’

date ’2001-09-24’

- date ’2001-09-28’ -

interval ’1 hour’

timestamp ’2001-09-27

23:00’

- time ’05:00’ - time

’03:00’

interval ’02:00’

- time ’05:00’ - interval

’2 hours’

time ’03:00’

- timestamp ’2001-09-28

23:00’ - interval ’23

hours’

timestamp ’2001-09-28

00:00’

- interval ’1 day’ -

interval ’1 hour’

interval ’23:00’

- timestamp ’2001-09-29

03:00’ - timestamp

’2001-09-27 12:00’

interval ’1 day 15:00’

* interval ’1 hour’ *

double precision ’3.5’

interval ’03:30’

/ interval ’1 hour’ /

double precision ’1.5’

interval ’00:40’

Table 9-26. Date/Time Functions

Function Return Type Description Example Result

age (timestamp ,

timestamp)

interval Subtract arguments,
producing a
“symbolic” result
that uses years and
months

age(timestamp

’2001-04-10’,

timestamp

’1957-06-13’)

43 years 9

mons 27 days

age (timestamp) interval Subtract from
current_date

age(timestamp

’1957-06-13’)

43 years 8

mons 3 days

current_date date Today’s date; see
Section 9.9.4

current_time time with time

zone

Time of day; see
Section 9.9.4

current_timestamp timestamp with

time zone

Date and time; see
Section 9.9.4

146

Chapter 9. Functions and Operators

Function Return Type Description Example Result

date_part (text ,

timestamp)

double

precision

Get subfield
(equivalent to
extract); see
Section 9.9.1

date_part(’hour’,

timestamp

’2001-02-16

20:38:40’)

20

date_part (text ,

interval)

double

precision

Get subfield
(equivalent to
extract); see
Section 9.9.1

date_part(’month’,

interval ’2

years 3

months’)

3

date_trunc (text ,

timestamp)

timestamp Truncate to
specified precision;
see alsoSection
9.9.2

date_trunc(’hour’,

timestamp

’2001-02-16

20:38:40’)

2001-02-16

20:00:00

extract (field

from timestamp)

double

precision

Get subfield; see
Section 9.9.1

extract(hour

from timestamp

’2001-02-16

20:38:40’)

20

extract (field

from interval)

double

precision

Get subfield; see
Section 9.9.1

extract(month

from interval

’2 years 3

months’)

3

isfinite (timestamp)boolean Test for finite time
stamp (not equal to
infinity)

isfinite(timestamp

’2001-02-16

21:28:30’)

true

isfinite (interval)boolean Test for finite
interval

isfinite(interval

’4 hours’)

true

localtime time Time of day; see
Section 9.9.4

localtimestamp timestamp Date and time; see
Section 9.9.4

now() timestamp with

time zone

Current date and
time (equivalent to
current_timestamp);
seeSection 9.9.4

timeofday() text Current date and
time; seeSection
9.9.4

In addition to these functions, the SQLOVERLAPSoperator is supported:

(start1 , end1) OVERLAPS (start2 , end2)
(start1 , length1) OVERLAPS (start2 , length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when
they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a
date, time, or time stamp followed by an interval.

SELECT (DATE ’2001-02-16’, DATE ’2001-12-21’) OVERLAPS
(DATE ’2001-10-30’, DATE ’2002-10-30’);

Result: true

SELECT (DATE ’2001-02-16’, INTERVAL ’100 days’) OVERLAPS

147

Chapter 9. Functions and Operators

(DATE ’2001-10-30’, DATE ’2002-10-30’);
Result: false

9.9.1. EXTRACT, date_part

EXTRACT (field FROMsource)

Theextract function retrieves subfields such as year or hour from date/time values.source must
be a value expression of typetimestamp , time , or interval . (Expressions of typedate will be
cast totimestamp and can therefore be used as well.)field is an identifier or string that selects
what field to extract from the source value. Theextract function returns values of typedouble

precision . The following are valid field names:

century

The century

SELECT EXTRACT(CENTURY FROM TIMESTAMP ’2000-12-16 12:21:13’);
Result: 20

SELECT EXTRACT(CENTURY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time.
This definition applies to all Gregorian calendar countries. There is no century number 0, you
go from -1 to 1. If you disagree with this, please write your complaint to: Pope, Cathedral Saint-
Peter of Roma, Vatican.

PostgreSQL releases before 8.0 did not follow the conventional numbering of centuries, but just
returned the year field divided by 100.

day

The day (of the month) field (1 - 31)

SELECT EXTRACT(DAY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 16

decade

The year field divided by 10

SELECT EXTRACT(DECADE FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 200

dow

The day of the week (0 - 6; Sunday is 0) (fortimestamp values only)

SELECT EXTRACT(DOW FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 5

Note thatextract ’s day of the week numbering is different from that of theto_char function.

doy

The day of the year (1 - 365/366) (fortimestamp values only)

SELECT EXTRACT(DOY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 47

148

Chapter 9. Functions and Operators

epoch

Fordate andtimestamp values, the number of seconds since 1970-01-01 00:00:00-00 (can be
negative); forinterval values, the total number of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-08’);
Result: 982384720

SELECT EXTRACT(EPOCH FROM INTERVAL ’5 days 3 hours’);
Result: 442800

Here is how you can convert an epoch value back to a time stamp:

SELECT TIMESTAMP WITH TIME ZONE ’epoch’ + 982384720 * INTERVAL ’1 second’;

hour

The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 20

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes full
seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME ’17:12:28.5’);
Result: 28500000

millennium

The millennium

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 3

Years in the 1900s are in the second millennium. The third millennium starts January 1, 2001.

PostgreSQL releases before 8.0 did not follow the conventional numbering of millennia, but just
returned the year field divided by 1000.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full
seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME ’17:12:28.5’);
Result: 28500

minute

The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 38

month

For timestamp values, the number of the month within the year (1 - 12) ; forinterval values
the number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL ’2 years 3 months’);
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL ’2 years 13 months’);

149

Chapter 9. Functions and Operators

Result: 1

quarter

The quarter of the year (1 - 4) that the day is in (fortimestamp values only)

SELECT EXTRACT(QUARTER FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 1

second

The seconds field, including fractional parts (0 - 591)

SELECT EXTRACT(SECOND FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 40

SELECT EXTRACT(SECOND FROM TIME ’17:12:28.5’);
Result: 28.5

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones
east of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset

timezone_minute

The minute component of the time zone offset

week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of
a year contains January 4 of that year. (The ISO-8601 week starts on Monday.) In other words,
the first Thursday of a year is in week 1 of that year. (fortimestamp values only)

SELECT EXTRACT(WEEK FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 7

year

The year field. Keep in mind there is no0 AD, so subtractingBCyears fromADyears should be
done with care.

SELECT EXTRACT(YEAR FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001

Theextract function is primarily intended for computational processing. For formatting date/time
values for display, seeSection 9.8.

Thedate_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract :

date_part(’ field ’, source)

Note that here thefield parameter needs to be a string value, not a name. The valid field names for
date_part are the same as forextract .

SELECT date_part(’day’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 16

60 if leap seconds are implemented by the operating system

150

Chapter 9. Functions and Operators

SELECT date_part(’hour’, INTERVAL ’4 hours 3 minutes’);
Result: 4

9.9.2. date_trunc

The functiondate_trunc is conceptually similar to thetrunc function for numbers.

date_trunc(’ field ’, source)

source is a value expression of typetimestamp or interval . (Values of typedate andtime are
cast automatically, totimestamp or interval respectively.)field selects to which precision to
truncate the input value. The return value is of typetimestamp or interval with all fields that are
less significant than the selected one set to zero (or one, for day and month).

Valid values forfield are:

microseconds

milliseconds

second

minute

hour

day

week

month

year

decade

century

millennium

Examples:

SELECT date_trunc(’hour’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001-02-16 20:00:00

SELECT date_trunc(’year’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001-01-01 00:00:00

9.9.3. AT TIME ZONE

TheAT TIME ZONEconstruct allows conversions of time stamps to different time zones.Table 9-27
shows its variants.

Table 9-27.AT TIME ZONEVariants

Expression Return Type Description

timestamp without time zone

AT TIME ZONE zone

timestamp with time zone Convert local time in given time
zone to UTC

151

Chapter 9. Functions and Operators

Expression Return Type Description

timestamp with time zone

AT TIME ZONE zone

timestamp without time

zone

Convert UTC to local time in
given time zone

time with time zone AT

TIME ZONE zone

time with time zone Convert local time across time
zones

In these expressions, the desired time zonezone can be specified either as a text string (e.g.,’PST’)
or as an interval (e.g.,INTERVAL ’-08:00’). In the text case, the available zone names are those
shown inTable B-4. (It would be useful to support the more general names shown inTable B-6, but
this is not yet implemented.)

Examples (supposing that the local time zone isPST8PDT):

SELECT TIMESTAMP ’2001-02-16 20:38:40’ AT TIME ZONE ’MST’;
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-05’ AT TIME ZONE ’MST’;
Result: 2001-02-16 18:38:40

The first example takes a zone-less time stamp and interprets it as MST time (UTC-7) to produce a
UTC time stamp, which is then rotated to PST (UTC-8) for display. The second example takes a time
stamp specified in EST (UTC-5) and converts it to local time in MST (UTC-7).

The function timezone (zone , timestamp) is equivalent to the SQL-conforming construct
timestamp AT TIME ZONE zone .

9.9.4. Current Date/Time

The following functions are available to obtain the current date and/or time:

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP (precision)
LOCALTIME
LOCALTIMESTAMP
LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIMEand CURRENT_TIMESTAMPdeliver values with time zone;LOCALTIME and
LOCALTIMESTAMPdeliver values without time zone.

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMPcan optionally be
given a precision parameter, which causes the result to be rounded to that many fractional digits in
the seconds field. Without a precision parameter, the result is given to the full available precision.

Note: Prior to PostgreSQL 7.2, the precision parameters were unimplemented, and the result was
always given in integer seconds.

Some examples:

SELECT CURRENT_TIME;

152

Chapter 9. Functions and Operators

Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

The functionnow() is the traditional PostgreSQL equivalent toCURRENT_TIMESTAMP.

There is also the functiontimeofday() , which for historical reasons returns atext string rather
than atimestamp value:

SELECT timeofday();
Result: Sat Feb 17 19:07:32.000126 2001 EST

It is important to know thatCURRENT_TIMESTAMPand related functions return the start time of the
current transaction; their values do not change during the transaction. This is considered a feature:
the intent is to allow a single transaction to have a consistent notion of the “current” time, so that
multiple modifications within the same transaction bear the same time stamp.timeofday() returns
the wall-clock time and does advance during transactions.

Note: Other database systems may advance these values more frequently.

All the date/time data types also accept the special literal valuenow to specify the current date and
time. Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP ’now’;

Tip: You do not want to use the third form when specifying a DEFAULTclause while creating a
table. The system will convert now to a timestamp as soon as the constant is parsed, so that
when the default value is needed, the time of the table creation would be used! The first two
forms will not be evaluated until the default value is used, because they are function calls. Thus
they will give the desired behavior of defaulting to the time of row insertion.

153

Chapter 9. Functions and Operators

9.10. Geometric Functions and Operators
The geometric typespoint , box , lseg , line , path , polygon , andcircle have a large set of native
support functions and operators, shown inTable 9-28, Table 9-29, andTable 9-30.

Table 9-28. Geometric Operators

Operator Description Example

+ Translation box ’((0,0),(1,1))’ +

point ’(2.0,0)’

- Translation box ’((0,0),(1,1))’ -

point ’(2.0,0)’

* Scaling/rotation box ’((0,0),(1,1))’ *

point ’(2.0,0)’

/ Scaling/rotation box ’((0,0),(2,2))’ /

point ’(2.0,0)’

Point or box of intersection ’((1,-1),(-1,1))’

’((1,1),(-1,-1))’

Number of points in path or
polygon

’((1,0),(0,1),(-1,0))’

@-@ Length or circumference @-@ path ’((0,0),(1,0))’

@@ Center @@ circle ’((0,0),10)’

Closest point to first operand on
second operand

point ’(0,0)’ ## lseg

’((2,0),(0,2))’

<- > Distance between circle ’((0,0),1)’ <- >

circle ’((5,0),1)’

&& Overlaps? box ’((0,0),(1,1))’ &&

box ’((0,0),(2,2))’

&< Does not extend to the right of?box ’((0,0),(1,1))’ & <

box ’((0,0),(2,2))’

&> Does not extend to the left of? box ’((0,0),(3,3))’ & >

box ’((0,0),(2,2))’

<< Is left of? circle ’((0,0),1)’ <<

circle ’((5,0),1)’

>> Is right of? circle ’((5,0),1)’ >>

circle ’((0,0),1)’

<^ Is below? circle ’((0,0),1)’ <^

circle ’((0,5),1)’

>^ Is above? circle ’((0,5),1)’ >^

circle ’((0,0),1)’

?# Intersects? lseg ’((-1,0),(1,0))’ ?#

box ’((-2,-2),(2,2))’

?- Is horizontal? ?- lseg ’((-1,0),(1,0))’

?- Are horizontally aligned? point ’(1,0)’ ?- point

’(0,0)’

?| Is vertical? ?| lseg ’((-1,0),(1,0))’

154

Chapter 9. Functions and Operators

Operator Description Example

?| Are vertically aligned? point ’(0,1)’ ?| point

’(0,0)’

?-| Is perpendicular? lseg ’((0,0),(0,1))’ ?-|

lseg ’((0,0),(1,0))’

?|| Are parallel? lseg ’((-1,0),(1,0))’

?|| lseg

’((-1,2),(1,2))’

~ Contains? circle ’((0,0),2)’ ~

point ’(1,1)’

@ Contained in or on? point ’(1,1)’ @ circle

’((0,0),2)’

~= Same as? polygon ’((0,0),(1,1))’

~= polygon

’((1,1),(0,0))’

Table 9-29. Geometric Functions

Function Return Type Description Example

area (object) double precision area area(box

’((0,0),(1,1))’)

box_intersect (box ,

box)

box intersection box box_intersect(box

’((0,0),(1,1))’,box

’((0.5,0.5),(2,2))’)

center (object) point center center(box

’((0,0),(1,2))’)

diameter (circle) double precision diameter of circle diameter(circle

’((0,0),2.0)’)

height (box) double precision vertical size of box height(box

’((0,0),(1,1))’)

isclosed (path) boolean a closed path? isclosed(path

’((0,0),(1,1),(2,0))’)

isopen (path) boolean an open path? isopen(path

’[(0,0),(1,1),(2,0)]’)

length (object) double precision length length(path

’((-1,0),(1,0))’)

npoints (path) integer number of points npoints(path

’[(0,0),(1,1),(2,0)]’)

npoints (polygon) integer number of points npoints(polygon

’((1,1),(0,0))’)

pclose (path) path convert path to closed pclose(path

’[(0,0),(1,1),(2,0)]’)

155

Chapter 9. Functions and Operators

Function Return Type Description Example

popen (path) path convert path to open popen(path

’((0,0),(1,1),(2,0))’)

radius (circle) double precision radius of circle radius(circle

’((0,0),2.0)’)

width (box) double precision horizontal size of box width(box

’((0,0),(1,1))’)

Table 9-30. Geometric Type Conversion Functions

Function Return Type Description Example

box (circle) box circle to box box(circle

’((0,0),2.0)’)

box (point , point) box points to box box(point ’(0,0)’,

point ’(1,1)’)

box (polygon) box polygon to box box(polygon

’((0,0),(1,1),(2,0))’)

circle (box) circle box to circle circle(box

’((0,0),(1,1))’)

circle (point , double

precision)

circle point and radius to circlecircle(point

’(0,0)’, 2.0)

lseg (box) lseg box diagonal to line
segment

lseg(box

’((-1,0),(1,0))’)

lseg (point , point) lseg points to line segment lseg(point

’(-1,0)’, point

’(1,0)’)

path (polygon) point polygon to path path(polygon

’((0,0),(1,1),(2,0))’)

point (circle) point center of circle point(circle

’((0,0),2.0)’)

point (lseg , lseg) point intersection point(lseg

’((-1,0),(1,0))’,

lseg

’((-2,-2),(2,2))’)

point (polygon) point center of polygon point(polygon

’((0,0),(1,1),(2,0))’)

polygon (box) polygon box to 4-point polygon polygon(box

’((0,0),(1,1))’)

polygon (circle) polygon circle to 12-point
polygon

polygon(circle

’((0,0),2.0)’)

polygon (npts ,

circle)

polygon circle tonpts -point
polygon

polygon(12, circle

’((0,0),2.0)’)

156

Chapter 9. Functions and Operators

Function Return Type Description Example

polygon (path) polygon path to polygon polygon(path

’((0,0),(1,1),(2,0))’)

It is possible to access the two component numbers of apoint as though it were an array with
indices 0 and 1. For example, ift.p is apoint column thenSELECT p[0] FROM t retrieves the X
coordinate andUPDATE t SET p[1] = ... changes the Y coordinate. In the same way, a value of
typebox or lseg may be treated as an array of twopoint values.

The area function works for the typesbox , circle , and path . The area function only
works on the path data type if the points in thepath are non-intersecting. For example,
the path ’((0,0),(0,1),(2,1),(2,2),(1,2),(1,0),(0,0))’::PATH

won’t work, however, the following visually identical path

’((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(1,1),(1,0),(0,0))’::PATH will work. If
the concept of an intersecting versus non-intersectingpath is confusing, draw both of the above
path s side by side on a piece of graph paper.

9.11. Network Address Functions and Operators
Table 9-31shows the operators available for thecidr and inet types. The operators<<, <<=,
>>, and>>= test for subnet inclusion. They consider only the network parts of the two addresses,
ignoring any host part, and determine whether one network part is identical to or a subnet of the other.

Table 9-31.cidr and inet Operators

Operator Description Example

< is less than inet ’192.168.1.5’ <

inet ’192.168.1.6’

<= is less than or equal inet ’192.168.1.5’ <=

inet ’192.168.1.5’

= equals inet ’192.168.1.5’ =

inet ’192.168.1.5’

>= is greater or equal inet ’192.168.1.5’ >=

inet ’192.168.1.5’

> is greater than inet ’192.168.1.5’ >

inet ’192.168.1.4’

<> is not equal inet ’192.168.1.5’ <>

inet ’192.168.1.4’

<< is contained within inet ’192.168.1.5’ <<

inet ’192.168.1/24’

<<= is contained within or equals inet ’192.168.1/24’ <<=

inet ’192.168.1/24’

>> contains inet ’192.168.1/24’ >>

inet ’192.168.1.5’

>>= contains or equals inet ’192.168.1/24’ >>=

inet ’192.168.1/24’

Table 9-32shows the functions available for use with thecidr and inet types. Thehost , text ,

157

Chapter 9. Functions and Operators

andabbrev functions are primarily intended to offer alternative display formats. You can cast a text
value toinet using normal casting syntax:inet(expression) or colname ::inet .

Table 9-32.cidr and inet Functions

Function Return Type Description Example Result

broadcast (inet) inet broadcast address
for network

broadcast(’192.168.1.5/24’)192.168.1.255/24

host (inet) text extract IP address
as text

host(’192.168.1.5/24’)192.168.1.5

masklen (inet) integer extract netmask
length

masklen(’192.168.1.5/24’)24

set_masklen (inet ,

integer)

inet set netmask length
for inet value

set_masklen(’192.168.1.5/24’,

16)

192.168.1.5/16

netmask (inet) inet construct netmask
for network

netmask(’192.168.1.5/24’)255.255.255.0

hostmask (inet) inet construct host mask
for network

hostmask(’192.168.23.20/30’)0.0.0.3

network (inet) cidr extract network part
of address

network(’192.168.1.5/24’)192.168.1.0/24

text (inet) text extract IP address
and netmask length
as text

text(inet

’192.168.1.5’)

192.168.1.5/32

abbrev (inet) text abbreviated display
format as text

abbrev(cidr

’10.1.0.0/16’)

10.1/16

family (inet) integer extract family of
address;4 for IPv4,
6 for IPv6

family(’::1’) 6

Table 9-33 shows the functions available for use with themacaddr type. The function
trunc (macaddr) returns a MAC address with the last 3 bytes set to zero. This can be used to
associate the remaining prefix with a manufacturer. The directorycontrib/mac in the source
distribution contains some utilities to create and maintain such an association table.

Table 9-33.macaddr Functions

Function Return Type Description Example Result

trunc (macaddr) macaddr set last 3 bytes to
zero

trunc(macaddr

’12:34:56:78:90:ab’)

12:34:56:00:00:00

The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical
ordering.

9.12. Sequence Manipulation Functions
This section describes PostgreSQL’s functions for operating onsequence objects. Sequence objects
(also called sequence generators or just sequences) are special single-row tables created withCREATE

SEQUENCE. A sequence object is usually used to generate unique identifiers for rows of a table. The

158

Chapter 9. Functions and Operators

sequence functions, listed inTable 9-34, provide simple, multiuser-safe methods for obtaining suc-
cessive sequence values from sequence objects.

Table 9-34. Sequence Functions

Function Return Type Description

nextval (text) bigint Advance sequence and return
new value

currval (text) bigint Return value most recently
obtained withnextval

setval (text , bigint) bigint Set sequence’s current value

setval (text , bigint ,

boolean)

bigint Set sequence’s current value and
is_called flag

For largely historical reasons, the sequence to be operated on by a sequence-function call is specified
by a text-string argument. To achieve some compatibility with the handling of ordinary SQL names,
the sequence functions convert their argument to lowercase unless the string is double-quoted. Thus

nextval(’foo’) operates on sequence foo

nextval(’FOO’) operates on sequence foo

nextval(’"Foo"’) operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval(’myschema.foo’) operates on myschema.foo

nextval(’"myschema".foo’) same as above
nextval(’foo’) searches search path for foo

Of course, the text argument can be the result of an expression, not only a simple literal, which is
occasionally useful.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even
if multiple sessions executenextval concurrently, each will safely receive a distinct sequence
value.

currval

Return the value most recently obtained bynextval for this sequence in the current session.
(An error is reported ifnextval has never been called for this sequence in this session.) Notice
that because this is returning a session-local value, it gives a predictable answer whether or not
other sessions have executednextval since the current session did.

setval

Reset the sequence object’s counter value. The two-parameter form sets the sequence’s
last_value field to the specified value and sets itsis_called field to true , meaning that
the nextnextval will advance the sequence before returning a value. In the three-parameter
form, is_called may be set eithertrue or false . If it’s set to false , the nextnextval will
return exactly the specified value, and sequence advancement commences with the following
nextval . For example,

SELECT setval(’foo’, 42); Next nextval will return 43
SELECT setval(’foo’, 42, true); Same as above

159

Chapter 9. Functions and Operators

SELECT setval(’foo’, 42, false); Next nextval will return 42

The result returned bysetval is just the value of its second argument.

Important: To avoid blocking of concurrent transactions that obtain numbers from the same se-
quence, a nextval operation is never rolled back; that is, once a value has been fetched it is con-
sidered used, even if the transaction that did the nextval later aborts. This means that aborted
transactions may leave unused “holes” in the sequence of assigned values. setval operations
are never rolled back, either.

If a sequence object has been created with default parameters,nextval calls on it will return suc-
cessive values beginning with 1. Other behaviors can be obtained by using special parameters in the
CREATE SEQUENCEcommand; see its command reference page for more information.

9.13. Conditional Expressions
This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions you might want to
consider writing a stored procedure in a more expressive programming language.

9.13.1. CASE

The SQLCASEexpression is a generic conditional expression, similar to if/else statements in other
languages:

CASE WHENcondition THEN result
[WHEN ...]
[ELSE result]

END

CASEclauses can be used wherever an expression is valid.condition is an expression that returns a
boolean result. If the result is true then the value of theCASEexpression is theresult that follows
the condition. If the result is false any subsequentWHENclauses are searched in the same manner. If
noWHENcondition is true then the value of the case expression is theresult in theELSEclause.
If the ELSEclause is omitted and no condition matches, the result is null.

An example:

SELECT * FROM test;

a

1
2
3

SELECT a,

160

Chapter 9. Functions and Operators

CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’two’
ELSE ’other’

END
FROM test;

a | case
---+-------

1 | one
2 | two
3 | other

The data types of all theresult expressions must be convertible to a single output type. SeeSection
10.5for more detail.

The following “simple”CASEexpression is a specialized variant of the general form above:

CASE expression
WHENvalue THEN result
[WHEN ...]
[ELSE result]

END

Theexpression is computed and compared to all thevalue specifications in theWHENclauses
until one is found that is equal. If no match is found, theresult in theELSEclause (or a null value)
is returned. This is similar to theswitch statement in C.

The example above can be written using the simpleCASEsyntax:

SELECT a,
CASE a WHEN 1 THEN ’one’

WHEN 2 THEN ’two’
ELSE ’other’

END
FROM test;

a | case
---+-------

1 | one
2 | two
3 | other

A CASEexpression does not evaluate any subexpressions that are not needed to determine the result.
For example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x<> 0 THEN y/x > 1.5 ELSE false END;

161

Chapter 9. Functions and Operators

9.13.2. COALESCE

COALESCE(value [, ...])

The COALESCEfunction returns the first of its arguments that is not null. Null is returned only if
all arguments are null. This is often useful to substitute a default value for null values when data is
retrieved for display, for example:

SELECT COALESCE(description, short_description, ’(none)’) ...

Like a CASEexpression,COALESCEwill not evaluate arguments that are not needed to determine the
result; that is, arguments to the right of the first non-null argument are not evaluated.

9.13.3. NULLIF

NULLIF (value1 , value2)

TheNULLIF function returns a null value if and only ifvalue1 andvalue2 are equal. Otherwise it
returnsvalue1 . This can be used to perform the inverse operation of theCOALESCEexample given
above:

SELECT NULLIF(value, ’(none)’) ...

9.14. Array Functions and Operators
Table 9-35shows the operators available forarray types.

Table 9-35.array Operators

Operator Description Example Result

= equal ARRAY[1.1,2.1,3.1]::int[]

= ARRAY[1,2,3]

t

<> not equal ARRAY[1,2,3] <>

ARRAY[1,2,4]

t

< less than ARRAY[1,2,3] <

ARRAY[1,2,4]

t

> greater than ARRAY[1,4,3] >

ARRAY[1,2,4]

t

<= less than or equal ARRAY[1,2,3] <=

ARRAY[1,2,3]

t

>= greater than or equal ARRAY[1,4,3] >=

ARRAY[1,4,3]

t

|| array-to-array
concatenation

ARRAY[1,2,3] ||

ARRAY[4,5,6]

{1,2,3,4,5,6}

162

Chapter 9. Functions and Operators

Operator Description Example Result

|| array-to-array
concatenation

ARRAY[1,2,3] ||

ARRAY[[4,5,6],[7,8,9]]

{{1,2,3},{4,5,6},{7,8,9}}

|| element-to-array
concatenation

3 || ARRAY[4,5,6] {3,4,5,6}

|| array-to-element
concatenation

ARRAY[4,5,6] || 7 {4,5,6,7}

SeeSection 8.10for more details about array operator behavior.

Table 9-36shows the functions available for use with array types. SeeSection 8.10for more discus-
sion and examples of the use of these functions.

Table 9-36.array Functions

Function Return Type Description Example Result

array_cat

(anyarray ,

anyarray)

anyarray concatenate two
arrays

array_cat(ARRAY[1,2,3],

ARRAY[4,5])

{1,2,3,4,5}

array_append

(anyarray ,

anyelement)

anyarray append an element
to the end of an
array

array_append(ARRAY[1,2],

3)

{1,2,3}

array_prepend

(anyelement ,

anyarray)

anyarray append an element
to the beginning of
an array

array_prepend(1,

ARRAY[2,3])

{1,2,3}

array_dims

(anyarray)

text returns a text
representation of
array’s dimensions

array_dims(array[[1,2,3],

[4,5,6]])

[1:2][1:3]

array_lower

(anyarray ,

integer)

integer returns lower bound
of the requested
array dimension

array_lower(array_prepend(0,

ARRAY[1,2,3]),

1)

0

array_upper

(anyarray ,

integer)

integer returns upper bound
of the requested
array dimension

array_upper(ARRAY[1,2,3,4],

1)

4

array_to_string

(anyarray , text)

text concatenates array
elements using
provided delimiter

array_to_string(array[1,

2, 3], ’~^~’)

1~^~2~^~3

string_to_array

(text , text)

text[] splits string into
array elements
using provided
delimiter

string_to_array(

’xx~^~yy~^~zz’,

’~^~’)

{xx,yy,zz}

9.15. Aggregate Functions
Aggregate functionscompute a single result value from a set of input values.Table 9-37shows the
built-in aggregate functions. The special syntax considerations for aggregate functions are explained
in Section 4.2.7. ConsultSection 2.7for additional introductory information.

163

Chapter 9. Functions and Operators

Table 9-37. Aggregate Functions

Function Argument Type Return Type Description

avg(expression) smallint , integer ,
bigint , real , double

precision , numeric ,
or interval

numeric for any integer
type argument,double

precision for a
floating-point argument,
otherwise the same as
the argument data type

the average (arithmetic
mean) of all input values

bit_and(expression)

smallint , integer ,
bigint , or bit

same as argument data
type

the bitwise AND of all
non-null input values, or
null if none

bit_or(expression)

smallint , integer ,
bigint , or bit

same as argument data
type

the bitwise OR of all
non-null input values, or
null if none

bool_and(expression)

bool bool true if all input values
are true, otherwise false

bool_or(expression)

bool bool true if at least one input
value is true, otherwise
false

count(*) bigint number of input values

count(expression) any bigint number of input values
for which the value of
expression is not
null

every(expression) bool bool equivalent tobool_and

max(expression) any numeric, string, or
date/time type

same as argument typemaximum value of
expression across all
input values

min(expression) any numeric, string, or
date/time type

same as argument typeminimum value of
expression across all
input values

stddev(expression)

smallint , integer ,
bigint , real , double

precision , or
numeric

double precision

for floating-point
arguments, otherwise
numeric

sample standard
deviation of the input
values

sum(expression) smallint , integer ,
bigint , real , double

precision , numeric ,
or interval

bigint for smallint

or integer arguments,
numeric for bigint

arguments,double

precision for
floating-point arguments,
otherwise the same as
the argument data type

sum ofexpression
across all input values

164

Chapter 9. Functions and Operators

Function Argument Type Return Type Description

variance (expression)
smallint , integer ,
bigint , real , double

precision , or
numeric

double precision

for floating-point
arguments, otherwise
numeric

sample variance of the
input values (square of
the sample standard
deviation)

It should be noted that except forcount , these functions return a null value when no rows are selected.
In particular,sum of no rows returns null, not zero as one might expect. Thecoalesce function may
be used to substitute zero for null when necessary.

Note: Boolean aggregates bool_and and bool_or correspond to standard SQL aggregates
every and any or some. As for any and some, it seems that there is an ambiguity built into the
standard syntax:

SELECT b1 = ANY((SELECT b2 FROM t2 ...)) FROM t1 ...;

Here ANY can be considered both as leading to a subquery or as an aggregate if the select
expression returns 1 row. Thus the standard name cannot be given to these aggregates.

Note: Users accustomed to working with other SQL database management systems may be
surprised by the performance characteristics of certain aggregate functions in PostgreSQL when
the aggregate is applied to the entire table (in other words, no WHEREclause is specified). In
particular, a query like

SELECT min(col) FROM sometable;

will be executed by PostgreSQL using a sequential scan of the entire table. Other database sys-
tems may optimize queries of this form to use an index on the column, if one is available. Similarly,
the aggregate functions max() and count() always require a sequential scan if applied to the en-
tire table in PostgreSQL.

PostgreSQL cannot easily implement this optimization because it also allows for user-defined ag-
gregate queries. Since min() , max() , and count() are defined using a generic API for aggregate
functions, there is no provision for special-casing the execution of these functions under certain
circumstances.

Fortunately, there is a simple workaround for min() and max() . The query shown below is equiv-
alent to the query above, except that it can take advantage of a B-tree index if there is one present
on the column in question.

SELECT col FROM sometable ORDER BY col ASC LIMIT 1;

A similar query (obtained by substituting DESCfor ASC in the query above) can be used in the
place of max() .

Unfortunately, there is no similarly trivial query that can be used to improve the performance of
count() when applied to the entire table.

9.16. Subquery Expressions
This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the
expression forms documented in this section return Boolean (true/false) results.

165

Chapter 9. Functions and Operators

9.16.1. EXISTS

EXISTS (subquery)

The argument ofEXISTS is an arbitrarySELECTstatement, orsubquery. The subquery is evaluated
to determine whether it returns any rows. If it returns at least one row, the result ofEXISTS is “true”;
if the subquery returns no rows, the result ofEXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during
any one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has any side effects (such
as calling sequence functions); whether the side effects occur or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents of those
rows, the output list of the subquery is normally uninteresting. A common coding convention is to
write all EXISTS tests in the formEXISTS(SELECT 1 WHERE ...) . There are exceptions to this
rule however, such as subqueries that useINTERSECT.

This simple example is like an inner join oncol2 , but it produces at most one output row for each
tab1 row, even if there are multiple matchingtab2 rows:

SELECT col1 FROM tab1
WHERE EXISTS(SELECT 1 FROM tab2 WHERE col2 = tab1.col2);

9.16.2. IN

expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result ofIN is “true” if
any equal subquery row is found. The result is “false” if no equal row is found (including the special
case where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of theIN construct will be null, not false. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor IN (subquery)

The left-hand side of this form ofIN is a row constructor, as described inSection 4.2.11. The right-
hand side is a parenthesized subquery, which must return exactly as many columns as there are ex-
pressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result ofIN is “true” if any equal subquery row is found. The
result is “false” if no equal row is found (including the special case where the subquery returns no
rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the row results are either unequal or null, with at least one null,
then the result ofIN is null.

166

Chapter 9. Functions and Operators

9.16.3. NOT IN

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-
hand expression is evaluated and compared to each row of the subquery result. The result ofNOT IN

is “true” if only unequal subquery rows are found (including the special case where the subquery
returns no rows). The result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of theNOT IN construct will be null, not true. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor NOT IN (subquery)

The left-hand side of this form ofNOT IN is a row constructor, as described inSection 4.2.11. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result ofNOT IN is “true” if only unequal subquery rows are
found (including the special case where the subquery returns no rows). The result is “false” if any
equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the row results are either unequal or null, with at least one null,
then the result ofNOT IN is null.

9.16.4. ANY/SOME

expression operator ANY (subquery)
expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the givenoperator ,
which must yield a Boolean result. The result ofANYis “true” if any true result is obtained. The result
is “false” if no true result is found (including the special case where the subquery returns no rows).

SOMEis a synonym forANY. IN is equivalent to= ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of theANYconstruct will be null, not false. This is in accordance with SQL’s normal rules
for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)
row_constructor operator SOME (subquery)

The left-hand side of this form ofANY is a row constructor, as described inSection 4.2.11. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result, using the givenoperator . Presently, only= and<> operators
are allowed in row-wiseANYconstructs. The result ofANY is “true” if any equal or unequal row is

167

Chapter 9. Functions and Operators

found, respectively. The result is “false” if no such row is found (including the special case where the
subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If there is at least one null row result, then the result ofANYcannot be
false; it will be true or null.

9.16.5. ALL

expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the givenoperator ,
which must yield a Boolean result. The result ofALL is “true” if all rows yield true (including the
special case where the subquery returns no rows). The result is “false” if any false result is found.

NOT IN is equivalent to<> ALL.

Note that if there are no failures but at least one right-hand row yields null for the operator’s result,
the result of theALL construct will be null, not true. This is in accordance with SQL’s normal rules
for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ALL (subquery)

The left-hand side of this form ofALL is a row constructor, as described inSection 4.2.11. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result, using the givenoperator . Presently, only= and<> operators are
allowed in row-wiseALL queries. The result ofALL is “true” if all subquery rows are equal or unequal,
respectively (including the special case where the subquery returns no rows). The result is “false” if
any row is found to be unequal or equal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If there is at least one null row result, then the result ofALL cannot be
true; it will be false or null.

9.16.6. Row-wise Comparison

row_constructor operator (subquery)

The left-hand side is a row constructor, as described inSection 4.2.11. The right-hand side is a paren-
thesized subquery, which must return exactly as many columns as there are expressions in the left-
hand row. Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the
result is taken to be null.) The left-hand side is evaluated and compared row-wise to the single sub-
query result row. Presently, only= and<> operators are allowed in row-wise comparisons. The result
is “true” if the two rows are equal or unequal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows

168

Chapter 9. Functions and Operators

are unequal if any corresponding members are non-null and unequal; otherwise the result of the row
comparison is unknown (null).

9.17. Row and Array Comparisons
This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest
are SQL-compliant. All of the expression forms documented in this section return Boolean (true/false)
results.

9.17.1. IN

expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression’s result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = value1
OR
expression = value2
OR
...

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of theIN construct will be null, not false. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

9.17.2. NOT IN

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression’s result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> value1
AND
expression <> value2
AND
...

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of theNOT IN construct will be null, not true as one
might naively expect. This is in accordance with SQL’s normal rules for Boolean combinations of null
values.

169

Chapter 9. Functions and Operators

Tip: x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with NOT IN than when working with IN . It’s best to
express your condition positively if possible.

9.17.3. ANY/SOME(array)

expression operator ANY (array expression)
expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the givenoperator , which
must yield a Boolean result. The result ofANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the special case where the array has zero elements).

SOMEis a synonym forANY.

9.17.4. ALL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the givenoperator , which
must yield a Boolean result. The result ofALL is “true” if all comparisons yield true (including the
special case where the array has zero elements). The result is “false” if any false result is found.

9.17.5. Row-wise Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described inSection 4.2.11. The two row values must have the
same number of fields. Each side is evaluated and they are compared row-wise. Presently, only= and
<> operators are allowed in row-wise comparisons. The result is “true” if the two rows are equal or
unequal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of the row
comparison is unknown (null).

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a<> row comparison, but it does not yield null for null inputs. Instead,
any null value is considered unequal to (distinct from) any non-null value, and any two nulls are
considered equal (not distinct). Thus the result will always be either true or false, never null.

row_constructor IS NULL
row_constructor IS NOT NULL

These constructs test a row value for null or not null. A row value is considered not null if it has at
least one field that is not null.

170

Chapter 9. Functions and Operators

9.18. Set Returning Functions
This section describes functions that possibly return more than one row. Currently the only functions
in this class are series generating functions, as detailed inTable 9-38.

Table 9-38. Series Generating Functions

Function Argument Type Return Type Description

generate_series (start ,

stop)

int or bigint setof int or setof

bigint (same as
argument type)

Generate a series of
values, fromstart to
stop with a step size of
one.

generate_series (start ,

stop , step)

int or bigint setof int or setof

bigint (same as
argument type)

Generate a series of
values, fromstart to
stop with a step size of
step .

Whenstep is positive, zero rows are returned ifstart is greater thanstop . Conversely, whenstep

is negative, zero rows are returned ifstart is less thanstop . Zero rows are also returned forNULL

inputs. It is an error forstep to be zero. Some examples follow:

select * from generate_series(2,4);
generate_series

2
3
4

(3 rows)

select * from generate_series(5,1,-2);
generate_series

5
3
1

(3 rows)

select * from generate_series(4,3);
generate_series

(0 rows)

select current_date + s.a as dates from generate_series(0,14,7) as s(a);
dates

2004-02-05
2004-02-12
2004-02-19

(3 rows)

171

Chapter 9. Functions and Operators

9.19. System Information Functions
Table 9-39shows several functions that extract session and system information.

Table 9-39. Session Information Functions

Name Return Type Description

current_database() name name of current database

current_schema() name name of current schema

current_schemas(boolean) name[] names of schemas in search path
optionally including implicit
schemas

current_user name user name of current execution
context

inet_client_addr() inet address of the remote connection

inet_client_port() int4 port of the remote connection

inet_server_addr() inet address of the local connection

inet_server_port() int4 port of the local connection

session_user name session user name

user name equivalent tocurrent_user

version() text PostgreSQL version information

Thesession_user is normally the user who initiated the current database connection; but superusers
can change this setting withSET SESSION AUTHORIZATION. The current_user is the user
identifier that is applicable for permission checking. Normally, it is equal to the session user, but it
changes during the execution of functions with the attributeSECURITY DEFINER. In Unix parlance,
the session user is the “real user” and the current user is the “effective user”.

Note: current_user , session_user , and user have special syntactic status in SQL: they must
be called without trailing parentheses.

current_schema returns the name of the schema that is at the front of the search path (or a null
value if the search path is empty). This is the schema that will be used for any tables or other named
objects that are created without specifying a target schema.current_schemas(boolean) returns
an array of the names of all schemas presently in the search path. The Boolean option determines
whether or not implicitly included system schemas such aspg_catalog are included in the search
path returned.

Note: The search path may be altered at run time. The command is:

SET search_path TO schema [, schema , ...]

inet_client_addr returns the IP address of the current client, andinet_client_port returns
the port number.inet_server_addr returns the IP address on which the server accepted the current
connection, andinet_server_port returns the port number. All these functions return NULL if the
current connection is via a Unix-domain socket.

172

Chapter 9. Functions and Operators

version() returns a string describing the PostgreSQL server’s version.

Table 9-40lists functions that allow the user to query object access privileges programmatically. See
Section 5.7for more information about privileges.

Table 9-40. Access Privilege Inquiry Functions

Name Return Type Description

has_table_privilege (user ,

table , privilege)

boolean does user have privilege for table

has_table_privilege (table ,

privilege)

boolean does current user have privilege
for table

has_database_privilege (user ,

database , privilege)

boolean does user have privilege for
database

has_database_privilege (database ,

privilege)

boolean does current user have privilege
for database

has_function_privilege (user ,

function , privilege)

boolean does user have privilege for
function

has_function_privilege (function ,

privilege)

boolean does current user have privilege
for function

has_language_privilege (user ,

language , privilege)

boolean does user have privilege for
language

has_language_privilege (language ,

privilege)

boolean does current user have privilege
for language

has_schema_privilege (user ,

schema , privilege)

boolean does user have privilege for
schema

has_schema_privilege (schema ,

privilege)

boolean does current user have privilege
for schema

has_tablespace_privilege (user ,

tablespace , privilege)

boolean does user have privilege for
tablespace

has_tablespace_privilege (tablespace ,

privilege)

boolean does current user have privilege
for tablespace

has_table_privilege checks whether a user can access a table in a particular way. The user can
be specified by name or by ID (pg_user.usesysid), or if the argument is omittedcurrent_user

is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege , which can be distinguished by the number and types of their arguments.)
When specifying by name, the name can be schema-qualified if necessary. The desired access priv-
ilege type is specified by a text string, which must evaluate to one of the valuesSELECT, INSERT,
UPDATE, DELETE, RULE, REFERENCES, or TRIGGER. (Case of the string is not significant, however.)
An example is:

SELECT has_table_privilege(’myschema.mytable’, ’select’);

has_database_privilege checks whether a user can access a database in a particular way. The
possibilities for its arguments are analogous tohas_table_privilege . The desired access privilege
type must evaluate toCREATE, TEMPORARY, or TEMP(which is equivalent toTEMPORARY).

has_function_privilege checks whether a user can access a function in a particular way. The
possibilities for its arguments are analogous tohas_table_privilege . When specifying a function

173

Chapter 9. Functions and Operators

by a text string rather than by OID, the allowed input is the same as for theregprocedure data type
(seeSection 8.12). The desired access privilege type must evaluate toEXECUTE. An example is:

SELECT has_function_privilege(’joeuser’, ’myfunc(int, text)’, ’execute’);

has_language_privilege checks whether a user can access a procedural language in a particular
way. The possibilities for its arguments are analogous tohas_table_privilege . The desired access
privilege type must evaluate toUSAGE.

has_schema_privilege checks whether a user can access a schema in a particular way. The pos-
sibilities for its arguments are analogous tohas_table_privilege . The desired access privilege
type must evaluate toCREATEor USAGE.

has_tablespace_privilege checks whether a user can access a tablespace in a particular way.
The possibilities for its arguments are analogous tohas_table_privilege . The desired access
privilege type must evaluate toCREATE.

To test whether a user holds a grant option on the privilege, appendWITH GRANT OPTIONto the
privilege key word; for example’UPDATE WITH GRANT OPTION’.

Table 9-41shows functions that determine whether a certain object isvisible in the current schema
search path. A table is said to be visible if its containing schema is in the search path and no table
of the same name appears earlier in the search path. This is equivalent to the statement that the table
can be referenced by name without explicit schema qualification. For example, to list the names of all
visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

Table 9-41. Schema Visibility Inquiry Functions

Name Return Type Description

pg_table_is_visible (table_oid)boolean is table visible in search path

pg_type_is_visible (type_oid)boolean is type (or domain) visible in
search path

pg_function_is_visible (function_oid)boolean is function visible in search path

pg_operator_is_visible (operator_oid)boolean is operator visible in search path

pg_opclass_is_visible (opclass_oid)boolean is operator class visible in search
path

pg_conversion_is_visible (conversion_oid)boolean is conversion visible in search
path

pg_table_is_visible performs the check for tables (or views, or any other kind ofpg_class

entry). pg_type_is_visible , pg_function_is_visible , pg_operator_is_visible ,
pg_opclass_is_visible , andpg_conversion_is_visible perform the same sort of visibility
check for types (and domains), functions, operators, operator classes and conversions, respectively.
For functions and operators, an object in the search path is visible if there is no object of the same
nameand argument data type(s)earlier in the path. For operator classes, both name and associated
index access method are considered.

174

Chapter 9. Functions and Operators

All these functions require object OIDs to identify the object to be checked. If you want to test an
object by name, it is convenient to use the OID alias types (regclass , regtype , regprocedure ,
or regoperator), for example

SELECT pg_type_is_visible(’myschema.widget’::regtype);

Note that it would not make much sense to test an unqualified name in this way — if the name can be
recognized at all, it must be visible.

Table 9-42lists functions that extract information from the system catalogs.

Table 9-42. System Catalog Information Functions

Name Return Type Description

pg_get_viewdef (view_name) text getCREATE VIEWcommand for
view (deprecated)

pg_get_viewdef (view_name ,

pretty_bool)

text getCREATE VIEWcommand for
view (deprecated)

pg_get_viewdef (view_oid) text getCREATE VIEWcommand for
view

pg_get_viewdef (view_oid ,

pretty_bool)

text getCREATE VIEWcommand for
view

pg_get_ruledef (rule_oid) text getCREATE RULEcommand for
rule

pg_get_ruledef (rule_oid ,

pretty_bool)

text getCREATE RULEcommand for
rule

pg_get_indexdef (index_oid) text getCREATE INDEXcommand
for index

pg_get_indexdef (index_oid ,

column_no , pretty_bool)

text getCREATE INDEXcommand
for index, or definition of just
one index column when
column_no is not zero

pg_get_triggerdef (trigger_oid)text getCREATE [CONSTRAINT]

TRIGGERcommand for trigger

pg_get_constraintdef (constraint_oid)text get definition of a constraint

pg_get_constraintdef (constraint_oid ,

pretty_bool)

text get definition of a constraint

pg_get_expr (expr_text ,

relation_oid)

text decompile internal form of an
expression, assuming that any
Vars in it refer to the relation
indicated by the second
parameter

pg_get_expr (expr_text ,

relation_oid , pretty_bool)

text decompile internal form of an
expression, assuming that any
Vars in it refer to the relation
indicated by the second
parameter

pg_get_userbyid (userid) name get user name with given ID

175

Chapter 9. Functions and Operators

Name Return Type Description

pg_get_serial_sequence (table_name ,

column_name)

text get name of the sequence that a
serial or bigserial column
uses

pg_tablespace_databases (tablespace_oid)setof oid get set of database OIDs that
have objects in the tablespace

pg_get_viewdef , pg_get_ruledef , pg_get_indexdef , pg_get_triggerdef , and
pg_get_constraintdef respectively reconstruct the creating command for a view, rule, index,
trigger, or constraint. (Note that this is a decompiled reconstruction, not the original text of the
command.)pg_get_expr decompiles the internal form of an individual expression, such as the
default value for a column. It may be useful when examining the contents of system catalogs. Most
of these functions come in two variants, one of which can optionally “pretty-print” the result. The
pretty-printed format is more readable, but the default format is more likely to be interpreted the
same way by future versions of PostgreSQL; avoid using pretty-printed output for dump purposes.
Passingfalse for the pretty-print parameter yields the same result as the variant that does not have
the parameter at all.

pg_get_userbyid extracts a user’s name given a user ID number.pg_get_serial_sequence

fetches the name of the sequence associated with a serial or bigserial column. The name is suitably
formatted for passing to the sequence functions (seeSection 9.12). NULL is returned if the column
does not have a sequence attached.

pg_tablespace_databases allows usage examination of a tablespace. It will return a set of OIDs
of databases that have objects stored in the tablespace. If this function returns any row, the tablespace
is not empty and cannot be dropped. To display the specific objects populating the tablespace, you
will need to connect to the databases identified bypg_tablespace_databases and query their
pg_class catalogs.

The functions shown inTable 9-43extract comments previously stored with theCOMMENTcommand.
A null value is returned if no comment could be found matching the specified parameters.

Table 9-43. Comment Information Functions

Name Return Type Description

obj_description (object_oid ,

catalog_name)

text get comment for a database
object

obj_description (object_oid) text get comment for a database
object (deprecated)

col_description (table_oid ,

column_number)

text get comment for a table column

The two-parameter form ofobj_description returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description(123456,’pg_class’) would retrieve the comment for a table with OID
123456. The one-parameter form ofobj_description requires only the object OID. It is now
deprecated since there is no guarantee that OIDs are unique across different system catalogs;
therefore, the wrong comment could be returned.

col_description returns the comment for a table column, which is specified by the OID of its
table and its column number.obj_description cannot be used for table columns since columns do
not have OIDs of their own.

176

Chapter 9. Functions and Operators

9.20. System Administration Functions
Table 9-44shows the functions available to query and alter run-time configuration parameters.

Table 9-44. Configuration Settings Functions

Name Return Type Description

current_setting (setting_name)

text current value of setting

set_config(setting_name ,

new_value , is_local)

text set parameter and return new
value

The functioncurrent_setting yields the current value of the settingsetting_name . It corre-
sponds to the SQL commandSHOW. An example:

SELECT current_setting(’datestyle’);

current_setting

ISO, MDY
(1 row)

set_config sets the parametersetting_name to new_value . If is_local is true , the new value
will only apply to the current transaction. If you want the new value to apply for the current session,
usefalse instead. The function corresponds to the SQL commandSET. An example:

SELECT set_config(’log_statement_stats’, ’off’, false);

set_config

off
(1 row)

The function shown inTable 9-45sends control signals to other server processes. Use of this function
is restricted to superusers.

Table 9-45. Backend Signalling Functions

Name Return Type Description

pg_cancel_backend (pid) int Cancel a backend’s current query

This function returns 1 if successful, 0 if not successful. The process ID (pid) of an active backend
can be found from theprocpid column in thepg_stat_activity view, or by listing thepostgres

processes on the server with ps.

The functions shown inTable 9-46assist in making on-line backups. Use of these functions is re-
stricted to superusers.

Table 9-46. Backup Control Functions

177

Chapter 9. Functions and Operators

Name Return Type Description

pg_start_backup (label_text)

text Set up for performing on-line
backup

pg_stop_backup () text Finish performing on-line backup

pg_start_backup accepts a single parameter which is an arbitrary user-defined label for the backup.
(Typically this would be the name under which the backup dump file will be stored.) The function
writes a backup label file into the database cluster’s data directory, and then returns the backup’s
starting WAL offset as text. (The user need not pay any attention to this result value, but it is provided
in case it is of use.)

pg_stop_backup removes the label file created bypg_start_backup , and instead creates a backup
history file in the WAL archive area. The history file includes the label given topg_start_backup ,
the starting and ending WAL offsets for the backup, and the starting and ending times of the backup.
The return value is the backup’s ending WAL offset (which again may be of little interest).

For details about proper usage of these functions, seeSection 22.3.

178

Chapter 10. Type Conversion
SQL statements can, intentionally or not, require mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user will not need to understand the details of the type conversion mechanism. How-
ever, the implicit conversions done by PostgreSQL can affect the results of a query. When necessary,
these results can be tailored by usingexplicit type conversion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the
relevant sections inChapter 8andChapter 9for more information on specific data types and allowed
functions and operators.

10.1. Overview
SQL is a strongly typed language. That is, every data item has an associated data type which de-
termines its behavior and allowed usage. PostgreSQL has an extensible type system that is much
more general and flexible than other SQL implementations. Hence, most type conversion behavior
in PostgreSQL is governed by general rules rather than byad hocheuristics. This allows mixed-type
expressions to be meaningful even with user-defined types.

The PostgreSQL scanner/parser divides lexical elements into only five fundamental categories: inte-
gers, non-integer numbers, strings, identifiers, and key words. Constants of most non-numeric types
are first classified as strings. The SQL language definition allows specifying type names with strings,
and this mechanism can be used in PostgreSQL to start the parser down the correct path. For example,
the query

SELECT text ’Origin’ AS "label", point ’(0,0)’ AS "value";

label | value
--------+-------

Origin | (0,0)
(1 row)

has two literal constants, of typetext andpoint . If a type is not specified for a string literal, then
the placeholder typeunknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:

Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Functions can have
one or more arguments. Since PostgreSQL permits function overloading, the function name
alone does not uniquely identify the function to be called; the parser must select the right function
based on the data types of the supplied arguments.

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well
as binary (two-argument) operators. Like functions, operators can be overloaded, and so the same
problem of selecting the right operator exists.

179

Chapter 10. Type Conversion

Value Storage

SQL INSERT andUPDATEstatements place the results of expressions into a table. The expres-
sions in the statement must be matched up with, and perhaps converted to, the types of the target
columns.

UNION, CASE, andARRAYconstructs

Since all query results from a unionizedSELECT statement must appear in a single set of
columns, the types of the results of eachSELECTclause must be matched up and converted to
a uniform set. Similarly, the result expressions of aCASEconstruct must be converted to a
common type so that theCASEexpression as a whole has a known output type. The same holds
for ARRAYconstructs.

The system catalogs store information about which conversions, calledcasts, between data types are
valid, and how to perform those conversions. Additional casts can be added by the user with the
CREATE CASTcommand. (This is usually done in conjunction with defining new data types. The set
of casts between the built-in types has been carefully crafted and is best not altered.)

An additional heuristic is provided in the parser to allow better guesses at proper behavior for SQL
standard types. There are several basictype categoriesdefined: boolean , numeric , string ,
bitstring , datetime , timespan , geometric , network , and user-defined. Each category, with
the exception of user-defined, has one or morepreferred typeswhich are preferentially selected when
there is ambiguity. In the user-defined category, each type is its own preferred type. Ambiguous
expressions (those with multiple candidate parsing solutions) can therefore often be resolved when
there are multiple possible built-in types, but they will raise an error when there are multiple choices
for user-defined types.

All type conversion rules are designed with several principles in mind:

• Implicit conversions should never have surprising or unpredictable outcomes.

• User-defined types, of which the parser has noa priori knowledge, should be “higher” in the type
hierarchy. In mixed-type expressions, native types shall always be converted to a user-defined type
(of course, only if conversion is necessary).

• User-defined types are not related. Currently, PostgreSQL does not have information available to
it on relationships between types, other than hardcoded heuristics for built-in types and implicit
relationships based on available functions and casts.

• There should be no extra overhead from the parser or executor if a query does not need implicit type
conversion. That is, if a query is well formulated and the types already match up, then the query
should proceed without spending extra time in the parser and without introducing unnecessary
implicit conversion calls into the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines a new function with the correct argument types, the parser should use this new function and
will no longer do the implicit conversion using the old function.

180

Chapter 10. Type Conversion

10.2. Operators
The specific operator to be used in an operator invocation is determined by following the procedure
below. Note that this procedure is indirectly affected by the precedence of the involved operators. See
Section 4.1.6for more information.

Operator Type Resolution

1. Select the operators to be considered from thepg_operator system catalog. If an unqualified
operator name was used (the usual case), the operators considered are those of the right name
and argument count that are visible in the current search path (seeSection 5.8.3). If a qualified
operator name was given, only operators in the specified schema are considered.

a. If the search path finds multiple operators of identical argument types, only the one
appearing earliest in the path is considered. But operators of different argument types
are considered on an equal footing regardless of search path position.

2. Check for an operator accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of operators considered), use it.

a. If one argument of a binary operator invocation is of theunknown type, then assume it
is the same type as the other argument for this check. Other cases involvingunknown

will never find a match at this step.

3. Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be con-
verted (using an implicit conversion) to match.unknown literals are assumed to be con-
vertible to anything for this purpose. If only one candidate remains, use it; else continue
to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candi-
dates if none have any exact matches. If only one candidate remains, use it; else continue
to the next step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments areunknown , check the type categories accepted at those ar-
gument positions by the remaining candidates. At each position, select thestring

category if any candidate accepts that category. (This bias towards string is appropriate
since an unknown-type literal does look like a string.) Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Now discard candidates that
do not accept the selected type category. Furthermore, if any candidate accepts a pre-
ferred type at a given argument position, discard candidates that accept non-preferred
types for that argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

Some examples follow.

181

Chapter 10. Type Conversion

Example 10-1. Exponentiation Operator Type Resolution

There is only one exponentiation operator defined in the catalog, and it takes arguments of type
double precision . The scanner assigns an initial type ofinteger to both arguments of this query
expression:

SELECT 2 ^ 3 AS "exp";

exp

8
(1 row)

So the parser does a type conversion on both operands and the query is equivalent to
SELECT CAST(2 AS double precision) ^ CAST(3 AS double precision) AS "exp";

Example 10-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types as well as for working with complex exten-
sion types. Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

SELECT text ’abc’ || ’def’ AS "text and unknown";

text and unknown

abcdef
(1 row)

In this case the parser looks to see if there is an operator takingtext for both arguments. Since there
is, it assumes that the second argument should be interpreted as of typetext .

Here is a concatenation on unspecified types:

SELECT ’abc’ || ’def’ AS "unspecified";

unspecified

abcdef
(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the query.
So, the parser looks for all candidate operators and finds that there are candidates accepting both
string-category and bit-string-category inputs. Since string category is preferred when available, that
category is selected, and then the preferred type for strings,text , is used as the specific type to
resolve the unknown literals to.

Example 10-3. Absolute-Value and Negation Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix operator@, all of which implement
absolute-value operations for various numeric data types. One of these entries is for typefloat8 ,
which is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when
faced with a non-numeric input:

SELECT @ ’-4.5’ AS "abs";

182

Chapter 10. Type Conversion

abs

4.5
(1 row)

Here the system has performed an implicit conversion fromtext to float8 before applying the
chosen operator. We can verify thatfloat8 and not some other type was used:

SELECT @ ’-4.5e500’ AS "abs";

ERROR: "-4.5e500" is out of range for type double precision

On the other hand, the prefix operator~ (bitwise negation) is defined only for integer data types, not
for float8 . So, if we try a similar case with~, we get:

SELECT ~ ’20’ AS "negation";

ERROR: operator is not unique: ~ "unknown"
HINT: Could not choose a best candidate operator. You may need to add explicit
type casts.

This happens because the system can’t decide which of the several possible~ operators should be
preferred. We can help it out with an explicit cast:

SELECT ~ CAST(’20’ AS int8) AS "negation";

negation

-21
(1 row)

10.3. Functions
The specific function to be used in a function invocation is determined according to the following
steps.

Function Type Resolution

1. Select the functions to be considered from thepg_proc system catalog. If an unqualified function
name was used, the functions considered are those of the right name and argument count that are
visible in the current search path (seeSection 5.8.3). If a qualified function name was given, only
functions in the specified schema are considered.

a. If the search path finds multiple functions of identical argument types, only the one
appearing earliest in the path is considered. But functions of different argument types
are considered on an equal footing regardless of search path position.

2. Check for a function accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of functions considered), use it. (Cases involvingunknown will never
find a match at this step.)

3. If no exact match is found, see whether the function call appears to be a trivial type conversion
request. This happens if the function call has just one argument and the function name is the same
as the (internal) name of some data type. Furthermore, the function argument must be either an
unknown-type literal or a type that is binary-compatible with the named data type. When these
conditions are met, the function argument is converted to the named data type without any actual
function call.

183

Chapter 10. Type Conversion

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be con-
verted (using an implicit conversion) to match.unknown literals are assumed to be con-
vertible to anything for this purpose. If only one candidate remains, use it; else continue
to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candi-
dates if none have any exact matches. If only one candidate remains, use it; else continue
to the next step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments areunknown , check the type categories accepted at those ar-
gument positions by the remaining candidates. At each position, select thestring

category if any candidate accepts that category. (This bias towards string is appropriate
since an unknown-type literal does look like a string.) Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Now discard candidates that
do not accept the selected type category. Furthermore, if any candidate accepts a pre-
ferred type at a given argument position, discard candidates that accept non-preferred
types for that argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

Note that the “best match” rules are identical for operator and function type resolution. Some exam-
ples follow.

Example 10-4. Rounding Function Argument Type Resolution

There is only oneround function with two arguments. (The first isnumeric , the second isinteger .)
So the following query automatically converts the first argument of typeinteger to numeric :

SELECT round(4, 4);

round

4.0000
(1 row)

That query is actually transformed by the parser to
SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned the typenumeric , the following
query will require no type conversion and may therefore be slightly more efficient:

SELECT round(4.0, 4);

184

Chapter 10. Type Conversion

Example 10-5. Substring Function Type Resolution

There are severalsubstr functions, one of which takes typestext and integer . If called with a
string constant of unspecified type, the system chooses the candidate function that accepts an argu-
ment of the preferred categorystring (namely of typetext).

SELECT substr(’1234’, 3);

substr

34
(1 row)

If the string is declared to be of typevarchar , as might be the case if it comes from a table, then the
parser will try to convert it to becometext :

SELECT substr(varchar ’1234’, 3);

substr

34
(1 row)

This is transformed by the parser to effectively become
SELECT substr(CAST (varchar ’1234’ AS text), 3);

Note: The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any physical
conversion. Therefore, no explicit type conversion call is really inserted in this case.

And, if the function is called with an argument of typeinteger , the parser will try to convert that to
text :

SELECT substr(1234, 3);

substr

34
(1 row)

This actually executes as
SELECT substr(CAST (1234 AS text), 3);

This automatic transformation can succeed because there is an implicitly invocable cast from
integer to text .

10.4. Value Storage
Values to be inserted into a table are converted to the destination column’s data type according to the
following steps.

185

Chapter 10. Type Conversion

Value Storage Type Conversion

1. Check for an exact match with the target.

2. Otherwise, try to convert the expression to the target type. This will succeed if there is a registered
cast between the two types. If the expression is an unknown-type literal, the contents of the literal
string will be fed to the input conversion routine for the target type.

3. Check to see if there is a sizing cast for the target type. A sizing cast is a cast from that type
to itself. If one is found in thepg_cast catalog, apply it to the expression before storing into
the destination column. The implementation function for such a cast always takes an extra pa-
rameter of typeinteger , which receives the destination column’s declared length (actually,
its atttypmod value; the interpretation ofatttypmod varies for different datatypes). The cast
function is responsible for applying any length-dependent semantics such as size checking or
truncation.

Example 10-6.character Storage Type Conversion

For a target column declared ascharacter(20) the following statement ensures that the stored value
is sized correctly:

CREATE TABLE vv (v character(20));
INSERT INTO vv SELECT ’abc’ || ’def’;
SELECT v, length(v) FROM vv;

v | length
----------------------+--------

abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolved totext by default,
allowing the|| operator to be resolved astext concatenation. Then thetext result of the operator is
converted tobpchar (“blank-padded char”, the internal name of thecharacter data type) to match
the target column type. (Since the typestext andbpchar are binary-compatible, this conversion
does not insert any real function call.) Finally, the sizing functionbpchar(bpchar, integer) is
found in the system catalog and applied to the operator’s result and the stored column length. This
type-specific function performs the required length check and addition of padding spaces.

10.5. UNION, CASE, and ARRAYConstructs
SQL UNION constructs must match up possibly dissimilar types to become a single result set. The
resolution algorithm is applied separately to each output column of a union query. TheINTERSECT

andEXCEPTconstructs resolve dissimilar types in the same way asUNION. The CASEandARRAY

constructs use the identical algorithm to match up their component expressions and select a result
data type.

UNION, CASE, and ARRAYType Resolution

1. If all inputs are of typeunknown , resolve as typetext (the preferred type of the string category).
Otherwise, ignore theunknown inputs while choosing the result type.

2. If the non-unknown inputs are not all of the same type category, fail.

186

Chapter 10. Type Conversion

3. Choose the first non-unknown input type which is a preferred type in that category or allows all
the non-unknown inputs to be implicitly converted to it.

4. Convert all inputs to the selected type.

Some examples follow.

Example 10-7. Type Resolution with Underspecified Types in a Union

SELECT text ’a’ AS "text" UNION SELECT ’b’;

text

a
b

(2 rows)

Here, the unknown-type literal’b’ will be resolved as typetext .

Example 10-8. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

numeric

1
1.2

(2 rows)

The literal1.2 is of typenumeric , and theinteger value1 can be cast implicitly tonumeric , so
that type is used.

Example 10-9. Type Resolution in a Transposed Union

SELECT 1 AS "real" UNION SELECT CAST(’2.2’ AS REAL);

real

1
2.2

(2 rows)

Here, since typereal cannot be implicitly cast tointeger , but integer can be implicitly cast to
real , the union result type is resolved asreal .

187

Chapter 11. Indexes
Indexes are a common way to enhance database performance. An index allows the database server to
find and retrieve specific rows much faster than it could do without an index. But indexes also add
overhead to the database system as a whole, so they should be used sensibly.

11.1. Introduction
Suppose we have a table similar to this:

CREATE TABLE test1 (
id integer,
content varchar

);

and the application requires a lot of queries of the form

SELECT content FROM test1 WHERE id = constant ;

With no advance preparation, the system would have to scan the entiretest1 table, row by row, to
find all matching entries. If there are a lot of rows intest1 and only a few rows (perhaps only zero
or one) that would be returned by such a query, then this is clearly an inefficient method. But if the
system has been instructed to maintain an index on theid column, then it can use a more efficient
method for locating matching rows. For instance, it might only have to walk a few levels deep into a
search tree.

A similar approach is used in most books of non-fiction: terms and concepts that are frequently looked
up by readers are collected in an alphabetic index at the end of the book. The interested reader can
scan the index relatively quickly and flip to the appropriate page(s), rather than having to read the
entire book to find the material of interest. Just as it is the task of the author to anticipate the items
that the readers are most likely to look up, it is the task of the database programmer to foresee which
indexes would be of advantage.

The following command would be used to create the index on theid column, as discussed:

CREATE INDEX test1_id_index ON test1 (id);

The nametest1_id_index can be chosen freely, but you should pick something that enables you
to remember later what the index was for.

To remove an index, use theDROP INDEXcommand. Indexes can be added to and removed from
tables at any time.

Once an index is created, no further intervention is required: the system will update the index when the
table is modified, and it will use the index in queries when it thinks this would be more efficient than
a sequential table scan. But you may have to run theANALYZEcommand regularly to update statistics
to allow the query planner to make educated decisions. SeeChapter 13for information about how to
find out whether an index is used and when and why the planner may choosenot to use an index.

Indexes can also benefitUPDATEandDELETEcommands with search conditions. Indexes can more-
over be used in join queries. Thus, an index defined on a column that is part of a join condition can
significantly speed up queries with joins.

When an index is created, the system has to keep it synchronized with the table. This adds overhead to
data manipulation operations. Therefore indexes that are non-essential or do not get used at all should
be removed. Note that a query or data manipulation command can use at most one index per table.

188

Chapter 11. Indexes

11.2. Index Types
PostgreSQL provides several index types: B-tree, R-tree, Hash, and GiST. Each index type uses a
different algorithm that is best suited to different types of queries. By default, theCREATE INDEX

command will create a B-tree index, which fits the most common situations.

B-trees can handle equality and range queries on data that can be sorted into some ordering. In partic-
ular, the PostgreSQL query planner will consider using a B-tree index whenever an indexed column
is involved in a comparison using one of these operators:

<

<=

=

>=

>

Constructs equivalent to combinations of these operators, such asBETWEENandIN , can also be imple-
mented with a B-tree index search. (But note thatIS NULL is not equivalent to= and is not indexable.)

The optimizer can also use a B-tree index for queries involving the pattern matching operatorsLIKE ,
ILIKE , ~, and~* , if the pattern is anchored to the beginning of the string, e.g.,col LIKE ’foo%’

or col ~ ’^foo’ , but notcol LIKE ’%bar’ . However, if your server does not use the C locale
you will need to create the index with a special operator class to support indexing of pattern-matching
queries. SeeSection 11.6below.

R-tree indexes are suited for queries on spatial data. To create an R-tree index, use a command of the
form

CREATE INDEXname ON table USING RTREE (column);

The PostgreSQL query planner will consider using an R-tree index whenever an indexed column is
involved in a comparison using one of these operators:

<<

&<

&>

>>

@

~=

&&

(SeeSection 9.10for the meaning of these operators.)

Hash indexes can only handle simple equality comparisons. The query planner will consider using
a hash index whenever an indexed column is involved in a comparison using the= operator. The
following command is used to create a hash index:

CREATE INDEXname ON table USING HASH (column);

Note: Testing has shown PostgreSQL’s hash indexes to perform no better than B-tree indexes,
and the index size and build time for hash indexes is much worse. For these reasons, hash index
use is presently discouraged.

189

Chapter 11. Indexes

GiST indexes are not a single kind of index, but rather an infrastructure within which many different
indexing strategies can be implemented. Accordingly, the particular operators with which a GiST
index can be used vary depending on the indexing strategy (theoperator class). For more information
seeChapter 48.

The B-tree index method is an implementation of Lehman-Yao high-concurrency B-trees. The R-tree
index method implements standard R-trees using Guttman’s quadratic split algorithm. The hash index
method is an implementation of Litwin’s linear hashing. We mention the algorithms used solely to
indicate that all of these index methods are fully dynamic and do not have to be optimized periodically
(as is the case with, for example, static hash methods).

11.3. Multicolumn Indexes
An index can be defined on more than one column. For example, if you have a table of this form:

CREATE TABLE test2 (
major int,
minor int,
name varchar

);

(say, you keep your/dev directory in a database...) and you frequently make queries like

SELECT name FROM test2 WHERE major = constant AND minor = constant ;

then it may be appropriate to define an index on the columnsmajor andminor together, e.g.,

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree and GiST implementations support multicolumn indexes. Up to 32
columns may be specified. (This limit can be altered when building PostgreSQL; see the file
pg_config_manual.h .)

The query planner can use a multicolumn index for queries that involve the leftmost column in the
index definition plus any number of columns listed to the right of it, without a gap. For example, an
index on(a, b, c) can be used in queries involving all ofa, b, andc , or in queries involving botha
andb, or in queries involving onlya, but not in other combinations. (In a query involvinga andc the
planner could choose to use the index fora, while treatingc like an ordinary unindexed column.) Of
course, each column must be used with operators appropriate to the index type; clauses that involve
other operators will not be considered.

Multicolumn indexes can only be used if the clauses involving the indexed columns are joined with
AND. For instance,

SELECT name FROM test2 WHERE major = constant OR minor = constant ;

cannot make use of the indextest2_mm_idx defined above to look up both columns. (It can be used
to look up only themajor column, however.)

Multicolumn indexes should be used sparingly. Most of the time, an index on a single column is
sufficient and saves space and time. Indexes with more than three columns are unlikely to be helpful
unless the usage of the table is extremely stylized.

190

Chapter 11. Indexes

11.4. Unique Indexes
Indexes may also be used to enforce uniqueness of a column’s value, or the uniqueness of the com-
bined values of more than one column.

CREATE UNIQUE INDEXname ON table (column [, ...]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values will not be allowed.
Null values are not considered equal. A multicolumn unique index will only reject cases where all of
the indexed columns are equal in two rows.

PostgreSQL automatically creates a unique index when a unique constraint or a primary key is de-
fined for a table. The index covers the columns that make up the primary key or unique columns (a
multicolumn index, if appropriate), and is the mechanism that enforces the constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD

CONSTRAINT. The use of indexes to enforce unique constraints could be considered an
implementation detail that should not be accessed directly. One should, however, be aware that
there’s no need to manually create indexes on unique columns; doing so would just duplicate the
automatically-created index.

11.5. Indexes on Expressions
An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast
access to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to use thelower function:

SELECT * FROM test1 WHERE lower(col1) = ’value’;

This query can use an index, if one has been defined on the result of thelower(col1) operation:

CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

If we were to declare this indexUNIQUE, it would prevent creation of rows whosecol1 values differ
only in case, as well as rows whosecol1 values are actually identical. Thus, indexes on expressions
can be used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like this:

SELECT * FROM people WHERE (first_name || ’ ’ || last_name) = ’John Smith’;

then it might be worth creating an index like this:

CREATE INDEX people_names ON people ((first_name || ’ ’ || last_name));

The syntax of theCREATE INDEXcommand normally requires writing parentheses around index
expressions, as shown in the second example. The parentheses may be omitted when the expression
is just a function call, as in the first example.

191

Chapter 11. Indexes

Index expressions are relatively expensive to maintain, since the derived expression(s) must be com-
puted for each row upon insertion or whenever it is updated. Therefore they should be used only when
queries that can use the index are very frequent.

11.6. Operator Classes
An index definition may specify anoperator classfor each column of an index.

CREATE INDEXname ON table (column opclass [, ...]);

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on the typeint4 would use theint4_ops class; this operator class includes comparison
functions for values of typeint4 . In practice the default operator class for the column’s data type is
usually sufficient. The main point of having operator classes is that for some data types, there could
be more than one meaningful index behavior. For example, we might want to sort a complex-number
data type either by absolute value or by real part. We could do this by defining two operator classes
for the data type and then selecting the proper class when making an index.

There are also some built-in operator classes besides the default ones:

• The operator classestext_pattern_ops , varchar_pattern_ops , bpchar_pattern_ops ,
andname_pattern_ops support B-tree indexes on the typestext , varchar , char , andname,
respectively. The difference from the ordinary operator classes is that the values are compared
strictly character by character rather than according to the locale-specific collation rules. This
makes these operator classes suitable for use by queries involving pattern matching expressions
(LIKE or POSIX regular expressions) if the server does not use the standard “C” locale. As an
example, you might index avarchar column like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

If you do use the C locale, you may instead create an index with the default operator class, and
it will still be useful for pattern-matching queries. Also note that you should create an index with
the default operator class if you want queries involving ordinary comparisons to use an index. Such
queries cannot use thexxx _pattern_ops operator classes. It is allowed to create multiple indexes
on the same column with different operator classes.

The following query shows all defined operator classes:

SELECT am.amname AS index_method,
opc.opcname AS opclass_name

FROM pg_am am, pg_opclass opc
WHERE opc.opcamid = am.oid
ORDER BY index_method, opclass_name;

It can be extended to show all the operators included in each class:

SELECT am.amname AS index_method,
opc.opcname AS opclass_name,
opr.oprname AS opclass_operator

FROM pg_am am, pg_opclass opc, pg_amop amop, pg_operator opr
WHERE opc.opcamid = am.oid AND

amop.amopclaid = opc.oid AND
amop.amopopr = opr.oid

ORDER BY index_method, opclass_name, opclass_operator;

192

Chapter 11. Indexes

11.7. Partial Indexes
A partial indexis an index built over a subset of a table; the subset is defined by a conditional expres-
sion (called thepredicateof the partial index). The index contains entries for only those table rows
that satisfy the predicate.

A major motivation for partial indexes is to avoid indexing common values. Since a query searching
for a common value (one that accounts for more than a few percent of all the table rows) will not use
the index anyway, there is no point in keeping those rows in the index at all. This reduces the size of
the index, which will speed up queries that do use the index. It will also speed up many table update
operations because the index does not need to be updated in all cases.Example 11-1shows a possible
application of this idea.

Example 11-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP
address range of your organization but some are from elsewhere (say, employees on dial-up connec-
tions). If your searches by IP are primarily for outside accesses, you probably do not need to index
the IP range that corresponds to your organization’s subnet.

Assume a table like this:

CREATE TABLE access_log (
url varchar,
client_ip inet,
...

);

To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet ’192.168.100.0’ AND client_ip < inet ’192.168.100.255’);

A typical query that can use this index would be:

SELECT * FROM access_log WHERE url = ’/index.html’ AND client_ip = inet ’212.78.10.32’;

A query that cannot use this index is:
SELECT * FROM access_log WHERE client_ip = inet ’192.168.100.23’;

Observe that this kind of partial index requires that the common values be predetermined. If the
distribution of values is inherent (due to the nature of the application) and static (not changing over
time), this is not difficult, but if the common values are merely due to the coincidental data load this
can require a lot of maintenance work.

Another possibility is to exclude values from the index that the typical query workload is not interested
in; this is shown inExample 11-2. This results in the same advantages as listed above, but it prevents
the “uninteresting” values from being accessed via that index at all, even if an index scan might be
profitable in that case. Obviously, setting up partial indexes for this kind of scenario will require a lot
of care and experimentation.

193

Chapter 11. Indexes

Example 11-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a
small fraction of the total table and yet those are the most-accessed rows, you can improve perfor-
mance by creating an index on just the unbilled rows. The command to create the index would look
like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

A possible query to use this index would be

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not involveorder_nr at all, e.g.,
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on theamount column would be, since the system has to scan
the entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the
unbilled orders could be a win.

Note that this query cannot use this index:

SELECT * FROM orders WHERE order_nr = 3501;

The order 3501 may be among the billed or among the unbilled orders.

Example 11-2also illustrates that the indexed column and the column used in the predicate do not
need to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns
of the table being indexed are involved. However, keep in mind that the predicate must match the
conditions used in the queries that are supposed to benefit from the index. To be precise, a partial
index can be used in a query only if the system can recognize that theWHEREcondition of the query
mathematically implies the predicate of the index. PostgreSQL does not have a sophisticated theorem
prover that can recognize mathematically equivalent expressions that are written in different forms.
(Not only is such a general theorem prover extremely difficult to create, it would probably be too slow
to be of any real use.) The system can recognize simple inequality implications, for example “x<

1” implies “x < 2”; otherwise the predicate condition must exactly match part of the query’sWHERE

condition or the index will not be recognized to be usable.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table, as inExample 11-3. This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 11-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one
“successful” entry for a given subject and target combination, but there might be any number of
“unsuccessful” entries. Here is one way to do it:

CREATE TABLE tests (
subject text,
target text,
success boolean,
...

);

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
WHERE success;

194

Chapter 11. Indexes

This is a particularly efficient way of doing it when there are few successful tests and many unsuc-
cessful ones.

Finally, a partial index can also be used to override the system’s query plan choices. It may occur that
data sets with peculiar distributions will cause the system to use an index when it really should not.
In that case the index can be set up so that it is not available for the offending query. Normally, Post-
greSQL makes reasonable choices about index usage (e.g., it avoids them when retrieving common
values, so the earlier example really only saves index size, it is not required to avoid index usage), and
grossly incorrect plan choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query
planner knows, in particular you know when an index might be profitable. Forming this knowledge
requires experience and understanding of how indexes in PostgreSQL work. In most cases, the advan-
tage of a partial index over a regular index will not be much.

More information about partial indexes can be found inThe case for partial indexes, Partial indexing
in POSTGRES: research project, andGeneralized Partial Indexes.

11.8. Examining Index Usage
Although indexes in PostgreSQL do not need maintenance and tuning, it is still important to check
which indexes are actually used by the real-life query workload. Examining index usage for an in-
dividual query is done with theEXPLAINcommand; its application for this purpose is illustrated in
Section 13.1. It is also possible to gather overall statistics about index usage in a running server, as
described inSection 23.2.

It is difficult to formulate a general procedure for determining which indexes to set up. There are a
number of typical cases that have been shown in the examples throughout the previous sections. A
good deal of experimentation will be necessary in most cases. The rest of this section gives some tips
for that.

• Always runANALYZEfirst. This command collects statistics about the distribution of the values in
the table. This information is required to guess the number of rows returned by a query, which is
needed by the planner to assign realistic costs to each possible query plan. In absence of any real
statistics, some default values are assumed, which are almost certain to be inaccurate. Examining
an application’s index usage without having runANALYZEis therefore a lost cause.

• Use real data for experimentation. Using test data for setting up indexes will tell you what indexes
you need for the test data, but that is all.

It is especially fatal to use very small test data sets. While selecting 1000 out of 100000 rows could
be a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows will
probably fit within a single disk page, and there is no plan that can beat sequentially fetching 1 disk
page.

Also be careful when making up test data, which is often unavoidable when the application is not
in production use yet. Values that are very similar, completely random, or inserted in sorted order
will skew the statistics away from the distribution that real data would have.

• When indexes are not used, it can be useful for testing to force their use. There are run-time pa-
rameters that can turn off various plan types (described inSection 16.4). For instance, turning off
sequential scans (enable_seqscan) and nested-loop joins (enable_nestloop), which are the

195

Chapter 11. Indexes

most basic plans, will force the system to use a different plan. If the system still chooses a sequen-
tial scan or nested-loop join then there is probably a more fundamental problem for why the index
is not used, for example, the query condition does not match the index. (What kind of query can
use what kind of index is explained in the previous sections.)

• If forcing index usage does use the index, then there are two possibilities: Either the system is
right and using the index is indeed not appropriate, or the cost estimates of the query plans are not
reflecting reality. So you should time your query with and without indexes. TheEXPLAIN ANALYZE

command can be useful here.

• If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is
computed from the per-row costs of each plan node times the selectivity estimate of the plan node.
The costs of the plan nodes can be tuned with run-time parameters (described inSection 16.4).
An inaccurate selectivity estimate is due to insufficient statistics. It may be possible to help this by
tuning the statistics-gathering parameters (seeALTER TABLE).

If you do not succeed in adjusting the costs to be more appropriate, then you may have to resort to
forcing index usage explicitly. You may also want to contact the PostgreSQL developers to examine
the issue.

196

Chapter 12. Concurrency Control
This chapter describes the behavior of the PostgreSQL database system when two or more sessions
try to access the same data at the same time. The goals in that situation are to allow efficient access for
all sessions while maintaining strict data integrity. Every developer of database applications should
be familiar with the topics covered in this chapter.

12.1. Introduction
Unlike traditional database systems which use locks for concurrency control, PostgreSQL maintains
data consistency by using a multiversion model (Multiversion Concurrency Control, MVCC). This
means that while querying a database each transaction sees a snapshot of data (adatabase version)
as it was some time ago, regardless of the current state of the underlying data. This protects the
transaction from viewing inconsistent data that could be caused by (other) concurrent transaction
updates on the same data rows, providingtransaction isolationfor each database session.

The main advantage to using the MVCC model of concurrency control rather than locking is that in
MVCC locks acquired for querying (reading) data do not conflict with locks acquired for writing data,
and so reading never blocks writing and writing never blocks reading.

Table- and row-level locking facilities are also available in PostgreSQL for applications that cannot
adapt easily to MVCC behavior. However, proper use of MVCC will generally provide better perfor-
mance than locks.

12.2. Transaction Isolation
The SQL standard defines four levels of transaction isolation in terms of three phenomena that must
be prevented between concurrent transactions. These undesirable phenomena are:

dirty read

A transaction reads data written by a concurrent uncommitted transaction.

nonrepeatable read

A transaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

phantom read

A transaction re-executes a query returning a set of rows that satisfy a search condition and
finds that the set of rows satisfying the condition has changed due to another recently-committed
transaction.

The four transaction isolation levels and the corresponding behaviors are described inTable 12-1.

Table 12-1. SQL Transaction Isolation Levels

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read uncommitted Possible Possible Possible

197

Chapter 12. Concurrency Control

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

In PostgreSQL, you can request any of the four standard transaction isolation levels. But internally,
there are only two distinct isolation levels, which correspond to the levels Read Committed and Se-
rializable. When you select the level Read Uncommitted you really get Read Committed, and when
you select Repeatable Read you really get Serializable, so the actual isolation level may be stricter
than what you select. This is permitted by the SQL standard: the four isolation levels only define
which phenomena must not happen, they do not define which phenomena must happen. The reason
that PostgreSQL only provides two isolation levels is that this is the only sensible way to map the
standard isolation levels to the multiversion concurrency control architecture. The behavior of the
available isolation levels is detailed in the following subsections.

To set the transaction isolation level of a transaction, use the commandSET TRANSACTION.

12.2.1. Read Committed Isolation Level

Read Committedis the default isolation level in PostgreSQL. When a transaction runs on this isolation
level, aSELECTquery sees only data committed before the query began; it never sees either uncom-
mitted data or changes committed during query execution by concurrent transactions. (However, the
SELECTdoes see the effects of previous updates executed within its own transaction, even though they
are not yet committed.) In effect, aSELECTquery sees a snapshot of the database as of the instant that
that query begins to run. Notice that two successiveSELECTcommands can see different data, even
though they are within a single transaction, if other transactions commit changes during execution of
the firstSELECT.

UPDATE, DELETE, andSELECT FOR UPDATEcommands behave the same asSELECT in terms of
searching for target rows: they will only find target rows that were committed as of the command
start time. However, such a target row may have already been updated (or deleted or marked for
update) by another concurrent transaction by the time it is found. In this case, the would-be updater
will wait for the first updating transaction to commit or roll back (if it is still in progress). If the first
updater rolls back, then its effects are negated and the second updater can proceed with updating the
originally found row. If the first updater commits, the second updater will ignore the row if the first
updater deleted it, otherwise it will attempt to apply its operation to the updated version of the row.
The search condition of the command (theWHEREclause) is re-evaluated to see if the updated version
of the row still matches the search condition. If so, the second updater proceeds with its operation,
starting from the updated version of the row.

Because of the above rule, it is possible for an updating command to see an inconsistent snapshot: it
can see the effects of concurrent updating commands that affected the same rows it is trying to update,
but it does not see effects of those commands on other rows in the database. This behavior makes Read
Committed mode unsuitable for commands that involve complex search conditions. However, it is just
right for simpler cases. For example, consider updating bank balances with transactions like

BEGIN;
UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;
COMMIT;

If two such transactions concurrently try to change the balance of account 12345, we clearly want the
second transaction to start from the updated version of the account’s row. Because each command is

198

Chapter 12. Concurrency Control

affecting only a predetermined row, letting it see the updated version of the row does not create any
troublesome inconsistency.

Since in Read Committed mode each new command starts with a new snapshot that includes all
transactions committed up to that instant, subsequent commands in the same transaction will see the
effects of the committed concurrent transaction in any case. The point at issue here is whether or not
within asinglecommand we see an absolutely consistent view of the database.

The partial transaction isolation provided by Read Committed mode is adequate for many applica-
tions, and this mode is fast and simple to use. However, for applications that do complex queries and
updates, it may be necessary to guarantee a more rigorously consistent view of the database than the
Read Committed mode provides.

12.2.2. Serializable Isolation Level

The levelSerializableprovides the strictest transaction isolation. This level emulates serial transac-
tion execution, as if transactions had been executed one after another, serially, rather than concurrently.
However, applications using this level must be prepared to retry transactions due to serialization fail-
ures.

When a transaction is on the serializable level, aSELECTquery sees only data committed before the
transaction began; it never sees either uncommitted data or changes committed during transaction
execution by concurrent transactions. (However, theSELECTdoes see the effects of previous updates
executed within its own transaction, even though they are not yet committed.) This is different from
Read Committed in that theSELECTsees a snapshot as of the start of the transaction, not as of the
start of the current query within the transaction. Thus, successiveSELECTcommands within a single
transaction always see the same data.

UPDATE, DELETE, andSELECT FOR UPDATEcommands behave the same asSELECT in terms of
searching for target rows: they will only find target rows that were committed as of the transaction start
time. However, such a target row may have already been updated (or deleted or marked for update)
by another concurrent transaction by the time it is found. In this case, the serializable transaction will
wait for the first updating transaction to commit or roll back (if it is still in progress). If the first updater
rolls back, then its effects are negated and the serializable transaction can proceed with updating the
originally found row. But if the first updater commits (and actually updated or deleted the row, not
just selected it for update) then the serializable transaction will be rolled back with the message

ERROR: could not serialize access due to concurrent update

because a serializable transaction cannot modify rows changed by other transactions after the serial-
izable transaction began.

When the application receives this error message, it should abort the current transaction and then
retry the whole transaction from the beginning. The second time through, the transaction sees the
previously-committed change as part of its initial view of the database, so there is no logical conflict
in using the new version of the row as the starting point for the new transaction’s update.

Note that only updating transactions may need to be retried; read-only transactions will never have
serialization conflicts.

The Serializable mode provides a rigorous guarantee that each transaction sees a wholly consistent
view of the database. However, the application has to be prepared to retry transactions when concur-
rent updates make it impossible to sustain the illusion of serial execution. Since the cost of redoing
complex transactions may be significant, this mode is recommended only when updating transactions
contain logic sufficiently complex that they may give wrong answers in Read Committed mode. Most

199

Chapter 12. Concurrency Control

commonly, Serializable mode is necessary when a transaction executes several successive commands
that must see identical views of the database.

12.2.2.1. Serializable Isolation versus True Serializability

The intuitive meaning (and mathematical definition) of “serializable” execution is that any two suc-
cessfully committed concurrent transactions will appear to have executed strictly serially, one after the
other — although which one appeared to occur first may not be predictable in advance. It is important
to realize that forbidding the undesirable behaviors listed inTable 12-1is not sufficient to guaran-
tee true serializability, and in fact PostgreSQL’s Serializable modedoes not guarantee serializable
execution in this sense. As an example, consider a tablemytab , initially containing

class | value
-------+-------

1 | 10
1 | 20
2 | 100
2 | 200

Suppose that serializable transaction A computes

SELECT SUM(value) FROM mytab WHERE class = 1;

and then inserts the result (30) as thevalue in a new row withclass = 2. Concurrently, serializable
transaction B computes

SELECT SUM(value) FROM mytab WHERE class = 2;

and obtains the result 300, which it inserts in a new row withclass = 1. Then both transactions
commit. None of the listed undesirable behaviors have occurred, yet we have a result that could not
have occurred in either order serially. If A had executed before B, B would have computed the sum
330, not 300, and similarly the other order would have resulted in a different sum computed by A.

To guarantee true mathematical serializability, it is necessary for a database system to enforcepredi-
cate locking, which means that a transaction cannot insert or modify a row that would have matched
the WHEREcondition of a query in another concurrent transaction. For example, once transaction A
has executed the querySELECT ... WHERE class = 1 , a predicate-locking system would forbid
transaction B from inserting any new row with class 1 until A has committed.1 Such a locking system
is complex to implement and extremely expensive in execution, since every session must be aware of
the details of every query executed by every concurrent transaction. And this large expense is mostly
wasted, since in practice most applications do not do the sorts of things that could result in problems.
(Certainly the example above is rather contrived and unlikely to represent real software.) Accordingly,
PostgreSQL does not implement predicate locking, and so far as we are aware no other production
DBMS does either.

In those cases where the possibility of nonserializable execution is a real hazard, problems can be
prevented by appropriate use of explicit locking. Further discussion appears in the following sections.

1. Essentially, a predicate-locking system prevents phantom reads by restricting what is written, whereas MVCC prevents
them by restricting what is read.

200

Chapter 12. Concurrency Control

12.3. Explicit Locking
PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes
can be used for application-controlled locking in situations where MVCC does not give the desired
behavior. Also, most PostgreSQL commands automatically acquire locks of appropriate modes to
ensure that referenced tables are not dropped or modified in incompatible ways while the command
executes. (For example,ALTER TABLEcannot be executed concurrently with other operations on the
same table.)

To examine a list of the currently outstanding locks in a database server, use thepg_locks system
view (Section 41.33). For more information on monitoring the status of the lock manager subsystem,
refer toChapter 23.

12.3.1. Table-Level Locks

The list below shows the available lock modes and the contexts in which they are used automatically
by PostgreSQL. You can also acquire any of these locks explicitly with the commandLOCK. Re-
member that all of these lock modes are table-level locks, even if the name contains the word “row”;
the names of the lock modes are historical. To some extent the names reflect the typical usage of
each lock mode — but the semantics are all the same. The only real difference between one lock
mode and another is the set of lock modes with which each conflicts. Two transactions cannot hold
locks of conflicting modes on the same table at the same time. (However, a transaction never conflicts
with itself. For example, it may acquireACCESS EXCLUSIVElock and later acquireACCESS SHARE

lock on the same table.) Non-conflicting lock modes may be held concurrently by many transactions.
Notice in particular that some lock modes are self-conflicting (for example, anACCESS EXCLUSIVE

lock cannot be held by more than one transaction at a time) while others are not self-conflicting (for
example, anACCESS SHARElock can be held by multiple transactions). Once acquired, a lock is held
till end of transaction.

Table-level lock modes

ACCESS SHARE

Conflicts with theACCESS EXCLUSIVElock mode only.

The commandsSELECTandANALYZEacquire a lock of this mode on referenced tables. In gen-
eral, any query that only reads a table and does not modify it will acquire this lock mode.

ROW SHARE

Conflicts with theEXCLUSIVEandACCESS EXCLUSIVElock modes.

The SELECT FOR UPDATEcommand acquires a lock of this mode on the target table(s) (in
addition toACCESS SHARElocks on any other tables that are referenced but not selectedFOR

UPDATE).

ROW EXCLUSIVE

Conflicts with theSHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE

lock modes.

The commandsUPDATE, DELETE, and INSERT acquire this lock mode on the target table (in
addition toACCESS SHARElocks on any other referenced tables). In general, this lock mode will
be acquired by any command that modifies the data in a table.

SHARE UPDATE EXCLUSIVE

Conflicts with the SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVElock modes. This mode protects a table against

201

Chapter 12. Concurrency Control

concurrent schema changes andVACUUMruns.

Acquired byVACUUM(without FULL).

SHARE

Conflicts with theROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, andACCESS EXCLUSIVElock modes. This mode protects a table against concur-
rent data changes.

Acquired byCREATE INDEX.

SHARE ROW EXCLUSIVE

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW

EXCLUSIVE, EXCLUSIVE, andACCESS EXCLUSIVElock modes.

This lock mode is not automatically acquired by any PostgreSQL command.

EXCLUSIVE

Conflicts with theROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE

ROW EXCLUSIVE, EXCLUSIVE, andACCESS EXCLUSIVElock modes. This mode allows only
concurrentACCESS SHARElocks, i.e., only reads from the table can proceed in parallel with a
transaction holding this lock mode.

This lock mode is not automatically acquired by any PostgreSQL command.

ACCESS EXCLUSIVE

Conflicts with locks of all modes (ACCESS SHARE, ROW SHARE, ROW EXCLUSIVE, SHARE

UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS

EXCLUSIVE). This mode guarantees that the holder is the only transaction accessing the table in
any way.

Acquired by theALTER TABLE, DROP TABLE, REINDEX, CLUSTER, andVACUUM FULLcom-
mands. This is also the default lock mode forLOCK TABLEstatements that do not specify a
mode explicitly.

Tip: Only an ACCESS EXCLUSIVElock blocks a SELECT(without FOR UPDATE) statement.

12.3.2. Row-Level Locks

In addition to table-level locks, there are row-level locks. A row-level lock on a specific row is auto-
matically acquired when the row is updated (or deleted or marked for update). The lock is held until
the transaction commits or rolls back. Row-level locks do not affect data querying; they blockwrit-
ers to the same rowonly. To acquire a row-level lock on a row without actually modifying the row,
select the row withSELECT FOR UPDATE. Note that once a particular row-level lock is acquired, the
transaction may update the row multiple times without fear of conflicts.

PostgreSQL doesn’t remember any information about modified rows in memory, so it has no limit
to the number of rows locked at one time. However, locking a row may cause a disk write; thus, for
example,SELECT FOR UPDATEwill modify selected rows to mark them and so will result in disk
writes.

In addition to table and row locks, page-level share/exclusive locks are used to control read/write
access to table pages in the shared buffer pool. These locks are released immediately after a row is

202

Chapter 12. Concurrency Control

fetched or updated. Application developers normally need not be concerned with page-level locks,
but we mention them for completeness.

12.3.3. Deadlocks

The use of explicit locking can increase the likelihood ofdeadlocks, wherein two (or more) transac-
tions each hold locks that the other wants. For example, if transaction 1 acquires an exclusive lock
on table A and then tries to acquire an exclusive lock on table B, while transaction 2 has already
exclusive-locked table B and now wants an exclusive lock on table A, then neither one can proceed.
PostgreSQL automatically detects deadlock situations and resolves them by aborting one of the trans-
actions involved, allowing the other(s) to complete. (Exactly which transaction will be aborted is
difficult to predict and should not be relied on.)

Note that deadlocks can also occur as the result of row-level locks (and thus, they can occur even
if explicit locking is not used). Consider the case in which there are two concurrent transactions
modifying a table. The first transaction executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 11111;

This acquires a row-level lock on the row with the specified account number. Then, the second trans-
action executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 22222;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111;

The firstUPDATEstatement successfully acquires a row-level lock on the specified row, so it succeeds
in updating that row. However, the secondUPDATEstatement finds that the row it is attempting to
update has already been locked, so it waits for the transaction that acquired the lock to complete.
Transaction two is now waiting on transaction one to complete before it continues execution. Now,
transaction one executes:

UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;

Transaction one attempts to acquire a row-level lock on the specified row, but it cannot: transaction
two already holds such a lock. So it waits for transaction two to complete. Thus, transaction one is
blocked on transaction two, and transaction two is blocked on transaction one: a deadlock condition.
PostgreSQL will detect this situation and abort one of the transactions.

The best defense against deadlocks is generally to avoid them by being certain that all applications
using a database acquire locks on multiple objects in a consistent order. In the example above, if both
transactions had updated the rows in the same order, no deadlock would have occurred. One should
also ensure that the first lock acquired on an object in a transaction is the highest mode that will be
needed for that object. If it is not feasible to verify this in advance, then deadlocks may be handled
on-the-fly by retrying transactions that are aborted due to deadlock.

So long as no deadlock situation is detected, a transaction seeking either a table-level or row-level lock
will wait indefinitely for conflicting locks to be released. This means it is a bad idea for applications
to hold transactions open for long periods of time (e.g., while waiting for user input).

12.4. Data Consistency Checks at the Application Level
Because readers in PostgreSQL do not lock data, regardless of transaction isolation level, data read
by one transaction can be overwritten by another concurrent transaction. In other words, if a row

203

Chapter 12. Concurrency Control

is returned bySELECTit doesn’t mean that the row is still current at the instant it is returned (i.e.,
sometime after the current query began). The row might have been modified or deleted by an already-
committed transaction that committed after this one started. Even if the row is still valid “now”, it
could be changed or deleted before the current transaction does a commit or rollback.

Another way to think about it is that each transaction sees a snapshot of the database contents, and
concurrently executing transactions may very well see different snapshots. So the whole concept of
“now” is somewhat ill-defined anyway. This is not normally a big problem if the client applications
are isolated from each other, but if the clients can communicate via channels outside the database then
serious confusion may ensue.

To ensure the current validity of a row and protect it against concurrent updates one must useSELECT

FOR UPDATEor an appropriateLOCK TABLEstatement. (SELECT FOR UPDATElocks just the re-
turned rows against concurrent updates, whileLOCK TABLElocks the whole table.) This should be
taken into account when porting applications to PostgreSQL from other environments. (Before ver-
sion 6.5 PostgreSQL used read locks, and so this above consideration is also relevant when upgrading
from PostgreSQL versions prior to 6.5.)

Global validity checks require extra thought under MVCC. For example, a banking application might
wish to check that the sum of all credits in one table equals the sum of debits in another table, when
both tables are being actively updated. Comparing the results of two successiveSELECT sum(...)

commands will not work reliably under Read Committed mode, since the second query will likely
include the results of transactions not counted by the first. Doing the two sums in a single serializable
transaction will give an accurate picture of the effects of transactions that committed before the seri-
alizable transaction started — but one might legitimately wonder whether the answer is still relevant
by the time it is delivered. If the serializable transaction itself applied some changes before trying to
make the consistency check, the usefulness of the check becomes even more debatable, since now it
includes some but not all post-transaction-start changes. In such cases a careful person might wish to
lock all tables needed for the check, in order to get an indisputable picture of current reality. ASHARE

mode (or higher) lock guarantees that there are no uncommitted changes in the locked table, other
than those of the current transaction.

Note also that if one is relying on explicit locking to prevent concurrent changes, one should use Read
Committed mode, or in Serializable mode be careful to obtain the lock(s) before performing queries.
A lock obtained by a serializable transaction guarantees that no other transactions modifying the table
are still running, but if the snapshot seen by the transaction predates obtaining the lock, it may predate
some now-committed changes in the table. A serializable transaction’s snapshot is actually frozen at
the start of its first query or data-modification command (SELECT, INSERT, UPDATE, or DELETE), so
it’s possible to obtain locks explicitly before the snapshot is frozen.

12.5. Locking and Indexes
Though PostgreSQL provides nonblocking read/write access to table data, nonblocking read/write ac-
cess is not currently offered for every index access method implemented in PostgreSQL. The various
index types are handled as follows:

B-tree indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released
immediately after each index row is fetched or inserted. B-tree indexes provide the highest con-
currency without deadlock conditions.

204

Chapter 12. Concurrency Control

GiST and R-tree indexes

Share/exclusive index-level locks are used for read/write access. Locks are released after the
command is done.

Hash indexes

Share/exclusive hash-bucket-level locks are used for read/write access. Locks are released after
the whole bucket is processed. Bucket-level locks provide better concurrency than index-level
ones, but deadlock is possible since the locks are held longer than one index operation.

In short, B-tree indexes offer the best performance for concurrent applications; since they also have
more features than hash indexes, they are the recommended index type for concurrent applications
that need to index scalar data. When dealing with non-scalar data, B-trees obviously cannot be used;
in that situation, application developers should be aware of the relatively poor concurrent performance
of GiST and R-tree indexes.

205

Chapter 13. Performance Tips
Query performance can be affected by many things. Some of these can be manipulated by the user,
while others are fundamental to the underlying design of the system. This chapter provides some hints
about understanding and tuning PostgreSQL performance.

13.1. Using EXPLAIN

PostgreSQL devises aquery planfor each query it is given. Choosing the right plan to match the
query structure and the properties of the data is absolutely critical for good performance. You can use
theEXPLAINcommand to see what query plan the system creates for any query. Plan-reading is an
art that deserves an extensive tutorial, which this is not; but here is some basic information.

The numbers that are currently quoted byEXPLAIN are:

• Estimated start-up cost (Time expended before output scan can start, e.g., time to do the sorting in
a sort node.)

• Estimated total cost (If all rows were to be retrieved, which they may not be: a query with aLIMIT

clause will stop short of paying the total cost, for example.)

• Estimated number of rows output by this plan node (Again, only if executed to completion)

• Estimated average width (in bytes) of rows output by this plan node

The costs are measured in units of disk page fetches. (CPU effort estimates are converted into disk-
page units using some fairly arbitrary fudge factors. If you want to experiment with these factors, see
the list of run-time configuration parameters inSection 16.4.5.2.)

It’s important to note that the cost of an upper-level node includes the cost of all its child nodes. It’s
also important to realize that the cost only reflects things that the planner/optimizer cares about. In
particular, the cost does not consider the time spent transmitting result rows to the frontend, which
could be a pretty dominant factor in the true elapsed time; but the planner ignores it because it cannot
change it by altering the plan. (Every correct plan will output the same row set, we trust.)

Rows output is a little tricky because it isnot the number of rows processed/scanned by the query,
it is usually less, reflecting the estimated selectivity of anyWHERE-clause conditions that are being
applied at this node. Ideally the top-level rows estimate will approximate the number of rows actually
returned, updated, or deleted by the query.

Here are some examples (using the regression test database after aVACUUM ANALYZE, and 7.3 devel-
opment sources):

EXPLAIN SELECT * FROM tenk1;

QUERY PLAN

Seq Scan on tenk1 (cost=0.00..333.00 rows=10000 width=148)

This is about as straightforward as it gets. If you do

SELECT * FROM pg_class WHERE relname = ’tenk1’;

206

Chapter 13. Performance Tips

you will find out thattenk1 has 233 disk pages and 10000 rows. So the cost is estimated at 233 page
reads, defined as costing 1.0 apiece, plus 10000 *cpu_tuple_costwhich is currently 0.01 (trySHOW

cpu_tuple_cost).

Now let’s modify the query to add aWHEREcondition:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000;

QUERY PLAN
--

Seq Scan on tenk1 (cost=0.00..358.00 rows=1033 width=148)
Filter: (unique1 < 1000)

The estimate of output rows has gone down because of theWHEREclause. However, the scan will still
have to visit all 10000 rows, so the cost hasn’t decreased; in fact it has gone up a bit to reflect the extra
CPU time spent checking theWHEREcondition.

The actual number of rows this query would select is 1000, but the estimate is only approximate. If
you try to duplicate this experiment, you will probably get a slightly different estimate; moreover,
it will change after eachANALYZEcommand, because the statistics produced byANALYZEare taken
from a randomized sample of the table.

Modify the query to restrict the condition even more:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 50;

QUERY PLAN

Index Scan using tenk1_unique1 on tenk1 (cost=0.00..179.33 rows=49 width=148)
Index Cond: (unique1 < 50)

and you will see that if we make theWHEREcondition selective enough, the planner will eventually
decide that an index scan is cheaper than a sequential scan. This plan will only have to visit 50 rows
because of the index, so it wins despite the fact that each individual fetch is more expensive than
reading a whole disk page sequentially.

Add another condition to theWHEREclause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 50 AND stringu1 = ’xxx’;

QUERY PLAN

Index Scan using tenk1_unique1 on tenk1 (cost=0.00..179.45 rows=1 width=148)
Index Cond: (unique1 < 50)
Filter: (stringu1 = ’xxx’::name)

The added conditionstringu1 = ’xxx’ reduces the output-rows estimate, but not the cost because
we still have to visit the same set of rows. Notice that thestringu1 clause cannot be applied as
an index condition (since this index is only on theunique1 column). Instead it is applied as a filter
on the rows retrieved by the index. Thus the cost has actually gone up a little bit to reflect this extra
checking.

Let’s try joining two tables, using the columns we have been discussing:

EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2 WHERE t1.unique1 < 50 AND t1.unique2 = t2.unique2;

QUERY PLAN
--

Nested Loop (cost=0.00..327.02 rows=49 width=296)

207

Chapter 13. Performance Tips

- > Index Scan using tenk1_unique1 on tenk1 t1
(cost=0.00..179.33 rows=49 width=148)

Index Cond: (unique1 < 50)
- > Index Scan using tenk2_unique2 on tenk2 t2

(cost=0.00..3.01 rows=1 width=148)
Index Cond: ("outer".unique2 = t2.unique2)

In this nested-loop join, the outer scan is the same index scan we had in the example before last, and
so its cost and row count are the same because we are applying theWHEREclauseunique1 < 50 at
that node. Thet1.unique2 = t2.unique2 clause is not relevant yet, so it doesn’t affect row count
of the outer scan. For the inner scan, theunique2 value of the current outer-scan row is plugged into
the inner index scan to produce an index condition liket2.unique2 = constant . So we get the
same inner-scan plan and costs that we’d get from, say,EXPLAIN SELECT * FROM tenk2 WHERE

unique2 = 42 . The costs of the loop node are then set on the basis of the cost of the outer scan, plus
one repetition of the inner scan for each outer row (49 * 3.01, here), plus a little CPU time for join
processing.

In this example the join’s output row count is the same as the product of the two scans’ row counts,
but that’s not true in general, because in general you can haveWHEREclauses that mention both tables
and so can only be applied at the join point, not to either input scan. For example, if we addedWHERE

... AND t1.hundred < t2.hundred , that would decrease the output row count of the join node,
but not change either input scan.

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was
the winner, using the enable/disable flags for each plan type. (This is a crude tool, but useful. See also
Section 13.3.)

SET enable_nestloop = off;
EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2 WHERE t1.unique1 < 50 AND t1.unique2 = t2.unique2;

QUERY PLAN
--

Hash Join (cost=179.45..563.06 rows=49 width=296)
Hash Cond: ("outer".unique2 = "inner".unique2)
- > Seq Scan on tenk2 t2 (cost=0.00..333.00 rows=10000 width=148)
- > Hash (cost=179.33..179.33 rows=49 width=148)

- > Index Scan using tenk1_unique1 on tenk1 t1
(cost=0.00..179.33 rows=49 width=148)

Index Cond: (unique1 < 50)

This plan proposes to extract the 50 interesting rows oftenk1 using ye same olde index scan, stash
them into an in-memory hash table, and then do a sequential scan oftenk2 , probing into the hash
table for possible matches oft1.unique2 = t2.unique2 at eachtenk2 row. The cost to read
tenk1 and set up the hash table is entirely start-up cost for the hash join, since we won’t get any rows
out until we can start readingtenk2 . The total time estimate for the join also includes a hefty charge
for the CPU time to probe the hash table 10000 times. Note, however, that we arenot charging 10000
times 179.33; the hash table setup is only done once in this plan type.

It is possible to check on the accuracy of the planner’s estimated costs by usingEXPLAIN ANALYZE.
This command actually executes the query, and then displays the true run time accumulated within
each plan node along with the same estimated costs that a plainEXPLAIN shows. For example, we
might get a result like this:

EXPLAIN ANALYZE SELECT * FROM tenk1 t1, tenk2 t2 WHERE t1.unique1 < 50 AND t1.unique2 = t2.unique2;

208

Chapter 13. Performance Tips

QUERY PLAN

Nested Loop (cost=0.00..327.02 rows=49 width=296)
(actual time=1.181..29.822 rows=50 loops=1)

- > Index Scan using tenk1_unique1 on tenk1 t1
(cost=0.00..179.33 rows=49 width=148)

(actual time=0.630..8.917 rows=50 loops=1)
Index Cond: (unique1 < 50)

- > Index Scan using tenk2_unique2 on tenk2 t2
(cost=0.00..3.01 rows=1 width=148)

(actual time=0.295..0.324 rows=1 loops=50)
Index Cond: ("outer".unique2 = t2.unique2)

Total runtime: 31.604 ms

Note that the “actual time” values are in milliseconds of real time, whereas the “cost” estimates are
expressed in arbitrary units of disk fetches; so they are unlikely to match up. The thing to pay attention
to is the ratios.

In some query plans, it is possible for a subplan node to be executed more than once. For example,
the inner index scan is executed once per outer row in the above nested-loop plan. In such cases, the
“loops” value reports the total number of executions of the node, and the actual time and rows values
shown are averages per-execution. This is done to make the numbers comparable with the way that
the cost estimates are shown. Multiply by the “loops” value to get the total time actually spent in the
node.

TheTotal runtime shown byEXPLAIN ANALYZEincludes executor start-up and shut-down time,
as well as time spent processing the result rows. It does not include parsing, rewriting, or planning
time. For aSELECTquery, the total run time will normally be just a little larger than the total time
reported for the top-level plan node. ForINSERT, UPDATE, andDELETEcommands, the total run time
may be considerably larger, because it includes the time spent processing the result rows. In these
commands, the time for the top plan node essentially is the time spent computing the new rows and/or
locating the old ones, but it doesn’t include the time spent making the changes.

It is worth noting thatEXPLAIN results should not be extrapolated to situations other than the one you
are actually testing; for example, results on a toy-sized table can’t be assumed to apply to large tables.
The planner’s cost estimates are not linear and so it may well choose a different plan for a larger or
smaller table. An extreme example is that on a table that only occupies one disk page, you’ll nearly
always get a sequential scan plan whether indexes are available or not. The planner realizes that it’s
going to take one disk page read to process the table in any case, so there’s no value in expending
additional page reads to look at an index.

13.2. Statistics Used by the Planner
As we saw in the previous section, the query planner needs to estimate the number of rows retrieved
by a query in order to make good choices of query plans. This section provides a quick look at the
statistics that the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as
the number of disk blocks occupied by each table and index. This information is kept in the table
pg_class in the columnsreltuples andrelpages . We can look at it with queries similar to this
one:

SELECT relname, relkind, reltuples, relpages FROM pg_class WHERE relname LIKE ’tenk1%’;

relname | relkind | reltuples | relpages

209

Chapter 13. Performance Tips

---------------+---------+-----------+----------
tenk1 | r | 10000 | 233
tenk1_hundred | i | 10000 | 30
tenk1_unique1 | i | 10000 | 30
tenk1_unique2 | i | 10000 | 30

(4 rows)

Here we can see thattenk1 contains 10000 rows, as do its indexes, but the indexes are (unsurpris-
ingly) much smaller than the table.

For efficiency reasons,reltuples and relpages are not updated on-the-fly, and so they usually
contain somewhat out-of-date values. They are updated byVACUUM, ANALYZE, and a few DDL com-
mands such asCREATE INDEX. A stand-aloneANALYZE, that is one not part ofVACUUM, generates
an approximatereltuples value since it does not read every row of the table. The planner will
scale the values it finds inpg_class to match the current physical table size, thus obtaining a closer
approximation.

Most queries retrieve only a fraction of the rows in a table, due to havingWHEREclauses that restrict the
rows to be examined. The planner thus needs to make an estimate of theselectivityof WHEREclauses,
that is, the fraction of rows that match each condition in theWHEREclause. The information used for
this task is stored in thepg_statistic system catalog. Entries inpg_statistic are updated by
ANALYZEandVACUUM ANALYZEcommands and are always approximate even when freshly updated.

Rather than look atpg_statistic directly, it’s better to look at its viewpg_stats when examining
the statistics manually.pg_stats is designed to be more easily readable. Furthermore,pg_stats is
readable by all, whereaspg_statistic is only readable by a superuser. (This prevents unprivileged
users from learning something about the contents of other people’s tables from the statistics. The
pg_stats view is restricted to show only rows about tables that the current user can read.) For
example, we might do:

SELECT attname, n_distinct, most_common_vals FROM pg_stats WHERE tablename = ’road’;

attname | n_distinct | most_common_vals
---------+------------+---

name | -0.467008 | {"I- 580 Ramp","I- 880 Ramp","Sp Railroad ","I- 580 ","I- 680 Ramp","I- 80 Ramp","14th St ","5th St ","Mission Blvd","I- 880 "}
thepath | 20 | {"[(-122.089,37.71),(-122.0886,37.711)]"}

(2 rows)

pg_stats is described in detail inSection 41.36.

The amount of information stored inpg_statistic , in particular the maximum number of entries in
themost_common_vals andhistogram_bounds arrays for each column, can be set on a column-
by-column basis using theALTER TABLE SET STATISTICScommand, or globally by setting the
default_statistics_targetconfiguration variable. The default limit is presently 10 entries. Raising the
limit may allow more accurate planner estimates to be made, particularly for columns with irregular
data distributions, at the price of consuming more space inpg_statistic and slightly more time
to compute the estimates. Conversely, a lower limit may be appropriate for columns with simple data
distributions.

13.3. Controlling the Planner with Explicit JOIN Clauses
It is possible to control the query planner to some extent by using the explicitJOIN syntax. To see
why this matters, we first need some background.

210

Chapter 13. Performance Tips

In a simple join query, such as

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan
that joins A to B, using theWHEREconditiona.id = b.id , and then joins C to this joined table,
using the otherWHEREcondition. Or it could join B to C and then join A to that result. Or it could join
A to C and then join them with B, but that would be inefficient, since the full Cartesian product of
A and C would have to be formed, there being no applicable condition in theWHEREclause to allow
optimization of the join. (All joins in the PostgreSQL executor happen between two input tables, so
it’s necessary to build up the result in one or another of these fashions.) The important point is that
these different join possibilities give semantically equivalent results but may have hugely different
execution costs. Therefore, the planner will explore all of them to try to find the most efficient query
plan.

When a query only involves two or three tables, there aren’t many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or
so input tables it’s no longer practical to do an exhaustive search of all the possibilities, and even for
six or seven tables planning may take an annoyingly long time. When there are too many input tables,
the PostgreSQL planner will switch from exhaustive search to ageneticprobabilistic search through
a limited number of possibilities. (The switch-over threshold is set by thegeqo_thresholdrun-time
parameter.) The genetic search takes less time, but it won’t necessarily find the best possible plan.

When the query involves outer joins, the planner has much less freedom than it does for plain (inner)
joins. For example, consider

SELECT * FROM a LEFT JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

Although this query’s restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B
and C. Therefore the planner has no choice of join order here: it must join B to C and then join A to
that result. Accordingly, this query takes less time to plan than the previous query.

Explicit inner join syntax (INNER JOIN, CROSS JOIN, or unadornedJOIN) is semantically the same
as listing the input relations inFROM, so it does not need to constrain the join order. But it is possible
to instruct the PostgreSQL query planner to treat explicit innerJOINs as constraining the join order
anyway. For example, these three queries are logically equivalent:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

But if we tell the planner to honor theJOIN order, the second and third take less time to plan than the
first. This effect is not worth worrying about for only three tables, but it can be a lifesaver with many
tables.

To force the planner to follow theJOIN order for inner joins, set thejoin_collapse_limitrun-time
parameter to 1. (Other possible values are discussed below.)

You do not need to constrain the join order completely in order to cut search time, because it’s OK to
useJOIN operators within items of a plainFROMlist. For example, consider

SELECT * FROM a CROSS JOIN b, c, d, e WHERE ...;

With join_collapse_limit = 1, this forces the planner to join A to B before joining them to other
tables, but doesn’t constrain its choices otherwise. In this example, the number of possible join orders
is reduced by a factor of 5.

211

Chapter 13. Performance Tips

Constraining the planner’s search in this way is a useful technique both for reducing planning time
and for directing the planner to a good query plan. If the planner chooses a bad join order by default,
you can force it to choose a better order viaJOIN syntax — assuming that you know of a better order,
that is. Experimentation is recommended.

A closely related issue that affects planning time is collapsing of subqueries into their parent query.
For example, consider

SELECT *
FROM x, y,

(SELECT * FROM a, b, c WHERE something) AS ss
WHERE somethingelse;

This situation might arise from use of a view that contains a join; the view’sSELECTrule will be
inserted in place of the view reference, yielding a query much like the above. Normally, the planner
will try to collapse the subquery into the parent, yielding

SELECT * FROM x, y, a, b, c WHERE something AND somethingelse;

This usually results in a better plan than planning the subquery separately. (For example, the outer
WHEREconditions might be such that joining X to A first eliminates many rows of A, thus avoiding
the need to form the full logical output of the subquery.) But at the same time, we have increased the
planning time; here, we have a five-way join problem replacing two separate three-way join problems.
Because of the exponential growth of the number of possibilities, this makes a big difference. The
planner tries to avoid getting stuck in huge join search problems by not collapsing a subquery if
more thanfrom_collapse_limit FROM items would result in the parent query. You can trade off
planning time against quality of plan by adjusting this run-time parameter up or down.

from_collapse_limitand join_collapse_limitare similarly named because they do almost the same
thing: one controls when the planner will “flatten out” subselects, and the other controls when it
will flatten out explicit inner joins. Typically you would either setjoin_collapse_limit

equal to from_collapse_limit (so that explicit joins and subselects act similarly) or set
join_collapse_limit to 1 (if you want to control join order with explicit joins). But you might
set them differently if you are trying to fine-tune the trade off between planning time and run time.

13.4. Populating a Database
One may need to insert a large amount of data when first populating a database. This section contains
some suggestions on how to make this process as efficient as possible.

13.4.1. Disable Autocommit

Turn off autocommit and just do one commit at the end. (In plain SQL, this means issuingBEGIN at
the start andCOMMITat the end. Some client libraries may do this behind your back, in which case
you need to make sure the library does it when you want it done.) If you allow each insertion to be
committed separately, PostgreSQL is doing a lot of work for each row that is added. An additional
benefit of doing all insertions in one transaction is that if the insertion of one row were to fail then
the insertion of all rows inserted up to that point would be rolled back, so you won’t be stuck with
partially loaded data.

212

Chapter 13. Performance Tips

13.4.2. Use COPY

UseCOPYto load all the rows in one command, instead of using a series ofINSERT commands. The
COPYcommand is optimized for loading large numbers of rows; it is less flexible thanINSERT, but
incurs significantly less overhead for large data loads. SinceCOPYis a single command, there is no
need to disable autocommit if you use this method to populate a table.

If you cannot useCOPY, it may help to usePREPAREto create a preparedINSERT statement, and
then useEXECUTEas many times as required. This avoids some of the overhead of repeatedly parsing
and planningINSERT.

Note that loading a large number of rows usingCOPYis almost always faster than usingINSERT, even
if PREPAREis used and multiple insertions are batched into a single transaction.

13.4.3. Remove Indexes

If you are loading a freshly created table, the fastest way is to create the table, bulk load the table’s
data usingCOPY, then create any indexes needed for the table. Creating an index on pre-existing data
is quicker than updating it incrementally as each row is loaded.

If you are augmenting an existing table, you can drop the index, load the table, and then recreate the
index. Of course, the database performance for other users may be adversely affected during the time
that the index is missing. One should also think twice before dropping unique indexes, since the error
checking afforded by the unique constraint will be lost while the index is missing.

13.4.4. Increase maintenance_work_mem

Temporarily increasing themaintenance_work_memconfiguration variable when loading large
amounts of data can lead to improved performance. This is because when a B-tree index is
created from scratch, the existing content of the table needs to be sorted. Allowing the merge
sort to use more memory means that fewer merge passes will be required. A larger setting for
maintenance_work_mem may also speed up validation of foreign-key constraints.

13.4.5. Increase checkpoint_segments

Temporarily increasing thecheckpoint_segmentsconfiguration variable can also make large data
loads faster. This is because loading a large amount of data into PostgreSQL can cause checkpoints
to occur more often than the normal checkpoint frequency (specified by thecheckpoint_timeout

configuration variable). Whenever a checkpoint occurs, all dirty pages must be flushed to disk. By
increasingcheckpoint_segments temporarily during bulk data loads, the number of checkpoints
that are required can be reduced.

13.4.6. Run ANALYZEAfterwards

Whenever you have significantly altered the distribution of data within a table, runningANALYZE
is strongly recommended. This includes bulk loading large amounts of data into the table. Running
ANALYZE(or VACUUM ANALYZE) ensures that the planner has up-to-date statistics about the table.
With no statistics or obsolete statistics, the planner may make poor decisions during query planning,
leading to poor performance on any tables with inaccurate or nonexistent statistics.

213

III. Server Administration
This part covers topics that are of interest to a PostgreSQL database administrator. This includes
installation of the software, set up and configuration of the server, management of users and databases,
and maintenance tasks. Anyone who runs a PostgreSQL server, even for personal use, but especially
in production, should be familiar with the topics covered in this part.

The information in this part is arranged approximately in the order in which a new user should read
it. But the chapters are self-contained and can be read individually as desired. The information in this
part is presented in a narrative fashion in topical units. Readers looking for a complete description of
a particular command should look intoPart VI.

The first few chapters are written so that they can be understood without prerequisite knowledge, so
that new users who need to set up their own server can begin their exploration with this part. The rest
of this part is about tuning and management; that material assumes that the reader is familiar with the
general use of the PostgreSQL database system. Readers are encouraged to look atPart IandPart II
for additional information.

Chapter 14. Installation Instructions
This chapter describes the installation of PostgreSQL from the source code distribution. (If you are
installing a pre-packaged distribution, such as an RPM or Debian package, ignore this chapter and
read the packager’s instructions instead.)

14.1. Short Version

./configure
gmake
su
gmake install
adduser postgres
mkdir /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data
su - postgres
/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data >logfile 2 >&1 &
/usr/local/pgsql/bin/createdb test
/usr/local/pgsql/bin/psql test

The long version is the rest of this chapter.

14.2. Requirements
In general, a modern Unix-compatible platform should be able to run PostgreSQL. The platforms
that had received specific testing at the time of release are listed inSection 14.7below. In thedoc

subdirectory of the distribution there are several platform-specific FAQ documents you might wish to
consult if you are having trouble.

The following software packages are required for building PostgreSQL:

• GNU make is required; other make programs willnot work. GNU make is often installed under
the namegmake; this document will always refer to it by that name. (On some systems GNU make
is the default tool with the namemake.) To test for GNU make enter

gmake --version

It is recommended to use version 3.76.1 or later.

• You need an ISO/ANSI C compiler. Recent versions of GCC are recommendable, but PostgreSQL
is known to build with a wide variety of compilers from different vendors.

• gzip is needed to unpack the distribution in the first place.

• The GNU Readline library (for comfortable line editing and command history retrieval) will be
used by default. If you don’t want to use it then you must specify the--without-readline

option for configure . (On NetBSD, thelibedit library is Readline-compatible and is used if
libreadline is not found.) If you are using a package-based Linux distribution, be aware that you
need both thereadline andreadline-devel packages, if those are separate in your distribution.

• Additional software is needed to build PostgreSQL on Windows. You can build PostgreSQL for
NT-based versions of Windows (like Windows XP and 2003) using MinGW; seedoc/FAQ_MINGW

for details. You can also build PostgreSQL using Cygwin; seedoc/FAQ_CYGWIN. A Cygwin-based

216

Chapter 14. Installation Instructions

build will work on older versions of Windows, but if you have a choice, we recommend the MinGW
approach. While these are the only tool sets recommended for a complete build, it is possible to
build just the C client library (libpq) and the interactive terminal (psql) using other Windows tool
sets. For details of that seeChapter 15.

The following packages are optional. They are not required in the default configuration, but they are
needed when certain build options are enabled, as explained below.

• To build the server programming language PL/Perl you need a full Perl installation, including the
libperl library and the header files. Since PL/Perl will be a shared library, thelibperl library
must be a shared library also on most platforms. This appears to be the default in recent Perl
versions, but it was not in earlier versions, and in any case it is the choice of whomever installed
Perl at your site.

If you don’t have the shared library but you need one, a message like this will appear during the
build to point out this fact:

*** Cannot build PL/Perl because libperl is not a shared library.
*** You might have to rebuild your Perl installation. Refer to
*** the documentation for details.

(If you don’t follow the on-screen output you will merely notice that the PL/Perl library object,
plperl.so or similar, will not be installed.) If you see this, you will have to rebuild and install
Perl manually to be able to build PL/Perl. During the configuration process for Perl, request a
shared library.

• To build the PL/Python server programming language, you need a Python installation with the
header files and the distutils module. The distutils module is included by default with Python 1.6
and later; users of earlier versions of Python will need to install it.

Since PL/Python will be a shared library, thelibpython library must be a shared library also on
most platforms. This is not the case in a default Python installation. If after building and installing
you have a file calledplpython.so (possibly a different extension), then everything went well.
Otherwise you should have seen a notice like this flying by:

*** Cannot build PL/Python because libpython is not a shared library.
*** You might have to rebuild your Python installation. Refer to
*** the documentation for details.

That means you have to rebuild (part of) your Python installation to supply this shared library.

If you have problems, run Python 2.3 or later’s configure using the--enable-shared flag. On
some operating systems you don’t have to build a shared library, but you will have to convince the
PostgreSQL build system of this. Consult theMakefile in thesrc/pl/plpython directory for
details.

• If you want to build the PL/Tcl procedural language, you of course need a Tcl installation.

• To enable Native Language Support (NLS), that is, the ability to display a program’s messages in
a language other than English, you need an implementation of the Gettext API. Some operating
systems have this built-in (e.g., Linux, NetBSD, Solaris), for other systems you can download an
add-on package from here: http://developer.postgresql.org/~petere/bsd-gettext/. If you are using
the Gettext implementation in the GNU C library then you will additionally need the GNU Gettext
package for some utility programs. For any of the other implementations you will not need it.

217

Chapter 14. Installation Instructions

• Kerberos, OpenSSL, and/or PAM, if you want to support authentication or encryption using these
services.

If you are building from a CVS tree instead of using a released source package, or if you want to do
development, you also need the following packages:

• GNU Flex and Bison are needed to build a CVS checkout or if you changed the actual scanner
and parser definition files. If you need them, be sure to get Flex 2.5.4 or later and Bison 1.875 or
later. Other yacc programs can sometimes be used, but doing so requires extra effort and is not
recommended. Other lex programs will definitely not work.

If you need to get a GNU package, you can find it at your local GNU mirror site (see
http://www.gnu.org/order/ftp.html for a list) or at ftp://ftp.gnu.org/gnu/.

Also check that you have sufficient disk space. You will need about 65 MB for the source tree during
compilation and about 15 MB for the installation directory. An empty database cluster takes about 25
MB, databases take about five times the amount of space that a flat text file with the same data would
take. If you are going to run the regression tests you will temporarily need up to an extra 90 MB. Use
thedf command to check free disk space.

14.3. Getting The Source
The PostgreSQL 8.0.0 sources can be obtained by anonymous FTP from
ftp://ftp.postgresql.org/pub/source/v8.0.0/postgresql-8.0.0.tar.gz. Use a mirror if possible. After you
have obtained the file, unpack it:

gunzip postgresql-8.0.0.tar.gz
tar xf postgresql-8.0.0.tar

This will create a directorypostgresql-8.0.0 under the current directory with the PostgreSQL
sources. Change into that directory for the rest of the installation procedure.

14.4. If You Are Upgrading
The internal data storage format changes with new releases of PostgreSQL. Therefore, if you are
upgrading an existing installation that does not have a version number “8.0.x”, you must back up and
restore your data as shown here. These instructions assume that your existing installation is under the
/usr/local/pgsql directory, and that the data area is in/usr/local/pgsql/data . Substitute
your paths appropriately.

1. Make sure that your database is not updated during or after the backup. This does not affect
the integrity of the backup, but the changed data would of course not be included. If necessary,
edit the permissions in the file/usr/local/pgsql/data/pg_hba.conf (or equivalent) to
disallow access from everyone except you.

2. To back up your database installation, type:

pg_dumpall > outputfile

If you need to preserve OIDs (such as when using them as foreign keys), then use the-o option
when running pg_dumpall.

218

Chapter 14. Installation Instructions

pg_dumpall does not save large objects. CheckSection 22.1.4if you need to do this.

To make the backup, you can use the pg_dumpall command from the version you are currently
running. For best results, however, try to use the pg_dumpall command from PostgreSQL 8.0.0,
since this version contains bug fixes and improvements over older versions. While this advice
might seem idiosyncratic since you haven’t installed the new version yet, it is advisable to follow
it if you plan to install the new version in parallel with the old version. In that case you can com-
plete the installation normally and transfer the data later. This will also decrease the downtime.

3. If you are installing the new version at the same location as the old one then shut down the old
server, at the latest before you install the new files:

pg_ctl stop

On systems that have PostgreSQL started at boot time, there is probably a start-up file that will
accomplish the same thing. For example, on a Red Hat Linux system one might find that

/etc/rc.d/init.d/postgresql stop

works.

Very old versions might not have pg_ctl. If you can’t find it or it doesn’t work, find out the process
ID of the old server, for example by typing

ps ax | grep postmaster

and signal it to stop this way:

kill -INT processID

4. If you are installing in the same place as the old version then it is also a good idea to move the
old installation out of the way, in case you have trouble and need to revert to it. Use a command
like this:

mv /usr/local/pgsql /usr/local/pgsql.old

After you have installed PostgreSQL 8.0.0, create a new database directory and start the new server.
Remember that you must execute these commands while logged in to the special database user account
(which you already have if you are upgrading).

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data

Finally, restore your data with

/usr/local/pgsql/bin/psql -d template1 -f outputfile

using thenewpsql.

Further discussion appears inSection 22.4, which you are encouraged to read in any case.

14.5. Installation Procedure

1. Configuration

The first step of the installation procedure is to configure the source tree for your system and
choose the options you would like. This is done by running theconfigure script. For a default
installation simply enter

219

Chapter 14. Installation Instructions

./configure

This script will run a number of tests to guess values for various system dependent variables and
detect some quirks of your operating system, and finally will create several files in the build tree
to record what it found. (You can also runconfigure in a directory outside the source tree if
you want to keep the build directory separate.)

The default configuration will build the server and utilities, as well as all client applications and
interfaces that require only a C compiler. All files will be installed under/usr/local/pgsql

by default.

You can customize the build and installation process by supplying one or more of the following
command line options toconfigure :

--prefix= PREFIX

Install all files under the directoryPREFIX instead of/usr/local/pgsql . The actual
files will be installed into various subdirectories; no files will ever be installed directly into
thePREFIX directory.

If you have special needs, you can also customize the individual subdirectories with the
following options. However, if you leave these with their defaults, the installation will be re-
locatable, meaning you can move the directory after installation. (Themananddoc locations
are not affected by this.)

For relocatable installs, you might want to useconfigure ’s --disable-rpath option.
Also, you will need to tell the operating system how to find the shared libraries.

--exec-prefix= EXEC-PREFIX

You can install architecture-dependent files under a different prefix,EXEC-PREFIX, than
whatPREFIX was set to. This can be useful to share architecture-independent files between
hosts. If you omit this, thenEXEC-PREFIX is set equal toPREFIX and both architecture-
dependent and independent files will be installed under the same tree, which is probably
what you want.

--bindir= DIRECTORY

Specifies the directory for executable programs. The default isEXEC-PREFIX/bin , which
normally means/usr/local/pgsql/bin .

--datadir= DIRECTORY

Sets the directory for read-only data files used by the installed programs. The default is
PREFIX/share . Note that this has nothing to do with where your database files will be
placed.

--sysconfdir= DIRECTORY

The directory for various configuration files,PREFIX/etc by default.

--libdir= DIRECTORY

The location to install libraries and dynamically loadable modules. The default is
EXEC-PREFIX/lib .

--includedir= DIRECTORY

The directory for installing C and C++ header files. The default isPREFIX/include .

--mandir= DIRECTORY

The man pages that come with PostgreSQL will be installed under this directory, in their
respectivemanx subdirectories. The default isPREFIX/man .

220

Chapter 14. Installation Instructions

--with-docdir= DIRECTORY

--without-docdir

Documentation files, except “man” pages, will be installed into this directory. The default
is PREFIX/doc . If the option--without-docdir is specified, the documentation will not
be installed bymake install . This is intended for packaging scripts that have special
methods for installing documentation.

Note: Care has been taken to make it possible to install PostgreSQL into shared installa-
tion locations (such as /usr/local/include) without interfering with the namespace of the
rest of the system. First, the string “/postgresql ” is automatically appended to datadir ,
sysconfdir , and docdir , unless the fully expanded directory name already contains the
string “postgres ” or “pgsql ”. For example, if you choose /usr/local as prefix, the documen-
tation will be installed in /usr/local/doc/postgresql , but if the prefix is /opt/postgres ,
then it will be in /opt/postgres/doc . The public C header files of the client interfaces are
installed into includedir and are namespace-clean. The internal header files and the server
header files are installed into private directories under includedir . See the documentation
of each interface for information about how to get at the its header files. Finally, a private sub-
directory will also be created, if appropriate, under libdir for dynamically loadable modules.

--with-includes= DIRECTORIES

DIRECTORIES is a colon-separated list of directories that will be added to the list the
compiler searches for header files. If you have optional packages (such as GNU Readline)
installed in a non-standard location, you have to use this option and probably also the corre-
sponding--with-libraries option.

Example:--with-includes=/opt/gnu/include:/usr/sup/include .

--with-libraries= DIRECTORIES

DIRECTORIESis a colon-separated list of directories to search for libraries. You will prob-
ably have to use this option (and the corresponding--with-includes option) if you have
packages installed in non-standard locations.

Example:--with-libraries=/opt/gnu/lib:/usr/sup/lib .

--enable-nls[= LANGUAGES]

Enables Native Language Support (NLS), that is, the ability to display a program’s mes-
sages in a language other than English.LANGUAGESis a space-separated list of codes of
the languages that you want supported, for example--enable-nls=’de fr’ . (The in-
tersection between your list and the set of actually provided translations will be computed
automatically.) If you do not specify a list, then all available translations are installed.

To use this option, you will need an implementation of the Gettext API; see above.

--with-pgport= NUMBER

SetNUMBERas the default port number for server and clients. The default is 5432. The port
can always be changed later on, but if you specify it here then both server and clients will
have the same default compiled in, which can be very convenient. Usually the only good
reason to select a non-default value is if you intend to run multiple PostgreSQL servers on
the same machine.

221

Chapter 14. Installation Instructions

--with-perl

Build the PL/Perl server-side language.

--with-python

Build the PL/Python server-side language.

--with-tcl

Build the PL/Tcl server-side language.

--with-tclconfig= DIRECTORY

Tcl installs the filetclConfig.sh , which contains configuration information needed to
build modules interfacing to Tcl. This file is normally found automatically at a well-known
location, but if you want to use a different version of Tcl you can specify the directory in
which to look for it.

--with-krb4

--with-krb5

Build with support for Kerberos authentication. You can use either Kerberos version 4 or
5, but not both. On many systems, the Kerberos system is not installed in a location that
is searched by default (e.g.,/usr/include , /usr/lib), so you must use the options
--with-includes and --with-libraries in addition to this option.configure will
check for the required header files and libraries to make sure that your Kerberos installation
is sufficient before proceeding.

--with-krb-srvnam= NAME

The name of the Kerberos service principal.postgres is the default. There’s probably no
reason to change this.

--with-openssl

Build with support for SSL (encrypted) connections. This requires the OpenSSL package to
be installed.configure will check for the required header files and libraries to make sure
that your OpenSSL installation is sufficient before proceeding.

--with-pam

Build with PAM (Pluggable Authentication Modules) support.

--without-readline

Prevents use of the Readline library. This disables command-line editing and history in psql,
so it is not recommended.

--with-rendezvous

Build with Rendezvous support. This requires Rendezvous support in your operating system.
Recommended on Mac OS X.

--disable-spinlocks

Allow the build to succeed even if PostgreSQL has no CPU spinlock support for the plat-
form. The lack of spinlock support will result in poor performance; therefore, this option
should only be used if the build aborts and informs you that the platform lacks spinlock
support. If this option is required to build PostgreSQL on your platform, please report the
problem to the PostgreSQL developers.

222

Chapter 14. Installation Instructions

--enable-thread-safety

Make the client libraries thread-safe. This allows concurrent threads in libpq and ECPG
programs to safely control their private connection handles. This option requires adequate
threading support in your operating system.

--without-zlib

Prevents use of the Zlib library. This disables support for compressed archives in pg_dump
and pg_restore. This option is only intended for those rare systems where this library is not
available.

--enable-debug

Compiles all programs and libraries with debugging symbols. This means that you can run
the programs through a debugger to analyze problems. This enlarges the size of the installed
executables considerably, and on non-GCC compilers it usually also disables compiler opti-
mization, causing slowdowns. However, having the symbols available is extremely helpful
for dealing with any problems that may arise. Currently, this option is recommended for
production installations only if you use GCC. But you should always have it on if you are
doing development work or running a beta version.

--enable-cassert

Enablesassertionchecks in the server, which test for many “can’t happen” conditions. This
is invaluable for code development purposes, but the tests slow things down a little. Also,
having the tests turned on won’t necessarily enhance the stability of your server! The asser-
tion checks are not categorized for severity, and so what might be a relatively harmless bug
will still lead to server restarts if it triggers an assertion failure. Currently, this option is not
recommended for production use, but you should have it on for development work or when
running a beta version.

--enable-depend

Enables automatic dependency tracking. With this option, the makefiles are set up so that
all affected object files will be rebuilt when any header file is changed. This is useful if you
are doing development work, but is just wasted overhead if you intend only to compile once
and install. At present, this option will work only if you use GCC.

If you prefer a C compiler different from the oneconfigure picks, you can set the environment
variableCC to the program of your choice. By default,configure will pick gcc if available,
else the platform’s default (usuallycc). Similarly, you can override the default compiler flags if
needed with theCFLAGSvariable.

You can specify environment variables on theconfigure command line, for example:

./configure CC=/opt/bin/gcc CFLAGS=’-O2 -pipe’

2. Build

To start the build, type

gmake

(Remember to use GNU make.) The build may take anywhere from 5 minutes to half an hour
depending on your hardware. The last line displayed should be

All of PostgreSQL is successfully made. Ready to install.

223

Chapter 14. Installation Instructions

3. Regression Tests

If you want to test the newly built server before you install it, you can run the regression tests at
this point. The regression tests are a test suite to verify that PostgreSQL runs on your machine in
the way the developers expected it to. Type

gmake check

(This won’t work as root; do it as an unprivileged user.)Chapter 26contains detailed information
about interpreting the test results. You can repeat this test at any later time by issuing the same
command.

4. Installing The Files

Note: If you are upgrading an existing system and are going to install the new files over the
old ones, be sure to back up your data and shut down the old server before proceeding, as
explained in Section 14.4 above.

To install PostgreSQL enter

gmake install

This will install files into the directories that were specified instep 1. Make sure that you have
appropriate permissions to write into that area. Normally you need to do this step as root. Alterna-
tively, you could create the target directories in advance and arrange for appropriate permissions
to be granted.

You can usegmake install-strip instead ofgmake install to strip the executable files
and libraries as they are installed. This will save some space. If you built with debugging support,
stripping will effectively remove the debugging support, so it should only be done if debugging
is no longer needed.install-strip tries to do a reasonable job saving space, but it does not
have perfect knowledge of how to strip every unneeded byte from an executable file, so if you
want to save all the disk space you possibly can, you will have to do manual work.

The standard installation provides all the header files needed for client application development
as well as for server-side program development, such as custom functions or data types written in
C. (Prior to PostgreSQL 8.0, a separategmake install-all-headers command was needed
for the latter, but this step has been folded into the standard install.)

Client-only installation: If you want to install only the client applications and interface libraries,
then you can use these commands:

gmake -C src/bin install
gmake -C src/include install
gmake -C src/interfaces install
gmake -C doc install

Registering eventlog on Windows:To register a Windows eventlog library with the operating sys-
tem, issue this command after installation:

regsvr32 pgsql_library_directory /pgevent.dll

This creates registry entries used by the event viewer.

Uninstallation: To undo the installation use the commandgmake uninstall . However, this will
not remove any created directories.

224

Chapter 14. Installation Instructions

Cleaning: After the installation you can make room by removing the built files from the source tree
with the commandgmake clean . This will preserve the files made by theconfigure program, so
that you can rebuild everything withgmake later on. To reset the source tree to the state in which it
was distributed, usegmake distclean . If you are going to build for several platforms within the
same source tree you must do this and re-configure for each build. (Alternatively, use a separate build
tree for each platform, so that the source tree remains unmodified.)

If you perform a build and then discover that yourconfigure options were wrong, or if you change
anything thatconfigure investigates (for example, software upgrades), then it’s a good idea to do
gmake distclean before reconfiguring and rebuilding. Without this, your changes in configuration
choices may not propagate everywhere they need to.

14.6. Post-Installation Setup

14.6.1. Shared Libraries

On some systems that have shared libraries (which most systems do) you need to tell your system
how to find the newly installed shared libraries. The systems on which this isnot necessary in-
clude BSD/OS, FreeBSD, HP-UX, IRIX, Linux, NetBSD, OpenBSD, Tru64 UNIX (formerly Digital
UNIX), and Solaris.

The method to set the shared library search path varies between platforms, but the most widely usable
method is to set the environment variableLD_LIBRARY_PATHlike so: In Bourne shells (sh , ksh ,
bash , zsh)

LD_LIBRARY_PATH=/usr/local/pgsql/lib
export LD_LIBRARY_PATH

or in csh or tcsh

setenv LD_LIBRARY_PATH /usr/local/pgsql/lib

Replace/usr/local/pgsql/lib with whatever you set--libdir to in step 1. You should
put these commands into a shell start-up file such as/etc/profile or ~/.bash_profile .
Some good information about the caveats associated with this method can be found at
http://www.visi.com/~barr/ldpath.html.

On some systems it might be preferable to set the environment variableLD_RUN_PATHbeforebuild-
ing.

On Cygwin, put the library directory in thePATHor move the.dll files into thebin directory.

If in doubt, refer to the manual pages of your system (perhapsld.so or rld). If you later on get a
message like

psql: error in loading shared libraries
libpq.so.2.1: cannot open shared object file: No such file or directory

then this step was necessary. Simply take care of it then.

If you are on BSD/OS, Linux, or SunOS 4 and you have root access you can run

/sbin/ldconfig /usr/local/pgsql/lib

225

Chapter 14. Installation Instructions

(or equivalent directory) after installation to enable the run-time linker to find the shared libraries
faster. Refer to the manual page ofldconfig for more information. On FreeBSD, NetBSD, and
OpenBSD the command is

/sbin/ldconfig -m /usr/local/pgsql/lib

instead. Other systems are not known to have an equivalent command.

14.6.2. Environment Variables

If you installed into/usr/local/pgsql or some other location that is not searched for programs by
default, you should add/usr/local/pgsql/bin (or whatever you set--bindir to in step 1) into
yourPATH. Strictly speaking, this is not necessary, but it will make the use of PostgreSQL much more
convenient.

To do this, add the following to your shell start-up file, such as~/.bash_profile (or
/etc/profile , if you want it to affect every user):

PATH=/usr/local/pgsql/bin:$PATH
export PATH

If you are usingcsh or tcsh , then use this command:

set path = (/usr/local/pgsql/bin $path)

To enable your system to find the man documentation, you need to add lines like the following to a
shell start-up file unless you installed into a location that is searched by default.

MANPATH=/usr/local/pgsql/man:$MANPATH
export MANPATH

The environment variablesPGHOSTandPGPORTspecify to client applications the host and port of
the database server, overriding the compiled-in defaults. If you are going to run client applications
remotely then it is convenient if every user that plans to use the database setsPGHOST. This is not
required, however: the settings can be communicated via command line options to most client pro-
grams.

14.7. Supported Platforms
PostgreSQL has been verified by the developer community to work on the platforms listed below. A
supported platform generally means that PostgreSQL builds and installs according to these instruc-
tions and that the regression tests pass. “Build farm” entries refer to builds reported by the PostgreSQL
Build Farm6. Platform entries that show an older version of PostgreSQL are those that did not receive
explicit testing at the time of release of version 8.0 but that we still expect to work.

Note: If you are having problems with the installation on a supported platform, please write to
<pgsql-bugs@postgresql.org > or <pgsql-ports@postgresql.org >, not to the people listed
here.

6. http://www.pgbuildfarm.org/

226

Chapter 14. Installation Instructions

OS Processor Version Reported Remarks

AIX PowerPC 8.0.0 Travis P
(<twp@castle.fastmail.fm >),
2004-12-12

see also
doc/FAQ_AIX

AIX RS6000 8.0.0 Hans-Jürgen
Schönig
(<hs@cybertec.at >),
2004-12-06

see also
doc/FAQ_AIX

BSD/OS x86 8.0.0 Bruce Momjian
(<pgman@candle.pha.pa.us >),
2004-12-07

4.3.1

Debian GNU/LinuxAlpha 7.4 Noèl Köthe
(<noel@debian.org >),
2003-10-25

Debian GNU/LinuxAMD64 8.0.0 Build farm panda,
snapshot
2004-12-06
01:20:02

sid, kernel 2.6

Debian GNU/LinuxARM 8.0.0 Jim Buttafuoco
(<jim@contactbda.com >),
2005-01-06

Debian GNU/LinuxIA64 7.4 Noèl Köthe
(<noel@debian.org >),
2003-10-25

Debian GNU/Linuxm68k 8.0.0 Noèl Köthe
(<noel@debian.org >),
2004-12-09

sid

Debian GNU/LinuxMIPS 8.0.0 Build farm lionfish,
snapshot
2004-12-06
11:00:08

3.1 (sarge), kernel
2.4

Debian GNU/LinuxPA-RISC 8.0.0 Noèl Köthe
(<noel@debian.org >),
2004-12-07

sid

Debian GNU/LinuxPowerPC 8.0.0 Noèl Köthe
(<noel@debian.org >),
2004-12-15

sid

Debian GNU/LinuxS/390 7.4 Noèl Köthe
(<noel@debian.org >),
2003-10-25

Debian GNU/LinuxSparc 8.0.0 Noèl Köthe
(<noel@debian.org >),
2004-12-09

sid, 32-bit

Debian GNU/Linuxx86 8.0.0 Peter Eisentraut
(<peter_e@gmx.net >),
2004-12-06

3.1 (sarge), kernel
2.6

227

Chapter 14. Installation Instructions

OS Processor Version Reported Remarks

Fedora AMD64 8.0.0 John Gray
(<jgray@azuli.co.uk >),
2004-12-12

FC3

Fedora x86 8.0.0 Build farm dog,
snapshot
2004-12-06
02:06:01

FC1

FreeBSD Alpha 7.4 Peter Eisentraut
(<peter_e@gmx.net >),
2003-10-25

4.8

FreeBSD x86 8.0.0 Build farm
cockatoo, snapshot
2004-12-06
14:10:01 (4.10);
Marc Fournier
(<scrappy@postgresql.org >),
2004-12-07 (5.3)

Gentoo Linux AMD64 8.0.0 Jani Averbach
(<jaa@jaa.iki.fi >),
2005-01-13

Gentoo Linux x86 8.0.0 Paul Bort
(<pbort@tmwsystems.com >),
2004-12-07

HP-UX IA64 8.0.0 Tom Lane
(<tgl@sss.pgh.pa.us >),
2005-01-06

11.23,gcc andcc ;
see also
doc/FAQ_HPUX

HP-UX PA-RISC 8.0.0 Tom Lane
(<tgl@sss.pgh.pa.us >),
2005-01-06

10.20 and 11.11,
gcc andcc ; see
also
doc/FAQ_HPUX

IRIX MIPS 7.4 Robert E.
Bruccoleri
(<bruc@stone.congenomics.com >),
2003-11-12

6.5.20,cc only

Mac OS X PowerPC 8.0.0 Andrew Rawnsley
(<ronz@ravensfield.com >),
2004-12-07

10.3.5

Mandrakelinux x86 8.0.0 Build farm shrew,
snapshot
2004-12-06
02:02:01

10.0

NetBSD arm32 7.4 Patrick Welche
(<prlw1@newn.cam.ac.uk >),
2003-11-12

1.6ZE/acorn32

NetBSD m68k 8.0.0 Rémi Zara
(<remi_zara@mac.com >),
2004-12-14

2.0

228

Chapter 14. Installation Instructions

OS Processor Version Reported Remarks

NetBSD Sparc 7.4.1 Peter Eisentraut
(<peter_e@gmx.net >),
2003-11-26

1.6.1, 32-bit

NetBSD x86 8.0.0 Build farm canary,
snapshot
2004-12-06
03:30:00

1.6

OpenBSD Sparc 8.0.0 Chris Mair
(<list@1006.org >),
2005-01-10

3.3

OpenBSD Sparc64 8.0.0 Build farm
spoonbill, snapshot
2005-01-06
00:50:05

3.6

OpenBSD x86 8.0.0 Build farm emu,
snapshot
2004-12-06
11:35:03

3.6

Red Hat Linux AMD64 8.0.0 Tom Lane
(<tgl@sss.pgh.pa.us >),
2004-12-07

RHEL 3AS

Red Hat Linux IA64 8.0.0 Tom Lane
(<tgl@sss.pgh.pa.us >),
2004-12-07

RHEL 3AS

Red Hat Linux PowerPC 8.0.0 Tom Lane
(<tgl@sss.pgh.pa.us >),
2004-12-07

RHEL 3AS

Red Hat Linux PowerPC 64 8.0.0 Tom Lane
(<tgl@sss.pgh.pa.us >),
2004-12-07

RHEL 3AS

Red Hat Linux S/390 8.0.0 Tom Lane
(<tgl@sss.pgh.pa.us >),
2004-12-07

RHEL 3AS

Red Hat Linux S/390x 8.0.0 Tom Lane
(<tgl@sss.pgh.pa.us >),
2004-12-07

RHEL 3AS

Red Hat Linux x86 8.0.0 Tom Lane
(<tgl@sss.pgh.pa.us >),
2004-12-07

RHEL 3AS

Solaris Sparc 8.0.0 Kenneth Marshall
(<ktm@is.rice.edu >),
2004-12-07

Solaris 8; see also
doc/FAQ_Solaris

229

Chapter 14. Installation Instructions

OS Processor Version Reported Remarks

Solaris x86 8.0.0 Build farm kudu,
snapshot
2004-12-10
02:30:04 (cc);
dragonfly, snapshot
2004-12-09
04:30:00 (gcc)

Solaris 9; see also
doc/FAQ_Solaris

SUSE Linux AMD64 8.0.0 Reinhard Max
(<max@suse.de >),
2005-01-03

9.0, 9.1, 9.2, SLES
9

SUSE Linux IA64 8.0.0 Reinhard Max
(<max@suse.de >),
2005-01-03

SLES 9

SUSE Linux PowerPC 8.0.0 Reinhard Max
(<max@suse.de >),
2005-01-03

SLES 9

SUSE Linux PowerPC 64 8.0.0 Reinhard Max
(<max@suse.de >),
2005-01-03

SLES 9

SUSE Linux S/390 8.0.0 Reinhard Max
(<max@suse.de >),
2005-01-03

SLES 9

SUSE Linux S/390x 8.0.0 Reinhard Max
(<max@suse.de >),
2005-01-03

SLES 9

SUSE Linux x86 8.0.0 Reinhard Max
(<max@suse.de >),
2005-01-03

9.0, 9.1, 9.2, SLES
9

Tru64 UNIX Alpha 8.0.0 Honda Shigehiro
(<fwif0083@mb.infoweb.ne.jp >),
2005-01-07

5.0

UnixWare x86 8.0.0 Peter Eisentraut
(<peter_e@gmx.net >),
2004-12-14

cc , 7.1.4; see also
doc/FAQ_SCO

Windows x86 8.0.0 Dave Page
(<dpage@vale-housing.co.uk >),
2004-12-07

XP Pro; see
doc/FAQ_MINGW

Windows with
Cygwin

x86 8.0.0 Build farm gibbon,
snapshot
2004-12-11
01:33:01

see
doc/FAQ_CYGWIN

Unsupported Platforms: The following platforms are either known not to work, or they used to
work in a fairly distant previous release. We include these here to let you know that these platforms
couldbe supported if given some attention.

OS Processor Version Reported Remarks

230

Chapter 14. Installation Instructions

OS Processor Version Reported Remarks

BeOS x86 7.2 Cyril Velter
(<cyril.velter@libertysurf.fr >),
2001-11-29

needs updates to
semaphore code

Linux PlayStation 2 8.0.0 Chris Mair
(<list@1006.org >),
2005-01-09

requires
--disable-spinlocks

(works, but slow)

NetBSD Alpha 7.2 Thomas Thai
(<tom@minnesota.com >),
2001-11-20

1.5W

NetBSD MIPS 7.2.1 Warwick Hunter
(<whunter@agile.tv >),
2002-06-13

1.5.3

NetBSD PowerPC 7.2 Bill Studenmund
(<wrstuden@netbsd.org >),
2001-11-28

1.5

NetBSD VAX 7.1 Tom I. Helbekkmo
(<tih@kpnQwest.no >),
2001-03-30

1.5

QNX 4 RTOS x86 7.2 Bernd Tegge
(<tegge@repas-aeg.de >),
2001-12-10

needs updates to
semaphore code;
see also
doc/FAQ_QNX4

QNX RTOS v6 x86 7.2 Igor Kovalenko
(<Igor.Kovalenko@motorola.com >),
2001-11-20

patches available in
archives, but too
late for 7.2

SCO OpenServer x86 7.3.1 Shibashish Satpathy
(<shib@postmark.net >),
2002-12-11

5.0.4,gcc ; see also
doc/FAQ_SCO

SunOS 4 Sparc 7.2 Tatsuo Ishii
(<t-ishii@sra.co.jp >),
2001-12-04

231

Chapter 15. Client-Only Installation on
Windows

Although a complete PostgreSQL installation for Windows can only be built using MinGW or Cyg-
win, the C client library (libpq) and the interactive terminal (psql) can be compiled using other Win-
dows tool sets. Makefiles are included in the source distribution for Microsoft Visual C++ and Borland
C++. It should be possible to compile the libraries manually for other configurations.

Tip: Using MinGW or Cygwin is preferred. If using one of those tool sets, see Chapter 14.

To build everything that you can on Windows using Microsoft Visual C++, change into thesrc

directory and type the command

nmake /f win32.mak

This assumes that you have Visual C++ in your path.

To build everything using Borland C++, change into thesrc directory and type the command

make -DCFG=Release /f bcc32.mak

The following files will be built:

interfaces\libpq\Release\libpq.dll

The dynamically linkable frontend library

interfaces\libpq\Release\libpqdll.lib

Import library to link your programs tolibpq.dll

interfaces\libpq\Release\libpq.lib

Static version of the frontend library

bin\psql\Release\psql.exe

The PostgreSQL interactive terminal

The only file that really needs to be installed is thelibpq.dll library. This file should in most
cases be placed in theWINNT\SYSTEM32directory (or inWINDOWS\SYSTEMon a Windows 95/98/ME
system). If this file is installed using a setup program, it should be installed with version checking
using theVERSIONINFOresource included in the file, to ensure that a newer version of the library is
not overwritten.

If you plan to do development using libpq on this machine, you will have to add thesrc\include

andsrc\interfaces\libpq subdirectories of the source tree to the include path in your compiler’s
settings.

To use the library, you must add thelibpqdll.lib file to your project. (In Visual C++, just right-
click on the project and choose to add it.)

232

Chapter 16. Server Run-time Environment
This chapter discusses how to set up and run the database server and its interactions with the operating
system.

16.1. The PostgreSQL User Account
As with any other server daemon that is accessible to the outside world, it is advisable to run Post-
greSQL under a separate user account. This user account should only own the data that is managed
by the server, and should not be shared with other daemons. (For example, using the usernobody is a
bad idea.) It is not advisable to install executables owned by this user because compromised systems
could then modify their own binaries.

To add a Unix user account to your system, look for a commanduseradd or adduser . The user
name postgres is often used, and is assumed throughout this book, but you can use another name if
you like.

16.2. Creating a Database Cluster
Before you can do anything, you must initialize a database storage area on disk. We call this adatabase
cluster. (SQL uses the term catalog cluster.) A database cluster is a collection of databases that is
managed by a single instance of a running database server. After initialization, a database cluster
will contain a database namedtemplate1 . As the name suggests, this will be used as a template for
subsequently created databases; it should not be used for actual work. (SeeChapter 18for information
about creating new databases within a cluster.)

In file system terms, a database cluster will be a single directory under which all data will be stored.
We call this thedata directoryor data area. It is completely up to you where you choose to
store your data. There is no default, although locations such as/usr/local/pgsql/data or
/var/lib/pgsql/data are popular. To initialize a database cluster, use the commandinitdb,
which is installed with PostgreSQL. The desired file system location of your database cluster is
indicated by the-D option, for example

$ initdb -D /usr/local/pgsql/data

Note that you must execute this command while logged into the PostgreSQL user account, which is
described in the previous section.

Tip: As an alternative to the -D option, you can set the environment variable PGDATA.

initdb will attempt to create the directory you specify if it does not already exist. It is likely that
it will not have the permission to do so (if you followed our advice and created an unprivileged
account). In that case you should create the directory yourself (as root) and change the owner to be
the PostgreSQL user. Here is how this might be done:

root# mkdir /usr/local/pgsql/data
root# chown postgres /usr/local/pgsql/data
root# su postgres
postgres$ initdb -D /usr/local/pgsql/data

233

Chapter 16. Server Run-time Environment

initdb will refuse to run if the data directory looks like it has already been initialized.

Because the data directory contains all the data stored in the database, it is essential that it be se-
cured from unauthorized access.initdb therefore revokes access permissions from everyone but the
PostgreSQL user.

However, while the directory contents are secure, the default client authentication setup allows any
local user to connect to the database and even become the database superuser. If you do not trust
other local users, we recommend you use one ofinitdb ’s -W, --pwprompt or --pwfile options
to assign a password to the database superuser. Also, specify-A md5 or -A password so that the
default trust authentication mode is not used; or modify the generatedpg_hba.conf file after
running initdb , beforeyou start the server for the first time. (Other reasonable approaches include
using ident authentication or file system permissions to restrict connections. SeeChapter 19for
more information.)

initdb also initializes the default locale for the database cluster. Normally, it will just take the locale
settings in the environment and apply them to the initialized database. It is possible to specify a
different locale for the database; more information about that can be found inSection 20.1. The sort
order used within a particular database cluster is set byinitdb and cannot be changed later, short of
dumping all data, rerunninginitdb , and reloading the data. There is also a performance impact for
using locales other thanC or POSIX. Therefore, it is important to make this choice correctly the first
time.

initdb also sets the default character set encoding for the database cluster. Normally this should be
chosen to match the locale setting. For details seeSection 20.2.

16.3. Starting the Database Server
Before anyone can access the database, you must start the database server. The database server pro-
gram is calledpostmaster . Thepostmaster must know where to find the data it is supposed to
use. This is done with the-D option. Thus, the simplest way to start the server is:

$ postmaster -D /usr/local/pgsql/data

which will leave the server running in the foreground. This must be done while logged into the Post-
greSQL user account. Without-D , the server will try to use the data directory named by the environ-
ment variablePGDATA. If that variable is not provided either, it will fail.

Normally it is better to start thepostmaster in the background. For this, use the usual shell syntax:

$ postmaster -D /usr/local/pgsql/data >logfile 2 >&1 &

It is important to store the server’s stdout and stderr output somewhere, as shown above. It will help
for auditing purposes and to diagnose problems. (SeeSection 21.3for a more thorough discussion of
log file handling.)

Thepostmaster also takes a number of other command line options. For more information, see the
postmasterreference page andSection 16.4below.

This shell syntax can get tedious quickly. Therefore the wrapper programpg_ctl is provided to sim-
plify some tasks. For example:

pg_ctl start -l logfile

will start the server in the background and put the output into the named log file. The-D option has
the same meaning here as in thepostmaster . pg_ctl is also capable of stopping the server.

234

Chapter 16. Server Run-time Environment

Normally, you will want to start the database server when the computer boots. Autostart
scripts are operating-system-specific. There are a few distributed with PostgreSQL in the
contrib/start-scripts directory. Installing one will require root privileges.

Different systems have different conventions for starting up daemons at boot time. Many systems have
a file /etc/rc.local or /etc/rc.d/rc.local . Others userc.d directories. Whatever you do,
the server must be run by the PostgreSQL user accountand not by rootor any other user. Therefore
you probably should form your commands usingsu -c ’...’ postgres . For example:

su -c ’pg_ctl start -D /usr/local/pgsql/data -l serverlog’ postgres

Here are a few more operating-system-specific suggestions. (In each case be sure to use the proper
installation directory and user name where we show generic values.)

• For FreeBSD, look at the filecontrib/start-scripts/freebsd in the PostgreSQL source
distribution.

• On OpenBSD, add the following lines to the file/etc/rc.local :

if [-x /usr/local/pgsql/bin/pg_ctl -a -x /usr/local/pgsql/bin/postmaster]; then
su - -c ’/usr/local/pgsql/bin/pg_ctl start -l /var/postgresql/log -s’ postgres
echo -n ’ postgresql’

fi

• On Linux systems either add

/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/data

to /etc/rc.d/rc.local or look at the filecontrib/start-scripts/linux in the Post-
greSQL source distribution.

• On NetBSD, either use the FreeBSD or Linux start scripts, depending on preference.

• On Solaris, create a file called/etc/init.d/postgresql that contains the following line:

su - postgres -c "/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/data"

Then, create a symbolic link to it in/etc/rc3.d asS99postgresql .

While thepostmaster is running, its PID is stored in the filepostmaster.pid in the data directory.
This is used to prevent multiplepostmaster processes running in the same data directory and can
also be used for shutting down thepostmaster process.

16.3.1. Server Start-up Failures

There are several common reasons the server might fail to start. Check the server’s log file, or start it
by hand (without redirecting standard output or standard error) and see what error messages appear.
Below we explain some of the most common error messages in more detail.

LOG: could not bind IPv4 socket: Address already in use
HINT: Is another postmaster already running on port 5432? If not, wait a few seconds and retry.
FATAL: could not create TCP/IP listen socket

This usually means just what it suggests: you tried to start anotherpostmaster on the same port
where one is already running. However, if the kernel error message is notAddress already

235

Chapter 16. Server Run-time Environment

in use or some variant of that, there may be a different problem. For example, trying to start a
postmaster on a reserved port number may draw something like:

$ postmaster -p 666
LOG: could not bind IPv4 socket: Permission denied
HINT: Is another postmaster already running on port 666? If not, wait a few seconds and retry.
FATAL: could not create TCP/IP listen socket

A message like

FATAL: could not create shared memory segment: Invalid argument
DETAIL: Failed system call was shmget(key=5440001, size=4011376640, 03600).

probably means your kernel’s limit on the size of shared memory is smaller than the work area
PostgreSQL is trying to create (4011376640 bytes in this example). Or it could mean that you do
not have System-V-style shared memory support configured into your kernel at all. As a temporary
workaround, you can try starting the server with a smaller-than-normal number of buffers (-B switch).
You will eventually want to reconfigure your kernel to increase the allowed shared memory size. You
may also see this message when trying to start multiple servers on the same machine, if their total
space requested exceeds the kernel limit.

An error like

FATAL: could not create semaphores: No space left on device
DETAIL: Failed system call was semget(5440126, 17, 03600).

doesnot mean you’ve run out of disk space. It means your kernel’s limit on the number of System
V semaphores is smaller than the number PostgreSQL wants to create. As above, you may be able to
work around the problem by starting the server with a reduced number of allowed connections (-N

switch), but you’ll eventually want to increase the kernel limit.

If you get an “illegal system call” error, it is likely that shared memory or semaphores are not sup-
ported in your kernel at all. In that case your only option is to reconfigure the kernel to enable these
features.

Details about configuring System V IPC facilities are given inSection 16.5.1.

16.3.2. Client Connection Problems

Although the error conditions possible on the client side are quite varied and application-dependent,
a few of them might be directly related to how the server was started up. Conditions other than those
shown below should be documented with the respective client application.

psql: could not connect to server: Connection refused
Is the server running on host "server.joe.com" and accepting
TCP/IP connections on port 5432?

This is the generic “I couldn’t find a server to talk to” failure. It looks like the above when TCP/IP
communication is attempted. A common mistake is to forget to configure the server to allow TCP/IP
connections.

Alternatively, you’ll get this when attempting Unix-domain socket communication to a local server:

psql: could not connect to server: No such file or directory
Is the server running locally and accepting

236

Chapter 16. Server Run-time Environment

connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

The last line is useful in verifying that the client is trying to connect to the right place. If there
is in fact no server running there, the kernel error message will typically be eitherConnection

refused or No such file or directory , as illustrated. (It is important to realize that
Connection refused in this context doesnot mean that the server got your connection request
and rejected it. That case will produce a different message, as shown inSection 19.3.) Other error
messages such asConnection timed out may indicate more fundamental problems, like lack of
network connectivity.

16.4. Run-time Configuration
There are a lot of configuration parameters that affect the behavior of the database system. In this
subsection, we describe how to set configuration parameters; the following subsections discuss each
parameter in detail.

All parameter names are case-insensitive. Every parameter takes a value of one of four types: boolean,
integer, floating point, or string. Boolean values may be written asON, OFF, TRUE, FALSE, YES, NO,
1, 0 (all case-insensitive) or any unambiguous prefix of these.

One way to set these parameters is to edit the filepostgresql.conf , which is normally kept in the
data directory. (initdb installs a default copy there.) An example of what this file might look like is:

This is a comment
log_connections = yes
log_destination = ’syslog’
search_path = ’$user, public’

One parameter is specified per line. The equal sign between name and value is optional. Whitespace
is insignificant and blank lines are ignored. Hash marks (#) introduce comments anywhere. Parameter
values that are not simple identifiers or numbers must be single-quoted.

The configuration file is reread whenever thepostmaster process receives a SIGHUP signal (which
is most easily sent by means ofpg_ctl reload). Thepostmaster also propagates this signal to
all currently running server processes so that existing sessions also get the new value. Alternatively,
you can send the signal to a single server process directly. Some parameters can only be set at server
start; any changes to their entries in the configuration file will be ignored until the server is restarted.

A second way to set these configuration parameters is to give them as a command line option to the
postmaster , such as:

postmaster -c log_connections=yes -c log_destination=’syslog’

Command-line options override any conflicting settings inpostgresql.conf . Note that this means
you won’t be able to change the value on-the-fly by editingpostgresql.conf , so while the
command-line method may be convenient, it can cost you flexibility later.

Occasionally it is useful to give a command line option to one particular session only. The environment
variablePGOPTIONScan be used for this purpose on the client side:

env PGOPTIONS=’-c geqo=off’ psql

(This works for any libpq-based client application, not just psql.) Note that this won’t work for pa-
rameters that are fixed when the server is started or that must be specified inpostgresql.conf .

237

Chapter 16. Server Run-time Environment

Furthermore, it is possible to assign a set of option settings to a user or a database. Whenever a session
is started, the default settings for the user and database involved are loaded. The commandsALTER
USERandALTER DATABASE, respectively, are used to configure these settings. Per-database settings
override anything received from thepostmaster command-line or the configuration file, and in turn
are overridden by per-user settings; both are overridden by per-session options.

Some parameters can be changed in individual SQL sessions with theSETcommand, for example:

SET ENABLE_SEQSCAN TO OFF;

If SET is allowed, it overrides all other sources of values for the parameter. Some parameters cannot
be changed viaSET: for example, if they control behavior that cannot reasonably be changed without
restarting PostgreSQL. Also, some parameters can be modified viaSET or ALTERby superusers, but
not by ordinary users.

TheSHOWcommand allows inspection of the current values of all parameters.

The virtual tablepg_settings (described inSection 41.35) also allows displaying and updating
session run-time parameters. It is equivalent toSHOWandSET, but can be more convenient to use
because it can be joined with other tables, or selected from using any desired selection condition.

16.4.1. File Locations

In addition to thepostgresql.conf file already mentioned, PostgreSQL uses two other manually-
edited configuration files, which control client authentication (their use is discussed inChapter 19).
By default, all three configuration files are stored in the database cluster’s data directory. The options
described in this subsection allow the configuration files to be placed elsewhere. (Doing so can ease
administration. In particular it is often easier to ensure that the configuration files are properly backed-
up when they are kept separate.)

data_directory (string)

Specifies the directory to use for data storage. This option can only be set at server start.

config_file (string)

Specifies the main server configuration file (customarily calledpostgresql.conf). This option
can only be set on the postmaster command line.

hba_file (string)

Specifies the configuration file for host-based authentication (customarily calledpg_hba.conf).
This option can only be set at server start.

ident_file (string)

Specifies the configuration file for ident authentication (customarily calledpg_ident.conf).
This option can only be set at server start.

external_pid_file (string)

Specifies the name of an additional process-id (PID) file that the postmaster should create for use
by server administration programs. This option can only be set at server start.

In a default installation, none of the above options are set explicitly. Instead, the data directory is
specified by the-D command-line option or thePGDATAenvironment variable, and the configuration
files are all found within the data directory.

238

Chapter 16. Server Run-time Environment

If you wish to keep the configuration files elsewhere than the data directory, the postmaster’s-D

command-line option orPGDATAenvironment variable must point to the directory containing the
configuration files, and thedata_directory option must be set inpostgresql.conf (or on the
command line) to show where the data directory is actually located. Notice thatdata_directory

overrides-D andPGDATAfor the location of the data directory, but not for the location of the config-
uration files.

If you wish, you can specify the configuration file names and locations individually using the op-
tions config_file , hba_file and/or ident_file . config_file can only be specified on the
postmaster command line, but the others can be set within the main configuration file. If all three
options plusdata_directory are explicitly set, then it is not necessary to specify-D or PGDATA.

When setting any of these options, a relative path will be interpreted with respect to the directory in
which thepostmaster is started.

16.4.2. Connections and Authentication

16.4.2.1. Connection Settings

listen_addresses (string)

Specifies the TCP/IP address(es) on which the server is to listen for connections from client
applications. The value takes the form of a comma-separated list of host names and/or numeric
IP addresses. The special entry* corresponds to all available IP interfaces. If the list is empty,
the server does not listen on any IP interface at all, in which case only Unix-domain sockets
can be used to connect to it. The default value is localhost, which allows only local “loopback”
connections to be made. This parameter can only be set at server start.

port (integer)

The TCP port the server listens on; 5432 by default. Note that the same port number is used for
all IP addresses the server listens on. This parameter can only be set at server start.

max_connections (integer)

Determines the maximum number of concurrent connections to the database server. The default
is typically 100, but may be less if your kernel settings will not support it (as determined during
initdb). This parameter can only be set at server start.

Increasing this parameter may cause PostgreSQL to request more System V shared memory or
semaphores than your operating system’s default configuration allows. SeeSection 16.5.1for
information on how to adjust those parameters, if necessary.

superuser_reserved_connections (integer)

Determines the number of connection “slots” that are reserved for connections by PostgreSQL
superusers. At mostmax_connectionsconnections can ever be active simultaneously.
Whenever the number of active concurrent connections is at leastmax_connections minus
superuser_reserved_connections , new connections will be accepted only for superusers.

The default value is 2. The value must be less than the value ofmax_connections . This pa-
rameter can only be set at server start.

unix_socket_directory (string)

Specifies the directory of the Unix-domain socket on which the server is to listen for connections
from client applications. The default is normally/tmp , but can be changed at build time. This
parameter can only be set at server start.

239

Chapter 16. Server Run-time Environment

unix_socket_group (string)

Sets the owning group of the Unix-domain socket. (The owning user of the socket is always the
user that starts the server.) In combination with the optionunix_socket_permissions this
can be used as an additional access control mechanism for Unix-domain connections. By default
this is the empty string, which uses the default group for the current user. This option can only
be set at server start.

unix_socket_permissions (integer)

Sets the access permissions of the Unix-domain socket. Unix-domain sockets use the usual Unix
file system permission set. The option value is expected to be a numeric mode specification in
the form accepted by thechmod andumask system calls. (To use the customary octal format the
number must start with a0 (zero).)

The default permissions are0777 , meaning anyone can connect. Reasonable alternatives are
0770 (only user and group, see alsounix_socket_group) and0700 (only user). (Note that
for a Unix-domain socket, only write permission matters and so there is no point in setting or
revoking read or execute permissions.)

This access control mechanism is independent of the one described inChapter 19.

This option can only be set at server start.

rendezvous_name (string)

Specifies the Rendezvous broadcast name. By default, the computer name is used, specified as an
empty string ”. This option is ignored if the server was not compiled with Rendezvous support.
This option can only be set at server start.

16.4.2.2. Security and Authentication

authentication_timeout (integer)

Maximum time to complete client authentication, in seconds. If a would-be client has not com-
pleted the authentication protocol in this much time, the server breaks the connection. This pre-
vents hung clients from occupying a connection indefinitely. This option can only be set at server
start or in thepostgresql.conf file. The default is 60.

ssl (boolean)

Enables SSL connections. Please readSection 16.7before using this. The default is off. This
parameter can only be set at server start.

password_encryption (boolean)

When a password is specified inCREATE USERor ALTER USERwithout writing either
ENCRYPTEDor UNENCRYPTED, this option determines whether the password is to be encrypted.
The default is on (encrypt the password).

krb_server_keyfile (string)

Sets the location of the Kerberos server key file. SeeSection 19.2.3for details.

db_user_namespace (boolean)

This allows per-database user names. It is off by default.

If this is on, you should create users asusername@dbname. Whenusername is passed by a
connecting client,@and the database name is appended to the user name and that database-

240

Chapter 16. Server Run-time Environment

specific user name is looked up by the server. Note that when you create users with names
containing@within the SQL environment, you will need to quote the user name.

With this option enabled, you can still create ordinary global users. Simply append@when
specifying the user name in the client. The@will be stripped off before the user name is looked
up by the server.

Note: This feature is intended as a temporary measure until a complete solution is found. At
that time, this option will be removed.

16.4.3. Resource Consumption

16.4.3.1. Memory

shared_buffers (integer)

Sets the number of shared memory buffers used by the database server. The default is typically
1000, but may be less if your kernel settings will not support it (as determined during initdb).
Each buffer is 8192 bytes, unless a different value ofBLCKSZwas chosen when building the
server. This setting must be at least 16, as well as at least twice the value ofmax_connections;
however, settings significantly higher than the minimum are usually needed for good perfor-
mance. Values of a few thousand are recommended for production installations. This option can
only be set at server start.

Increasing this parameter may cause PostgreSQL to request more System V shared memory than
your operating system’s default configuration allows. SeeSection 16.5.1for information on how
to adjust those parameters, if necessary.

work_mem (integer)

Specifies the amount of memory to be used by internal sort operations and hash tables before
switching to temporary disk files. The value is specified in kilobytes, and defaults to 1024 kilo-
bytes (1 MB). Note that for a complex query, several sort or hash operations might be running in
parallel; each one will be allowed to use as much memory as this value specifies before it starts
to put data into temporary files. Also, several running sessions could be doing such operations
concurrently. So the total memory used could be many times the value ofwork_mem; it is nec-
essary to keep this fact in mind when choosing the value. Sort operations are used forORDER

BY, DISTINCT , and merge joins. Hash tables are used in hash joins, hash-based aggregation, and
hash-based processing ofIN subqueries.

maintenance_work_mem (integer)

Specifies the maximum amount of memory to be used in maintenance operations, such as
VACUUM, CREATE INDEX, and ALTER TABLE ADD FOREIGN KEY. The value is specified in
kilobytes, and defaults to 16384 kilobytes (16 MB). Since only one of these operations can be
executed at a time by a database session, and an installation normally doesn’t have very many
of them happening concurrently, it’s safe to set this value significantly larger thanwork_mem.
Larger settings may improve performance for vacuuming and for restoring database dumps.

241

Chapter 16. Server Run-time Environment

max_stack_depth (integer)

Specifies the maximum safe depth of the server’s execution stack. The ideal setting for this
parameter is the actual stack size limit enforced by the kernel (as set byulimit -s or local
equivalent), less a safety margin of a megabyte or so. The safety margin is needed because the
stack depth is not checked in every routine in the server, but only in key potentially-recursive
routines such as expression evaluation. Setting the parameter higher than the actual kernel limit
will mean that a runaway recursive function can crash an individual backend process. The default
setting is 2048 KB (two megabytes), which is conservatively small and unlikely to risk crashes.
However, it may be too small to allow execution of complex functions.

16.4.3.2. Free Space Map

max_fsm_pages (integer)

Sets the maximum number of disk pages for which free space will be tracked in the shared
free-space map. Six bytes of shared memory are consumed for each page slot. This setting must
be more than 16 *max_fsm_relations . The default is 20000. This option can only be set at
server start.

max_fsm_relations (integer)

Sets the maximum number of relations (tables and indexes) for which free space will be tracked
in the shared free-space map. Roughly fifty bytes of shared memory are consumed for each slot.
The default is 1000. This option can only be set at server start.

16.4.3.3. Kernel Resource Usage

max_files_per_process (integer)

Sets the maximum number of simultaneously open files allowed to each server subprocess. The
default is 1000. If the kernel is enforcing a safe per-process limit, you don’t need to worry about
this setting. But on some platforms (notably, most BSD systems), the kernel will allow individual
processes to open many more files than the system can really support when a large number of
processes all try to open that many files. If you find yourself seeing “Too many open files”
failures, try reducing this setting. This option can only be set at server start.

preload_libraries (string)

This variable specifies one or more shared libraries that are to be preloaded at server start. A
parameterless initialization function can optionally be called for each library. To specify that,
add a colon and the name of the initialization function after the library name. For example
’$libdir/mylib:mylib_init’ would causemylib to be preloaded andmylib_init to be
executed. If more than one library is to be loaded, separate their names with commas.

If a specified library or initialization function is not found, the server will fail to start.

PostgreSQL procedural language libraries may be preloaded in this way, typically by using the
syntax’$libdir/plXXX:plXXX_init’ whereXXX is pgsql , perl , tcl , or python .

By preloading a shared library (and initializing it if applicable), the library startup time is avoided
when the library is first used. However, the time to start each new server process may increase
slightly, even if that process never uses the library. So this option is recommended only for
libraries that will be used in most sessions.

242

Chapter 16. Server Run-time Environment

16.4.3.4. Cost-Based Vacuum Delay

During the execution ofVACUUM and ANALYZEcommands, the system maintains an internal
counter that keeps track of the estimated cost of the various I/O operations that are performed. When
the accumulated cost reaches a limit (specified byvacuum_cost_limit), the process performing
the operation will sleep for a while (specified byvacuum_cost_delay). Then it will reset the
counter and continue execution.

The intent of this feature is to allow administrators to reduce the I/O impact of these commands on
concurrent database activity. There are many situations in which it is not very important that mainte-
nance commands likeVACUUMandANALYZEfinish quickly; however, it is usually very important that
these commands do not significantly interfere with the ability of the system to perform other database
operations. Cost-based vacuum delay provides a way for administrators to achieve this.

This feature is disabled by default. To enable it, set thevacuum_cost_delay variable to a nonzero
value.

vacuum_cost_delay (integer)

The length of time, in milliseconds, that the process will sleep when the cost limit has been
exceeded. The default value is 0, which disables the cost-based vacuum delay feature. Positive
values enable cost-based vacuuming. Note that on many systems, the effective resolution of sleep
delays is 10 milliseconds; settingvacuum_cost_delay to a value that is not a multiple of 10
may have the same results as setting it to the next higher multiple of 10.

vacuum_cost_page_hit (integer)

The estimated cost for vacuuming a buffer found in the shared buffer cache. It represents the cost
to lock the buffer pool, lookup the shared hash table and scan the content of the page. The default
value is 1.

vacuum_cost_page_miss (integer)

The estimated cost for vacuuming a buffer that has to be read from disk. This represents the effort
to lock the buffer pool, lookup the shared hash table, read the desired block in from the disk and
scan its content. The default value is 10.

vacuum_cost_page_dirty (integer)

The estimated cost charged when vacuum modifies a block that was previously clean. It repre-
sents the extra I/O required to flush the dirty block out to disk again. The default value is 20.

vacuum_cost_limit (integer)

The accumulated cost that will cause the vacuuming process to sleep. The default value is 200.

Note: There are certain operations that hold critical locks and should therefore complete as
quickly as possible. Cost-based vacuum delays do not occur during such operations. Therefore it
is possible that the cost accumulates far higher than the specified limit. To avoid uselessly long de-
lays in such cases, the actual delay is calculated as vacuum_cost_delay * accumulated_balance

/ vacuum_cost_limit with a maximum of vacuum_cost_delay * 4.

243

Chapter 16. Server Run-time Environment

16.4.3.5. Background Writer

Beginning in PostgreSQL 8.0, there is a separate server process called thebackground writer, whose
sole function is to issue writes of “dirty” shared buffers. The intent is that server processes handling
user queries should seldom or never have to wait for a write to occur, because the background writer
will do it. This arrangement also reduces the performance penalty associated with checkpoints. The
background writer will continuously trickle out dirty pages to disk, so that only a few pages will
need to be forced out when checkpoint time arrives, instead of the storm of dirty-buffer writes that
formerly occurred at each checkpoint. However there is a net overall increase in I/O load, because
where a repeatedly-dirtied page might before have been written only once per checkpoint interval, the
background writer might write it several times in the same interval. In most situations a continuous
low load is preferable to periodic spikes, but the parameters discussed in this section can be used to
tune the behavior for local needs.

bgwriter_delay (integer)

Specifies the delay between activity rounds for the background writer. In each round the writer
issues writes for some number of dirty buffers (controllable by the following parameters).
The selected buffers will always be the least recently used ones among the currently dirty
buffers. It then sleeps forbgwriter_delay milliseconds, and repeats. The default value is
200. Note that on many systems, the effective resolution of sleep delays is 10 milliseconds;
settingbgwriter_delay to a value that is not a multiple of 10 may have the same results as
setting it to the next higher multiple of 10. This option can only be set at server start or in the
postgresql.conf file.

bgwriter_percent (integer)

In each round, no more than this percentage of the currently dirty buffers will be written (round-
ing up any fraction to the next whole number of buffers). The default value is 1. This option can
only be set at server start or in thepostgresql.conf file.

bgwriter_maxpages (integer)

In each round, no more than this many dirty buffers will be written. The default value is 100.
This option can only be set at server start or in thepostgresql.conf file.

Smaller values ofbgwriter_percent andbgwriter_maxpages reduce the extra I/O load caused
by the background writer, but leave more work to be done at checkpoint time. To reduce load spikes
at checkpoints, increase the values. To disable background writing entirely, setbgwriter_percent

and/orbgwriter_maxpages to zero.

16.4.4. Write Ahead Log

See alsoSection 25.2for details on WAL tuning.

16.4.4.1. Settings

fsync (boolean)

If this option is on, the PostgreSQL server will use thefsync() system call in several places
to make sure that updates are physically written to disk. This insures that a database cluster will
recover to a consistent state after an operating system or hardware crash.

244

Chapter 16. Server Run-time Environment

However, usingfsync() results in a performance penalty: when a transaction is committed,
PostgreSQL must wait for the operating system to flush the write-ahead log to disk. Whenfsync

is disabled, the operating system is allowed to do its best in buffering, ordering, and delaying
writes. This can result in significantly improved performance. However, if the system crashes,
the results of the last few committed transactions may be lost in part or whole. In the worst case,
unrecoverable data corruption may occur. (Crashes of the database server itself arenot a risk
factor here. Only an operating-system-level crash creates a risk of corruption.)

Due to the risks involved, there is no universally correct setting forfsync . Some administrators
always disablefsync , while others only turn it off for bulk loads, where there is a clear restart
point if something goes wrong, whereas some administrators always leavefsync enabled. The
default is to enablefsync , for maximum reliability. If you trust your operating system, your
hardware, and your utility company (or your battery backup), you can consider disablingfsync .

This option can only be set at server start or in thepostgresql.conf file.

wal_sync_method (string)

Method used for forcing WAL updates out to disk. Possible values arefsync (call fsync()

at each commit),fdatasync (call fdatasync() at each commit),open_sync (write WAL
files with open() optionO_SYNC), andopen_datasync (write WAL files with open() option
O_DSYNC). Not all of these choices are available on all platforms. Iffsync is off then this setting
is irrelevant. This option can only be set at server start or in thepostgresql.conf file.

wal_buffers (integer)

Number of disk-page buffers allocated in shared memory for WAL data. The default is 8. The
setting need only be large enough to hold the amount of WAL data generated by one typical
transaction. This option can only be set at server start.

commit_delay (integer)

Time delay between writing a commit record to the WAL buffer and flushing the buffer out
to disk, in microseconds. A nonzero delay can allow multiple transactions to be committed with
only onefsync() system call, if system load is high enough that additional transactions become
ready to commit within the given interval. But the delay is just wasted if no other transactions
become ready to commit. Therefore, the delay is only performed if at leastcommit_siblings

other transactions are active at the instant that a server process has written its commit record.
The default is zero (no delay).

commit_siblings (integer)

Minimum number of concurrent open transactions to require before performing the
commit_delay delay. A larger value makes it more probable that at least one other transaction
will become ready to commit during the delay interval. The default is five.

16.4.4.2. Checkpoints

checkpoint_segments (integer)

Maximum distance between automatic WAL checkpoints, in log file segments (each segment is
normally 16 megabytes). The default is three. This option can only be set at server start or in the
postgresql.conf file.

245

Chapter 16. Server Run-time Environment

checkpoint_timeout (integer)

Maximum time between automatic WAL checkpoints, in seconds. The default is 300 seconds.
This option can only be set at server start or in thepostgresql.conf file.

checkpoint_warning (integer)

Write a message to the server log if checkpoints caused by the filling of checkpoint segment
files happen closer together than this many seconds. The default is 30 seconds. Zero turns off the
warning.

16.4.4.3. Archiving

archive_command (string)

The shell command to execute to archive a completed segment of the WAL file series. If this is
an empty string (the default), WAL archiving is disabled. Any%pin the string is replaced by the
absolute path of the file to archive, and any%f is replaced by the file name only. Use%%to embed
an actual%character in the command. For more information seeSection 22.3.1. This option can
only be set at server start or in thepostgresql.conf file.

It is important for the command to return a zero exit status if and only if it succeeds. Examples:

archive_command = ’cp "%p" /mnt/server/archivedir/"%f"’
archive_command = ’copy "%p" /mnt/server/archivedir/"%f"’ # Windows

16.4.5. Query Planning

16.4.5.1. Planner Method Configuration

These configuration parameters provide a crude method of influencing the query plans chosen by the
query optimizer. If the default plan chosen by the optimizer for a particular query is not optimal, a
temporary solution may be found by using one of these configuration parameters to force the op-
timizer to choose a different plan. Turning one of these settings off permanently is seldom a good
idea, however. Better ways to improve the quality of the plans chosen by the optimizer include ad-
justing thePlanner Cost Constants, runningANALYZEmore frequently, increasing the value of the
default_statistics_targetconfiguration parameter, and increasing the amount of statistics collected for
specific columns usingALTER TABLE SET STATISTICS.

enable_hashagg (boolean)

Enables or disables the query planner’s use of hashed aggregation plan types. The default is on.

enable_hashjoin (boolean)

Enables or disables the query planner’s use of hash-join plan types. The default is on.

enable_indexscan (boolean)

Enables or disables the query planner’s use of index-scan plan types. The default is on.

enable_mergejoin (boolean)

Enables or disables the query planner’s use of merge-join plan types. The default is on.

246

Chapter 16. Server Run-time Environment

enable_nestloop (boolean)

Enables or disables the query planner’s use of nested-loop join plans. It’s not possible to suppress
nested-loop joins entirely, but turning this variable off discourages the planner from using one if
there are other methods available. The default is on.

enable_seqscan (boolean)

Enables or disables the query planner’s use of sequential scan plan types. It’s not possible to
suppress sequential scans entirely, but turning this variable off discourages the planner from
using one if there are other methods available. The default is on.

enable_sort (boolean)

Enables or disables the query planner’s use of explicit sort steps. It’s not possible to suppress
explicit sorts entirely, but turning this variable off discourages the planner from using one if
there are other methods available. The default is on.

enable_tidscan (boolean)

Enables or disables the query planner’s use of TID scan plan types. The default is on.

16.4.5.2. Planner Cost Constants

Note: Unfortunately, there is no well-defined method for determining ideal values for the family of
“cost” variables that appear below. You are encouraged to experiment and share your findings.

effective_cache_size (floating point)

Sets the planner’s assumption about the effective size of the disk cache that is available to a single
index scan. This is factored into estimates of the cost of using an index; a higher value makes it
more likely index scans will be used, a lower value makes it more likely sequential scans will
be used. When setting this parameter you should consider both PostgreSQL’s shared buffers and
the portion of the kernel’s disk cache that will be used for PostgreSQL data files. Also, take into
account the expected number of concurrent queries using different indexes, since they will have
to share the available space. This parameter has no effect on the size of shared memory allocated
by PostgreSQL, nor does it reserve kernel disk cache; it is used only for estimation purposes.
The value is measured in disk pages, which are normally 8192 bytes each. The default is 1000.

random_page_cost (floating point)

Sets the planner’s estimate of the cost of a nonsequentially fetched disk page. This is measured as
a multiple of the cost of a sequential page fetch. A higher value makes it more likely a sequential
scan will be used, a lower value makes it more likely an index scan will be used. The default is
four.

cpu_tuple_cost (floating point)

Sets the planner’s estimate of the cost of processing each row during a query. This is measured
as a fraction of the cost of a sequential page fetch. The default is 0.01.

cpu_index_tuple_cost (floating point)

Sets the planner’s estimate of the cost of processing each index row during an index scan. This
is measured as a fraction of the cost of a sequential page fetch. The default is 0.001.

247

Chapter 16. Server Run-time Environment

cpu_operator_cost (floating point)

Sets the planner’s estimate of the cost of processing each operator in aWHEREclause. This is
measured as a fraction of the cost of a sequential page fetch. The default is 0.0025.

16.4.5.3. Genetic Query Optimizer

geqo (boolean)

Enables or disables genetic query optimization, which is an algorithm that attempts to do query
planning without exhaustive searching. This is on by default. Thegeqo_threshold variable
provides a more granular way to disable GEQO for certain classes of queries.

geqo_threshold (integer)

Use genetic query optimization to plan queries with at least this manyFROMitems involved.
(Note that an outerJOIN construct counts as only oneFROMitem.) The default is 12. For simpler
queries it is usually best to use the deterministic, exhaustive planner, but for queries with many
tables the deterministic planner takes too long.

geqo_effort (integer)

Controls the trade off between planning time and query plan efficiency in GEQO. This variable
must be an integer in the range from 1 to 10. The default value is 5. Larger values increase the
time spent doing query planning, but also increase the likelihood that an efficient query plan will
be chosen.

geqo_effort doesn’t actually do anything directly; it is only used to compute the default values
for the other variables that influence GEQO behavior (described below). If you prefer, you can
set the other parameters by hand instead.

geqo_pool_size (integer)

Controls the pool size used by GEQO. The pool size is the number of individuals in the genetic
population. It must be at least two, and useful values are typically 100 to 1000. If it is set to zero
(the default setting) then a suitable default is chosen based ongeqo_effort and the number of
tables in the query.

geqo_generations (integer)

Controls the number of generations used by GEQO. Generations specifies the number of it-
erations of the algorithm. It must be at least one, and useful values are in the same range as
the pool size. If it is set to zero (the default setting) then a suitable default is chosen based on
geqo_pool_size .

geqo_selection_bias (floating point)

Controls the selection bias used by GEQO. The selection bias is the selective pressure within the
population. Values can be from 1.50 to 2.00; the latter is the default.

16.4.5.4. Other Planner Options

default_statistics_target (integer)

Sets the default statistics target for table columns that have not had a column-specific target set
via ALTER TABLE SET STATISTICS. Larger values increase the time needed to doANALYZE,

248

Chapter 16. Server Run-time Environment

but may improve the quality of the planner’s estimates. The default is 10. For more information
on the use of statistics by the PostgreSQL query planner, refer toSection 13.2.

from_collapse_limit (integer)

The planner will merge sub-queries into upper queries if the resultingFROMlist would have no
more than this many items. Smaller values reduce planning time but may yield inferior query
plans. The default is 8. It is usually wise to keep this less thangeqo_threshold.

join_collapse_limit (integer)

The planner will rewrite explicit innerJOIN constructs into lists ofFROMitems whenever a list
of no more than this many items in total would result. Prior to PostgreSQL 7.4, joins speci-
fied via theJOIN construct would never be reordered by the query planner. The query planner
has subsequently been improved so that inner joins written in this form can be reordered; this
configuration parameter controls the extent to which this reordering is performed.

Note: At present, the order of outer joins specified via the JOIN construct is never adjusted
by the query planner; therefore, join_collapse_limit has no effect on this behavior. The
planner may be improved to reorder some classes of outer joins in a future release of Post-
greSQL.

By default, this variable is set the same asfrom_collapse_limit , which is appropriate for
most uses. Setting it to 1 prevents any reordering of innerJOINs. Thus, the explicit join order
specified in the query will be the actual order in which the relations are joined. The query planner
does not always choose the optimal join order; advanced users may elect to temporarily set this
variable to 1, and then specify the join order they desire explicitly. Another consequence of
setting this variable to 1 is that the query planner will behave more like the PostgreSQL 7.3
query planner, which some users might find useful for backward compatibility reasons.

Setting this variable to a value between 1 andfrom_collapse_limit might be useful to trade
off planning time against the quality of the chosen plan (higher values produce better plans).

16.4.6. Error Reporting and Logging

16.4.6.1. Where to log

log_destination (string)

PostgreSQL supports several methods for logging server messages, including stderr and syslog.
On Windows, eventlog is also supported. Set this option to a list of desired log destinations
separated by commas. The default is to log to stderr only. This option can only be set at server
start or in thepostgresql.conf configuration file.

redirect_stderr (boolean)

This option allows messages sent to stderr to be captured and redirected into log files. This
option, in combination with logging to stderr, is often more useful than logging to syslog, since
some types of messages may not appear in syslog output (a common example is dynamic-linker
failure messages). This option can only be set at server start.

249

Chapter 16. Server Run-time Environment

log_directory (string)

Whenredirect_stderr is enabled, this option determines the directory in which log files will
be created. It may be specified as an absolute path, or relative to the cluster data directory. This
option can only be set at server start or in thepostgresql.conf configuration file.

log_filename (string)

When redirect_stderr is enabled, this option sets the file names of the created log files.
The value is treated as a strftime pattern, so%-escapes can be used to specify time-varying file
names. If no%-escapes are present, PostgreSQL will append the epoch of the new log file’s open
time. For example, iflog_filename wereserver_log , then the chosen file name would be
server_log.1093827753 for a log starting at Sun Aug 29 19:02:33 2004 MST. This option
can only be set at server start or in thepostgresql.conf configuration file.

log_rotation_age (integer)

Whenredirect_stderr is enabled, this option determines the maximum lifetime of an indi-
vidual log file. After this many minutes have elapsed, a new log file will be created. Set to zero
to disable time-based creation of new log files. This option can only be set at server start or in
thepostgresql.conf configuration file.

log_rotation_size (integer)

Whenredirect_stderr is enabled, this option determines the maximum size of an individual
log file. After this many kilobytes have been emitted into a log file, a new log file will be created.
Set to zero to disable size-based creation of new log files. This option can only be set at server
start or in thepostgresql.conf configuration file.

log_truncate_on_rotation (boolean)

Whenredirect_stderr is enabled, this option will cause PostgreSQL to truncate (overwrite),
rather than append to, any existing log file of the same name. However, truncation will occur
only when a new file is being opened due to time-based rotation, not during server startup or
size-based rotation. When false, pre-existing files will be appended to in all cases. For example,
using this option in combination with alog_filename like postgresql-%H.log would result
in generating twenty-four hourly log files and then cyclically overwriting them. This option can
only be set at server start or in thepostgresql.conf configuration file.

Example: To keep 7 days of logs, one log file per day namedserver_log.Mon ,
server_log.Tue , etc, and automatically overwrite last week’s log with this week’s log,
set log_filename to server_log.%a , log_truncate_on_rotation to true , and
log_rotation_age to 1440 .

Example: To keep 24 hours of logs, one log file per hour, but also rotate sooner if the log file
size exceeds 1GB, setlog_filename to server_log.%H%M , log_truncate_on_rotation

to true , log_rotation_age to 60, andlog_rotation_size to 1000000 . Including%Min
log_filename allows any size-driven rotations that may occur to select a filename different
from the hour’s initial filename.

syslog_facility (string)

When logging to syslog is enabled, this option determines the syslog “facility” to be used. You
may choose fromLOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, LOCAL7; the
default isLOCAL0. See also the documentation of your system’s syslog daemon. This option can
only be set at server start.

syslog_ident (string)

When logging to syslog is enabled, this option determines the program name used to identify
PostgreSQL messages in syslog logs. The default ispostgres . This option can only be set at

250

Chapter 16. Server Run-time Environment

server start.

16.4.6.2. When To Log

client_min_messages (string)

Controls which message levels are sent to the client. Valid values areDEBUG5, DEBUG4, DEBUG3,
DEBUG2, DEBUG1, LOG, NOTICE, WARNING, andERROR. Each level includes all the levels that
follow it. The later the level, the fewer messages are sent. The default isNOTICE. Note thatLOG

has a different rank here than inlog_min_messages .

log_min_messages (string)

Controls which message levels are written to the server log. Valid values areDEBUG5, DEBUG4,
DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING, ERROR, LOG, FATAL, and PANIC.
Each level includes all the levels that follow it. The later the level, the fewer messages are
sent to the log. The default isNOTICE. Note that LOG has a different rank here than in
client_min_messages . Only superusers can change this setting.

log_error_verbosity (string)

Controls the amount of detail written in the server log for each message that is logged. Valid
values areTERSE, DEFAULT, and VERBOSE, each adding more fields to displayed messages.
Only superusers can change this setting.

log_min_error_statement (string)

Controls whether or not the SQL statement that causes an error condition will also be recorded
in the server log. All SQL statements that cause an error of the specified level or higher are
logged. The default isPANIC (effectively turning this feature off for normal use). Valid values
areDEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING, ERROR, FATAL, and
PANIC. For example, if you set this toERRORthen all SQL statements causing errors, fatal errors,
or panics will be logged. Enabling this option can be helpful in tracking down the source of any
errors that appear in the server log. Only superusers can change this setting.

log_min_duration_statement (integer)

Sets a minimum statement execution time (in milliseconds) that causes a statement to be logged.
All SQL statements that run for the time specified or longer will be logged with their duration.
Setting this to zero will print all queries and their durations. Minus-one (the default) disables
the feature. For example, if you set it to250 then all SQL statements that run 250ms or longer
will be logged. Enabling this option can be useful in tracking down unoptimized queries in your
applications. Only superusers can change this setting.

silent_mode (boolean)

Runs the server silently. If this option is set, the server will automatically run in background
and any controlling terminals are disassociated (same effect aspostmaster ’s -S option). The
server’s standard output and standard error are redirected to/dev/null , so any messages sent
to them will be lost. Unless syslog logging is selected orredirect_stderr is enabled, using
this option is discouraged because it makes it impossible to see error messages.

Here is a list of the various message severity levels used in these settings:

251

Chapter 16. Server Run-time Environment

DEBUG[1-5]

Provides information for use by developers.

INFO

Provides information implicitly requested by the user, e.g., duringVACUUM VERBOSE.

NOTICE

Provides information that may be helpful to users, e.g., truncation of long identifiers and the
creation of indexes as part of primary keys.

WARNING

Provides warnings to the user, e.g.,COMMIToutside a transaction block.

ERROR

Reports an error that caused the current command to abort.

LOG

Reports information of interest to administrators, e.g., checkpoint activity.

FATAL

Reports an error that caused the current session to abort.

PANIC

Reports an error that caused all sessions to abort.

16.4.6.3. What To Log

debug_print_parse (boolean)
debug_print_rewritten (boolean)
debug_print_plan (boolean)
debug_pretty_print (boolean)

These options enable various debugging output to be emitted. For each executed query,
they print the resulting parse tree, the query rewriter output, or the execution plan.
debug_pretty_print indents these displays to produce a more readable but much longer
output format.client_min_messages or log_min_messages must beDEBUG1or lower to
actually send this output to the client or the server log, respectively. These options are off by
default.

log_connections (boolean)

This outputs a line to the server log detailing each successful connection. This is off by de-
fault, although it is probably very useful. This option can only be set at server start or in the
postgresql.conf configuration file.

log_disconnections (boolean)

This outputs a line in the server log similar tolog_connections but at session termination,
and includes the duration of the session. This is off by default. This option can only be set at
server start or in thepostgresql.conf configuration file.

252

Chapter 16. Server Run-time Environment

log_duration (boolean)

Causes the duration of every completed statement which satisfieslog_statement to be logged.
When using this option, if you are not using syslog, it is recommended that you log the PID or
session ID usinglog_line_prefix so that you can link the statement to the duration using the
process ID or session ID. The default is off. Only superusers can change this setting.

log_line_prefix (string)

This is aprintf -style string that is output at the beginning of each log line. The default is an
empty string. Each recognized escape is replaced as outlined below - anything else that looks
like an escape is ignored. Other characters are copied straight to the log line. Some escapes are
only recognised by session processes, and do not apply to background processes such as the
postmaster. Syslog produces its own time stamp and process ID information, so you probably do
not want to use those escapes if you are using syslog. This option can only be set at server start
or in thepostgresql.conf configuration file.

Escape Effect Session only

%u User name yes

%d Database name yes

%r Remote host name or IP
address, and remote port

yes

%p Process ID no

%t Time stamp no

%i Command tag: This is the
command that generated the
log line.

yes

%c Session ID: A unique identifier
for each session. It is 2 4-byte
hexadecimal numbers (without
leading zeros) separated by a
dot. The numbers are the
session start time and the
process ID, so this can also be
used as a space saving way of
printing these items.

yes

%l Number of the log line for each
process, starting at 1

no

%s Session start time stamp yes

%x Transaction ID yes

%q Does not produce any output,
but tells non-session processes
to stop at this point in the
string. Ignored by session
processes.

no

%% Literal % no

log_statement (string)

Controls which SQL statements are logged. Valid values arenone , ddl , mod, andall . ddl logs
all data definition commands likeCREATE, ALTER, andDROPcommands.mod logs allddl state-

253

Chapter 16. Server Run-time Environment

ments, plusINSERT, UPDATE, DELETE, TRUNCATE, andCOPY FROM. PREPAREandEXPLAIN

ANALYZEstatements are also logged if their contained command is of an appropriate type.

The default isnone . Only superusers can change this setting.

Note: The EXECUTEstatement is not considered a ddl or mod statement. When it is logged,
only the name of the prepared statement is reported, not the actual prepared statement.

When a function is defined in the PL/pgSQLserver-side language, any queries executed
by the function will only be logged the first time that the function is invoked in a particular
session. This is because PL/pgSQL keeps a cache of the query plans produced for the SQL
statements in the function.

log_hostname (boolean)

By default, connection log messages only show the IP address of the connecting host. Turning
on this option causes logging of the host name as well. Note that depending on your host name
resolution setup this might impose a non-negligible performance penalty. This option can only
be set at server start or in thepostgresql.conf file.

16.4.7. Runtime Statistics

16.4.7.1. Statistics Monitoring

log_statement_stats (boolean)
log_parser_stats (boolean)
log_planner_stats (boolean)
log_executor_stats (boolean)

For each query, write performance statistics of the respective module to the server log. This is a
crude profiling instrument.log_statement_stats reports total statement statistics, while the
others report per-module statistics.log_statement_stats cannot be enabled together with
any of the per-module options. All of these options are disabled by default. Only superusers can
change these settings.

16.4.7.2. Query and Index Statistics Collector

stats_start_collector (boolean)

Controls whether the server should start the statistics-collection subprocess. This is on by default,
but may be turned off if you know you have no interest in collecting statistics. This option can
only be set at server start.

stats_command_string (boolean)

Enables the collection of statistics on the currently executing command of each session, along
with the time at which that command began execution. This option is off by default. Note that
even when enabled, this information is not visible to all users, only to superusers and the user
owning the session being reported on; so it should not represent a security risk. This data can be
accessed via thepg_stat_activity system view; refer toChapter 23for more information.

254

Chapter 16. Server Run-time Environment

stats_block_level (boolean)

Enables the collection of block-level statistics on database activity. This option is disabled by
default. If this option is enabled, the data that is produced can be accessed via thepg_stat and
pg_statio family of system views; refer toChapter 23for more information.

stats_row_level (boolean)

Enables the collection of row-level statistics on database activity. This option is disabled by
default. If this option is enabled, the data that is produced can be accessed via thepg_stat and
pg_statio family of system views; refer toChapter 23for more information.

stats_reset_on_server_start (boolean)

If on, collected statistics are zeroed out whenever the server is restarted. If off, statistics are
accumulated across server restarts. The default is on. This option can only be set at server start.

16.4.8. Client Connection Defaults

16.4.8.1. Statement Behavior

search_path (string)

This variable specifies the order in which schemas are searched when an object (table, data
type, function, etc.) is referenced by a simple name with no schema component. When there are
objects of identical names in different schemas, the one found first in the search path is used. An
object that is not in any of the schemas in the search path can only be referenced by specifying
its containing schema with a qualified (dotted) name.

The value forsearch_path has to be a comma-separated list of schema names. If one of the list
items is the special value$user , then the schema having the name returned bySESSION_USER

is substituted, if there is such a schema. (If not,$user is ignored.)

The system catalog schema,pg_catalog , is always searched, whether it is mentioned in the
path or not. If it is mentioned in the path then it will be searched in the specified order. If
pg_catalog is not in the path then it will be searchedbeforesearching any of the path items.
It should also be noted that the temporary-table schema,pg_temp_ nnn , is implicitly searched
before any of these.

When objects are created without specifying a particular target schema, they will be placed in
the first schema listed in the search path. An error is reported if the search path is empty.

The default value for this parameter is’$user, public’ (where the second part will be ig-
nored if there is no schema namedpublic). This supports shared use of a database (where no
users have private schemas, and all share use ofpublic), private per-user schemas, and combi-
nations of these. Other effects can be obtained by altering the default search path setting, either
globally or per-user.

The current effective value of the search path can be examined via the SQL function
current_schemas() . This is not quite the same as examining the value ofsearch_path ,
since current_schemas() shows how the requests appearing insearch_path were
resolved.

For more information on schema handling, seeSection 5.8.

255

Chapter 16. Server Run-time Environment

default_tablespace (string)

This variable specifies the default tablespace in which to create objects (tables and indexes) when
a CREATEcommand does not explicitly specify a tablespace.

The value is either the name of a tablespace, or an empty string to specify using the default ta-
blespace of the current database. If the value does not match the name of any existing tablespace,
PostgreSQL will automatically use the default tablespace of the current database.

For more information on tablespaces, seeSection 18.6.

check_function_bodies (boolean)

This parameter is normally true. When set to false, it disables validation of the function body
string duringCREATE FUNCTION. Disabling validation is occasionally useful to avoid prob-
lems such as forward references when restoring function definitions from a dump.

default_transaction_isolation (string)

Each SQL transaction has an isolation level, which can be either “read uncommitted”, “read
committed”, “repeatable read”, or “serializable”. This parameter controls the default isolation
level of each new transaction. The default is “read committed”.

ConsultChapter 12andSET TRANSACTIONfor more information.

default_transaction_read_only (boolean)

A read-only SQL transaction cannot alter non-temporary tables. This parameter controls the
default read-only status of each new transaction. The default is false (read/write).

ConsultSET TRANSACTIONfor more information.

statement_timeout (integer)

Abort any statement that takes over the specified number of milliseconds. A value of zero (the
default) turns off the limitation.

16.4.8.2. Locale and Formatting

DateStyle (string)

Sets the display format for date and time values, as well as the rules for interpreting ambiguous
date input values. For historical reasons, this variable contains two independent components: the
output format specification (ISO, Postgres , SQL, or German) and the input/output specifica-
tion for year/month/day ordering (DMY, MDY, or YMD). These can be set separately or together.
The keywordsEuro and European are synonyms forDMY; the keywordsUS, NonEuro , and
NonEuropean are synonyms forMDY. SeeSection 8.5for more information. The default isISO,

MDY.

timezone (string)

Sets the time zone for displaying and interpreting time stamps. The default is ’unknown’, which
means to use whatever the system environment specifies as the time zone. SeeSection 8.5for
more information.

australian_timezones (boolean)

If set to true,ACST, CST, EST, andSAT are interpreted as Australian time zones rather than as
North/South American time zones and Saturday. The default is false.

256

Chapter 16. Server Run-time Environment

extra_float_digits (integer)

This parameter adjusts the number of digits displayed for floating-point values, including
float4 , float8 , and geometric data types. The parameter value is added to the standard
number of digits (FLT_DIG or DBL_DIG as appropriate). The value can be set as high as 2, to
include partially-significant digits; this is especially useful for dumping float data that needs to
be restored exactly. Or it can be set negative to suppress unwanted digits.

client_encoding (string)

Sets the client-side encoding (character set). The default is to use the database encoding.

lc_messages (string)

Sets the language in which messages are displayed. Acceptable values are system-dependent; see
Section 20.1for more information. If this variable is set to the empty string (which is the default)
then the value is inherited from the execution environment of the server in a system-dependent
way.

On some systems, this locale category does not exist. Setting this variable will still work, but
there will be no effect. Also, there is a chance that no translated messages for the desired language
exist. In that case you will continue to see the English messages.

lc_monetary (string)

Sets the locale to use for formatting monetary amounts, for example with theto_char family
of functions. Acceptable values are system-dependent; seeSection 20.1for more information. If
this variable is set to the empty string (which is the default) then the value is inherited from the
execution environment of the server in a system-dependent way.

lc_numeric (string)

Sets the locale to use for formatting numbers, for example with theto_char family of functions.
Acceptable values are system-dependent; seeSection 20.1for more information. If this variable
is set to the empty string (which is the default) then the value is inherited from the execution
environment of the server in a system-dependent way.

lc_time (string)

Sets the locale to use for formatting date and time values. (Currently, this setting does nothing,
but it may in the future.) Acceptable values are system-dependent; seeSection 20.1for more
information. If this variable is set to the empty string (which is the default) then the value is
inherited from the execution environment of the server in a system-dependent way.

16.4.8.3. Other Defaults

explain_pretty_print (boolean)

Determines whetherEXPLAIN VERBOSEuses the indented or non-indented format for display-
ing detailed query-tree dumps. The default is on.

dynamic_library_path (string)

If a dynamically loadable module needs to be opened and the file name specified in theCREATE

FUNCTIONor LOADcommand does not have a directory component (i.e. the name does not
contain a slash), the system will search this path for the required file.

The value fordynamic_library_path has to be a list of absolute directory paths separated
by colons (or semi-colons on Windows). If a list element starts with the special string$libdir ,

257

Chapter 16. Server Run-time Environment

the compiled-in PostgreSQL package library directory is substituted for$libdir . This is where
the modules provided by the standard PostgreSQL distribution are installed. (Usepg_config

--pkglibdir to find out the name of this directory.) For example:

dynamic_library_path = ’/usr/local/lib/postgresql:/home/my_project/lib:$libdir’

or, in a Windows environment:

dynamic_library_path = ’C:\tools\postgresql;H:\my_project\lib;$libdir’

The default value for this parameter is’$libdir’ . If the value is set to an empty string, the
automatic path search is turned off.

This parameter can be changed at run time by superusers, but a setting done that way will only
persist until the end of the client connection, so this method should be reserved for development
purposes. The recommended way to set this parameter is in thepostgresql.conf configura-
tion file.

16.4.9. Lock Management

deadlock_timeout (integer)

This is the amount of time, in milliseconds, to wait on a lock before checking to see if there
is a deadlock condition. The check for deadlock is relatively slow, so the server doesn’t run it
every time it waits for a lock. We (optimistically?) assume that deadlocks are not common in
production applications and just wait on the lock for a while before starting the check for a
deadlock. Increasing this value reduces the amount of time wasted in needless deadlock checks,
but slows down reporting of real deadlock errors. The default is 1000 (i.e., one second), which
is probably about the smallest value you would want in practice. On a heavily loaded server you
might want to raise it. Ideally the setting should exceed your typical transaction time, so as to
improve the odds that a lock will be released before the waiter decides to check for deadlock.

max_locks_per_transaction (integer)

The shared lock table is sized on the assumption that at mostmax_locks_per_transaction

* max_connections distinct objects will need to be locked at any one time. (Thus, this pa-
rameter’s name may be confusing: it is not a hard limit on the number of locks taken by any
one transaction, but rather a maximum average value.) The default, 64, has historically proven
sufficient, but you might need to raise this value if you have clients that touch many different
tables in a single transaction. This option can only be set at server start.

16.4.10. Version and Platform Compatibility

16.4.10.1. Previous PostgreSQL Versions

add_missing_from (boolean)

Whentrue , tables that are referenced by a query will be automatically added to theFROMclause
if not already present. The default istrue for compatibility with previous releases of Post-
greSQL. However, this behavior is not SQL-standard, and many people dislike it because it can

258

Chapter 16. Server Run-time Environment

mask mistakes (such as referencing a table where you should have referenced its alias). Set to
false for the SQL-standard behavior of rejecting references to tables that are not listed inFROM.

regex_flavor (string)

The regular expression “flavor” can be set toadvanced , extended , or basic . The default is
advanced . Theextended setting may be useful for exact backwards compatibility with pre-7.4
releases of PostgreSQL. SeeSection 9.7.3.1for details.

sql_inheritance (boolean)

This controls the inheritance semantics, in particular whether subtables are included by various
commands by default. They were not included in versions prior to 7.1. If you need the old
behavior you can set this variable to off, but in the long run you are encouraged to change your
applications to use theONLYkey word to exclude subtables. SeeSection 5.5for more information
about inheritance.

default_with_oids (boolean)

This controls whetherCREATE TABLEand CREATE TABLE ASinclude an OID column in
newly-created tables, if neitherWITH OIDSnor WITHOUT OIDSis specified. It also determines
whether OIDs will be included in tables created bySELECT INTO. In PostgreSQL 8.0.0
default_with_oids defaults to true. This is also the behavior of previous versions of
PostgreSQL. However, assuming that tables will contain OIDs by default is not encouraged.
This option will probably default to false in a future release of PostgreSQL.

To ease compatibility with applications that make use of OIDs, this option should left enabled.
To ease compatibility with future versions of PostgreSQL, this option should be disabled, and
applications that require OIDs on certain tables should explicitly specifyWITH OIDSwhen those
tables are created.

16.4.10.2. Platform and Client Compatibility

transform_null_equals (boolean)

When turned on, expressions of the formexpr = NULL (or NULL = expr) are treated asexpr

IS NULL , that is, they return true ifexpr evaluates to the null value, and false otherwise.
The correct SQL-spec-compliant behavior ofexpr = NULL is to always return null (unknown).
Therefore this option defaults to off.

However, filtered forms in Microsoft Access generate queries that appear to useexpr = NULL

to test for null values, so if you use that interface to access the database you might want to
turn this option on. Since expressions of the formexpr = NULL always return the null value
(using the correct interpretation) they are not very useful and do not appear often in normal
applications, so this option does little harm in practice. But new users are frequently confused
about the semantics of expressions involving null values, so this option is not on by default.

Note that this option only affects the exact form= NULL, not other comparison operators or other
expressions that are computationally equivalent to some expression involving the equals operator
(such asIN). Thus, this option is not a general fix for bad programming.

Refer toSection 9.2for related information.

259

Chapter 16. Server Run-time Environment

16.4.11. Preset Options

The following “parameters” are read-only, and are determined when PostgreSQL is compiled or when
it is installed. As such, they have been excluded from the samplepostgresql.conf file. These
options report various aspects of PostgreSQL behavior that may be of interest to certain applications,
particularly administrative front-ends.

block_size (integer)

Shows the size of a disk block. It is determined by the value ofBLCKSZwhen building the
server. The default value is 8192 bytes. The meaning of some configuration variables (such as
shared_buffers) is influenced byblock_size . SeeSection 16.4.3for information.

integer_datetimes (boolean)

Shows whether PostgreSQL was built with support for 64-bit-integer dates and times. It is set
by configuring with--enable-integer-datetimes when building PostgreSQL. The default
value isoff .

lc_collate (string)

Shows the locale in which sorting of textual data is done. SeeSection 20.1for more information.
The value is determined when the database cluster is initialized.

lc_ctype (string)

Shows the locale that determines character classifications. SeeSection 20.1for more informa-
tion. The value is determined when the database cluster is initialized. Ordinarily this will be the
same aslc_collate , but for special applications it might be set differently.

max_function_args (integer)

Shows the maximum number of function arguments. It is determined by the value of
FUNC_MAX_ARGSwhen building the server. The default value is 32.

max_identifier_length (integer)

Shows the maximum identifier length. It is determined as one less than the value of
NAMEDATALENwhen building the server. The default value ofNAMEDATALENis 64; therefore
the defaultmax_identifier_length is 63.

max_index_keys (integer)

Shows the maximum number of index keys. It is determined by the value ofINDEX_MAX_KEYS

when building the server. The default value is 32.

server_encoding (string)

Shows the database encoding (character set). It is determined when the database is created. Or-
dinarily, clients need only be concerned with the value ofclient_encoding.

server_version (string)

Shows the version number of the server. It is determined by the value ofPG_VERSIONwhen
building the server.

16.4.12. Customized Options

This feature was designed to allow options not normally known to PostgreSQL to be added by add-on
modules (such as procedural languages). This allows add-on modules to be configured in the standard
ways.

260

Chapter 16. Server Run-time Environment

custom_variable_classes (string)

This variable specifies one or several class names to be used for custom variables, in the form of a
comma-separated list. A custom variable is a variable not normally known to PostgreSQL proper
but used by some add-on module. Such variables must have names consisting of a class name, a
dot, and a variable name.custom_variable_classes specifies all the class names in use in
a particular installation. This option can only be set at server start or in thepostgresql.conf

configuration file.

The difficulty with setting custom variables inpostgresql.conf is that the file must be read before
add-on modules have been loaded, and so custom variables would ordinarily be rejected as unknown.
Whencustom_variable_classes is set, the server will accept definitions of arbitrary variables
within each specified class. These variables will be treated as placeholders and will have no function
until the module that defines them is loaded. When a module for a specific class is loaded, it will add
the proper variable definitions for its class name, convert any placeholder values according to those
definitions, and issue warnings for any placeholders of its class that remain (which presumably would
be misspelled configuration variables).

Here is an example of whatpostgresql.conf might contain when using custom variables:

custom_variable_classes = ’plr,pljava’
plr.path = ’/usr/lib/R’
pljava.foo = 1
plruby.bar = true # generates error, unknown class name

16.4.13. Developer Options

The following options are intended for work on the PostgreSQL source, and in some cases to assist
with recovery of severely damaged databases. There should be no reason to use them in a production
database setup. As such, they have been excluded from the samplepostgresql.conf file. Note that
many of these options require special source compilation flags to work at all.

debug_assertions (boolean)

Turns on various assertion checks. This is a debugging aid. If you are experiencing strange
problems or crashes you might want to turn this on, as it might expose programming mistakes. To
use this option, the macroUSE_ASSERT_CHECKINGmust be defined when PostgreSQL is built
(accomplished by theconfigure option--enable-cassert). Note thatdebug_assertions

defaults to on if PostgreSQL has been built with assertions enabled.

debug_shared_buffers (integer)

Number of seconds between ARC reports. If set greater than zero, emit ARC statistics to the log
every so many seconds. Zero (the default) disables reporting.

pre_auth_delay (integer)

If nonzero, a delay of this many seconds occurs just after a new server process is forked, before
it conducts the authentication process. This is intended to give an opportunity to attach to the
server process with a debugger to trace down misbehavior in authentication.

261

Chapter 16. Server Run-time Environment

trace_notify (boolean)

Generates a great amount of debugging output for theLISTEN and NOTIFY commands.
client_min_messagesor log_min_messagesmust beDEBUG1or lower to send this output to the
client or server log, respectively.

trace_locks (boolean)
trace_lwlocks (boolean)
trace_userlocks (boolean)
trace_lock_oidmin (boolean)
trace_lock_table (boolean)
debug_deadlocks (boolean)
log_btree_build_stats (boolean)

Various other code tracing and debugging options.

wal_debug (boolean)

If true, emit WAL-related debugging output. This option is only available if theWAL_DEBUG

macro was defined when PostgreSQL was compiled.

zero_damaged_pages (boolean)

Detection of a damaged page header normally causes PostgreSQL to report an error, aborting the
current command. Settingzero_damaged_pages to true causes the system to instead report a
warning, zero out the damaged page, and continue processing. This behaviorwill destroy data,
namely all the rows on the damaged page. But it allows you to get past the error and retrieve
rows from any undamaged pages that may be present in the table. So it is useful for recovering
data if corruption has occurred due to hardware or software error. You should generally not set
this true until you have given up hope of recovering data from the damaged page(s) of a table.
The default setting is off, and it can only be changed by a superuser.

16.4.14. Short Options

For convenience there are also single letter command-line option switches available for some param-
eters. They are described inTable 16-1.

Table 16-1. Short option key

Short option Equivalent

-B x shared_buffers = x

-d x log_min_messages = DEBUG x

-F fsync = off

-h x listen_addresses = x

-i listen_addresses = ’*’

-k x unix_socket_directory = x

-l ssl = on

-N x max_connections = x

-p x port = x

262

Chapter 16. Server Run-time Environment

Short option Equivalent

-fi , -fh , -fm , -fn , -fs , -ft a enable_indexscan = off ,
enable_hashjoin = off ,
enable_mergejoin = off ,
enable_nestloop = off , enable_seqscan

= off , enable_tidscan = off

-s a log_statement_stats = on

-S x a work_mem = x

-tpa , -tpl , -te a log_parser_stats = on ,
log_planner_stats = on ,
log_executor_stats = on

Notes:a. For historical reasons, these options must be passed to the individual server process via the-o postmaster option, for example, $ postmaster -o ’-S 1024 -s’ or via PGOPTIONSfrom the client side, as explained above.

16.5. Managing Kernel Resources
A large PostgreSQL installation can quickly exhaust various operating system resource limits. (On
some systems, the factory defaults are so low that you don’t even need a really “large” installation.)
If you have encountered this kind of problem, keep reading.

16.5.1. Shared Memory and Semaphores

Shared memory and semaphores are collectively referred to as “System V IPC” (together with mes-
sage queues, which are not relevant for PostgreSQL). Almost all modern operating systems provide
these features, but not all of them have them turned on or sufficiently sized by default, especially sys-
tems with BSD heritage. (For the QNX and BeOS ports, PostgreSQL provides its own replacement
implementation of these facilities.)

The complete lack of these facilities is usually manifested by an Illegal system call error upon server
start. In that case there’s nothing left to do but to reconfigure your kernel. PostgreSQL won’t work
without them.

When PostgreSQL exceeds one of the various hard IPC limits, the server will refuse to start and
should leave an instructive error message describing the problem encountered and what to do about
it. (See alsoSection 16.3.1.) The relevant kernel parameters are named consistently across different
systems;Table 16-2gives an overview. The methods to set them, however, vary. Suggestions for some
platforms are given below. Be warned that it is often necessary to reboot your machine, and possibly
even recompile the kernel, to change these settings.

Table 16-2. System V IPC parameters

Name Description Reasonable values

SHMMAX Maximum size of shared
memory segment (bytes)

250 kB + 8.2 kB *
shared_buffers+ 14.2 kB *
max_connectionsup to infinity

SHMMIN Minimum size of shared memory
segment (bytes)

1

263

Chapter 16. Server Run-time Environment

Name Description Reasonable values

SHMALL Total amount of shared memory
available (bytes or pages)

if bytes, same asSHMMAX; if
pages,
ceil(SHMMAX/PAGE_SIZE)

SHMSEG Maximum number of shared
memory segments per process

only 1 segment is needed, but the
default is much higher

SHMMNI Maximum number of shared
memory segments system-wide

like SHMSEGplus room for other
applications

SEMMNI Maximum number of semaphore
identifiers (i.e., sets)

at least
ceil(max_connections /

16)

SEMMNS Maximum number of
semaphores system-wide

ceil(max_connections /

16) * 17 plus room for other
applications

SEMMSL Maximum number of
semaphores per set

at least 17

SEMMAP Number of entries in semaphore
map

see text

SEMVMX Maximum value of semaphore at least 1000 (The default is often
32767, don’t change unless
forced to)

The most important shared memory parameter isSHMMAX, the maximum size, in bytes, of a shared
memory segment. If you get an error message fromshmget like Invalid argument, it is likely that
this limit has been exceeded. The size of the required shared memory segment varies both with the
number of requested buffers (-B option) and the number of allowed connections (-N option), although
the former is the most significant. (You can, as a temporary solution, lower these settings to eliminate
the failure.) As a rough approximation, you can estimate the required segment size as suggested in
Table 16-2. Any error message you might get will contain the size of the failed allocation request.

Some systems also have a limit on the total amount of shared memory in the system (SHMALL). Make
sure this is large enough for PostgreSQL plus any other applications that are using shared memory
segments. (Caution:SHMALLis measured in pages rather than bytes on many systems.)

Less likely to cause problems is the minimum size for shared memory segments (SHMMIN), which
should be at most approximately 256 kB for PostgreSQL (it is usually just 1). The maximum number
of segments system-wide (SHMMNI) or per-process (SHMSEG) are unlikely to cause a problem unless
your system has them set to zero.

PostgreSQL uses one semaphore per allowed connection (-N option), in sets of 16. Each such set will
also contain a 17th semaphore which contains a “magic number”, to detect collision with semaphore
sets used by other applications. The maximum number of semaphores in the system is set bySEMMNS,
which consequently must be at least as high asmax_connections plus one extra for each 16 al-
lowed connections (see the formula inTable 16-2). The parameterSEMMNIdetermines the limit on
the number of semaphore sets that can exist on the system at one time. Hence this parameter must be
at leastceil(max_connections / 16) . Lowering the number of allowed connections is a tempo-
rary workaround for failures, which are usually confusingly worded No space left on device, from the
functionsemget .

In some cases it might also be necessary to increaseSEMMAPto be at least on the order ofSEMMNS.
This parameter defines the size of the semaphore resource map, in which each contiguous block of
available semaphores needs an entry. When a semaphore set is freed it is either added to an existing

264

Chapter 16. Server Run-time Environment

entry that is adjacent to the freed block or it is registered under a new map entry. If the map is full, the
freed semaphores get lost (until reboot). Fragmentation of the semaphore space could over time lead
to fewer available semaphores than there should be.

TheSEMMSLparameter, which determines how many semaphores can be in a set, must be at least 17
for PostgreSQL.

Various other settings related to “semaphore undo”, such asSEMMNUandSEMUME, are not of concern
for PostgreSQL.

BSD/OS

Shared Memory. By default, only 4 MB of shared memory is supported. Keep in mind that
shared memory is not pageable; it is locked in RAM. To increase the amount of shared memory
supported by your system, add something like the following to your kernel configuration file:

options "SHMALL=8192"
options "SHMMAX=\(SHMALL*PAGE_SIZE\)"

SHMALLis measured in 4KB pages, so a value of 1024 represents 4 MB of shared memory.
Therefore the above increases the maximum shared memory area to 32 MB. For those running
4.3 or later, you will probably also need to increaseKERNEL_VIRTUAL_MBabove the default
248 . Once all changes have been made, recompile the kernel, and reboot.

For those running 4.0 and earlier releases, usebpatch to find thesysptsize value in the current
kernel. This is computed dynamically at boot time.

$ bpatch -r sysptsize
0x9 = 9

Next, addSYSPTSIZE as a hard-coded value in the kernel configuration file. Increase the value
you found usingbpatch . Add 1 for every additional 4 MB of shared memory you desire.

options "SYSPTSIZE=16"

sysptsize cannot be changed bysysctl .

Semaphores.You will probably want to increase the number of semaphores as well; the default
system total of 60 will only allow about 50 PostgreSQL connections. Set the values you want in
your kernel configuration file, e.g.:

options "SEMMNI=40"
options "SEMMNS=240"

FreeBSD
NetBSD
OpenBSD

The optionsSYSVSHMandSYSVSEMneed to be enabled when the kernel is compiled. (They are
by default.) The maximum size of shared memory is determined by the optionSHMMAXPGS(in
pages). The following shows an example of how to set the various parameters:

options SYSVSHM
options SHMMAXPGS=4096
options SHMSEG=256

options SYSVSEM
options SEMMNI=256
options SEMMNS=512
options SEMMNU=256
options SEMMAP=256

(On NetBSD and OpenBSD the key word is actuallyoption singular.)

265

Chapter 16. Server Run-time Environment

You might also want to configure your kernel to lock shared memory into RAM and prevent it
from being paged out to swap. Use thesysctl settingkern.ipc.shm_use_phys .

HP-UX

The default settings tend to suffice for normal installations. On HP-UX 10, the factory default
for SEMMNSis 128, which might be too low for larger database sites.

IPC parameters can be set in the System Administration Manager (SAM) underKernel
Configuration−→Configurable Parameters. Hit Create A New Kernel when you’re done.

Linux

The default shared memory limit (bothSHMMAXandSHMALL) is 32 MB in 2.2 kernels, but it can
be changed in theproc file system (without reboot). For example, to allow 128 MB:

$ echo 134217728 >/proc/sys/kernel/shmall
$ echo 134217728 >/proc/sys/kernel/shmmax

You could put these commands into a script run at boot-time.

Alternatively, you can usesysctl , if available, to control these parameters. Look for a file called
/etc/sysctl.conf and add lines like the following to it:

kernel.shmall = 134217728
kernel.shmmax = 134217728

This file is usually processed at boot time, butsysctl can also be called explicitly later.

Other parameters are sufficiently sized for any application. If you want to see
for yourself look in /usr/src/linux/include/asm- xxx /shmparam.h and
/usr/src/linux/include/linux/sem.h .

MacOS X

In OS X 10.2 and earlier, edit the file/System/Library/StartupItems/SystemTuning/SystemTuning

and change the values in the following commands:

sysctl -w kern.sysv.shmmax
sysctl -w kern.sysv.shmmin
sysctl -w kern.sysv.shmmni
sysctl -w kern.sysv.shmseg
sysctl -w kern.sysv.shmall

In OS X 10.3, these commands have been moved to/etc/rc and must be edited there. You’ll
need to reboot to make changes take effect. Note that/etc/rc is usually overwritten by OS X
updates (such as 10.3.6 to 10.3.7) so you should expect to have to redo your editing after each
update.

SHMALLis measured in 4KB pages on this platform.

SCO OpenServer

In the default configuration, only 512 kB of shared memory per segment is allowed, which
is about enough for-B 24 -N 12 . To increase the setting, first change to the directory
/etc/conf/cf.d . To display the current value ofSHMMAX, run

./configure -y SHMMAX

To set a new value forSHMMAX, run

./configure SHMMAX= value

wherevalue is the new value you want to use (in bytes). After settingSHMMAX, rebuild the
kernel:

./link_unix

266

Chapter 16. Server Run-time Environment

and reboot.

AIX

At least as of version 5.1, it should not be necessary to do any special configuration for such
parameters asSHMMAX, as it appears this is configured to allow all memory to be used as shared
memory. That is the sort of configuration commonly used for other databases such as DB/2.

It may, however, be necessary to modify the globalulimit information in
/etc/security/limits , as the default hard limits for file sizes (fsize) and numbers of files
(nofiles) may be too low.

Solaris

At least in version 2.6, the default maximum size of a shared memory segments is too low for
PostgreSQL. The relevant settings can be changed in/etc/system , for example:

set shmsys:shminfo_shmmax=0x2000000
set shmsys:shminfo_shmmin=1
set shmsys:shminfo_shmmni=256
set shmsys:shminfo_shmseg=256

set semsys:seminfo_semmap=256
set semsys:seminfo_semmni=512
set semsys:seminfo_semmns=512
set semsys:seminfo_semmsl=32

You need to reboot for the changes to take effect.

See also http://sunsite.uakom.sk/sunworldonline/swol-09-1997/swol-09-insidesolaris.html for
information on shared memory under Solaris.

UnixWare

On UnixWare 7, the maximum size for shared memory segments is 512 kB in the default con-
figuration. This is enough for about-B 24 -N 12 . To display the current value ofSHMMAX,
run

/etc/conf/bin/idtune -g SHMMAX

which displays the current, default, minimum, and maximum values. To set a new value for
SHMMAX, run

/etc/conf/bin/idtune SHMMAX value

wherevalue is the new value you want to use (in bytes). After settingSHMMAX, rebuild the
kernel:

/etc/conf/bin/idbuild -B

and reboot.

16.5.2. Resource Limits

Unix-like operating systems enforce various kinds of resource limits that might interfere with the
operation of your PostgreSQL server. Of particular importance are limits on the number of processes
per user, the number of open files per process, and the amount of memory available to each process.
Each of these have a “hard” and a “soft” limit. The soft limit is what actually counts but it can be
changed by the user up to the hard limit. The hard limit can only be changed by the root user. The
system callsetrlimit is responsible for setting these parameters. The shell’s built-in command
ulimit (Bourne shells) orlimit (csh) is used to control the resource limits from the command line.

267

Chapter 16. Server Run-time Environment

On BSD-derived systems the file/etc/login.conf controls the various resource limits set during
login. See the operating system documentation for details. The relevant parameters aremaxproc ,
openfiles , anddatasize . For example:

default:\
...

:datasize-cur=256M:\
:maxproc-cur=256:\
:openfiles-cur=256:\

...

(-cur is the soft limit. Append-max to set the hard limit.)

Kernels can also have system-wide limits on some resources.

• On Linux /proc/sys/fs/file-max determines the maximum number of open files that the ker-
nel will support. It can be changed by writing a different number into the file or by adding an as-
signment in/etc/sysctl.conf . The maximum limit of files per process is fixed at the time the
kernel is compiled; see/usr/src/linux/Documentation/proc.txt for more information.

The PostgreSQL server uses one process per connection so you should provide for at least as many
processes as allowed connections, in addition to what you need for the rest of your system. This is
usually not a problem but if you run several servers on one machine things might get tight.

The factory default limit on open files is often set to “socially friendly” values that allow many users
to coexist on a machine without using an inappropriate fraction of the system resources. If you run
many servers on a machine this is perhaps what you want, but on dedicated servers you may want to
raise this limit.

On the other side of the coin, some systems allow individual processes to open large numbers of
files; if more than a few processes do so then the system-wide limit can easily be exceeded. If you
find this happening, and you do not want to alter the system-wide limit, you can set PostgreSQL’s
max_files_per_processconfiguration parameter to limit the consumption of open files.

16.5.3. Linux Memory Overcommit

In Linux 2.4 and later, the default virtual memory behavior is not optimal for PostgreSQL. Because of
the way that the kernel implements memory overcommit, the kernel may terminate the PostgreSQL
server (thepostmaster process) if the memory demands of another process cause the system to run
out of virtual memory.

If this happens, you will see a kernel message that looks like this (consult your system documentation
and configuration on where to look for such a message):

Out of Memory: Killed process 12345 (postmaster).

This indicates that thepostmaster process has been terminated due to memory pressure. Although
existing database connections will continue to function normally, no new connections will be ac-
cepted. To recover, PostgreSQL will need to be restarted.

One way to avoid this problem is to run PostgreSQL on a machine where you can be sure that other
processes will not run the machine out of memory.

On Linux 2.6 and later, a better solution is to modify the kernel’s behavior so that it will not “over-
commit” memory. This is done by selecting strict overcommit mode viasysctl :

268

Chapter 16. Server Run-time Environment

sysctl -w vm.overcommit_memory=2

or placing an equivalent entry in/etc/sysctl.conf . You may also wish to modify the
related setting vm.overcommit_ratio . For details see the kernel documentation file
Documentation/vm/overcommit-accounting .

Some vendors’ Linux 2.4 kernels are reported to have early versions of the 2.6 overcommitsysctl

parameter. However, settingvm.overcommit_memory to 2 on a kernel that does not have the relevant
code will make things worse not better. It is recommended that you inspect the actual kernel source
code (see the functionvm_enough_memory in the file mm/mmap.c) to verify what is supported in
your copy before you try this in a 2.4 installation. The presence of theovercommit-accounting

documentation file shouldnot be taken as evidence that the feature is there. If in any doubt, consult a
kernel expert or your kernel vendor.

16.6. Shutting Down the Server
There are several ways to shut down the database server. You control the type of shutdown by sending
different signals to thepostmaster process.

SIGTERM

After receiving SIGTERM, the server disallows new connections, but lets existing sessions end
their work normally. It shuts down only after all of the sessions terminate normally. This is the
Smart Shutdown.

SIGINT

The server disallows new connections and sends all existing server processes SIGTERM, which
will cause them to abort their current transactions and exit promptly. It then waits for the server
processes to exit and finally shuts down. This is theFast Shutdown.

SIGQUIT

This is theImmediate Shutdown, which will cause thepostmaster process to send a SIGQUIT
to all child processes and exit immediately, without properly shutting itself down. The child
processes likewise exit immediately upon receiving SIGQUIT. This will lead to recovery (by
replaying the WAL log) upon next start-up. This is recommended only in emergencies.

Thepg_ctlprogram provides a convenient interface for sending these signals to shut down the server.

Alternatively, you can send the signal directly usingkill . The PID of thepostmaster process can
be found using theps program, or from the filepostmaster.pid in the data directory. For example,
to do a fast shutdown:

$ kill -INT ‘head -1 /usr/local/pgsql/data/postmaster.pid‘

Important: It is best not to use SIGKILL to shut down the server. Doing so will prevent the server
from releasing shared memory and semaphores, which may then have to be done manually be-
fore a new server can be started. Furthermore, SIGKILL kills the postmaster process without
letting it relay the signal to its subprocesses, so it will be necessary to kill the individual subpro-
cesses by hand as well.

269

Chapter 16. Server Run-time Environment

16.7. Secure TCP/IP Connections with SSL
PostgreSQL has native support for using SSL connections to encrypt client/server communications
for increased security. This requires that OpenSSL is installed on both client and server systems and
that support in PostgreSQL is enabled at build time (seeChapter 14).

With SSL support compiled in, the PostgreSQL server can be started with SSL enabled by setting the
parameterssl to on in postgresql.conf . When starting in SSL mode, the server will look for the
files server.key andserver.crt in the data directory, which must contain the server private key
and certificate, respectively. These files must be set up correctly before an SSL-enabled server can
start. If the private key is protected with a passphrase, the server will prompt for the passphrase and
will not start until it has been entered.

The server will listen for both standard and SSL connections on the same TCP port, and will negotiate
with any connecting client on whether to use SSL. By default, this is at the client’s option; seeSection
19.1about how to set up the server to require use of SSL for some or all connections.

For details on how to create your server private key and certificate, refer to the OpenSSL documenta-
tion. A self-signed certificate can be used for testing, but a certificate signed by a certificate authority
(CA) (either one of the global CAs or a local one) should be used in production so the client can verify
the server’s identity. To create a quick self-signed certificate, use the following OpenSSL command:

openssl req -new -text -out server.req

Fill out the information thatopenssl asks for. Make sure that you enter the local host name as
“Common Name”; the challenge password can be left blank. The program will generate a key that is
passphrase protected; it will not accept a passphrase that is less than four characters long. To remove
the passphrase (as you must if you want automatic start-up of the server), run the commands

openssl rsa -in privkey.pem -out server.key
rm privkey.pem

Enter the old passphrase to unlock the existing key. Now do

openssl req -x509 -in server.req -text -key server.key -out server.crt
chmod og-rwx server.key

to turn the certificate into a self-signed certificate and to copy the key and certificate to where the
server will look for them.

If verification of client certificates is required, place the certificates of the CA(s) you wish to check for
in the fileroot.crt in the data directory. When present, a client certificate will be requested from the
client during SSL connection startup, and it must have been signed by one of the certificates present
in root.crt .

When theroot.crt file is not present, client certificates will not be requested or checked. In this
mode, SSL provides communication security but not authentication.

The filesserver.key , server.crt , androot.crt are only examined during server start; so you
must restart the server to make changes in them take effect.

270

Chapter 16. Server Run-time Environment

16.8. Secure TCP/IP Connections with SSH Tunnels
One can use SSH to encrypt the network connection between clients and a PostgreSQL server. Done
properly, this provides an adequately secure network connection, even for non-SSL-capable clients.

First make sure that an SSH server is running properly on the same machine as the PostgreSQL
server and that you can log in usingssh as some user. Then you can establish a secure tunnel with a
command like this from the client machine:

ssh -L 3333:foo.com:5432 joe@foo.com

The first number in the-L argument, 3333, is the port number of your end of the tunnel; it can be
chosen freely. The second number, 5432, is the remote end of the tunnel: the port number your server
is using. The name or IP address between the port numbers is the host with the database server you
are going to connect to. In order to connect to the database server using this tunnel, you connect to
port 3333 on the local machine:

psql -h localhost -p 3333 template1

To the database server it will then look as though you are really userjoe@foo.com and it will use
whatever authentication procedure was configured for connections from this user and host. Note that
the server will not think the connection is SSL-encrypted, since in fact it is not encrypted between the
SSH server and the PostgreSQL server. This should not pose any extra security risk as long as they
are on the same machine.

In order for the tunnel setup to succeed you must be allowed to connect viassh as joe@foo.com ,
just as if you had attempted to usessh to set up a terminal session.

Tip: Several other applications exist that can provide secure tunnels using a procedure similar in
concept to the one just described.

271

Chapter 17. Database Users and Privileges
Every database cluster contains a set of database users. Those users are separate from the users man-
aged by the operating system on which the server runs. Users own database objects (for example,
tables) and can assign privileges on those objects to other users to control who has access to which
object.

This chapter describes how to create and manage users and introduces the privilege system. More
information about the various types of database objects and the effects of privileges can be found in
Chapter 5.

17.1. Database Users
Database users are conceptually completely separate from operating system users. In practice it might
be convenient to maintain a correspondence, but this is not required. Database user names are global
across a database cluster installation (and not per individual database). To create a user use theCRE-
ATE USERSQL command:

CREATE USERname;

name follows the rules for SQL identifiers: either unadorned without special characters, or double-
quoted. To remove an existing user, use the analogousDROP USERcommand:

DROP USERname;

For convenience, the programscreateuseranddropuserare provided as wrappers around these SQL
commands that can be called from the shell command line:

createuser name
dropuser name

To determine the set of existing users, examine thepg_user system catalog, for example

SELECT usename FROM pg_user;

Thepsqlprogram’s\du meta-command is also useful for listing the existing users.

In order to bootstrap the database system, a freshly initialized system always contains one predefined
user. This user will have the fixed ID 1, and by default (unless altered when runninginitdb) it will
have the same name as the operating system user that initialized the database cluster. Customarily, this
user will be namedpostgres . In order to create more users you first have to connect as this initial
user.

Exactly one user identity is active for a connection to the database server. The user name to use for
a particular database connection is indicated by the client that is initiating the connection request in
an application-specific fashion. For example, thepsql program uses the-U command line option to
indicate the user to connect as. Many applications assume the name of the current operating system
user by default (includingcreateuser andpsql). Therefore it is convenient to maintain a naming
correspondence between the two user sets.

The set of database users a given client connection may connect as is determined by the client authen-
tication setup, as explained inChapter 19. (Thus, a client is not necessarily limited to connect as the

272

Chapter 17. Database Users and Privileges

user with the same name as its operating system user, just as a person’s login name need not match
her real name.) Since the user identity determines the set of privileges available to a connected client,
it is important to carefully configure this when setting up a multiuser environment.

17.2. User Attributes
A database user may have a number of attributes that define its privileges and interact with the client
authentication system.

superuser

A database superuser bypasses all permission checks. Also, only a superuser can create new
users. To create a database superuser, useCREATE USERname CREATEUSER.

database creation

A user must be explicitly given permission to create databases (except for superusers, since those
bypass all permission checks). To create such a user, useCREATE USERname CREATEDB.

password

A password is only significant if the client authentication method requires the user to sup-
ply a password when connecting to the database. Thepassword , md5, andcrypt authenti-
cation methods make use of passwords. Database passwords are separate from operating sys-
tem passwords. Specify a password upon user creation withCREATE USERname PASSWORD

’ string ’ .

A user’s attributes can be modified after creation withALTER USER. See the reference pages for the
CREATE USERandALTER USERcommands for details.

A user can also set personal defaults for many of the run-time configuration settings described in
Section 16.4. For example, if for some reason you want to disable index scans (hint: not a good idea)
anytime you connect, you can use

ALTER USER myname SET enable_indexscan TO off;

This will save the setting (but not set it immediately). In subsequent connections by this user it will
appear as thoughSET enable_indexscan TO off; had been executed just before the session
started. You can still alter this setting during the session; it will only be the default. To undo any such
setting, useALTER USERusername RESET varname ; .

17.3. Groups
As in Unix, groups are a way of logically grouping users to ease management of privileges: privileges
can be granted to, or revoked from, a group as a whole. To create a group, use theCREATE GROUP
SQL command:

CREATE GROUPname;

To add users to or remove users from an existing group, useALTER GROUP:

ALTER GROUPname ADD USERuname1, ... ;
ALTER GROUPname DROP USERuname1, ... ;

273

Chapter 17. Database Users and Privileges

To destroy a group, useDROP GROUP:

DROP GROUPname;

This only drops the group, not its member users.

To determine the set of existing groups, examine thepg_group system catalog, for example

SELECT groname FROM pg_group;

Thepsqlprogram’s\dg meta-command is also useful for listing the existing groups.

17.4. Privileges
When a database object is created, it is assigned an owner. The owner is the user that executed the
creation statement. To change the owner of a table, index, sequence, or view, use theALTER TABLE

command. By default, only an owner (or a superuser) can do anything with the object. In order to
allow other users to use it,privilegesmust be granted.

There are several different privileges:SELECT, INSERT, UPDATE, DELETE, RULE, REFERENCES,
TRIGGER, CREATE, TEMPORARY, EXECUTE, USAGE, andALL PRIVILEGES. For more information
on the different types of privileges supported by PostgreSQL, see theGRANTreference page. The
right to modify or destroy an object is always the privilege of the owner only. To assign privileges,
the GRANTcommand is used. So, ifjoe is an existing user, andaccounts is an existing table, the
privilege to update the table can be granted with

GRANT UPDATE ON accounts TO joe;

The user executing this command must be the owner of the table. To grant a privilege to a group, use

GRANT SELECT ON accounts TO GROUP staff;

The special “user” namePUBLIC can be used to grant a privilege to every user on the system. Writing
ALL in place of a specific privilege specifies that all privileges will be granted.

To revoke a privilege, use the fittingly namedREVOKEcommand:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the table owner (i.e., the right to doDROP, GRANT, REVOKE, etc) are always
implicit in being the owner, and cannot be granted or revoked. But the table owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

17.5. Functions and Triggers
Functions and triggers allow users to insert code into the backend server that other users may execute
without knowing it. Hence, both mechanisms permit users to “Trojan horse” others with relative ease.
The only real protection is tight control over who can define functions.

Functions run inside the backend server process with the operating system permissions of the database
server daemon. If the programmming language used for the function allows unchecked memory ac-
cesses, it is possible to change the server’s internal data structures. Hence, among many other things,
such functions can circumvent any system access controls. Function languages that allow such ac-

274

Chapter 17. Database Users and Privileges

cess are considered “untrusted”, and PostgreSQL allows only superusers to create functions written
in those languages.

275

Chapter 18. Managing Databases
Every instance of a running PostgreSQL server manages one or more databases. Databases are there-
fore the topmost hierarchical level for organizing SQL objects (“database objects”). This chapter
describes the properties of databases, and how to create, manage, and destroy them.

18.1. Overview
A database is a named collection of SQL objects (“database objects”). Generally, every database
object (tables, functions, etc.) belongs to one and only one database. (But there are a few system
catalogs, for examplepg_database , that belong to a whole cluster and are accessible from each
database within the cluster.) More accurately, a database is a collection of schemas and the schemas
contain the tables, functions, etc. So the full hierarchy is: server, database, schema, table (or some
other kind of object, such as a function).

When connecting to the database server, a client must specify in its connection request the name of the
database it wants to connect to. It is not possible to access more than one database per connection. (But
an application is not restricted in the number of connections it opens to the same or other databases.)
Databases are physically separated and access control is managed at the connection level. If one
PostgreSQL server instance is to house projects or users that should be separate and for the most
part unaware of each other, it is therefore recommendable to put them into separate databases. If the
projects or users are interrelated and should be able to use each other’s resources they should be put
in the same database, but possibly into separate schemas. Schemas are a purely logical structure and
who can access what is managed by the privilege system. More information about managing schemas
is in Section 5.8.

Databases are created with theCREATE DATABASEcommand (seeSection 18.2) and destroyed with
theDROP DATABASEcommand (seeSection 18.5). To determine the set of existing databases, exam-
ine thepg_database system catalog, for example

SELECT datname FROM pg_database;

The psql program’s\l meta-command and-l command-line option are also useful for listing the
existing databases.

Note: The SQL standard calls databases “catalogs”, but there is no difference in practice.

18.2. Creating a Database
In order to create a database, the PostgreSQL server must be up and running (seeSection 16.3).

Databases are created with the SQL commandCREATE DATABASE:

CREATE DATABASEname;

wherename follows the usual rules for SQL identifiers. The current user automatically becomes the
owner of the new database. It is the privilege of the owner of a database to remove it later on (which
also removes all the objects in it, even if they have a different owner).

The creation of databases is a restricted operation. SeeSection 17.2for how to grant permission.

276

Chapter 18. Managing Databases

Since you need to be connected to the database server in order to execute theCREATE DATABASE

command, the question remains how thefirst database at any given site can be created. The first
database is always created by theinitdb command when the data storage area is initialized. (See
Section 16.2.) This database is calledtemplate1 . So to create the first “real” database you can
connect totemplate1 .

The nametemplate1 is no accident: when a new database is created, the template database is essen-
tially cloned. This means that any changes you make intemplate1 are propagated to all subsequently
created databases. This implies that you should not use the template database for real work, but when
used judiciously this feature can be convenient. More details appear inSection 18.3.

As a convenience, there is a program that you can execute from the shell to create new databases,
createdb .

createdb dbname

createdb does no magic. It connects to thetemplate1 database and issues theCREATE DATABASE

command, exactly as described above. Thecreatedbreference page contains the invocation details.
Note thatcreatedb without any arguments will create a database with the current user name, which
may or may not be what you want.

Note: Chapter 19 contains information about how to restrict who can connect to a given database.

Sometimes you want to create a database for someone else. That user should become the owner of the
new database, so he can configure and manage it himself. To achieve that, use one of the following
commands:

CREATE DATABASEdbname OWNERusername ;

from the SQL environment, or

createdb -O username dbname

You must be a superuser to be allowed to create a database for someone else.

18.3. Template Databases
CREATE DATABASEactually works by copying an existing database. By default, it copies the standard
system database namedtemplate1 . Thus that database is the “template” from which new databases
are made. If you add objects totemplate1 , these objects will be copied into subsequently cre-
ated user databases. This behavior allows site-local modifications to the standard set of objects in
databases. For example, if you install the procedural language PL/pgSQL intemplate1 , it will au-
tomatically be available in user databases without any extra action being taken when those databases
are made.

There is a second standard system database namedtemplate0 . This database contains the same data
as the initial contents oftemplate1 , that is, only the standard objects predefined by your version of
PostgreSQL.template0 should never be changed afterinitdb . By instructingCREATE DATABASE

to copy template0 instead oftemplate1 , you can create a “virgin” user database that contains
none of the site-local additions intemplate1 . This is particularly handy when restoring apg_dump

dump: the dump script should be restored in a virgin database to ensure that one recreates the correct
contents of the dumped database, without any conflicts with additions that may now be present in
template1 .

277

Chapter 18. Managing Databases

To create a database by copyingtemplate0 , use

CREATE DATABASEdbname TEMPLATE template0;

from the SQL environment, or

createdb -T template0 dbname

from the shell.

It is possible to create additional template databases, and indeed one might copy any database in a
cluster by specifying its name as the template forCREATE DATABASE. It is important to understand,
however, that this is not (yet) intended as a general-purpose “COPY DATABASE” facility. In particular,
it is essential that the source database be idle (no data-altering transactions in progress) for the du-
ration of the copying operation.CREATE DATABASEwill check that no session (other than itself) is
connected to the source database at the start of the operation, but this does not guarantee that changes
cannot be made while the copy proceeds, which would result in an inconsistent copied database.
Therefore, we recommend that databases used as templates be treated as read-only.

Two useful flags exist inpg_database for each database: the columnsdatistemplate

and datallowconn . datistemplate may be set to indicate that a database is intended as a
template forCREATE DATABASE. If this flag is set, the database may be cloned by any user with
CREATEDBprivileges; if it is not set, only superusers and the owner of the database may clone it. If
datallowconn is false, then no new connections to that database will be allowed (but existing
sessions are not killed simply by setting the flag false). Thetemplate0 database is normally marked
datallowconn = false to prevent modification of it. Bothtemplate0 and template1 should
always be marked withdatistemplate = true .

After preparing a template database, or making any changes to one, it is a good idea to perform
VACUUM FREEZEin that database. If this is done when there are no other open transactions in the
same database, then it is guaranteed that all rows in the database are “frozen” and will not be subject
to transaction ID wraparound problems. This is particularly important for a database that will have
datallowconn set to false, since it will be impossible to do routine maintenanceVACUUMin such a
database. SeeSection 21.1.3for more information.

Note: template1 and template0 do not have any special status beyond the fact that the name
template1 is the default source database name for CREATE DATABASEand the default database-
to-connect-to for various programs such as createdb . For example, one could drop template1

and recreate it from template0 without any ill effects. This course of action might be advisable if
one has carelessly added a bunch of junk in template1 .

18.4. Database Configuration
Recall fromSection 16.4that the PostgreSQL server provides a large number of run-time configura-
tion variables. You can set database-specific default values for many of these settings.

For example, if for some reason you want to disable the GEQO optimizer for a given database, you’d
ordinarily have to either disable it for all databases or make sure that every connecting client is careful
to issueSET geqo TO off; . To make this setting the default within a particular database, you can
execute the command

ALTER DATABASE mydb SET geqo TO off;

278

Chapter 18. Managing Databases

This will save the setting (but not set it immediately). In subsequent connections to this database it
will appear as thoughSET geqo TO off; had been executed just before the session started. Note
that users can still alter this setting during their sessions; it will only be the default. To undo any such
setting, useALTER DATABASEdbname RESET varname ; .

18.5. Destroying a Database
Databases are destroyed with the commandDROP DATABASE:

DROP DATABASEname;

Only the owner of the database (i.e., the user that created it), or a superuser, can drop a database.
Dropping a database removes all objects that were contained within the database. The destruction of
a database cannot be undone.

You cannot execute theDROP DATABASEcommand while connected to the victim database. You can,
however, be connected to any other database, including thetemplate1 database.template1 would
be the only option for dropping the last user database of a given cluster.

For convenience, there is also a shell program to drop databases,dropdb:

dropdb dbname

(Unlike createdb , it is not the default action to drop the database with the current user name.)

18.6. Tablespaces
Tablespaces in PostgreSQL allow database administrators to define locations in the file system where
the files representing database objects can be stored. Once created, a tablespace can be referred to by
name when creating database objects.

By using tablespaces, an administrator can control the disk layout of a PostgreSQL installation. This
is useful in at least two ways. First, if the partition or volume on which the cluster was initialized runs
out of space and cannot be extended, a tablespace can be created on a different partition and used until
the system can be reconfigured.

Second, tablespaces allow an administrator to use knowledge of the usage pattern of database objects
to optimize performance. For example, an index which is very heavily used can be placed on a very
fast, highly available disk, such as an expensive solid state device. At the same time a table storing
archived data which is rarely used or not performance critical could be stored on a less expensive,
slower disk system.

To define a tablespace, use theCREATE TABLESPACEcommand, for example:

CREATE TABLESPACE fastspace LOCATION ’/mnt/sda1/postgresql/data’;

The location must be an existing, empty directory that is owned by the PostgreSQL system user. All
objects subsequently created within the tablespace will be stored in files underneath this directory.

Note: There is usually not much point in making more than one tablespace per logical file sys-
tem, since you cannot control the location of individual files within a logical file system. However,
PostgreSQL does not enforce any such limitation, and indeed it is not directly aware of the file
system boundaries on your system. It just stores files in the directories you tell it to use.

279

Chapter 18. Managing Databases

Creation of the tablespace itself must be done as a database superuser, but after that you can allow
ordinary database users to make use of it. To do that, grant them theCREATEprivilege on it.

Tables, indexes, and entire databases can be assigned to particular tablespaces. To do so, a user with
the CREATEprivilege on a given tablespace must pass the tablespace name as a parameter to the
relevant command. For example, the following creates a table in the tablespacespace1 :

CREATE TABLE foo(i int) TABLESPACE space1;

Alternatively, use thedefault_tablespaceparameter:

SET default_tablespace = space1;
CREATE TABLE foo(i int);

When default_tablespace is set to anything but an empty string, it supplies an implicit
TABLESPACEclause forCREATE TABLEandCREATE INDEXcommands that do not have an explicit
one.

The tablespace associated with a database is used to store the system catalogs of that database, as well
as any temporary files created by server processes using that database. Furthermore, it is the default
tablespace selected for tables and indexes created within the database, if noTABLESPACEclause is
given (either explicitly or viadefault_tablespace) when the objects are created. If a database is
created without specifying a tablespace for it, it uses the same tablespace as the template database it
is copied from.

Two tablespaces are automatically created byinitdb . Thepg_global tablespace is used for shared
system catalogs. Thepg_default tablespace is the default tablespace of thetemplate1 and
template0 databases (and, therefore, will be the default tablespace for other databases as well,
unless overridden by aTABLESPACEclause inCREATE DATABASE).

Once created, a tablespace can be used from any database, provided the requesting user has sufficient
privilege. This means that a tablespace cannot be dropped until all objects in all databases using the
tablespace have been removed.

To remove an empty tablespace, use theDROP TABLESPACEcommand.

To determine the set of existing tablespaces, examine thepg_tablespace system catalog, for exam-
ple

SELECT spcname FROM pg_tablespace;

Thepsqlprogram’s\db meta-command is also useful for listing the existing tablespaces.

PostgreSQL makes extensive use of symbolic links to simplify the implementation of tablespaces.
This means that tablespaces can be usedonlyon systems that support symbolic links.

The directory$PGDATA/pg_tblspc contains symbolic links that point to each of the non-built-in
tablespaces defined in the cluster. Although not recommended, it is possible to adjust the tablespace
layout by hand by redefining these links. Two warnings: do not do so while the postmaster is running;
and after you restart the postmaster, update thepg_tablespace catalog to show the new locations.
(If you do not,pg_dump will continue to show the old tablespace locations.)

280

Chapter 19. Client Authentication
When a client application connects to the database server, it specifies which PostgreSQL user name
it wants to connect as, much the same way one logs into a Unix computer as a particular user. Within
the SQL environment the active database user name determines access privileges to database objects
— seeChapter 17for more information. Therefore, it is essential to restrict which database users can
connect.

Authenticationis the process by which the database server establishes the identity of the client, and
by extension determines whether the client application (or the user who runs the client application) is
permitted to connect with the user name that was requested.

PostgreSQL offers a number of different client authentication methods. The method used to authenti-
cate a particular client connection can be selected on the basis of (client) host address, database, and
user.

PostgreSQL user names are logically separate from user names of the operating system in which the
server runs. If all the users of a particular server also have accounts on the server’s machine, it makes
sense to assign database user names that match their operating system user names. However, a server
that accepts remote connections may have many database users who have no local operating system
account, and in such cases there need be no connection between database user names and OS user
names.

19.1. The pg_hba.conf file
Client authentication is controlled by a configuration file, which traditionally is namedpg_hba.conf

and is stored in the database cluster’s data directory. (HBA stands for host-based authentication.) A
defaultpg_hba.conf file is installed when the data directory is initialized byinitdb . It is possi-
ble to place the authentication configuration file elsewhere, however; see thehba_fileconfiguration
parameter.

The general format of thepg_hba.conf file is a set of records, one per line. Blank lines are ignored,
as is any text after the# comment character. A record is made up of a number of fields which are
separated by spaces and/or tabs. Fields can contain white space if the field value is quoted. Records
cannot be continued across lines.

Each record specifies a connection type, a client IP address range (if relevant for the connection type),
a database name, a user name, and the authentication method to be used for connections matching
these parameters. The first record with a matching connection type, client address, requested database,
and user name is used to perform authentication. There is no “fall-through” or “backup”: if one record
is chosen and the authentication fails, subsequent records are not considered. If no record matches,
access is denied.

A record may have one of the seven formats

local database user authentication-method [authentication-option]
host database user CIDR-address authentication-method [authentication-option]
hostssl database user CIDR-address authentication-method [authentication-option]
hostnossl database user CIDR-address authentication-method [authentication-option]
host database user IP-address IP-mask authentication-method [authentication-option]
hostssl database user IP-address IP-mask authentication-method [authentication-option]
hostnossl database user IP-address IP-mask authentication-method [authentication-option]

The meaning of the fields is as follows:

281

Chapter 19. Client Authentication

local

This record matches connection attempts using Unix-domain sockets. Without a record of this
type, Unix-domain socket connections are disallowed.

host

This record matches connection attempts made using TCP/IP.host records match either SSL or
non-SSL connection attempts.

Note: Remote TCP/IP connections will not be possible unless the server is started with an
appropriate value for the listen_addresses configuration parameter, since the default behav-
ior is to listen for TCP/IP connections only on the local loopback address localhost .

hostssl

This record matches connection attempts made using TCP/IP, but only when the connection is
made with SSL encryption.

To make use of this option the server must be built with SSL support. Furthermore, SSL must be
enabled at server start time by setting thesslconfiguration parameter (seeSection 16.7for more
information).

hostnossl

This record type has the opposite logic tohostssl : it only matches connection attempts made
over TCP/IP that do not use SSL.

database

Specifies which databases this record matches. The valueall specifies that it matches all
databases. The valuesameuser specifies that the record matches if the requested database has
the same name as the requested user. The valuesamegroup specifies that the requested user
must be a member of the group with the same name as the requested database. Otherwise, this
is the name of a specific PostgreSQL database. Multiple database names can be supplied by
separating them with commas. A file containing database names can be specified by preceding
the file name with@.

user

Specifies which PostgreSQL users this record matches. The valueall specifies that it matches
all users. Otherwise, this is the name of a specific PostgreSQL user. Multiple user names can be
supplied by separating them with commas. Group names can be specified by preceding the group
name with+. A file containing user names can be specified by preceding the file name with@.

CIDR-address

Specifies the client machine IP address range that this record matches. It contains an IP address
in standard dotted decimal notation and a CIDR mask length. (IP addresses can only be specified
numerically, not as domain or host names.) The mask length indicates the number of high-order
bits of the client IP address that must match. Bits to the right of this must be zero in the given IP
address. There must not be any white space between the IP address, the/ , and the CIDR mask
length.

A typical CIDR-address is 172.20.143.89/32 for a single host, or172.20.143.0/24 for
a network. To specify a single host, use a CIDR mask of 32 for IPv4 or 128 for IPv6.

An IP address given in IPv4 format will match IPv6 connections that have the corresponding
address, for example127.0.0.1 will match the IPv6 address::ffff:127.0.0.1 . An entry
given in IPv6 format will match only IPv6 connections, even if the represented address is in the

282

Chapter 19. Client Authentication

IPv4-in-IPv6 range. Note that entries in IPv6 format will be rejected if the system’s C library
does not have support for IPv6 addresses.

This field only applies tohost , hostssl , andhostnossl records.

IP-address
IP-mask

These fields may be used as an alternative to theCIDR-address notation. Instead of specifying
the mask length, the actual mask is specified in a separate column. For example,255.0.0.0

represents an IPv4 CIDR mask length of 8, and255.255.255.255 represents a CIDR mask
length of 32.

These fields only apply tohost , hostssl , andhostnossl records.

authentication-method

Specifies the authentication method to use when connecting via this record. The possible choices
are summarized here; details are inSection 19.2.

trust

Allow the connection unconditionally. This method allows anyone that can connect to the
PostgreSQL database server to login as any PostgreSQL user they like, without the need for
a password. SeeSection 19.2.1for details.

reject

Reject the connection unconditionally. This is useful for “filtering out” certain hosts from a
group.

md5

Require the client to supply an MD5-encrypted password for authentication. SeeSection
19.2.2for details.

crypt

Require the client to supply acrypt() -encrypted password for authentication.md5 is pre-
ferred for 7.2 and later clients, but pre-7.2 clients only supportcrypt . SeeSection 19.2.2
for details.

password

Require the client to supply an unencrypted password for authentication. Since the password
is sent in clear text over the network, this should not be used on untrusted networks. See
Section 19.2.2for details.

krb4

Use Kerberos V4 to authenticate the user. This is only available for TCP/IP connections.
SeeSection 19.2.3for details.

krb5

Use Kerberos V5 to authenticate the user. This is only available for TCP/IP connections.
SeeSection 19.2.3for details.

ident

Obtain the operating system user name of the client (for TCP/IP connections by contacting
the ident server on the client, for local connections by getting it from the operating system)
and check if the user is allowed to connect as the requested database user by consulting the
map specified after theident key word. SeeSection 19.2.4for details.

283

Chapter 19. Client Authentication

pam

Authenticate using the Pluggable Authentication Modules (PAM) service provided by the
operating system. SeeSection 19.2.5for details.

authentication-option

The meaning of this optional field depends on the chosen authentication method. Details appear
below.

Files included by@constructs are read as lists of names, which can be separated by either whitespace
or commas. Comments are introduced by#, just as inpg_hba.conf , and nested@constructs are
allowed. Unless the file name following@is an absolute path, it is taken to be relative to the directory
containing the referencing file.

Since thepg_hba.conf records are examined sequentially for each connection attempt, the order of
the records is significant. Typically, earlier records will have tight connection match parameters and
weaker authentication methods, while later records will have looser match parameters and stronger
authentication methods. For example, one might wish to usetrust authentication for local TCP/IP
connections but require a password for remote TCP/IP connections. In this case a record specify-
ing trust authentication for connections from 127.0.0.1 would appear before a record specifying
password authentication for a wider range of allowed client IP addresses.

Thepg_hba.conf file is read on start-up and when the main server process (postmaster) receives
a SIGHUP signal. If you edit the file on an active system, you will need to signal thepostmaster

(usingpg_ctl reload or kill -HUP) to make it re-read the file.

Some examples ofpg_hba.conf entries are shown inExample 19-1. See the next section for details
on the different authentication methods.

Example 19-1. Examplepg_hba.conf entries

Allow any user on the local system to connect to any database under
any user name using Unix-domain sockets (the default for local
connections).
#
TYPE DATABASE USER CIDR-ADDRESS METHOD
local all all trust

The same using local loopback TCP/IP connections.
#
TYPE DATABASE USER CIDR-ADDRESS METHOD
host all all 127.0.0.1/32 trust

The same as the last line but using a separate netmask column
#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 127.0.0.1 255.255.255.255 trust

Allow any user from any host with IP address 192.168.93.x to connect
to database "template1" as the same user name that ident reports for
the connection (typically the Unix user name).
#

284

Chapter 19. Client Authentication

TYPE DATABASE USER CIDR-ADDRESS METHOD
host template1 all 192.168.93.0/24 ident sameuser

Allow a user from host 192.168.12.10 to connect to database
"template1" if the user’s password is correctly supplied.
#
TYPE DATABASE USER CIDR-ADDRESS METHOD
host template1 all 192.168.12.10/32 md5

In the absence of preceding "host" lines, these two lines will
reject all connection from 192.168.54.1 (since that entry will be
matched first), but allow Kerberos 5 connections from anywhere else
on the Internet. The zero mask means that no bits of the host IP
address are considered so it matches any host.
#
TYPE DATABASE USER CIDR-ADDRESS METHOD
host all all 192.168.54.1/32 reject
host all all 0.0.0.0/0 krb5

Allow users from 192.168.x.x hosts to connect to any database, if
they pass the ident check. If, for example, ident says the user is
"bryanh" and he requests to connect as PostgreSQL user "guest1", the
connection is allowed if there is an entry in pg_ident.conf for map
"omicron" that says "bryanh" is allowed to connect as "guest1".
#
TYPE DATABASE USER CIDR-ADDRESS METHOD
host all all 192.168.0.0/16 ident omicron

If these are the only three lines for local connections, they will
allow local users to connect only to their own databases (databases
with the same name as their user name) except for administrators and
members of group "support" who may connect to all databases. The file
$PGDATA/admins contains a list of user names. Passwords are required in
all cases.
#
TYPE DATABASE USER CIDR-ADDRESS METHOD
local sameuser all md5
local all @admins md5
local all +support md5

The last two lines above can be combined into a single line:
local all @admins,+support md5

The database column can also use lists and file names, but not groups:
local db1,db2,@demodbs all md5

19.2. Authentication methods
The following subsections describe the authentication methods in more detail.

285

Chapter 19. Client Authentication

19.2.1. Trust authentication

When trust authentication is specified, PostgreSQL assumes that anyone who can connect to the
server is authorized to access the database with whatever database user they specify (including the
database superuser). Of course, restrictions made in thedatabase anduser columns still apply. This
method should only be used when there is adequate operating-system-level protection on connections
to the server.

trust authentication is appropriate and very convenient for local connections on a single-user work-
station. It is usuallynot appropriate by itself on a multiuser machine. However, you may be able to
usetrust even on a multiuser machine, if you restrict access to the server’s Unix-domain socket
file using file-system permissions. To do this, set theunix_socket_permissions (and possibly
unix_socket_group) configuration parameters as described inSection 16.4.2. Or you could set the
unix_socket_directory configuration parameter to place the socket file in a suitably restricted
directory.

Setting file-system permissions only helps for Unix-socket connections. Local TCP/IP connections are
not restricted by it; therefore, if you want to use file-system permissions for local security, remove the
host ... 127.0.0.1 ... line from pg_hba.conf , or change it to a non-trust authentication
method.

trust authentication is only suitable for TCP/IP connections if you trust every user on every machine
that is allowed to connect to the server by thepg_hba.conf lines that specifytrust . It is seldom
reasonable to usetrust for any TCP/IP connections other than those from localhost (127.0.0.1).

19.2.2. Password authentication

The password-based authentication methods aremd5, crypt , andpassword . These methods operate
similarly except for the way that the password is sent across the connection. But onlymd5 supports
encrypted passwords stored inpg_shadow ; the other two require unencrypted passwords to be stored
there.

If you are at all concerned about password “sniffing” attacks thenmd5 is preferred, withcrypt a
second choice if you must support pre-7.2 clients. Plainpassword should especially be avoided
for connections over the open Internet (unless you use SSL, SSH, or other communications security
wrappers around the connection).

PostgreSQL database passwords are separate from operating system user passwords. The password
for each database user is stored in thepg_shadow system catalog table. Passwords can be man-
aged with the SQL commandsCREATE USERandALTER USER, e.g.,CREATE USER foo WITH
PASSWORD ’secret’; . By default, that is, if no password has been set up, the stored password is
null and password authentication will always fail for that user.

19.2.3. Kerberos authentication

Kerberos is an industry-standard secure authentication system suitable for distributed computing over
a public network. A description of the Kerberos system is far beyond the scope of this document; in
full generality it can be quite complex (yet powerful). The Kerberos FAQ1 or MIT Project Athena2

can be a good starting point for exploration. Several sources for Kerberos distributions exist.

While PostgreSQL supports both Kerberos 4 and Kerberos 5, only Kerberos 5 is recommended. Ker-
beros 4 is considered insecure and no longer recommended for general use.

1. http://www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html
2. ftp://athena-dist.mit.edu

286

Chapter 19. Client Authentication

In order to use Kerberos, support for it must be enabled at build time. SeeChapter 14for more
information. Both Kerberos 4 and 5 are supported, but only one version can be supported in any one
build.

PostgreSQL operates like a normal Kerberos service. The name of the service principal is
servicename / hostname @realm , whereservicename is postgres (unless a different service
name was selected at configure time with./configure --with-krb-srvnam=whatever).
hostname is the fully qualified host name of the server machine. The service principal’s realm is
the preferred realm of the server machine.

Client principals must have their PostgreSQL user name as their first component, for example
pgusername/otherstuff@realm . At present the realm of the client is not checked by
PostgreSQL; so if you have cross-realm authentication enabled, then any principal in any realm that
can communicate with yours will be accepted.

Make sure that your server key file is readable (and preferably only readable) by the PostgreSQL
server account. (See alsoSection 16.1.) The location of the key file is specified by the
krb_server_keyfileconfiguration parameter. (See alsoSection 16.4.) The default is/etc/srvtab if
you are using Kerberos 4 and/usr/local/pgsql/etc/krb5.keytab (or whichever directory
was specified assysconfdir at build time) with Kerberos 5.

To generate the keytab file, use for example (with version 5)

kadmin% ank -randkey postgres/server.my.domain.org
kadmin% ktadd -k krb5.keytab postgres/server.my.domain.org

Read the Kerberos documentation for details.

When connecting to the database make sure you have a ticket for a principal matching the requested
database user name. An example: For database user namefred , both principalfred@EXAMPLE.COM

andfred/users.example.com@EXAMPLE.COM can be used to authenticate to the database server.

If you use mod_auth_kerb from http://modauthkerb.sf.net and mod_perl on your Apache web server,
you can useAuthType KerberosV5SaveCredentials with a mod_perl script. This gives secure
database access over the web, no extra passwords required.

19.2.4. Ident-based authentication

The ident authentication method works by obtaining the client’s operating system user name and
determining the allowed database user names using a map file that lists the permitted corresponding
pairs of names. The determination of the client’s user name is the security-critical point, and it works
differently depending on the connection type.

19.2.4.1. Ident Authentication over TCP/IP

The “Identification Protocol” is described inRFC 1413. Virtually every Unix-like operating system
ships with an ident server that listens on TCP port 113 by default. The basic functionality of an ident
server is to answer questions like “What user initiated the connection that goes out of your portX and
connects to my portY?”. Since PostgreSQL knows bothX andY when a physical connection is estab-
lished, it can interrogate the ident server on the host of the connecting client and could theoretically
determine the operating system user for any given connection this way.

The drawback of this procedure is that it depends on the integrity of the client: if the client machine
is untrusted or compromised an attacker could run just about any program on port 113 and return any
user name he chooses. This authentication method is therefore only appropriate for closed networks
where each client machine is under tight control and where the database and system administrators

287

Chapter 19. Client Authentication

operate in close contact. In other words, you must trust the machine running the ident server. Heed
the warning:

RFC 1413

The Identification Protocol is not intended as an authorization or access control protocol.

19.2.4.2. Ident Authentication over Local Sockets

On systems supportingSO_PEERCREDrequests for Unix-domain sockets (currently Linux, FreeBSD,
NetBSD, OpenBSD, and BSD/OS), ident authentication can also be applied to local connections. In
this case, no security risk is added by using ident authentication; indeed it is a preferable choice for
local connections on such systems.

On systems withoutSO_PEERCREDrequests, ident authentication is only available for TCP/IP connec-
tions. As a work-around, it is possible to specify the localhost address 127.0.0.1 and make connections
to this address. This method is trustworthy to the extent that you trust the local ident server.

19.2.4.3. Ident Maps

When using ident-based authentication, after having determined the name of the operating system
user that initiated the connection, PostgreSQL checks whether that user is allowed to connect as the
database user he is requesting to connect as. This is controlled by the ident map argument that follows
the ident key word in thepg_hba.conf file. There is a predefined ident mapsameuser , which
allows any operating system user to connect as the database user of the same name (if the latter
exists). Other maps must be created manually.

Ident maps other thansameuser are defined in the ident map file, which by default is named
pg_ident.conf and is stored in the cluster’s data directory. (It is possible to place the map file
elsewhere, however; see theident_fileconfiguration parameter.) The ident map file contains lines of
the general form:

map-name ident-username database-username

Comments and whitespace are handled in the same way as inpg_hba.conf . Themap-name is an
arbitrary name that will be used to refer to this mapping inpg_hba.conf . The other two fields specify
which operating system user is allowed to connect as which database user. The samemap-name
can be used repeatedly to specify more user-mappings within a single map. There is no restriction
regarding how many database users a given operating system user may correspond to, nor vice versa.

The pg_ident.conf file is read on start-up and when the main server process (postmaster)
receives a SIGHUP signal. If you edit the file on an active system, you will need to signal the
postmaster (usingpg_ctl reload or kill -HUP) to make it re-read the file.

A pg_ident.conf file that could be used in conjunction with thepg_hba.conf file in Example
19-1is shown inExample 19-2. In this example setup, anyone logged in to a machine on the 192.168
network that does not have the Unix user namebryanh , ann , or robert would not be granted access.
Unix userrobert would only be allowed access when he tries to connect as PostgreSQL userbob ,
not asrobert or anyone else.ann would only be allowed to connect asann . Userbryanh would be
allowed to connect as eitherbryanh himself or asguest1 .

Example 19-2. An examplepg_ident.conf file

MAPNAME IDENT-USERNAME PG-USERNAME

288

Chapter 19. Client Authentication

omicron bryanh bryanh
omicron ann ann
bob has user name robert on these machines
omicron robert bob
bryanh can also connect as guest1
omicron bryanh guest1

19.2.5. PAM authentication

This authentication method operates similarly topassword except that it uses PAM (Pluggable
Authentication Modules) as the authentication mechanism. The default PAM service name is
postgresql . You can optionally supply your own service name after thepam key word in the file
pg_hba.conf . For more information about PAM, please read the Linux-PAM Page4 and the Solaris
PAM Page5.

19.3. Authentication problems
Genuine authentication failures and related problems generally manifest themselves through error
messages like the following.

FATAL: no pg_hba.conf entry for host "123.123.123.123", user "andym", database "testdb"

This is what you are most likely to get if you succeed in contacting the server, but it does not want to
talk to you. As the message suggests, the server refused the connection request because it found no
authorizing entry in itspg_hba.conf configuration file.

FATAL: Password authentication failed for user "andym"

Messages like this indicate that you contacted the server, and it is willing to talk to you, but not
until you pass the authorization method specified in thepg_hba.conf file. Check the password
you are providing, or check your Kerberos or ident software if the complaint mentions one of those
authentication types.

FATAL: user "andym" does not exist

The indicated user name was not found.

FATAL: database "testdb" does not exist

The database you are trying to connect to does not exist. Note that if you do not specify a database
name, it defaults to the database user name, which may or may not be the right thing.

Tip: The server log may contain more information about an authentication failure than is reported
to the client. If you are confused about the reason for a failure, check the log.

4. http://www.kernel.org/pub/linux/libs/pam/
5. http://www.sun.com/software/solaris/pam/

289

Chapter 20. Localization
This chapter describes the available localization features from the point of view of the administrator.
PostgreSQL supports localization with two approaches:

• Using the locale features of the operating system to provide locale-specific collation order, number
formatting, translated messages, and other aspects.

• Providing a number of different character sets defined in the PostgreSQL server, including multiple-
byte character sets, to support storing text in all kinds of languages, and providing character set
translation between client and server.

20.1. Locale Support
Localesupport refers to an application respecting cultural preferences regarding alphabets, sorting,
number formatting, etc. PostgreSQL uses the standard ISO C and POSIX locale facilities provided by
the server operating system. For additional information refer to the documentation of your system.

20.1.1. Overview

Locale support is automatically initialized when a database cluster is created usinginitdb . initdb

will initialize the database cluster with the locale setting of its execution environment by default, so if
your system is already set to use the locale that you want in your database cluster then there is nothing
else you need to do. If you want to use a different locale (or you are not sure which locale your system
is set to), you can instructinitdb exactly which locale to use by specifying the--locale option.
For example:

initdb --locale=sv_SE

This example sets the locale to Swedish (sv) as spoken in Sweden (SE). Other possibilities might be
en_US (U.S. English) andfr_CA (French Canadian). If more than one character set can be useful for
a locale then the specifications look like this:cs_CZ.ISO8859-2 . What locales are available under
what names on your system depends on what was provided by the operating system vendor and what
was installed. (On most systems, the commandlocale -a will provide a list of available locales.)

Occasionally it is useful to mix rules from several locales, e.g., use English collation rules but Spanish
messages. To support that, a set of locale subcategories exist that control only a certain aspect of the
localization rules:

LC_COLLATE String sort order

LC_CTYPE Character classification (What is a letter? Its
upper-case equivalent?)

LC_MESSAGES Language of messages

LC_MONETARY Formatting of currency amounts

LC_NUMERIC Formatting of numbers

LC_TIME Formatting of dates and times

290

Chapter 20. Localization

The category names translate into names ofinitdb options to override the locale choice for a specific
category. For instance, to set the locale to French Canadian, but use U.S. rules for formatting currency,
useinitdb --locale=fr_CA --lc-monetary=en_US .

If you want the system to behave as if it had no locale support, use the special localeC or POSIX.

The nature of some locale categories is that their value has to be fixed for the lifetime of a database
cluster. That is, onceinitdb has run, you cannot change them anymore.LC_COLLATEandLC_CTYPE

are those categories. They affect the sort order of indexes, so they must be kept fixed, or indexes on
text columns will become corrupt. PostgreSQL enforces this by recording the values ofLC_COLLATE

andLC_CTYPEthat are seen byinitdb . The server automatically adopts those two values when it is
started.

The other locale categories can be changed as desired whenever the server is running by setting the
run-time configuration variables that have the same name as the locale categories (seeSection 16.4.8.2
for details). The defaults that are chosen byinitdb are actually only written into the configuration
file postgresql.conf to serve as defaults when the server is started. If you delete the assignments
from postgresql.conf then the server will inherit the settings from the execution environment.

Note that the locale behavior of the server is determined by the environment variables seen by the
server, not by the environment of any client. Therefore, be careful to configure the correct locale
settings before starting the server. A consequence of this is that if client and server are set up in
different locales, messages may appear in different languages depending on where they originated.

Note: When we speak of inheriting the locale from the execution environment, this means the
following on most operating systems: For a given locale category, say the collation, the following
environment variables are consulted in this order until one is found to be set: LC_ALL, LC_COLLATE

(the variable corresponding to the respective category), LANG. If none of these environment vari-
ables are set then the locale defaults to C.

Some message localization libraries also look at the environment variable LANGUAGEwhich over-
rides all other locale settings for the purpose of setting the language of messages. If in doubt,
please refer to the documentation of your operating system, in particular the documentation about
gettext, for more information.

To enable messages to be translated to the user’s preferred language, NLS must have been enabled at
build time. This choice is independent of the other locale support.

20.1.2. Behavior

Locale support influences the following features:

• Sort order in queries usingORDER BY

• The ability to use indexes withLIKE clauses

• The to_char family of functions

The drawback of using locales other thanC or POSIX in PostgreSQL is its performance impact. It
slows character handling and prevents ordinary indexes from being used byLIKE . For this reason use
locales only if you actually need them.

291

Chapter 20. Localization

20.1.3. Problems

If locale support doesn’t work in spite of the explanation above, check that the locale support in your
operating system is correctly configured. To check what locales are installed on your system, you may
use the commandlocale -a if your operating system provides it.

Check that PostgreSQL is actually using the locale that you think it is.LC_COLLATEandLC_CTYPE

settings are determined atinitdb time and cannot be changed without repeatinginitdb . Other lo-
cale settings includingLC_MESSAGESandLC_MONETARYare initially determined by the environment
the server is started in, but can be changed on-the-fly. You can check the active locale settings using
theSHOWcommand.

The directorysrc/test/locale in the source distribution contains a test suite for PostgreSQL’s
locale support.

Client applications that handle server-side errors by parsing the text of the error message will obvi-
ously have problems when the server’s messages are in a different language. Authors of such applica-
tions are advised to make use of the error code scheme instead.

Maintaining catalogs of message translations requires the on-going efforts of many volunteers that
want to see PostgreSQL speak their preferred language well. If messages in your language are cur-
rently not available or not fully translated, your assistance would be appreciated. If you want to help,
refer toChapter 44or write to the developers’ mailing list.

20.2. Character Set Support
The character set support in PostgreSQL allows you to store text in a variety of character sets, in-
cluding single-byte character sets such as the ISO 8859 series and multiple-byte character sets such
as EUC (Extended Unix Code), Unicode, and Mule internal code. All character sets can be used
transparently throughout the server. (If you use extension functions from other sources, it depends on
whether they wrote their code correctly.) The default character set is selected while initializing your
PostgreSQL database cluster usinginitdb . It can be overridden when you create a database using
createdb or by using the SQL commandCREATE DATABASE. So you can have multiple databases
each with a different character set.

20.2.1. Supported Character Sets

Table 20-1shows the character sets available for use in the server.

Table 20-1. Server Character Sets

Name Description

SQL_ASCII ASCII

EUC_JP Japanese EUC

EUC_CN Chinese EUC

EUC_KR Korean EUC

JOHAB Korean EUC (Hangle base)

EUC_TW Taiwan EUC

UNICODE Unicode (UTF-8)

MULE_INTERNAL Mule internal code

LATIN1 ISO 8859-1/ECMA 94 (Latin alphabet no.1)

292

Chapter 20. Localization

Name Description

LATIN2 ISO 8859-2/ECMA 94 (Latin alphabet no.2)

LATIN3 ISO 8859-3/ECMA 94 (Latin alphabet no.3)

LATIN4 ISO 8859-4/ECMA 94 (Latin alphabet no.4)

LATIN5 ISO 8859-9/ECMA 128 (Latin alphabet no.5)

LATIN6 ISO 8859-10/ECMA 144 (Latin alphabet no.6)

LATIN7 ISO 8859-13 (Latin alphabet no.7)

LATIN8 ISO 8859-14 (Latin alphabet no.8)

LATIN9 ISO 8859-15 (Latin alphabet no.9)

LATIN10 ISO 8859-16/ASRO SR 14111 (Latin alphabet
no.10)

ISO_8859_5 ISO 8859-5/ECMA 113 (Latin/Cyrillic)

ISO_8859_6 ISO 8859-6/ECMA 114 (Latin/Arabic)

ISO_8859_7 ISO 8859-7/ECMA 118 (Latin/Greek)

ISO_8859_8 ISO 8859-8/ECMA 121 (Latin/Hebrew)

KOI8 KOI8-R(U)

ALT Windows CP866

WIN874 Windows CP874 (Thai)

WIN1250 Windows CP1250

WIN Windows CP1251

WIN1256 Windows CP1256 (Arabic)

TCVN TCVN-5712/Windows CP1258 (Vietnamese)

Important: Before PostgreSQL 7.2, LATIN5 mistakenly meant ISO 8859-5. From 7.2 on, LATIN5

means ISO 8859-9. If you have a LATIN5 database created on 7.1 or earlier and want to migrate
to 7.2 or later, you should be careful about this change.

Not all APIs support all the listed character sets. For example, the PostgreSQL JDBC driver does not
supportMULE_INTERNAL, LATIN6 , LATIN8 , andLATIN10 .

20.2.2. Setting the Character Set

initdb defines the default character set for a PostgreSQL cluster. For example,

initdb -E EUC_JP

sets the default character set (encoding) toEUC_JP(Extended Unix Code for Japanese). You can use
--encoding instead of-E if you prefer to type longer option strings. If no-E or --encoding option
is given,SQL_ASCII is used.

You can create a database with a different character set:

createdb -E EUC_KR korean

This will create a database namedkorean that uses the character setEUC_KR. Another way to ac-
complish this is to use this SQL command:

293

Chapter 20. Localization

CREATE DATABASE korean WITH ENCODING ’EUC_KR’;

The encoding for a database is stored in the system catalogpg_database . You can see that by using
the-l option or the\l command ofpsql .

$ psql -l
List of databases

Database | Owner | Encoding
---------------+---------+---------------

euc_cn | t-ishii | EUC_CN
euc_jp | t-ishii | EUC_JP
euc_kr | t-ishii | EUC_KR
euc_tw | t-ishii | EUC_TW
mule_internal | t-ishii | MULE_INTERNAL
regression | t-ishii | SQL_ASCII
template1 | t-ishii | EUC_JP
test | t-ishii | EUC_JP
unicode | t-ishii | UNICODE

(9 rows)

Important: Although you can specify any encoding you want for a database, it is unwise to choose
an encoding that is not what is expected by the locale you have selected. The LC_COLLATEand
LC_CTYPEsettings imply a particular encoding, and locale-dependent operations (such as sorting)
are likely to misinterpret data that is in an incompatible encoding.

Since these locale settings are frozen by initdb , the apparent flexibility to use different encodings
in different databases of a cluster is more theoretical than real. It is likely that these mechanisms
will be revisited in future versions of PostgreSQL.

One way to use multiple encodings safely is to set the locale to C or POSIX during initdb , thus
disabling any real locale awareness.

20.2.3. Automatic Character Set Conversion Between Server and Client

PostgreSQL supports automatic character set conversion between server and client for certain charac-
ter sets. The conversion information is stored in thepg_conversion system catalog. You can create
a new conversion by using the SQL commandCREATE CONVERSION. PostgreSQL comes with some
predefined conversions. They are listed inTable 20-2.

Table 20-2. Client/Server Character Set Conversions

Server Character Set Available Client Character Sets

SQL_ASCII SQL_ASCII , UNICODE, MULE_INTERNAL

EUC_JP EUC_JP, SJIS , UNICODE, MULE_INTERNAL

EUC_CN EUC_CN, UNICODE, MULE_INTERNAL

EUC_KR EUC_KR, UNICODE, MULE_INTERNAL

JOHAB JOHAB, UNICODE

EUC_TW EUC_TW, BIG5 , UNICODE, MULE_INTERNAL

LATIN1 LATIN1 , UNICODE MULE_INTERNAL

LATIN2 LATIN2 , WIN1250, UNICODE, MULE_INTERNAL

294

Chapter 20. Localization

Server Character Set Available Client Character Sets

LATIN3 LATIN3 , UNICODE, MULE_INTERNAL

LATIN4 LATIN4 , UNICODE, MULE_INTERNAL

LATIN5 LATIN5 , UNICODE

LATIN6 LATIN6 , UNICODE, MULE_INTERNAL

LATIN7 LATIN7 , UNICODE, MULE_INTERNAL

LATIN8 LATIN8 , UNICODE, MULE_INTERNAL

LATIN9 LATIN9 , UNICODE, MULE_INTERNAL

LATIN10 LATIN10 , UNICODE, MULE_INTERNAL

ISO_8859_5 ISO_8859_5 , UNICODE, MULE_INTERNAL, WIN,
ALT, KOI8

ISO_8859_6 ISO_8859_6 , UNICODE

ISO_8859_7 ISO_8859_7 , UNICODE

ISO_8859_8 ISO_8859_8 , UNICODE

UNICODE EUC_JP, SJIS , EUC_KR, UHC, JOHAB, EUC_CN,
GBK, EUC_TW, BIG5 , LATIN1 to LATIN10 ,
ISO_8859_5 , ISO_8859_6 , ISO_8859_7 ,
ISO_8859_8 , WIN, ALT, KOI8 , WIN1256, TCVN,
WIN874, GB18030, WIN1250

MULE_INTERNAL EUC_JP, SJIS , EUC_KR, EUC_CN, EUC_TW, BIG5 ,
LATIN1 to LATIN5 , WIN, ALT, WIN1250, BIG5 ,
ISO_8859_5 , KOI8

KOI8 ISO_8859_5 , WIN, ALT, KOI8 , UNICODE,
MULE_INTERNAL

ALT ISO_8859_5 , WIN, ALT, KOI8 , UNICODE,
MULE_INTERNAL

WIN874 WIN874, UNICODE

WIN1250 LATIN2 , WIN1250, UNICODE, MULE_INTERNAL

WIN ISO_8859_5 , WIN, ALT, KOI8 , UNICODE,
MULE_INTERNAL

WIN1256 WIN1256, UNICODE

TCVN TCVN, UNICODE

To enable the automatic character set conversion, you have to tell PostgreSQL the character set (en-
coding) you would like to use in the client. There are several ways to accomplish this:

• Using the\encoding command in psql.\encoding allows you to change client encoding on the
fly. For example, to change the encoding toSJIS , type:

\encoding SJIS

• Using libpq functions.\encoding actually callsPQsetClientEncoding() for its purpose.

int PQsetClientEncoding(PGconn * conn , const char * encoding);

whereconn is a connection to the server, andencoding is the encoding you want to use. If the
function successfully sets the encoding, it returns 0, otherwise -1. The current encoding for this
connection can be determined by using:

295

Chapter 20. Localization

int PQclientEncoding(const PGconn * conn);

Note that it returns the encoding ID, not a symbolic string such asEUC_JP. To convert an encoding
ID to an encoding name, you can use:

char *pg_encoding_to_char(int encoding_id);

• UsingSET client_encoding TO . Setting the client encoding can be done with this SQL com-
mand:

SET CLIENT_ENCODING TO ’value ’;

Also you can use the more standard SQL syntaxSET NAMESfor this purpose:

SET NAMES ’value ’;

To query the current client encoding:

SHOW client_encoding;

To return to the default encoding:

RESET client_encoding;

• Using PGCLIENTENCODING. If the environment variablePGCLIENTENCODINGis defined in the
client’s environment, that client encoding is automatically selected when a connection to the server
is made. (This can subsequently be overridden using any of the other methods mentioned above.)

• Using the configuration variableclient_encoding. If the client_encoding variable is set, that
client encoding is automatically selected when a connection to the server is made. (This can subse-
quently be overridden using any of the other methods mentioned above.)

If the conversion of a particular character is not possible — suppose you choseEUC_JPfor the server
andLATIN1 for the client, then some Japanese characters cannot be converted toLATIN1 — it is
transformed to its hexadecimal byte values in parentheses, e.g.,(826C) .

20.2.4. Further Reading

These are good sources to start learning about various kinds of encoding systems.

ftp://ftp.ora.com/pub/examples/nutshell/ujip/doc/cjk.inf

Detailed explanations ofEUC_JP, EUC_CN, EUC_KR, EUC_TWappear in section 3.2.

http://www.unicode.org/

The web site of the Unicode Consortium

RFC 2044

UTF-8 is defined here.

296

Chapter 21. Routine Database Maintenance
Tasks

There are a few routine maintenance chores that must be performed on a regular basis to keep a
PostgreSQL server running smoothly. The tasks discussed here are repetitive in nature and can easily
be automated using standard Unix tools such as cron scripts. But it is the database administrator’s
responsibility to set up appropriate scripts, and to check that they execute successfully.

One obvious maintenance task is creation of backup copies of the data on a regular schedule. Without
a recent backup, you have no chance of recovery after a catastrophe (disk failure, fire, mistakenly
dropping a critical table, etc.). The backup and recovery mechanisms available in PostgreSQL are
discussed at length inChapter 22.

The other main category of maintenance task is periodic “vacuuming” of the database. This activity
is discussed inSection 21.1.

Something else that might need periodic attention is log file management. This is discussed inSection
21.3.

PostgreSQL is low-maintenance compared to some other database management systems. Nonetheless,
appropriate attention to these tasks will go far towards ensuring a pleasant and productive experience
with the system.

21.1. Routine Vacuuming
PostgreSQL’sVACUUMcommand must be run on a regular basis for several reasons:

1. To recover disk space occupied by updated or deleted rows.

2. To update data statistics used by the PostgreSQL query planner.

3. To protect against loss of very old data due totransaction ID wraparound.

The frequency and scope of theVACUUMoperations performed for each of these reasons will vary
depending on the needs of each site. Therefore, database administrators must understand these issues
and develop an appropriate maintenance strategy. This section concentrates on explaining the high-
level issues; for details about command syntax and so on, see theVACUUM reference page.

Beginning in PostgreSQL 7.2, the standard form ofVACUUMcan run in parallel with normal database
operations (selects, inserts, updates, deletes, but not changes to table definitions). Routine vacuuming
is therefore not nearly as intrusive as it was in prior releases, and it is not as critical to try to schedule
it at low-usage times of day.

Beginning in PostgreSQL 8.0, there are configuration parameters that can be adjusted to further reduce
the performance impact of background vacuuming. SeeSection 16.4.3.4.

21.1.1. Recovering disk space

In normal PostgreSQL operation, anUPDATEor DELETEof a row does not immediately remove the
old version of the row. This approach is necessary to gain the benefits of multiversion concurrency
control (seeChapter 12): the row version must not be deleted while it is still potentially visible to
other transactions. But eventually, an outdated or deleted row version is no longer of interest to any
transaction. The space it occupies must be reclaimed for reuse by new rows, to avoid infinite growth
of disk space requirements. This is done by runningVACUUM.

297

Chapter 21. Routine Database Maintenance Tasks

Clearly, a table that receives frequent updates or deletes will need to be vacuumed more often than
tables that are seldom updated. It may be useful to set up periodic cron tasks thatVACUUMonly selected
tables, skipping tables that are known not to change often. This is only likely to be helpful if you have
both large heavily-updated tables and large seldom-updated tables — the extra cost of vacuuming a
small table isn’t enough to be worth worrying about.

There are two variants of theVACUUMcommand. The first form, known as “lazy vacuum” or just
VACUUM, marks expired data in tables and indexes for future reuse; it doesnot attempt to reclaim
the space used by this expired data immediately. Therefore, the table file is not shortened, and any
unused space in the file is not returned to the operating system. This variant ofVACUUMcan be run
concurrently with normal database operations.

The second form is theVACUUM FULLcommand. This uses a more aggressive algorithm for re-
claiming the space consumed by expired row versions. Any space that is freed byVACUUM FULL

is immediately returned to the operating system. Unfortunately, this variant of theVACUUMcommand
acquires an exclusive lock on each table whileVACUUM FULLis processing it. Therefore, frequently
usingVACUUM FULLcan have an extremely negative effect on the performance of concurrent database
queries.

The standard form ofVACUUMis best used with the goal of maintaining a fairly level steady-state
usage of disk space. If you need to return disk space to the operating system you can useVACUUM

FULL — but what’s the point of releasing disk space that will only have to be allocated again soon?
Moderately frequent standardVACUUMruns are a better approach than infrequentVACUUM FULLruns
for maintaining heavily-updated tables.

Recommended practice for most sites is to schedule a database-wideVACUUMonce a day at a low-
usage time of day, supplemented by more frequent vacuuming of heavily-updated tables if necessary.
(Some installations with an extremely high rate of data modificationVACUUMbusy tables as often as
once every few minutes.) If you have multiple databases in a cluster, don’t forget toVACUUMeach one;
the programvacuumdb may be helpful.

Tip: The contrib/pg_autovacuum program can be useful for automating high-frequency vacu-
uming operations.

VACUUM FULLis recommended for cases where you know you have deleted the majority of rows in
a table, so that the steady-state size of the table can be shrunk substantially withVACUUM FULL’s
more aggressive approach. Use plainVACUUM, not VACUUM FULL, for routine vacuuming for space
recovery.

If you have a table whose contents are deleted on a periodic basis, consider doing it withTRUNCATE

rather than usingDELETEfollowed by VACUUM. TRUNCATEremoves the entire content of the table
immediately, without requiring a subsequentVACUUMor VACUUM FULLto reclaim the now-unused
disk space.

21.1.2. Updating planner statistics

The PostgreSQL query planner relies on statistical information about the contents of tables in order
to generate good plans for queries. These statistics are gathered by theANALYZEcommand, which
can be invoked by itself or as an optional step inVACUUM. It is important to have reasonably accurate
statistics, otherwise poor choices of plans may degrade database performance.

As with vacuuming for space recovery, frequent updates of statistics are more useful for heavily-
updated tables than for seldom-updated ones. But even for a heavily-updated table, there may be no
need for statistics updates if the statistical distribution of the data is not changing much. A simple

298

Chapter 21. Routine Database Maintenance Tasks

rule of thumb is to think about how much the minimum and maximum values of the columns in the
table change. For example, atimestamp column that contains the time of row update will have a
constantly-increasing maximum value as rows are added and updated; such a column will probably
need more frequent statistics updates than, say, a column containing URLs for pages accessed on
a website. The URL column may receive changes just as often, but the statistical distribution of its
values probably changes relatively slowly.

It is possible to runANALYZEon specific tables and even just specific columns of a table, so the
flexibility exists to update some statistics more frequently than others if your application requires it. In
practice, however, the usefulness of this feature is doubtful. Beginning in PostgreSQL 7.2,ANALYZE

is a fairly fast operation even on large tables, because it uses a statistical random sampling of the rows
of a table rather than reading every single row. So it’s probably much simpler to just run it over the
whole database every so often.

Tip: Although per-column tweaking of ANALYZEfrequency may not be very productive, you may
well find it worthwhile to do per-column adjustment of the level of detail of the statistics collected
by ANALYZE. Columns that are heavily used in WHEREclauses and have highly irregular data dis-
tributions may require a finer-grain data histogram than other columns. See ALTER TABLE SET

STATISTICS .

Recommended practice for most sites is to schedule a database-wideANALYZEonce a day at a low-
usage time of day; this can usefully be combined with a nightlyVACUUM. However, sites with relatively
slowly changing table statistics may find that this is overkill, and that less-frequentANALYZEruns are
sufficient.

21.1.3. Preventing transaction ID wraparound failures

PostgreSQL’s MVCC transaction semantics depend on being able to compare transaction ID (XID)
numbers: a row version with an insertion XID greater than the current transaction’s XID is “in the
future” and should not be visible to the current transaction. But since transaction IDs have limited
size (32 bits at this writing) a cluster that runs for a long time (more than 4 billion transactions)
will suffer transaction ID wraparound: the XID counter wraps around to zero, and all of a sudden
transactions that were in the past appear to be in the future — which means their outputs become
invisible. In short, catastrophic data loss. (Actually the data is still there, but that’s cold comfort if you
can’t get at it.)

Prior to PostgreSQL 7.2, the only defense against XID wraparound was to re-initdb at least every 4
billion transactions. This of course was not very satisfactory for high-traffic sites, so a better solution
has been devised. The new approach allows a server to remain up indefinitely, withoutinitdb or
any sort of restart. The price is this maintenance requirement:every table in the database must be
vacuumed at least once every billion transactions.

In practice this isn’t an onerous requirement, but since the consequences of failing to meet it can be
complete data loss (not just wasted disk space or slow performance), some special provisions have
been made to help database administrators keep track of the time since the lastVACUUM. The remainder
of this section gives the details.

The new approach to XID comparison distinguishes two special XIDs, numbers 1 and 2
(BootstrapXID andFrozenXID). These two XIDs are always considered older than every normal
XID. Normal XIDs (those greater than 2) are compared using modulo-231 arithmetic. This means that
for every normal XID, there are two billion XIDs that are “older” and two billion that are “newer”;
another way to say it is that the normal XID space is circular with no endpoint. Therefore, once a
row version has been created with a particular normal XID, the row version will appear to be “in the

299

Chapter 21. Routine Database Maintenance Tasks

past” for the next two billion transactions, no matter which normal XID we are talking about. If the
row version still exists after more than two billion transactions, it will suddenly appear to be in the
future. To prevent data loss, old row versions must be reassigned the XIDFrozenXID sometime
before they reach the two-billion-transactions-old mark. Once they are assigned this special XID,
they will appear to be “in the past” to all normal transactions regardless of wraparound issues, and so
such row versions will be good until deleted, no matter how long that is. This reassignment of XID is
handled byVACUUM.

VACUUM’s normal policy is to reassignFrozenXID to any row version with a normal XID more than
one billion transactions in the past. This policy preserves the original insertion XID until it is not
likely to be of interest anymore. (In fact, most row versions will probably live and die without ever
being “frozen”.) With this policy, the maximum safe interval betweenVACUUMruns on any table
is exactly one billion transactions: if you wait longer, it’s possible that a row version that was not
quite old enough to be reassigned last time is now more than two billion transactions old and has
wrapped around into the future — i.e., is lost to you. (Of course, it’ll reappear after another two
billion transactions, but that’s no help.)

Since periodicVACUUMruns are needed anyway for the reasons described earlier, it’s unlikely that any
table would not be vacuumed for as long as a billion transactions. But to help administrators ensure
this constraint is met,VACUUMstores transaction ID statistics in the system tablepg_database . In
particular, thedatfrozenxid column of a database’spg_database row is updated at the comple-
tion of any database-wideVACUUMoperation (i.e.,VACUUMthat does not name a specific table). The
value stored in this field is the freeze cutoff XID that was used by thatVACUUMcommand. All normal
XIDs older than this cutoff XID are guaranteed to have been replaced byFrozenXID within that
database. A convenient way to examine this information is to execute the query

SELECT datname, age(datfrozenxid) FROM pg_database;

Theage column measures the number of transactions from the cutoff XID to the current transaction’s
XID.

With the standard freezing policy, theage column will start at one billion for a freshly-vacuumed
database. When theage approaches two billion, the database must be vacuumed again to avoid risk
of wraparound failures. Recommended practice is toVACUUMeach database at least once every half-
a-billion (500 million) transactions, so as to provide plenty of safety margin. To help meet this rule,
each database-wideVACUUMautomatically delivers a warning if there are anypg_database entries
showing anage of more than 1.5 billion transactions, for example:

play=# VACUUM;
WARNING: some databases have not been vacuumed in 1613770184 transactions
HINT: Better vacuum them within 533713463 transactions, or you may have a wraparound failure.
VACUUM

VACUUMwith the FREEZEoption uses a more aggressive freezing policy: row versions are frozen if
they are old enough to be considered good by all open transactions. In particular, if aVACUUM FREEZE

is performed in an otherwise-idle database, it is guaranteed thatall row versions in that database will
be frozen. Hence, as long as the database is not modified in any way, it will not need subsequent vac-
uuming to avoid transaction ID wraparound problems. This technique is used byinitdb to prepare
the template0 database. It should also be used to prepare any user-created databases that are to be
markeddatallowconn = false in pg_database , since there isn’t any convenient way toVACUUM

a database that you can’t connect to. Note thatVACUUM’s automatic warning message about unvac-
uumed databases will ignorepg_database entries withdatallowconn = false , so as to avoid

300

Chapter 21. Routine Database Maintenance Tasks

giving false warnings about these databases; therefore it’s up to you to ensure that such databases are
frozen correctly.

Warning
To be sure of safety against transaction wraparound, it is necessary to vacuum
every table, including system catalogs, in every database at least once every
billion transactions. We have seen data loss situations caused by people decid-
ing that they only needed to vacuum their active user tables, rather than issuing
database-wide vacuum commands. That will appear to work fine ... for a while.

21.2. Routine Reindexing
In some situations it is worthwhile to rebuild indexes periodically with theREINDEXcommand. (There
is alsocontrib/reindexdb which can reindex an entire database.) However, PostgreSQL 7.4 has
substantially reduced the need for this activity compared to earlier releases.

21.3. Log File Maintenance
It is a good idea to save the database server’s log output somewhere, rather than just routing it to
/dev/null . The log output is invaluable when it comes time to diagnose problems. However, the
log output tends to be voluminous (especially at higher debug levels) and you won’t want to save it
indefinitely. You need to “rotate” the log files so that new log files are started and old ones removed
after a reasonable period of time.

If you simply direct the stderr of thepostmaster into a file, you will have log output, but the
only way to truncate the log file is to stop and restart thepostmaster . This may be OK if you are
using PostgreSQL in a development environment, but few production servers would find this behavior
acceptable.

A better approach is to send thepostmaster ’s stderr output to some type of log rotation program.
There is a built-in log rotation program, which you can use by setting the configuration parameter
redirect_stderr to true in postgresql.conf . The control parameters for this program are
described inSection 16.4.6.1.

Alternatively, you might prefer to use an external log rotation program, if you have one that you are
already using with other server software. For example, the rotatelogs tool included in the Apache
distribution can be used with PostgreSQL. To do this, just pipe thepostmaster ’s stderr output to the
desired program. If you start the server withpg_ctl , then stderr is already redirected to stdout, so
you just need a pipe command, for example:

pg_ctl start | rotatelogs /var/log/pgsql_log 86400

Another production-grade approach to managing log output is to send it all to syslog and let syslog
deal with file rotation. To do this, set the configuration parameterlog_destination to syslog (to
log to syslog only) inpostgresql.conf . Then you can send aSIGHUPsignal to the syslog daemon
whenever you want to force it to start writing a new log file. If you want to automate log rotation, the
logrotate program can be configured to work with log files from syslog.

301

Chapter 21. Routine Database Maintenance Tasks

On many systems, however, syslog is not very reliable, particularly with large log messages; it may
truncate or drop messages just when you need them the most. Also, on Linux, syslog will sync each
message to disk, yielding poor performance. (You can use a- at the start of the file name in the syslog
configuration file to disable this behavior.)

Note that all the solutions described above take care of starting new log files at configurable intervals,
but they do not handle deletion of old, no-longer-interesting log files. You will probably want to set up
a batch job to periodically delete old log files. Another possibility is to configure the rotation program
so that old log files are overwritten cyclically.

302

Chapter 22. Backup and Restore
As with everything that contains valuable data, PostgreSQL databases should be backed up regu-
larly. While the procedure is essentially simple, it is important to have a basic understanding of the
underlying techniques and assumptions.

There are three fundamentally different approaches to backing up PostgreSQL data:

• SQL dump

• File system level backup

• On-line backup

Each has its own strengths and weaknesses.

22.1. SQL Dump
The idea behind the SQL-dump method is to generate a text file with SQL commands that, when
fed back to the server, will recreate the database in the same state as it was at the time of the dump.
PostgreSQL provides the utility programpg_dumpfor this purpose. The basic usage of this command
is:

pg_dump dbname > outfile

As you see, pg_dump writes its results to the standard output. We will see below how this can be
useful.

pg_dump is a regular PostgreSQL client application (albeit a particularly clever one). This means that
you can do this backup procedure from any remote host that has access to the database. But remember
that pg_dump does not operate with special permissions. In particular, it must have read access to all
tables that you want to back up, so in practice you almost always have to run it as a database superuser.

To specify which database server pg_dump should contact, use the command line options-h host

and-p port . The default host is the local host or whatever yourPGHOSTenvironment variable spec-
ifies. Similarly, the default port is indicated by thePGPORTenvironment variable or, failing that, by
the compiled-in default. (Conveniently, the server will normally have the same compiled-in default.)

As any other PostgreSQL client application, pg_dump will by default connect with the database user
name that is equal to the current operating system user name. To override this, either specify the-U

option or set the environment variablePGUSER. Remember that pg_dump connections are subject to
the normal client authentication mechanisms (which are described inChapter 19).

Dumps created by pg_dump are internally consistent, that is, updates to the database while pg_dump
is running will not be in the dump. pg_dump does not block other operations on the database while
it is working. (Exceptions are those operations that need to operate with an exclusive lock, such as
VACUUM FULL.)

Important: When your database schema relies on OIDs (for instance as foreign keys) you must
instruct pg_dump to dump the OIDs as well. To do this, use the -o command line option. “Large
objects” are not dumped by default, either. See pg_dump’s reference page if you use large objects.

303

Chapter 22. Backup and Restore

22.1.1. Restoring the dump

The text files created by pg_dump are intended to be read in by the psql program. The general com-
mand form to restore a dump is

psql dbname < infile

whereinfile is what you used asoutfile for the pg_dump command. The databasedbname
will not be created by this command, you must create it yourself fromtemplate0 before execut-
ing psql (e.g., withcreatedb -T template0 dbname). psql supports options similar to pg_dump
for controlling the database server location and the user name. Seepsql’s reference page for more
information.

Not only must the target database already exist before starting to run the restore, but so must all the
users who own objects in the dumped database or were granted permissions on the objects. If they do
not, then the restore will fail to recreate the objects with the original ownership and/or permissions.
(Sometimes this is what you want, but usually it is not.)

Once restored, it is wise to runANALYZEon each database so the optimizer has useful statistics. An
easy way to do this is to runvacuumdb -a -z to VACUUM ANALYZEall databases; this is equivalent
to runningVACUUM ANALYZEmanually.

The ability of pg_dump and psql to write to or read from pipes makes it possible to dump a database
directly from one server to another; for example:

pg_dump -h host1 dbname | psql -h host2 dbname

Important: The dumps produced by pg_dump are relative to template0 . This means that any
languages, procedures, etc. added to template1 will also be dumped by pg_dump. As a result,
when restoring, if you are using a customized template1 , you must create the empty database
from template0 , as in the example above.

For advice on how to load large amounts of data into PostgreSQL efficiently, refer toSection 13.4.

22.1.2. Using pg_dumpall

The above mechanism is cumbersome and inappropriate when backing up an entire database clus-
ter. For this reason thepg_dumpallprogram is provided. pg_dumpall backs up each database in a
given cluster, and also preserves cluster-wide data such as users and groups. The basic usage of this
command is:

pg_dumpall > outfile

The resulting dump can be restored with psql:

psql template1 < infile

(Actually, you can specify any existing database name to start from, but if you are reloading in an
empty cluster thentemplate1 is the only available choice.) It is always necessary to have database
superuser access when restoring a pg_dumpall dump, as that is required to restore the user and group
information.

304

Chapter 22. Backup and Restore

22.1.3. Handling large databases

Since PostgreSQL allows tables larger than the maximum file size on your system, it can be problem-
atic to dump such a table to a file, since the resulting file will likely be larger than the maximum size
allowed by your system. Since pg_dump can write to the standard output, you can just use standard
Unix tools to work around this possible problem.

Use compressed dumps.You can use your favorite compression program, for example gzip.

pg_dump dbname | gzip > filename .gz

Reload with

createdb dbname
gunzip -c filename .gz | psql dbname

or

cat filename .gz | gunzip | psql dbname

Usesplit . The split command allows you to split the output into pieces that are acceptable in
size to the underlying file system. For example, to make chunks of 1 megabyte:

pg_dump dbname | split -b 1m - filename

Reload with

createdb dbname
cat filename * | psql dbname

Use the custom dump format. If PostgreSQL was built on a system with the zlib compression
library installed, the custom dump format will compress data as it writes it to the output file. This
will produce dump file sizes similar to usinggzip , but it has the added advantage that tables can be
restored selectively. The following command dumps a database using the custom dump format:

pg_dump -Fc dbname > filename

A custom-format dump is not a script for psql, but instead must be restored with pg_restore. See the
pg_dumpandpg_restorereference pages for details.

22.1.4. Caveats

For reasons of backward compatibility, pg_dump does not dump large objects by default. To dump
large objects you must use either the custom or the tar output format, and use the-b option in
pg_dump. See thepg_dumpreference page for details. The directorycontrib/pg_dumplo of the
PostgreSQL source tree also contains a program that can dump large objects.

Please familiarize yourself with thepg_dumpreference page.

22.2. File system level backup
An alternative backup strategy is to directly copy the files that PostgreSQL uses to store the data in
the database. InSection 16.2it is explained where these files are located, but you have probably found

305

Chapter 22. Backup and Restore

them already if you are interested in this method. You can use whatever method you prefer for doing
usual file system backups, for example

tar -cf backup.tar /usr/local/pgsql/data

There are two restrictions, however, which make this method impractical, or at least inferior to the
pg_dump method:

1. The database servermustbe shut down in order to get a usable backup. Half-way measures such
as disallowing all connections willnotwork (mainly becausetar and similar tools do not take an
atomic snapshot of the state of the file system at a point in time). Information about stopping the
server can be found inSection 16.6. Needless to say that you also need to shut down the server
before restoring the data.

2. If you have dug into the details of the file system layout of the database, you may be tempted to
try to back up or restore only certain individual tables or databases from their respective files or
directories. This willnotwork because the information contained in these files contains only half
the truth. The other half is in the commit log filespg_clog/* , which contain the commit status
of all transactions. A table file is only usable with this information. Of course it is also impossible
to restore only a table and the associatedpg_clog data because that would render all other tables
in the database cluster useless. So file system backups only work for complete restoration of an
entire database cluster.

An alternative file-system backup approach is to make a “consistent snapshot” of the data directory, if
the file system supports that functionality (and you are willing to trust that it is implemented correctly).
The typical procedure is to make a “frozen snapshot” of the volume containing the database, then copy
the whole data directory (not just parts, see above) from the snapshot to a backup device, then release
the frozen snapshot. This will work even while the database server is running. However, a backup
created in this way saves the database files in a state where the database server was not properly shut
down; therefore, when you start the database server on the backed-up data, it will think the server had
crashed and replay the WAL log. This is not a problem, just be aware of it (and be sure to include the
WAL files in your backup).

If your database is spread across multiple volumes (for example, data files and WAL log on different
disks) there may not be any way to obtain exactly-simultaneous frozen snapshots of all the volumes.
Read your file system documentation very carefully before trusting to the consistent-snapshot tech-
nique in such situations. The safest approach is to shut down the database server for long enough to
establish all the frozen snapshots.

Note that a file system backup will not necessarily be smaller than an SQL dump. On the contrary, it
will most likely be larger. (pg_dump does not need to dump the contents of indexes for example, just
the commands to recreate them.)

22.3. On-line backup and point-in-time recovery (PITR)
At all times, PostgreSQL maintains awrite ahead log(WAL) in the pg_xlog/ subdirectory of the
cluster’s data directory. The log describes every change made to the database’s data files. This log
exists primarily for crash-safety purposes: if the system crashes, the database can be restored to con-
sistency by “replaying” the log entries made since the last checkpoint. However, the existence of the
log makes it possible to use a third strategy for backing up databases: we can combine a file-system-
level backup with backup of the WAL files. If recovery is needed, we restore the backup and then

306

Chapter 22. Backup and Restore

replay from the backed-up WAL files to bring the backup up to current time. This approach is more
complex to administer than either of the previous approaches, but it has some significant benefits:

• We do not need a perfectly consistent backup as the starting point. Any internal inconsistency in the
backup will be corrected by log replay (this is not significantly different from what happens during
crash recovery). So we don’t need file system snapshot capability, just tar or a similar archiving
tool.

• Since we can string together an indefinitely long sequence of WAL files for replay, continuous
backup can be achieved simply by continuing to archive the WAL files. This is particularly valuable
for large databases, where it may not be convenient to take a full backup frequently.

• There is nothing that says we have to replay the WAL entries all the way to the end. We could stop
the replay at any point and have a consistent snapshot of the database as it was at that time. Thus,
this technique supportspoint-in-time recovery: it is possible to restore the database to its state at
any time since your base backup was taken.

• If we continuously feed the series of WAL files to another machine that has been loaded with the
same base backup file, we have a “hot standby” system: at any point we can bring up the second
machine and it will have a nearly-current copy of the database.

As with the plain file-system-backup technique, this method can only support restoration of an entire
database cluster, not a subset. Also, it requires a lot of archival storage: the base backup may be bulky,
and a busy system will generate many megabytes of WAL traffic that have to be archived. Still, it is
the preferred backup technique in many situations where high reliability is needed.

To recover successfully using an on-line backup, you need a continuous sequence of archived WAL
files that extends back at least as far as the start time of your backup. So to get started, you should set
up and test your procedure for archiving WAL filesbeforeyou take your first base backup. Accord-
ingly, we first discuss the mechanics of archiving WAL files.

22.3.1. Setting up WAL archiving

In an abstract sense, a running PostgreSQL system produces an indefinitely long sequence of WAL
records. The system physically divides this sequence into WALsegment files, which are normally
16MB apiece (although the size can be altered when building PostgreSQL). The segment files are
given numeric names that reflect their position in the abstract WAL sequence. When not using WAL
archiving, the system normally creates just a few segment files and then “recycles” them by renaming
no-longer-needed segment files to higher segment numbers. It’s assumed that a segment file whose
contents precede the checkpoint-before-last is no longer of interest and can be recycled.

When archiving WAL data, we want to capture the contents of each segment file once it is filled, and
save that data somewhere before the segment file is recycled for reuse. Depending on the application
and the available hardware, there could be many different ways of “saving the data somewhere”: we
could copy the segment files to an NFS-mounted directory on another machine, write them onto a tape
drive (ensuring that you have a way of restoring the file with its original file name), or batch them
together and burn them onto CDs, or something else entirely. To provide the database administrator
with as much flexibility as possible, PostgreSQL tries not to make any assumptions about how the
archiving will be done. Instead, PostgreSQL lets the administrator specify a shell command to be
executed to copy a completed segment file to wherever it needs to go. The command could be as
simple as a cp, or it could invoke a complex shell script — it’s all up to you.

The shell command to use is specified by thearchive_commandconfiguration parameter, which in
practice will always be placed in thepostgresql.conf file. In this string, any%pis replaced by the

307

Chapter 22. Backup and Restore

absolute path of the file to archive, while any%f is replaced by the file name only. Write%%if you
need to embed an actual%character in the command. The simplest useful command is something like

archive_command = ’cp -i %p /mnt/server/archivedir/%f </dev/null’

which will copy archivable WAL segments to the directory/mnt/server/archivedir . (This is an
example, not a recommendation, and may not work on all platforms.)

The archive command will be executed under the ownership of the same user that the PostgreSQL
server is running as. Since the series of WAL files being archived contains effectively everything
in your database, you will want to be sure that the archived data is protected from prying eyes; for
example, archive into a directory that does not have group or world read access.

It is important that the archive command return zero exit status if and only if it succeeded. Upon
getting a zero result, PostgreSQL will assume that the WAL segment file has been successfully
archived, and will remove or recycle it. However, a nonzero status tells PostgreSQL that the file
was not archived; it will try again periodically until it succeeds.

The archive command should generally be designed to refuse to overwrite any pre-existing archive
file. This is an important safety feature to preserve the integrity of your archive in case of administrator
error (such as sending the output of two different servers to the same archive directory). It is advisable
to test your proposed archive command to ensure that it indeed does not overwrite an existing file,
and that it returns nonzero status in this case. We have found thatcp -i does this correctly on some
platforms but not others. If the chosen command does not itself handle this case correctly, you should
add a command to test for pre-existence of the archive file. For example, something like

archive_command = ’test ! -f .../%f && cp %p .../%f’

works correctly on most Unix variants.

While designing your archiving setup, consider what will happen if the archive command fails repeat-
edly because some aspect requires operator intervention or the archive runs out of space. For example,
this could occur if you write to tape without an autochanger; when the tape fills, nothing further can
be archived until the tape is swapped. You should ensure that any error condition or request to a hu-
man operator is reported appropriately so that the situation can be resolved relatively quickly. The
pg_xlog/ directory will continue to fill with WAL segment files until the situation is resolved.

The speed of the archiving command is not important, so long as it can keep up with the average rate
at which your server generates WAL data. Normal operation continues even if the archiving process
falls a little behind. If archiving falls significantly behind, this will increase the amount of data that
would be lost in the event of a disaster. It will also mean that thepg_xlog/ directory will contain
large numbers of not-yet-archived segment files, which could eventually exceed available disk space.
You are advised to monitor the archiving process to ensure that it is working as you intend.

If you are concerned about being able to recover right up to the current instant, you may want to take
additional steps to ensure that the current, partially-filled WAL segment is also copied someplace. This
is particularly important if your server generates only little WAL traffic (or has slack periods where
it does so), since it could take a long time before a WAL segment file is completely filled and ready
to archive. One possible way to handle this is to set up a cron job that periodically (once a minute,
perhaps) identifies the current WAL segment file and saves it someplace safe. Then the combination of
the archived WAL segments and the saved current segment will be enough to ensure you can always
restore to within a minute of current time. This behavior is not presently built into PostgreSQL because
we did not want to complicate the definition of thearchive_commandby requiring it to keep track
of successively archived, but different, copies of the same WAL file. Thearchive_commandis only
invoked on completed WAL segments. Except in the case of retrying a failure, it will be called only
once for any given file name.

308

Chapter 22. Backup and Restore

In writing your archive command, you should assume that the filenames to be archived may be up
to 64 characters long and may contain any combination of ASCII letters, digits, and dots. It is not
necessary to remember the original full path (%p) but it is necessary to remember the file name (%f).

Note that although WAL archiving will allow you to restore any modifications made to the data
in your PostgreSQL database it will not restore changes made to configuration files (that is,
postgresql.conf , pg_hba.conf andpg_ident.conf), since those are edited manually rather
than through SQL operations. You may wish to keep the configuration files in a location that will be
backed up by your regular file system backup procedures. SeeSection 16.4.1for how to relocate the
configuration files.

22.3.2. Making a Base Backup

The procedure for making a base backup is relatively simple:

1. Ensure that WAL archiving is enabled and working.

2. Connect to the database as a superuser, and issue the command

SELECT pg_start_backup(’label’);

wherelabel is any string you want to use to uniquely identify this backup operation. (One good
practice is to use the full path where you intend to put the backup dump file.)pg_start_backup

creates abackup labelfile, calledbackup_label , in the cluster directory with information about
your backup.

It does not matter which database within the cluster you connect to to issue this command. You
can ignore the result returned by the function; but if it reports an error, deal with that before
proceeding.

3. Perform the backup, using any convenient file-system-backup tool such as tar or cpio. It is neither
necessary nor desirable to stop normal operation of the database while you do this.

4. Again connect to the database as a superuser, and issue the command

SELECT pg_stop_backup();

If this returns successfully, you’re done.

It is not necessary to be very concerned about the amount of time elapsed between
pg_start_backup and the start of the actual backup, nor between the end of the backup and
pg_stop_backup ; a few minutes’ delay won’t hurt anything. You must however be quite sure that
these operations are carried out in sequence and do not overlap.

Be certain that your backup dump includes all of the files underneath the database cluster directory
(e.g., /usr/local/pgsql/data). If you are using tablespaces that do not reside underneath this
directory, be careful to include them as well (and be sure that your backup dump archives symbolic
links as links, otherwise the restore will mess up your tablespaces).

You may, however, omit from the backup dump the files within thepg_xlog/ subdirectory of the
cluster directory. This slight complication is worthwhile because it reduces the risk of mistakes when
restoring. This is easy to arrange ifpg_xlog/ is a symbolic link pointing to someplace outside the
cluster directory, which is a common setup anyway for performance reasons.

To make use of this backup, you will need to keep around all the WAL segment files generated at or
after the starting time of the backup. To aid you in doing this, thepg_stop_backup function creates

309

Chapter 22. Backup and Restore

abackup history filethat is immediately stored into the WAL archive area. This file is named after the
first WAL segment file that you need to have to make use of the backup. For example, if the starting
WAL file is 0000000100001234000055CD the backup history file will be named something like
0000000100001234000055CD.007C9330.backup . (The second part of this file name stands for
an exact position within the WAL file, and can ordinarily be ignored.) Once you have safely archived
the backup dump file, you can delete all archived WAL segments with names numerically preceding
this one. The backup history file is just a small text file. It contains the label string you gave to
pg_start_backup , as well as the starting and ending times of the backup. If you used the label to
identify where the associated dump file is kept, then the archived history file is enough to tell you
which dump file to restore, should you need to do so.

Since you have to keep around all the archived WAL files back to your last base backup, the interval
between base backups should usually be chosen based on how much storage you want to expend
on archived WAL files. You should also consider how long you are prepared to spend recovering, if
recovery should be necessary — the system will have to replay all those WAL segments, and that
could take awhile if it has been a long time since the last base backup.

It’s also worth noting that thepg_start_backup function makes a file namedbackup_label in the
database cluster directory, which is then removed again bypg_stop_backup . This file will of course
be archived as a part of your backup dump file. The backup label file includes the label string you
gave topg_start_backup , as well as the time at whichpg_start_backup was run, and the name
of the starting WAL file. In case of confusion it will therefore be possible to look inside a backup
dump file and determine exactly which backup session the dump file came from.

It is also possible to make a backup dump while the postmaster is stopped. In this case, you obviously
cannot usepg_start_backup or pg_stop_backup , and you will therefore be left to your own
devices to keep track of which backup dump is which and how far back the associated WAL files go.
It is generally better to follow the on-line backup procedure above.

22.3.3. Recovering with an On-line Backup

Okay, the worst has happened and you need to recover from your backup. Here is the procedure:

1. Stop the postmaster, if it’s running.

2. If you have the space to do so, copy the whole cluster data directory and any tablespaces to a
temporary location in case you need them later. Note that this precaution will require that you
have enough free space on your system to hold two copies of your existing database. If you do
not have enough space, you need at the least to copy the contents of thepg_xlog subdirectory of
the cluster data directory, as it may contain logs which were not archived before the system went
down.

3. Clean out all existing files and subdirectories under the cluster data directory and under the root
directories of any tablespaces you are using.

4. Restore the database files from your backup dump. Be careful that they are restored with the
right ownership (the database system user, not root!) and with the right permissions. If you are
using tablespaces, you may want to verify that the symbolic links inpg_tblspc/ were correctly
restored.

5. Remove any files present inpg_xlog/ ; these came from the backup dump and are therefore
probably obsolete rather than current. If you didn’t archivepg_xlog/ at all, then re-create it, and
be sure to re-create the subdirectorypg_xlog/archive_status/ as well.

310

Chapter 22. Backup and Restore

6. If you had unarchived WAL segment files that you saved in step 2, copy them intopg_xlog/ .
(It is best to copy them, not move them, so that you still have the unmodified files if a problem
occurs and you have to start over.)

7. Create a recovery command filerecovery.conf in the cluster data directory (seeRecovery
Settings). You may also want to temporarily modifypg_hba.conf to prevent ordinary users
from connecting until you are sure the recovery has worked.

8. Start the postmaster. The postmaster will go into recovery mode and proceed to read through
the archived WAL files it needs. Upon completion of the recovery process, the postmaster will
renamerecovery.conf to recovery.done (to prevent accidentally re-entering recovery mode
in case of a crash later) and then commence normal database operations.

9. Inspect the contents of the database to ensure you have recovered to where you want to be. If not,
return to step 1. If all is well, let in your users by restoringpg_hba.conf to normal.

The key part of all this is to set up a recovery command file that describes how you want to recover
and how far the recovery should run. You can userecovery.conf.sample (normally installed in
the installationshare/ directory) as a prototype. The one thing that you absolutely must specify in
recovery.conf is therestore_command , which tells PostgreSQL how to get back archived WAL
file segments. Like thearchive_command , this is a shell command string. It may contain%f, which
is replaced by the name of the desired log file, and%p, which is replaced by the absolute path to copy
the log file to. Write%%if you need to embed an actual%character in the command. The simplest
useful command is something like

restore_command = ’cp /mnt/server/archivedir/%f %p’

which will copy previously archived WAL segments from the directory/mnt/server/archivedir .
You could of course use something much more complicated, perhaps even a shell script that requests
the operator to mount an appropriate tape.

It is important that the command return nonzero exit status on failure. The commandwill be asked for
log files that are not present in the archive; it must return nonzero when so asked. This is not an error
condition. Be aware also that the base name of the%ppath will be different from%f; do not expect
them to be interchangeable.

WAL segments that cannot be found in the archive will be sought inpg_xlog/ ; this allows use of
recent un-archived segments. However segments that are available from the archive will be used in
preference to files inpg_xlog/ . The system will not overwrite the existing contents ofpg_xlog/

when retrieving archived files.

Normally, recovery will proceed through all available WAL segments, thereby restoring the database
to the current point in time (or as close as we can get given the available WAL segments). But if
you want to recover to some previous point in time (say, right before the junior DBA dropped your
main transaction table), just specify the required stopping point inrecovery.conf . You can specify
the stop point, known as the “recovery target”, either by date/time or by completion of a specific
transaction ID. As of this writing only the date/time option is very usable, since there are no tools to
help you identify with any accuracy which transaction ID to use.

Note: The stop point must be after the ending time of the base backup (the time of
pg_stop_backup). You cannot use a base backup to recover to a time when that backup was still
going on. (To recover to such a time, you must go back to your previous base backup and roll
forward from there.)

311

Chapter 22. Backup and Restore

22.3.3.1. Recovery Settings

These settings can only be made in therecovery.conf file, and apply only for the duration of
the recovery. They must be reset for any subsequent recovery you wish to perform. They cannot be
changed once recovery has begun.

restore_command (string)

The shell command to execute to retrieve an archived segment of the WAL file series. This
parameter is required. Any%f in the string is replaced by the name of the file to retrieve from
the archive, and any%pis replaced by the absolute path to copy it to on the server. Write%%to
embed an actual%character in the command.

It is important for the command to return a zero exit status if and only if it succeeds. The com-
mandwill be asked for file names that are not present in the archive; it must return nonzero when
so asked. Examples:

restore_command = ’cp /mnt/server/archivedir/%f "%p"’
restore_command = ’copy /mnt/server/archivedir/%f "%p"’ # Windows

recovery_target_time (timestamp)

This parameter specifies the time stamp up to which recovery will proceed. At most one
of recovery_target_time and recovery_target_xidcan be specified. The default is
to recover to the end of the WAL log. The precise stopping point is also influenced by
recovery_target_inclusive.

recovery_target_xid (string)

This parameter specifies the transaction ID up to which recovery will proceed. Keep in mind that
while transaction IDs are assigned sequentially at transaction start, transactions can complete
in a different numeric order. The transactions that will be recovered are those that committed
before (and optionally including) the specified one. At most one ofrecovery_target_xid

andrecovery_target_timecan be specified. The default is to recover to the end of the WAL log.
The precise stopping point is also influenced byrecovery_target_inclusive.

recovery_target_inclusive (boolean)

Specifies whether we stop just after the specified recovery target (true), or just before the re-
covery target (false). Applies to bothrecovery_target_timeandrecovery_target_xid, whichever
one is specified for this recovery. This indicates whether transactions having exactly the target
commit time or ID, respectively, will be included in the recovery. Default istrue .

recovery_target_timeline (string)

Specifies recovering into a particular timeline. The default is to recover along the same timeline
that was current when the base backup was taken. You would only need to set this parameter in
complex re-recovery situations, where you need to return to a state that itself was reached after
a point-in-time recovery. SeeSection 22.3.4for discussion.

22.3.4. Timelines

The ability to restore the database to a previous point in time creates some complexities that are
akin to science-fiction stories about time travel and parallel universes. In the original history of the
database, perhaps you dropped a critical table at 5:15PM on Tuesday evening. Unfazed, you get out

312

Chapter 22. Backup and Restore

your backup, restore to the point-in-time 5:14PM Tuesday evening, and are up and running. Inthis
history of the database universe, you never dropped the table at all. But suppose you later realize this
wasn’t such a great idea after all, and would like to return to some later point in the original history.
You won’t be able to if, while your database was up-and-running, it overwrote some of the sequence
of WAL segment files that led up to the time you now wish you could get back to. So you really want
to distinguish the series of WAL records generated after you’ve done a point-in-time recovery from
those that were generated in the original database history.

To deal with these problems, PostgreSQL has a notion oftimelines. Each time you recover to a point-
in-time earlier than the end of the WAL sequence, a new timeline is created to identify the series
of WAL records generated after that recovery. (If recovery proceeds all the way to the end of WAL,
however, we do not start a new timeline: we just extend the existing one.) The timeline ID number is
part of WAL segment file names, and so a new timeline does not overwrite the WAL data generated
by previous timelines. It is in fact possible to archive many different timelines. While that might seem
like a useless feature, it’s often a lifesaver. Consider the situation where you aren’t quite sure what
point-in-time to recover to, and so have to do several point-in-time recoveries by trial and error until
you find the best place to branch off from the old history. Without timelines this process would soon
generate an unmanageable mess. With timelines, you can recover toanyprior state, including states
in timeline branches that you later abandoned.

Each time a new timeline is created, PostgreSQL creates a “timeline history” file that shows which
timeline it branched off from and when. These history files are necessary to allow the system to
pick the right WAL segment files when recovering from an archive that contains multiple timelines.
Therefore, they are archived into the WAL archive area just like WAL segment files. The history files
are just small text files, so it’s cheap and appropriate to keep them around indefinitely (unlike the
segment files which are large). You can, if you like, add comments to a history file to make your
own notes about how and why this particular timeline came to be. Such comments will be especially
valuable when you have a thicket of different timelines as a result of experimentation.

The default behavior of recovery is to recover along the same timeline that was current when the base
backup was taken. If you want to recover into some child timeline (that is, you want to return to some
state that was itself generated after a recovery attempt), you need to specify the target timeline ID in
recovery.conf . You cannot recover into timelines that branched off earlier than the base backup.

22.3.5. Caveats

At this writing, there are several limitations of the on-line backup technique. These will probably be
fixed in future releases:

• Operations on non-B-tree indexes (hash, R-tree, and GiST indexes) are not presently WAL-logged,
so replay will not update these index types. The recommended workaround is to manuallyREINDEX

each such index after completing a recovery operation.

It should also be noted that the present WAL format is extremely bulky since it includes many disk
page snapshots. This is appropriate for crash recovery purposes, since we may need to fix partially-
written disk pages. It is not necessary to store so many page copies for PITR operations, however. An
area for future development is to compress archived WAL data by removing unnecessary page copies.

313

Chapter 22. Backup and Restore

22.4. Migration Between Releases
This section discusses how to migrate your database data from one PostgreSQL release to a newer
one. The software installation procedureper seis not the subject of this section; those details are in
Chapter 14.

As a general rule, the internal data storage format is subject to change between major releases of
PostgreSQL (where the number after the first dot changes). This does not apply to different minor
releases under the same major release (where the number after the second dot changes); these al-
ways have compatible storage formats. For example, releases 7.0.1, 7.1.2, and 7.2 are not compatible,
whereas 7.1.1 and 7.1.2 are. When you update between compatible versions, you can simply replace
the executables and reuse the data directory on disk. Otherwise you need to back up your data and
restore it on the new server. This has to be done using pg_dump; file system level backup methods
obviously won’t work. There are checks in place that prevent you from using a data directory with an
incompatible version of PostgreSQL, so no great harm can be done by trying to start the wrong server
version on a data directory.

It is recommended that you use the pg_dump and pg_dumpall programs from the newer version of
PostgreSQL, to take advantage of any enhancements that may have been made in these programs.
Current releases of the dump programs can read data from any server version back to 7.0.

The least downtime can be achieved by installing the new server in a different directory and running
both the old and the new servers in parallel, on different ports. Then you can use something like

pg_dumpall -p 5432 | psql -d template1 -p 6543

to transfer your data. Or use an intermediate file if you want. Then you can shut down the old server
and start the new server at the port the old one was running at. You should make sure that the old
database is not updated after you run pg_dumpall, otherwise you will obviously lose that data. See
Chapter 19for information on how to prohibit access.

In practice you probably want to test your client applications on the new setup before switching over
completely. This is another reason for setting up concurrent installations of old and new versions.

If you cannot or do not want to run two servers in parallel you can do the backup step before installing
the new version, bring down the server, move the old version out of the way, install the new version,
start the new server, restore the data. For example:

pg_dumpall > backup
pg_ctl stop
mv /usr/local/pgsql /usr/local/pgsql.old
cd ~/postgresql-8.0.0
gmake install
initdb -D /usr/local/pgsql/data
postmaster -D /usr/local/pgsql/data
psql template1 < backup

SeeChapter 16about ways to start and stop the server and other details. The installation instructions
will advise you of strategic places to perform these steps.

Note: When you “move the old installation out of the way” it may no longer be perfectly usable.
Some of the executable programs contain absolute paths to various installed programs and data
files. This is usually not a big problem but if you plan on using two installations in parallel for
a while you should assign them different installation directories at build time. (This problem is
rectified in PostgreSQL 8.0 and later, but you need to be wary of moving older installations.)

314

Chapter 23. Monitoring Database Activity
A database administrator frequently wonders, “What is the system doing right now?” This chapter
discusses how to find that out.

Several tools are available for monitoring database activity and analyzing performance. Most of this
chapter is devoted to describing PostgreSQL’s statistics collector, but one should not neglect regu-
lar Unix monitoring programs such asps , top , iostat , andvmstat . Also, once one has identi-
fied a poorly-performing query, further investigation may be needed using PostgreSQL’sEXPLAIN
command.Section 13.1discussesEXPLAIN and other methods for understanding the behavior of an
individual query.

23.1. Standard Unix Tools
On most platforms, PostgreSQL modifies its command title as reported byps , so that individual server
processes can readily be identified. A sample display is

$ ps auxww | grep ^postgres
postgres 960 0.0 1.1 6104 1480 pts/1 SN 13:17 0:00 postmaster -i
postgres 963 0.0 1.1 7084 1472 pts/1 SN 13:17 0:00 postgres: stats buffer process
postgres 965 0.0 1.1 6152 1512 pts/1 SN 13:17 0:00 postgres: stats collector process
postgres 998 0.0 2.3 6532 2992 pts/1 SN 13:18 0:00 postgres: tgl runbug 127.0.0.1 idle
postgres 1003 0.0 2.4 6532 3128 pts/1 SN 13:19 0:00 postgres: tgl regression [local] SELECT waiting
postgres 1016 0.1 2.4 6532 3080 pts/1 SN 13:19 0:00 postgres: tgl regression [local] idle in transaction

(The appropriate invocation ofps varies across different platforms, as do the details of what is shown.
This example is from a recent Linux system.) The first process listed here is the postmaster, the master
server process. The command arguments shown for it are the same ones given when it was launched.
The next two processes implement the statistics collector, which will be described in detail in the next
section. (These will not be present if you have set the system not to start the statistics collector.) Each
of the remaining processes is a server process handling one client connection. Each such process sets
its command line display in the form

postgres: user database host activity

The user, database, and connection source host items remain the same for the life of the client connec-
tion, but the activity indicator changes. The activity may beidle (i.e., waiting for a client command),
idle in transaction (waiting for client inside aBEGIN block), or a command type name such
asSELECT. Also, waiting is attached if the server process is presently waiting on a lock held by
another server process. In the above example we can infer that process 1003 is waiting for process
1016 to complete its transaction and thereby release some lock or other.

Tip: Solaris requires special handling. You must use /usr/ucb/ps , rather than /bin/ps . You
also must use two w flags, not just one. In addition, your original invocation of the postmaster

command must have a shorter ps status display than that provided by each server process. If you
fail to do all three things, the ps output for each server process will be the original postmaster

command line.

315

Chapter 23. Monitoring Database Activity

23.2. The Statistics Collector
PostgreSQL’sstatistics collectoris a subsystem that supports collection and reporting of information
about server activity. Presently, the collector can count accesses to tables and indexes in both disk-
block and individual-row terms. It also supports determining the exact command currently being
executed by other server processes.

23.2.1. Statistics Collection Configuration

Since collection of statistics adds some overhead to query execution, the system can be configured to
collect or not collect information. This is controlled by configuration parameters that are normally set
in postgresql.conf . (SeeSection 16.4for details about setting configuration parameters.)

The parameterstats_start_collectormust be set totrue for the statistics collector to be launched at
all. This is the default and recommended setting, but it may be turned off if you have no interest
in statistics and want to squeeze out every last drop of overhead. (The savings is likely to be small,
however.) Note that this option cannot be changed while the server is running.

The parametersstats_command_string, stats_block_level, andstats_row_levelcontrol how much in-
formation is actually sent to the collector and thus determine how much run-time overhead occurs.
These respectively determine whether a server process sends its current command string, disk-block-
level access statistics, and row-level access statistics to the collector. Normally these parameters are
set inpostgresql.conf so that they apply to all server processes, but it is possible to turn them on
or off in individual sessions using theSETcommand. (To prevent ordinary users from hiding their
activity from the administrator, only superusers are allowed to change these parameters withSET.)

Note: Since the parameters stats_command_string , stats_block_level , and
stats_row_level default to false , very few statistics are collected in the default configuration.
Enabling one or more of these configuration variables will significantly enhance the amount of
useful data produced by the statistics collector, at the expense of additional run-time overhead.

23.2.2. Viewing Collected Statistics

Several predefined views, listed inTable 23-1, are available to show the results of statistics collection.
Alternatively, one can build custom views using the underlying statistics functions.

When using the statistics to monitor current activity, it is important to realize that the information
does not update instantaneously. Each individual server process transmits new block and row access
counts to the collector just before going idle; so a query or transaction still in progress does
not affect the displayed totals. Also, the collector itself emits a new report at most once per
pgstat_stat_interval milliseconds (500 by default). So the displayed information lags behind
actual activity. Current-query information is reported to the collector immediately, but is still subject
to thepgstat_stat_interval delay before it becomes visible.

Another important point is that when a server process is asked to display any of these statistics, it
first fetches the most recent report emitted by the collector process and then continues to use this
snapshot for all statistical views and functions until the end of its current transaction. So the statistics
will appear not to change as long as you continue the current transaction. This is a feature, not a bug,
because it allows you to perform several queries on the statistics and correlate the results without
worrying that the numbers are changing underneath you. But if you want to see new results with each
query, be sure to do the queries outside any transaction block.

316

Chapter 23. Monitoring Database Activity

Table 23-1. Standard Statistics Views

View Name Description

pg_stat_activity One row per server process, showing process ID,
database, user, current query, and the time at
which the current query began execution. The
columns that report data on the current query are
only available if the parameter
stats_command_string has been turned on.
Furthermore, these columns read as null unless
the user examining the view is a superuser or the
same as the user owning the process being
reported on. (Note that because of the collector’s
reporting delay, current query will only be
up-to-date for long-running queries.)

pg_stat_database One row per database, showing the number of
active backend server processes, total transactions
committed and total rolled back in that database,
total disk blocks read, and total number of buffer
hits (i.e., block read requests avoided by finding
the block already in buffer cache).

pg_stat_all_tables For each table in the current database, total
numbers of sequential and index scans, total
numbers of rows returned by each type of scan,
and totals of row insertions, updates, and
deletions.

pg_stat_sys_tables Same aspg_stat_all_tables , except that only
system tables are shown.

pg_stat_user_tables Same aspg_stat_all_tables , except that only
user tables are shown.

pg_stat_all_indexes For each index in the current database, the total
number of index scans that have used that index,
the number of index rows read, and the number of
successfully fetched heap rows. (This may be less
when there are index entries pointing to expired
heap rows.)

pg_stat_sys_indexes Same aspg_stat_all_indexes , except that
only indexes on system tables are shown.

pg_stat_user_indexes Same aspg_stat_all_indexes , except that
only indexes on user tables are shown.

pg_statio_all_tables For each table in the current database, the total
number of disk blocks read from that table, the
number of buffer hits, the numbers of disk blocks
read and buffer hits in all the indexes of that table,
the numbers of disk blocks read and buffer hits
from the table’s auxiliary TOAST table (if any),
and the numbers of disk blocks read and buffer
hits for the TOAST table’s index.

pg_statio_sys_tables Same aspg_statio_all_tables , except that
only system tables are shown.

317

Chapter 23. Monitoring Database Activity

View Name Description

pg_statio_user_tables Same aspg_statio_all_tables , except that
only user tables are shown.

pg_statio_all_indexes For each index in the current database, the
numbers of disk blocks read and buffer hits in that
index.

pg_statio_sys_indexes Same aspg_statio_all_indexes , except that
only indexes on system tables are shown.

pg_statio_user_indexes Same aspg_statio_all_indexes , except that
only indexes on user tables are shown.

pg_statio_all_sequences For each sequence object in the current database,
the numbers of disk blocks read and buffer hits in
that sequence.

pg_statio_sys_sequences Same aspg_statio_all_sequences , except
that only system sequences are shown. (Presently,
no system sequences are defined, so this view is
always empty.)

pg_statio_user_sequences Same aspg_statio_all_sequences , except
that only user sequences are shown.

The per-index statistics are particularly useful to determine which indexes are being used and how
effective they are.

Thepg_statio_ views are primarily useful to determine the effectiveness of the buffer cache. When
the number of actual disk reads is much smaller than the number of buffer hits, then the cache is
satisfying most read requests without invoking a kernel call. However, these statistics do not give the
entire story: due to the way in which PostgreSQL handles disk I/O, data that is not in the PostgreSQL
buffer cache may still reside in the kernel’s I/O cache, and may therefore still be fetched without
requiring a physical read. Users interested in obtaining more detailed information on PostgreSQL I/O
behavior are advised to use the PostgreSQL statistics collector in combination with operating system
utilities that allow insight into the kernel’s handling of I/O.

Other ways of looking at the statistics can be set up by writing queries that use the same underlying
statistics access functions as these standard views do. These functions are listed inTable 23-2. The
per-database access functions take a database OID as argument to identify which database to report
on. The per-table and per-index functions take a table or index OID. (Note that only tables and indexes
in the current database can be seen with these functions.) The per-backend process access functions
take a backend process ID number, which ranges from one to the number of currently active backend
processes.

Table 23-2. Statistics Access Functions

Function Return Type Description

pg_stat_get_db_numbackends (oid)integer Number of active backend
processes for database

pg_stat_get_db_xact_commit (oid)bigint Transactions committed in
database

pg_stat_get_db_xact_rollback (oid)bigint Transactions rolled back in
database

318

Chapter 23. Monitoring Database Activity

Function Return Type Description

pg_stat_get_db_blocks_fetched (oid)bigint Number of disk block fetch
requests for database

pg_stat_get_db_blocks_hit (oid)bigint Number of disk block fetch
requests found in cache for
database

pg_stat_get_numscans (oid) bigint Number of sequential scans
done when argument is a table,
or number of index scans done
when argument is an index

pg_stat_get_tuples_returned (oid)bigint Number of rows read by
sequential scans when argument
is a table, or number of index
rows read when argument is an
index

pg_stat_get_tuples_fetched (oid)bigint Number of valid (unexpired)
table rows fetched by sequential
scans when argument is a table,
or fetched by index scans using
this index when argument is an
index

pg_stat_get_tuples_inserted (oid)bigint Number of rows inserted into
table

pg_stat_get_tuples_updated (oid)bigint Number of rows updated in table

pg_stat_get_tuples_deleted (oid)bigint Number of rows deleted from
table

pg_stat_get_blocks_fetched (oid)bigint Number of disk block fetch
requests for table or index

pg_stat_get_blocks_hit (oid) bigint Number of disk block requests
found in cache for table or index

pg_stat_get_backend_idset () set of integer Set of currently active backend
process IDs (from 1 to the
number of active backend
processes). See usage example in
the text.

pg_backend_pid () integer Process ID of the backend
process attached to the current
session

pg_stat_get_backend_pid (integer)integer Process ID of the given backend
process

pg_stat_get_backend_dbid (integer)oid Database ID of the given
backend process

pg_stat_get_backend_userid (integer)oid User ID of the given backend
process

319

Chapter 23. Monitoring Database Activity

Function Return Type Description

pg_stat_get_backend_activity (integer)text Active command of the given
backend process (null if the
current user is not a superuser
nor the same user as that of the
session being queried, or
stats_command_string is not
on)

pg_stat_get_backend_activity_start (integer)timestamp with time zone The time at which the given
backend process’ currently
executing query was started (null
if the current user is not a
superuser nor the same user as
that of the session being queried,
or stats_command_string is
not on)

pg_stat_reset () boolean Reset all currently collected
statistics

Note: pg_stat_get_db_blocks_fetched minus pg_stat_get_db_blocks_hit gives the num-
ber of kernel read() calls issued for the table, index, or database; but the actual number of
physical reads is usually lower due to kernel-level buffering.

The functionpg_stat_get_backend_idset provides a convenient way to generate one row for
each active backend process. For example, to show the PIDs and current queries of all backend pro-
cesses:

SELECT pg_stat_get_backend_pid(s.backendid) AS procpid,
pg_stat_get_backend_activity(s.backendid) AS current_query

FROM (SELECT pg_stat_get_backend_idset() AS backendid) AS s;

23.3. Viewing Locks
Another useful tool for monitoring database activity is thepg_locks system table. It allows the
database administrator to view information about the outstanding locks in the lock manager. For
example, this capability can be used to:

• View all the locks currently outstanding, all the locks on relations in a particular database, all the
locks on a particular relation, or all the locks held by a particular PostgreSQL session.

• Determine the relation in the current database with the most ungranted locks (which might be a
source of contention among database clients).

• Determine the effect of lock contention on overall database performance, as well as the extent to
which contention varies with overall database traffic.

Details of thepg_locks view appear inSection 41.33. For more information on locking and manag-
ing concurrency with PostgreSQL, refer toChapter 12.

320

Chapter 24. Monitoring Disk Usage
This chapter discusses how to monitor the disk usage of a PostgreSQL database system.

24.1. Determining Disk Usage
Each table has a primary heap disk file where most of the data is stored. If the table has any columns
with potentially-wide values, there is also a TOAST file associated with the table, which is used to
store values too wide to fit comfortably in the main table (seeSection 49.2). There will be one index
on the TOAST table, if present. There may also be indexes associated with the base table. Each table
and index is stored in a separate disk file — possibly more than one file, if the file would exceed one
gigabyte. Naming conventions for these files are described inSection 49.1.

You can monitor disk space from three places: from psql usingVACUUMinformation, from psql using
the tools incontrib/dbsize , and from the command line using the tools incontrib/oid2name .
Using psql on a recently vacuumed or analyzed database, you can issue queries to see the disk usage
of any table:

SELECT relfilenode, relpages FROM pg_class WHERE relname = ’customer’;

relfilenode | relpages
-------------+----------

16806 | 60
(1 row)

Each page is typically 8 kilobytes. (Remember,relpages is only updated byVACUUM, ANALYZE, and
a few DDL commands such asCREATE INDEX.) Therelfilenode value is of interest if you want
to examine the table’s disk file directly.

To show the space used by TOAST tables, use a query like the following:

SELECT relname, relpages
FROM pg_class,

(SELECT reltoastrelid FROM pg_class
WHERE relname = ’customer’) ss

WHERE oid = ss.reltoastrelid
OR oid = (SELECT reltoastidxid FROM pg_class

WHERE oid = ss.reltoastrelid)
ORDER BY relname;

relname | relpages
----------------------+----------

pg_toast_16806 | 0
pg_toast_16806_index | 1

You can easily display index sizes, too:

SELECT c2.relname, c2.relpages
FROM pg_class c, pg_class c2, pg_index i
WHERE c.relname = ’customer’

AND c.oid = i.indrelid
AND c2.oid = i.indexrelid

ORDER BY c2.relname;

321

Chapter 24. Monitoring Disk Usage

relname | relpages
----------------------+----------

customer_id_indexdex | 26

It is easy to find your largest tables and indexes using this information:

SELECT relname, relpages FROM pg_class ORDER BY relpages DESC;

relname | relpages
----------------------+----------

bigtable | 3290
customer | 3144

contrib/dbsize loads functions into your database that allow you to find the size of a table or
database from inside psql without the need forVACUUMor ANALYZE.

You can also usecontrib/oid2name to show disk usage. SeeREADME.oid2name in that directory
for examples. It includes a script that shows disk usage for each database.

24.2. Disk Full Failure
The most important disk monitoring task of a database administrator is to make sure the disk doesn’t
grow full. A filled data disk will not result in data corruption, but it may well prevent useful activity
from occurring. If the disk holding the WAL files grows full, database server panic and consequent
shutdown may occur.

If you cannot free up additional space on the disk by deleting other things, you can move some
of the database files to other file systems by making use of tablespaces. SeeSection 18.6for more
information about that.

Tip: Some file systems perform badly when they are almost full, so do not wait until the disk is
completely full to take action.

If your system supports per-user disk quotas, then the database will naturally be subject to whatever
quota is placed on the user the server runs as. Exceeding the quota will have the same bad effects as
running out of space entirely.

322

Chapter 25. Write-Ahead Logging (WAL)
Write-Ahead Logging(WAL) is a standard approach to transaction logging. Its detailed description
may be found in most (if not all) books about transaction processing. Briefly, WAL’s central concept
is that changes to data files (where tables and indexes reside) must be written only after those changes
have been logged, that is, when log records describing the changes have been flushed to permanent
storage. If we follow this procedure, we do not need to flush data pages to disk on every transaction
commit, because we know that in the event of a crash we will be able to recover the database using
the log: any changes that have not been applied to the data pages can be redone from the log records.
(This is roll-forward recovery, also known as REDO.)

25.1. Benefits of WAL
The first major benefit of using WAL is a significantly reduced number of disk writes, because only
the log file needs to be flushed to disk at the time of transaction commit, rather than every data
file changed by the transaction. In multiuser environments, commits of many transactions may be
accomplished with a singlefsync of the log file. Furthermore, the log file is written sequentially, and
so the cost of syncing the log is much less than the cost of flushing the data pages. This is especially
true for servers handling many small transactions touching different parts of the data store.

The next benefit is consistency of the data pages. The truth is that, before WAL, PostgreSQL was
never able to guarantee consistency in the case of a crash. Before WAL, any crash during writing
could result in:

1. index rows pointing to nonexistent table rows

2. index rows lost in split operations

3. totally corrupted table or index page content, because of partially written data pages

Problems with indexes (problems 1 and 2) could possibly have been fixed by additionalfsync calls,
but it is not obvious how to handle the last case without WAL. WAL saves the entire data page content
in the log if that is required to ensure page consistency for after-crash recovery.

Finally, WAL makes it possible to support on-line backup and point-in-time recovery, as described
in Section 22.3. By archiving the WAL data we can support reverting to any time instant covered by
the available WAL data: we simply install a prior physical backup of the database, and replay the
WAL log just as far as the desired time. What’s more, the physical backup doesn’t have to be an
instantaneous snapshot of the database state — if it is made over some period of time, then replaying
the WAL log for that period will fix any internal inconsistencies.

25.2. WAL Configuration
There are several WAL-related configuration parameters that affect database performance. This sec-
tion explains their use. ConsultSection 16.4for general information about setting server configuration
parameters.

Checkpointsare points in the sequence of transactions at which it is guaranteed that the data files have
been updated with all information logged before the checkpoint. At checkpoint time, all dirty data
pages are flushed to disk and a special checkpoint record is written to the log file. As a result, in the
event of a crash, the crash recovery procedure knows from what point in the log (known as the redo
record) it should start the REDO operation, since any changes made to data files before that point are
already on disk. After a checkpoint has been made, any log segments written before the redo record

323

Chapter 25. Write-Ahead Logging (WAL)

are no longer needed and can be recycled or removed. (When WAL archiving is being done, the log
segments must be archived before being recycled or removed.)

The server’s background writer process will automatically perform a checkpoint every so often. A
checkpoint is created everycheckpoint_segmentslog segments, or everycheckpoint_timeoutseconds,
whichever comes first. The default settings are 3 segments and 300 seconds respectively. It is also
possible to force a checkpoint by using the SQL commandCHECKPOINT.

Reducingcheckpoint_segments and/orcheckpoint_timeout causes checkpoints to be done
more often. This allows faster after-crash recovery (since less work will need to be redone). However,
one must balance this against the increased cost of flushing dirty data pages more often. In addition,
to ensure data page consistency, the first modification of a data page after each checkpoint results in
logging the entire page content. Thus a smaller checkpoint interval increases the volume of output to
the WAL log, partially negating the goal of using a smaller interval, and in any case causing more
disk I/O.

Checkpoints are fairly expensive, first because they require writing out all currently dirty buffers, and
second because they result in extra subsequent WAL traffic as discussed above. It is therefore wise to
set the checkpointing parameters high enough that checkpoints don’t happen too often. As a simple
sanity check on your checkpointing parameters, you can set thecheckpoint_warningparameter. If
checkpoints happen closer together thancheckpoint_warning seconds, a message will be output
to the server log recommending increasingcheckpoint_segments . Occasional appearance of such
a message is not cause for alarm, but if it appears often then the checkpoint control parameters should
be increased.

There will be at least one WAL segment file, and will normally not be more than 2 *
checkpoint_segments + 1 files. Each segment file is normally 16 MB (though this size can
be altered when building the server). You can use this to estimate space requirements for WAL.
Ordinarily, when old log segment files are no longer needed, they are recycled (renamed to become
the next segments in the numbered sequence). If, due to a short-term peak of log output rate, there
are more than 2 *checkpoint_segments + 1 segment files, the unneeded segment files will be
deleted instead of recycled until the system gets back under this limit.

There are two commonly used WAL functions:LogInsert andLogFlush . LogInsert is used to
place a new record into the WAL buffers in shared memory. If there is no space for the new record,
LogInsert will have to write (move to kernel cache) a few filled WAL buffers. This is undesirable
becauseLogInsert is used on every database low level modification (for example, row insertion)
at a time when an exclusive lock is held on affected data pages, so the operation needs to be as fast
as possible. What is worse, writing WAL buffers may also force the creation of a new log segment,
which takes even more time. Normally, WAL buffers should be written and flushed by aLogFlush

request, which is made, for the most part, at transaction commit time to ensure that transaction records
are flushed to permanent storage. On systems with high log output,LogFlush requests may not occur
often enough to preventLogInsert from having to do writes. On such systems one should increase
the number of WAL buffers by modifying the configuration parameterwal_buffers. The default num-
ber of WAL buffers is 8. Increasing this value will correspondingly increase shared memory usage. (It
should be noted that there is presently little evidence to suggest that increasingwal_buffers beyond
the default is worthwhile.)

Thecommit_delayparameter defines for how many microseconds the server process will sleep after
writing a commit record to the log withLogInsert but before performing aLogFlush . This delay
allows other server processes to add their commit records to the log so as to have all of them flushed
with a single log sync. No sleep will occur iffsyncis not enabled, nor if fewer thancommit_siblings
other sessions are currently in active transactions; this avoids sleeping when it’s unlikely that any
other session will commit soon. Note that on most platforms, the resolution of a sleep request is
ten milliseconds, so that any nonzerocommit_delay setting between 1 and 10000 microseconds

324

Chapter 25. Write-Ahead Logging (WAL)

would have the same effect. Good values for these parameters are not yet clear; experimentation is
encouraged.

Thewal_sync_methodparameter determines how PostgreSQL will ask the kernel to force WAL up-
dates out to disk. All the options should be the same as far as reliability goes, but it’s quite platform-
specific which one will be the fastest. Note that this parameter is irrelevant iffsync has been turned
off.

Enabling thewal_debugconfiguration parameter (provided that PostgreSQL has been compiled with
support for it) will result in eachLogInsert andLogFlush WAL call being logged to the server log.
This option may be replaced by a more general mechanism in the future.

25.3. Internals
WAL is automatically enabled; no action is required from the administrator except ensuring that the
disk-space requirements for the WAL logs are met, and that any necessary tuning is done (seeSection
25.2).

WAL logs are stored in the directorypg_xlog under the data directory, as a set of segment files,
normally each 16 MB in size. Each segment is divided into pages, normally 8 KB each. The log
record headers are described inaccess/xlog.h ; the record content is dependent on the type of
event that is being logged. Segment files are given ever-increasing numbers as names, starting at
000000010000000000000000 . The numbers do not wrap, at present, but it should take a very very
long time to exhaust the available stock of numbers.

The WAL buffers and control structure are in shared memory and are handled by the server child
processes; they are protected by lightweight locks. The demand on shared memory is dependent on
the number of buffers. The default size of the WAL buffers is 8 buffers of 8 kB each, or 64 kB total.

It is of advantage if the log is located on another disk than the main database files. This may be
achieved by moving the directorypg_xlog to another location (while the server is shut down, of
course) and creating a symbolic link from the original location in the main data directory to the new
location.

The aim of WAL, to ensure that the log is written before database records are altered, may be sub-
verted by disk drives that falsely report a successful write to the kernel, when in fact they have only
cached the data and not yet stored it on the disk. A power failure in such a situation may still lead
to irrecoverable data corruption. Administrators should try to ensure that disks holding PostgreSQL’s
WAL log files do not make such false reports.

After a checkpoint has been made and the log flushed, the checkpoint’s position is saved in the file
pg_control . Therefore, when recovery is to be done, the server first readspg_control and then the
checkpoint record; then it performs the REDO operation by scanning forward from the log position
indicated in the checkpoint record. Because the entire content of data pages is saved in the log on the
first page modification after a checkpoint, all pages changed since the checkpoint will be restored to
a consistent state.

To deal with the case wherepg_control is corrupted, we should support the possibility of scanning
existing log segments in reverse order — newest to oldest — in order to find the latest checkpoint.
This has not been implemented yet.pg_control is small enough (less than one disk page) that it
is not subject to partial-write problems, and as of this writing there have been no reports of database
failures due solely to inability to readpg_control itself. So while it is theoretically a weak spot,
pg_control does not seem to be a problem in practice.

325

Chapter 26. Regression Tests
The regression tests are a comprehensive set of tests for the SQL implementation in PostgreSQL.
They test standard SQL operations as well as the extended capabilities of PostgreSQL.

26.1. Running the Tests
The regression tests can be run against an already installed and running server, or using a temporary
installation within the build tree. Furthermore, there is a “parallel” and a “sequential” mode for run-
ning the tests. The sequential method runs each test script in turn, whereas the parallel method starts
up multiple server processes to run groups of tests in parallel. Parallel testing gives confidence that
interprocess communication and locking are working correctly. For historical reasons, the sequen-
tial test is usually run against an existing installation and the parallel method against a temporary
installation, but there are no technical reasons for this.

To run the regression tests after building but before installation, type

gmake check

in the top-level directory. (Or you can change tosrc/test/regress and run the command there.)
This will first build several auxiliary files, such as some sample user-defined trigger functions, and
then run the test driver script. At the end you should see something like

======================

All 96 tests passed.

======================

or otherwise a note about which tests failed. SeeSection 26.2below before assuming that a “failure”
represents a serious problem.

Because this test method runs a temporary server, it will not work when you are the root user (since
the server will not start as root). If you already did the build as root, you do not have to start all over.
Instead, make the regression test directory writable by some other user, log in as that user, and restart
the tests. For example

root# chmod -R a+w src/test/regress
root# chmod -R a+w contrib/spi
root# su - joeuser
joeuser$ cd top-level build directory
joeuser$ gmake check

(The only possible “security risk” here is that other users might be able to alter the regression test
results behind your back. Use common sense when managing user permissions.)

Alternatively, run the tests after installation.

If you have configured PostgreSQL to install into a location where an older PostgreSQL installation
already exists, and you performgmake check before installing the new version, you may find that the
tests fail because the new programs try to use the already-installed shared libraries. (Typical symptoms
are complaints about undefined symbols.) If you wish to run the tests before overwriting the old
installation, you’ll need to build withconfigure --disable-rpath . It is not recommended that
you use this option for the final installation, however.

The parallel regression test starts quite a few processes under your user ID. Presently, the maximum
concurrency is twenty parallel test scripts, which means sixty processes: there’s a server process, a
psql, and usually a shell parent process for the psql for each test script. So if your system enforces a

326

Chapter 26. Regression Tests

per-user limit on the number of processes, make sure this limit is at least seventy-five or so, else you
may get random-seeming failures in the parallel test. If you are not in a position to raise the limit, you
can cut down the degree of parallelism by setting theMAX_CONNECTIONSparameter. For example,

gmake MAX_CONNECTIONS=10 check

runs no more than ten tests concurrently.

On some systems, the default Bourne-compatible shell (/bin/sh) gets confused when it has to man-
age too many child processes in parallel. This may cause the parallel test run to lock up or fail. In
such cases, specify a different Bourne-compatible shell on the command line, for example:

gmake SHELL=/bin/ksh check

If no non-broken shell is available, you may be able to work around the problem by limiting the
number of connections, as shown above.

To run the tests after installation (seeChapter 14), initialize a data area and start the server, as ex-
plained inChapter 16, then type

gmake installcheck

or for a parallel test

gmake installcheck-parallel

The tests will expect to contact the server at the local host and the default port number, unless directed
otherwise byPGHOSTandPGPORTenvironment variables.

26.2. Test Evaluation
Some properly installed and fully functional PostgreSQL installations can “fail” some of these re-
gression tests due to platform-specific artifacts such as varying floating-point representation and time
zone support. The tests are currently evaluated using a simplediff comparison against the outputs
generated on a reference system, so the results are sensitive to small system differences. When a
test is reported as “failed”, always examine the differences between expected and actual results; you
may well find that the differences are not significant. Nonetheless, we still strive to maintain accurate
reference files across all supported platforms, so it can be expected that all tests pass.

The actual outputs of the regression tests are in files in thesrc/test/regress/results direc-
tory. The test script usesdiff to compare each output file against the reference outputs stored
in the src/test/regress/expected directory. Any differences are saved for your inspection in
src/test/regress/regression.diffs . (Or you can rundiff yourself, if you prefer.)

26.2.1. Error message differences

Some of the regression tests involve intentional invalid input values. Error messages can come from
either the PostgreSQL code or from the host platform system routines. In the latter case, the messages
may vary between platforms, but should reflect similar information. These differences in messages
will result in a “failed” regression test that can be validated by inspection.

327

Chapter 26. Regression Tests

26.2.2. Locale differences

If you run the tests against an already-installed server that was initialized with a collation-order locale
other than C, then there may be differences due to sort order and follow-up failures. The regression
test suite is set up to handle this problem by providing alternative result files that together are known
to handle a large number of locales. For example, for thechar test, the expected filechar.out

handles theCandPOSIX locales, and the filechar_1.out handles many other locales. The regression
test driver will automatically pick the best file to match against when checking for success and for
computing failure differences. (This means that the regression tests cannot detect whether the results
are appropriate for the configured locale. The tests will simply pick the one result file that works best.)

If for some reason the existing expected files do not cover some locale, you can add a new file. The
naming scheme istestname _digit .out . The actual digit is not significant. Remember that the
regression test driver will consider all such files to be equally valid test results. If the test results are
platform-specific, the technique described inSection 26.3should be used instead.

26.2.3. Date and time differences

A few of the queries in thehorology test will fail if you run the test on the day of a daylight-
saving time changeover, or the day after one. These queries expect that the intervals between midnight
yesterday, midnight today and midnight tomorrow are exactly twenty-four hours — which is wrong
if daylight-saving time went into or out of effect meanwhile.

Note: Because USA daylight-saving time rules are used, this problem always occurs on the first
Sunday of April, the last Sunday of October, and their following Mondays, regardless of when
daylight-saving time is in effect where you live. Also note that the problem appears or disappears
at midnight Pacific time (UTC-7 or UTC-8), not midnight your local time. Thus the failure may
appear late on Saturday or persist through much of Tuesday, depending on where you live.

Most of the date and time results are dependent on the time zone environment. The reference files
are generated for time zonePST8PDT(Berkeley, California), and there will be apparent failures if the
tests are not run with that time zone setting. The regression test driver sets environment variablePGTZ

to PST8PDT, which normally ensures proper results.

26.2.4. Floating-point differences

Some of the tests involve computing 64-bit floating-point numbers (double precision) from table
columns. Differences in results involving mathematical functions ofdouble precision columns
have been observed. Thefloat8 and geometry tests are particularly prone to small differences
across platforms, or even with different compiler optimization options. Human eyeball comparison is
needed to determine the real significance of these differences which are usually 10 places to the right
of the decimal point.

Some systems display minus zero as-0 , while others just show0.

Some systems signal errors frompow() andexp() differently from the mechanism expected by the
current PostgreSQL code.

328

Chapter 26. Regression Tests

26.2.5. Row ordering differences

You might see differences in which the same rows are output in a different order than what appears in
the expected file. In most cases this is not, strictly speaking, a bug. Most of the regression test scripts
are not so pedantic as to use anORDER BYfor every singleSELECT, and so their result row orderings
are not well-defined according to the letter of the SQL specification. In practice, since we are looking
at the same queries being executed on the same data by the same software, we usually get the same
result ordering on all platforms, and so the lack ofORDER BYisn’t a problem. Some queries do exhibit
cross-platform ordering differences, however. (Ordering differences can also be triggered by non-C
locale settings.)

Therefore, if you see an ordering difference, it’s not something to worry about, unless the query does
have anORDER BYthat your result is violating. But please report it anyway, so that we can add an
ORDER BYto that particular query and thereby eliminate the bogus “failure” in future releases.

You might wonder why we don’t order all the regression test queries explicitly to get rid of this issue
once and for all. The reason is that that would make the regression tests less useful, not more, since
they’d tend to exercise query plan types that produce ordered results to the exclusion of those that
don’t.

26.2.6. The “random” test

The random test script is intended to produce random results. In rare cases, this causes the random
regression test to fail. Typing

diff results/random.out expected/random.out

should produce only one or a few lines of differences. You need not worry unless the random test fails
repeatedly.

26.3. Platform-specific comparison files
Since some of the tests inherently produce platform-specific results, we have provided a way to supply
platform-specific result comparison files. Frequently, the same variation applies to multiple platforms;
rather than supplying a separate comparison file for every platform, there is a mapping file that de-
fines which comparison file to use. So, to eliminate bogus test “failures” for a particular platform,
you must choose or make a variant result file, and then add a line to the mapping file, which is
src/test/regress/resultmap .

Each line in the mapping file is of the form

testname/platformpattern=comparisonfilename

The test name is just the name of the particular regression test module. The platform pattern is a
pattern in the style of the Unix toolexpr (that is, a regular expression with an implicit^ anchor at
the start). It is matched against the platform name as printed byconfig.guess followed by:gcc or
:cc , depending on whether you use the GNU compiler or the system’s native compiler (on systems
where there is a difference). The comparison file name is the name of the substitute result comparison
file.

For example: some systems interpret very small floating-point values as zero, rather than reporting an
underflow error. This causes a few differences in thefloat8 regression test. Therefore, we provide a

329

Chapter 26. Regression Tests

variant comparison file,float8-small-is-zero.out , which includes the results to be expected on
these systems. To silence the bogus “failure” message on OpenBSD platforms,resultmap includes

float8/i.86-.*-openbsd=float8-small-is-zero

which will trigger on any machine for which the output ofconfig.guess matches
i.86-.*-openbsd . Other lines inresultmap select the variant comparison file for other platforms
where it’s appropriate.

330

IV. Client Interfaces
This part describes the client programming interfaces distributed with PostgreSQL. Each of these
chapters can be read independently. Note that there are many other programming interfaces for client
programs that are distributed separately and contain their own documentation (Appendix Hlists some
of the more popular ones). Readers of this part should be familiar with using SQL commands to
manipulate and query the database (seePart II) and of course with the programming language that the
interface uses.

Chapter 27. libpq - C Library
libpq is the C application programmer’s interface to PostgreSQL. libpq is a set of library functions
that allow client programs to pass queries to the PostgreSQL backend server and to receive the results
of these queries.

libpq is also the underlying engine for several other PostgreSQL application interfaces, including
those written for C++, Perl, Python, Tcl and ECPG. So some aspects of libpq’s behavior will be
important to you if you use one of those packages. In particular,Section 27.11, Section 27.12and
Section 27.13describe behavior that is visible to the user of any application that uses libpq.

Some short programs are included at the end of this chapter (Section 27.16) to show how to write pro-
grams that use libpq. There are also several complete examples of libpq applications in the directory
src/test/examples in the source code distribution.

Client programs that use libpq must include the header filelibpq-fe.h and must link with the libpq
library.

27.1. Database Connection Control Functions
The following functions deal with making a connection to a PostgreSQL backend server. An appli-
cation program can have several backend connections open at one time. (One reason to do that is to
access more than one database.) Each connection is represented by aPGconn object, which is ob-
tained from the functionPQconnectdb or PQsetdbLogin . Note that these functions will always
return a non-null object pointer, unless perhaps there is too little memory even to allocate thePGconn

object. ThePQstatus function should be called to check whether a connection was successfully
made before queries are sent via the connection object.

PQconnectdb

Makes a new connection to the database server.

PGconn *PQconnectdb(const char *conninfo);

This function opens a new database connection using the parameters taken from the string
conninfo . Unlike PQsetdbLogin below, the parameter set can be extended without changing
the function signature, so use of this function (or its nonblocking analoguesPQconnectStart

andPQconnectPoll) is preferred for new application programming.

The passed string can be empty to use all default parameters, or it can contain one or more param-
eter settings separated by whitespace. Each parameter setting is in the formkeyword = value .
Spaces around the equal sign are optional. To write an empty value or a value containing spaces,
surround it with single quotes, e.g.,keyword = ’a value’ . Single quotes and backslashes
within the value must be escaped with a backslash, i.e.,\’ and\\ .

The currently recognized parameter key words are:

host

Name of host to connect to. If this begins with a slash, it specifies Unix-domain communi-
cation rather than TCP/IP communication; the value is the name of the directory in which
the socket file is stored. The default behavior whenhost is not specified is to connect
to a Unix-domain socket in/tmp (or whatever socket directory was specified when Post-
greSQL was built). On machines without Unix-domain sockets, the default is to connect to
localhost .

333

Chapter 27. libpq - C Library

hostaddr

Numeric IP address of host to connect to. This should be in the standard IPv4 address for-
mat, e.g.,172.28.40.9 . If your machine supports IPv6, you can also use those addresses.
TCP/IP communication is always used when a nonempty string is specified for this param-
eter.

Using hostaddr instead ofhost allows the application to avoid a host name look-up,
which may be important in applications with time constraints. However, Kerberos authenti-
cation requires the host name. The following therefore applies: Ifhost is specified without
hostaddr , a host name lookup occurs. Ifhostaddr is specified withouthost , the value
for hostaddr gives the remote address. When Kerberos is used, a reverse name query
occurs to obtain the host name for Kerberos. If bothhost andhostaddr are specified,
the value forhostaddr gives the remote address; the value forhost is ignored, unless
Kerberos is used, in which case that value is used for Kerberos authentication. (Note that
authentication is likely to fail if libpq is passed a host name that is not the name of the ma-
chine athostaddr .) Also, host rather thanhostaddr is used to identify the connection
in ~/.pgpass (seeSection 27.12).

Without either a host name or host address, libpq will connect using a local Unix-domain
socket; or on machines without Unix-domain sockets, it will attempt to connect to
localhost .

port

Port number to connect to at the server host, or socket file name extension for Unix-domain
connections.

dbname

The database name. Defaults to be the same as the user name.

user

PostgreSQL user name to connect as. Defaults to be the same as the operating system name
of the user running the application.

password

Password to be used if the server demands password authentication.

connect_timeout

Maximum wait for connection, in seconds (write as a decimal integer string). Zero or not
specified means wait indefinitely. It is not recommended to use a timeout of less than 2
seconds.

options

Command-line options to be sent to the server.

tty

Ignored (formerly, this specified where to send server debug output).

sslmode

This option determines whether or with what priority an SSL connection will be negotiated
with the server. There are four modes:disable will attempt only an unencrypted SSL
connection;allow will negotiate, trying first a non-SSL connection, then if that fails, trying
an SSL connection;prefer (the default) will negotiate, trying first an SSL connection, then
if that fails, trying a regular non-SSL connection;require will try only an SSL connection.

334

Chapter 27. libpq - C Library

If PostgreSQL is compiled without SSL support, using optionrequire will cause an error,
while optionsallow andprefer will be accepted but libpq will not in fact attempt an SSL
connection.

requiressl

This option is deprecated in favor of thesslmode setting.

If set to 1, an SSL connection to the server is required (this is equivalent tosslmode

require). libpq will then refuse to connect if the server does not accept an SSL connec-
tion. If set to 0 (default), libpq will negotiate the connection type with the server (equivalent
to sslmode prefer). This option is only available if PostgreSQL is compiled with SSL
support.

service

Service name to use for additional parameters. It specifies a service name in
pg_service.conf that holds additional connection parameters. This allows applications
to specify only a service name so connection parameters can be centrally maintained. See
share/pg_service.conf.sample in the installation directory for information on how
to set up the file.

If any parameter is unspecified, then the corresponding environment variable (seeSection 27.11)
is checked. If the environment variable is not set either, then the indicated built-in defaults are
used.

PQsetdbLogin

Makes a new connection to the database server.

PGconn *PQsetdbLogin(const char *pghost,
const char *pgport,
const char *pgoptions,
const char *pgtty,
const char *dbName,
const char *login,
const char *pwd);

This is the predecessor ofPQconnectdb with a fixed set of parameters. It has the same func-
tionality except that the missing parameters will always take on default values. WriteNULLor an
empty string for any one of the fixed parameters that is to be defaulted.

PQsetdb

Makes a new connection to the database server.

PGconn *PQsetdb(char *pghost,
char *pgport,
char *pgoptions,
char *pgtty,
char *dbName);

This is a macro that callsPQsetdbLogin with null pointers for thelogin andpwd parameters.
It is provided for backward compatibility with very old programs.

335

Chapter 27. libpq - C Library

PQconnectStart

PQconnectPoll

Make a connection to the database server in a nonblocking manner.

PGconn *PQconnectStart(const char *conninfo);

PostgresPollingStatusType PQconnectPoll(PGconn *conn);

These two functions are used to open a connection to a database server such that your appli-
cation’s thread of execution is not blocked on remote I/O whilst doing so. The point of this
approach is that the waits for I/O to complete can occur in the application’s main loop, rather
than down insidePQconnectdb , and so the application can manage this operation in parallel
with other activities.

The database connection is made using the parameters taken from the stringconninfo , passed
to PQconnectStart . This string is in the same format as described above forPQconnectdb .

NeitherPQconnectStart nor PQconnectPoll will block, so long as a number of restrictions
are met:

• Thehostaddr andhost parameters are used appropriately to ensure that name and reverse
name queries are not made. See the documentation of these parameters underPQconnectdb

above for details.

• If you call PQtrace , ensure that the stream object into which you trace will not block.

• You ensure that the socket is in the appropriate state before callingPQconnectPoll , as de-
scribed below.

To begin a nonblocking connection request, call conn =

PQconnectStart(" connection_info_string ") . If conn is null, then
libpq has been unable to allocate a newPGconn structure. Otherwise, a validPGconn pointer is
returned (though not yet representing a valid connection to the database). On return from
PQconnectStart , call status = PQstatus(conn) . If status equalsCONNECTION_BAD,
PQconnectStart has failed.

If PQconnectStart succeeds, the next stage is to poll libpq so that it may proceed
with the connection sequence. UsePQsocket(conn) to obtain the descriptor of the
socket underlying the database connection. Loop thus: IfPQconnectPoll(conn) last
returnedPGRES_POLLING_READING, wait until the socket is ready to read (as indicated by
select() , poll() , or similar system function). Then callPQconnectPoll(conn) again.
Conversely, if PQconnectPoll(conn) last returned PGRES_POLLING_WRITING, wait
until the socket is ready to write, then callPQconnectPoll(conn) again. If you have yet
to call PQconnectPoll , i.e., just after the call toPQconnectStart , behave as if it last
returned PGRES_POLLING_WRITING. Continue this loop until PQconnectPoll(conn)

returns PGRES_POLLING_FAILED, indicating the connection procedure has failed, or
PGRES_POLLING_OK, indicating the connection has been successfully made.

At any time during connection, the status of the connection may be checked by calling
PQstatus . If this givesCONNECTION_BAD, then the connection procedure has failed; if it gives
CONNECTION_OK, then the connection is ready. Both of these states are equally detectable from
the return value ofPQconnectPoll , described above. Other states may also occur during (and
only during) an asynchronous connection procedure. These indicate the current stage of the
connection procedure and may be useful to provide feedback to the user for example. These
statuses are:

336

Chapter 27. libpq - C Library

CONNECTION_STARTED

Waiting for connection to be made.

CONNECTION_MADE

Connection OK; waiting to send.

CONNECTION_AWAITING_RESPONSE

Waiting for a response from the server.

CONNECTION_AUTH_OK

Received authentication; waiting for backend start-up to finish.

CONNECTION_SSL_STARTUP

Negotiating SSL encryption.

CONNECTION_SETENV

Negotiating environment-driven parameter settings.

Note that, although these constants will remain (in order to maintain compatibility), an applica-
tion should never rely upon these occurring in a particular order, or at all, or on the status always
being one of these documented values. An application might do something like this:

switch(PQstatus(conn))
{

case CONNECTION_STARTED:
feedback = "Connecting...";
break;

case CONNECTION_MADE:
feedback = "Connected to server...";
break;

.

.

.
default:

feedback = "Connecting...";
}

Theconnect_timeout connection parameter is ignored when usingPQconnectPoll ; it is the
application’s responsibility to decide whether an excessive amount of time has elapsed. Other-
wise,PQconnectStart followed by aPQconnectPoll loop is equivalent toPQconnectdb .

Note that ifPQconnectStart returns a non-null pointer, you must callPQfinish when you
are finished with it, in order to dispose of the structure and any associated memory blocks. This
must be done even if the connection attempt fails or is abandoned.

PQconndefaults

Returns the default connection options.

PQconninfoOption *PQconndefaults(void);

typedef struct
{

char *keyword; /* The keyword of the option */
char *envvar; /* Fallback environment variable name */
char *compiled; /* Fallback compiled in default value */
char *val; /* Option’s current value, or NULL */

337

Chapter 27. libpq - C Library

char *label; /* Label for field in connect dialog */
char *dispchar; /* Character to display for this field

in a connect dialog. Values are:
"" Display entered value as is
"*" Password field - hide value
"D" Debug option - don’t show by default */

int dispsize; /* Field size in characters for dialog */
} PQconninfoOption;

Returns a connection options array. This may be used to determine all possible
PQconnectdb options and their current default values. The return value points to an array of
PQconninfoOption structures, which ends with an entry having a nullkeyword pointer. Note
that the current default values (val fields) will depend on environment variables and other
context. Callers must treat the connection options data as read-only.

After processing the options array, free it by passing it toPQconninfoFree . If this is not done,
a small amount of memory is leaked for each call toPQconndefaults .

PQfinish

Closes the connection to the server. Also frees memory used by thePGconn object.

void PQfinish(PGconn *conn);

Note that even if the server connection attempt fails (as indicated byPQstatus), the application
should callPQfinish to free the memory used by thePGconn object. ThePGconn pointer must
not be used again afterPQfinish has been called.

PQreset

Resets the communication channel to the server.

void PQreset(PGconn *conn);

This function will close the connection to the server and attempt to reestablish a new connection
to the same server, using all the same parameters previously used. This may be useful for error
recovery if a working connection is lost.

PQresetStart

PQresetPoll

Reset the communication channel to the server, in a nonblocking manner.

int PQresetStart(PGconn *conn);

PostgresPollingStatusType PQresetPoll(PGconn *conn);

These functions will close the connection to the server and attempt to reestablish a new connec-
tion to the same server, using all the same parameters previously used. This may be useful for
error recovery if a working connection is lost. They differ fromPQreset (above) in that they act
in a nonblocking manner. These functions suffer from the same restrictions asPQconnectStart

andPQconnectPoll .

To initiate a connection reset, callPQresetStart . If it returns 0, the reset has failed. If it returns
1, poll the reset usingPQresetPoll in exactly the same way as you would create the connection
usingPQconnectPoll .

338

Chapter 27. libpq - C Library

27.2. Connection Status Functions
These functions may be used to interrogate the status of an existing database connection object.

Tip: libpq application programmers should be careful to maintain the PGconn abstraction. Use
the accessor functions described below to get at the contents of PGconn. Avoid directly referencing
the fields of the PGconn structure because they are subject to change in the future. (Beginning
in PostgreSQL release 6.4, the definition of the struct behind PGconn is not even provided in
libpq-fe.h . If you have old code that accesses PGconn fields directly, you can keep using it by
including libpq-int.h too, but you are encouraged to fix the code soon.)

The following functions return parameter values established at connection. These values are fixed for
the life of thePGconn object.

PQdb

Returns the database name of the connection.

char *PQdb(const PGconn *conn);

PQuser

Returns the user name of the connection.

char *PQuser(const PGconn *conn);

PQpass

Returns the password of the connection.

char *PQpass(const PGconn *conn);

PQhost

Returns the server host name of the connection.

char *PQhost(const PGconn *conn);

PQport

Returns the port of the connection.

char *PQport(const PGconn *conn);

PQtty

Returns the debug TTY of the connection. (This is obsolete, since the server no longer pays
attention to the TTY setting, but the function remains for backwards compatibility.)

char *PQtty(const PGconn *conn);

339

Chapter 27. libpq - C Library

PQoptions

Returns the command-line options passed in the connection request.

char *PQoptions(const PGconn *conn);

The following functions return status data that can change as operations are executed on thePGconn

object.

PQstatus

Returns the status of the connection.

ConnStatusType PQstatus(const PGconn *conn);

The status can be one of a number of values. However, only two of these are seen outside of an
asynchronous connection procedure:CONNECTION_OKandCONNECTION_BAD. A good connec-
tion to the database has the statusCONNECTION_OK. A failed connection attempt is signaled by
statusCONNECTION_BAD. Ordinarily, an OK status will remain so untilPQfinish , but a com-
munications failure might result in the status changing toCONNECTION_BADprematurely. In that
case the application could try to recover by callingPQreset .

See the entry forPQconnectStart andPQconnectPoll with regards to other status codes that
might be seen.

PQtransactionStatus

Returns the current in-transaction status of the server.

PGTransactionStatusType PQtransactionStatus(const PGconn *conn);

The status can bePQTRANS_IDLE (currently idle), PQTRANS_ACTIVE(a command is in
progress),PQTRANS_INTRANS(idle, in a valid transaction block), orPQTRANS_INERROR

(idle, in a failed transaction block).PQTRANS_UNKNOWNis reported if the connection is bad.
PQTRANS_ACTIVEis reported only when a query has been sent to the server and not yet
completed.

Caution
PQtransactionStatus will give incorrect results when using a Post-
greSQL 7.3 server that has the parameter autocommit set to off. The
server-side autocommit feature has been deprecated and does not
exist in later server versions.

PQparameterStatus

Looks up a current parameter setting of the server.

const char *PQparameterStatus(const PGconn *conn, const char *paramName);

Certain parameter values are reported by the server automatically at connection startup or when-
ever their values change.PQparameterStatus can be used to interrogate these settings. It
returns the current value of a parameter if known, orNULL if the parameter is not known.

Parameters reported as of the current release includeserver_version , server_encoding ,
client_encoding , is_superuser , session_authorization , DateStyle , TimeZone ,

340

Chapter 27. libpq - C Library

andinteger_datetimes . (server_encoding , TimeZone , andinteger_datetimes were
not reported by releases before 8.0.) Note thatserver_version , server_encoding and
integer_datetimes cannot change after startup.

Pre-3.0-protocol servers do not report parameter settings, but libpq includes logic to obtain val-
ues forserver_version andclient_encoding anyway. Applications are encouraged to use
PQparameterStatus rather thanad hoccode to determine these values. (Beware however that
on a pre-3.0 connection, changingclient_encoding via SETafter connection startup will not
be reflected byPQparameterStatus .) For server_version , see alsoPQserverVersion ,
which returns the information in a numeric form that is much easier to compare against.

Although the returned pointer is declaredconst , it in fact points to mutable storage associated
with thePGconn structure. It is unwise to assume the pointer will remain valid across queries.

PQprotocolVersion

Interrogates the frontend/backend protocol being used.

int PQprotocolVersion(const PGconn *conn);

Applications may wish to use this to determine whether certain features are supported. Currently,
the possible values are 2 (2.0 protocol), 3 (3.0 protocol), or zero (connection bad). This will not
change after connection startup is complete, but it could theoretically change during a connection
reset. The 3.0 protocol will normally be used when communicating with PostgreSQL 7.4 or later
servers; pre-7.4 servers support only protocol 2.0. (Protocol 1.0 is obsolete and not supported by
libpq.)

PQserverVersion

Returns an integer representing the backend version.

int PQserverVersion(const PGconn *conn);

Applications may use this to determine the version of the database server they are connected to.
The number is formed by converting the major, minor, and revision numbers into two-decimal-
digit numbers and appending them together. For example, version 7.4.2 will be returned as
70402, and version 8.1 will be returned as 80100 (leading zeroes are not shown). Zero is re-
turned if the connection is bad.

PQerrorMessage

Returns the error message most recently generated by an operation on the connection.

char *PQerrorMessage(const PGconn *conn);

Nearly all libpq functions will set a message forPQerrorMessage if they fail. Note that by
libpq convention, a nonemptyPQerrorMessage result will include a trailing newline. The caller
should not free the result directly. It will be freed when the associatedPGconn handle is passed
to PQfinish . The result string should not be expected to remain the same across operations on
thePGconn structure.

PQsocket

Obtains the file descriptor number of the connection socket to the server. A valid descriptor will
be greater than or equal to 0; a result of -1 indicates that no server connection is currently open.
(This will not change during normal operation, but could change during connection setup or
reset.)

int PQsocket(const PGconn *conn);

341

Chapter 27. libpq - C Library

PQbackendPID

Returns the process ID (PID) of the backend server process handling this connection.

int PQbackendPID(const PGconn *conn);

The backend PID is useful for debugging purposes and for comparison toNOTIFY messages
(which include the PID of the notifying backend process). Note that the PID belongs to a process
executing on the database server host, not the local host!

PQgetssl

Returns the SSL structure used in the connection, or null if SSL is not in use.

SSL *PQgetssl(const PGconn *conn);

This structure can be used to verify encryption levels, check server certificates, and more. Refer
to the OpenSSL documentation for information about this structure.

You must defineUSE_SSLin order to get the correct prototype for this function. Doing this will
also automatically includessl.h from OpenSSL.

27.3. Command Execution Functions
Once a connection to a database server has been successfully established, the functions described here
are used to perform SQL queries and commands.

27.3.1. Main Functions

PQexec

Submits a command to the server and waits for the result.

PGresult *PQexec(PGconn *conn, const char *command);

Returns aPGresult pointer or possibly a null pointer. A non-null pointer will generally be
returned except in out-of-memory conditions or serious errors such as inability to send the com-
mand to the server. If a null pointer is returned, it should be treated like aPGRES_FATAL_ERROR

result. UsePQerrorMessage to get more information about such errors.

It is allowed to include multiple SQL commands (separated by semicolons) in the command string.
Multiple queries sent in a singlePQexec call are processed in a single transaction, unless there are
explicit BEGIN/COMMITcommands included in the query string to divide it into multiple transactions.
Note however that the returnedPGresult structure describes only the result of the last command
executed from the string. Should one of the commands fail, processing of the string stops with it and
the returnedPGresult describes the error condition.

342

Chapter 27. libpq - C Library

PQexecParams

Submits a command to the server and waits for the result, with the ability to pass parameters
separately from the SQL command text.

PGresult *PQexecParams(PGconn *conn,
const char *command,
int nParams,
const Oid *paramTypes,
const char * const *paramValues,
const int *paramLengths,
const int *paramFormats,
int resultFormat);

PQexecParams is like PQexec, but offers additional functionality: parameter values can be
specified separately from the command string proper, and query results can be requested in either
text or binary format.PQexecParams is supported only in protocol 3.0 and later connections; it
will fail when using protocol 2.0.

If parameters are used, they are referred to in the command string as$1, $2, etc.nParams is the
number of parameters supplied; it is the length of the arraysparamTypes[] , paramValues[] ,
paramLengths[] , andparamFormats[] . (The array pointers may beNULLwhennParams is
zero.)paramTypes[] specifies, by OID, the data types to be assigned to the parameter sym-
bols. If paramTypes is NULL, or any particular element in the array is zero, the server as-
signs a data type to the parameter symbol in the same way it would do for an untyped literal
string.paramValues[] specifies the actual values of the parameters. A null pointer in this array
means the corresponding parameter is null; otherwise the pointer points to a zero-terminated text
string (for text format) or binary data in the format expected by the server (for binary format).
paramLengths[] specifies the actual data lengths of binary-format parameters. It is ignored
for null parameters and text-format parameters. The array pointer may be null when there are
no binary parameters.paramFormats[] specifies whether parameters are text (put a zero in
the array) or binary (put a one in the array). If the array pointer is null then all parameters are
presumed to be text.resultFormat is zero to obtain results in text format, or one to obtain
results in binary format. (There is not currently a provision to obtain different result columns in
different formats, although that is possible in the underlying protocol.)

The primary advantage ofPQexecParams overPQexec is that parameter values may be separated
from the command string, thus avoiding the need for tedious and error-prone quoting and escaping.
Unlike PQexec, PQexecParams allows at most one SQL command in the given string. (There can be
semicolons in it, but not more than one nonempty command.) This is a limitation of the underlying
protocol, but has some usefulness as an extra defense against SQL-injection attacks.

PQprepare

Submits a request to create a prepared statement with the given parameters, and waits for com-
pletion.

PGresult *PQprepare(PGconn *conn,
const char *stmtName,
const char *query,
int nParams,
const Oid *paramTypes);

343

Chapter 27. libpq - C Library

PQprepare creates a prepared statement for later execution withPQexecPrepared . This fea-
ture allows commands that will be used repeatedly to be parsed and planned just once, rather than
each time they are executed.PQprepare is supported only in protocol 3.0 and later connections;
it will fail when using protocol 2.0.

The function creates a prepared statement namedstmtName from thequery string, which must
contain a single SQL command.stmtName may be"" to create an unnamed statement, in which
case any pre-existing unnamed statement is automatically replaced; otherwise it is an error if the
statement name is already defined in the current session. If any parameters are used, they are
referred to in the query as$1, $2, etc.nParams is the number of parameters for which types are
pre-specified in the arrayparamTypes[] . (The array pointer may beNULL whennParams is
zero.)paramTypes[] specifies, by OID, the data types to be assigned to the parameter symbols.
If paramTypes is NULL, or any particular element in the array is zero, the server assigns a data
type to the parameter symbol in the same way it would do for an untyped literal string. Also,
the query may use parameter symbols with numbers higher thannParams ; data types will be
inferred for these symbols as well.

As with PQexec, the result is normally aPGresult object whose contents indicate server-side
success or failure. A null result indicates out-of-memory or inability to send the command at all.
UsePQerrorMessage to get more information about such errors.

At present, there is no way to determine the actual data type inferred for any parameters whose
types are not specified inparamTypes[] . This is a libpq omission that will probably be rectified
in a future release.

Prepared statements for use withPQexecPrepared can also be created by executing SQLPREPARE

statements. (ButPQprepare is more flexible since it does not require parameter types to be pre-
specified.) Also, although there is no libpq function for deleting a prepared statement, the SQL
DEALLOCATEstatement can be used for that purpose.

PQexecPrepared

Sends a request to execute a prepared statement with given parameters, and waits for the result.

PGresult *PQexecPrepared(PGconn *conn,
const char *stmtName,
int nParams,
const char * const *paramValues,
const int *paramLengths,
const int *paramFormats,
int resultFormat);

PQexecPrepared is like PQexecParams , but the command to be executed is specified by nam-
ing a previously-prepared statement, instead of giving a query string. This feature allows com-
mands that will be used repeatedly to be parsed and planned just once, rather than each time
they are executed. The statement must have been prepared previously in the current session.
PQexecPrepared is supported only in protocol 3.0 and later connections; it will fail when us-
ing protocol 2.0.

The parameters are identical toPQexecParams , except that the name of a prepared statement is
given instead of a query string, and theparamTypes[] parameter is not present (it is not needed
since the prepared statement’s parameter types were determined when it was created).

344

Chapter 27. libpq - C Library

ThePGresult structure encapsulates the result returned by the server. libpq application programmers
should be careful to maintain thePGresult abstraction. Use the accessor functions below to get at
the contents ofPGresult . Avoid directly referencing the fields of thePGresult structure because
they are subject to change in the future.

PQresultStatus

Returns the result status of the command.

ExecStatusType PQresultStatus(const PGresult *res);

PQresultStatus can return one of the following values:

PGRES_EMPTY_QUERY

The string sent to the server was empty.

PGRES_COMMAND_OK

Successful completion of a command returning no data.

PGRES_TUPLES_OK

Successful completion of a command returning data (such as aSELECTor SHOW).

PGRES_COPY_OUT

Copy Out (from server) data transfer started.

PGRES_COPY_IN

Copy In (to server) data transfer started.

PGRES_BAD_RESPONSE

The server’s response was not understood.

PGRES_NONFATAL_ERROR

A nonfatal error (a notice or warning) occurred.

PGRES_FATAL_ERROR

A fatal error occurred.

If the result status isPGRES_TUPLES_OK, then the functions described below can be used to
retrieve the rows returned by the query. Note that aSELECTcommand that happens to retrieve
zero rows still showsPGRES_TUPLES_OK. PGRES_COMMAND_OKis for commands that can never
return rows (INSERT, UPDATE, etc.). A response ofPGRES_EMPTY_QUERYmay indicate a bug
in the client software.

A result of statusPGRES_NONFATAL_ERRORwill never be returned directly byPQexec or other
query execution functions; results of this kind are instead passed to the notice processor (see
Section 27.10).

PQresStatus

Converts the enumerated type returned byPQresultStatus into a string constant describing
the status code. The caller should not free the result.

char *PQresStatus(ExecStatusType status);

345

Chapter 27. libpq - C Library

PQresultErrorMessage

Returns the error message associated with the command, or an empty string if there was no error.

char *PQresultErrorMessage(const PGresult *res);

If there was an error, the returned string will include a trailing newline. The caller should not free
the result directly. It will be freed when the associatedPGresult handle is passed toPQclear .

Immediately following aPQexec or PQgetResult call, PQerrorMessage (on the connection)
will return the same string asPQresultErrorMessage (on the result). However, aPGresult

will retain its error message until destroyed, whereas the connection’s error message will change
when subsequent operations are done. UsePQresultErrorMessage when you want to know
the status associated with a particularPGresult ; usePQerrorMessage when you want to know
the status from the latest operation on the connection.

PQresultErrorField

Returns an individual field of an error report.

char *PQresultErrorField(const PGresult *res, int fieldcode);

fieldcode is an error field identifier; see the symbols listed below.NULL is returned if the
PGresult is not an error or warning result, or does not include the specified field. Field values
will normally not include a trailing newline. The caller should not free the result directly. It will
be freed when the associatedPGresult handle is passed toPQclear .

The following field codes are available:

PG_DIAG_SEVERITY

The severity; the field contents areERROR, FATAL, or PANIC (in an error message), or
WARNING, NOTICE, DEBUG, INFO, or LOG(in a notice message), or a localized translation
of one of these. Always present.

PG_DIAG_SQLSTATE

The SQLSTATE code for the error. The SQLSTATE code identifies the type of error that has
occurred; it can be used by front-end applications to perform specific operations (such as er-
ror handling) in response to a particular database error. For a list of the possible SQLSTATE
codes, seeAppendix A. This field is not localizable, and is always present.

PG_DIAG_MESSAGE_PRIMARY

The primary human-readable error message (typically one line). Always present.

PG_DIAG_MESSAGE_DETAIL

Detail: an optional secondary error message carrying more detail about the problem. May
run to multiple lines.

PG_DIAG_MESSAGE_HINT

Hint: an optional suggestion what to do about the problem. This is intended to differ from
detail in that it offers advice (potentially inappropriate) rather than hard facts. May run to
multiple lines.

PG_DIAG_STATEMENT_POSITION

A string containing a decimal integer indicating an error cursor position as an index into
the original statement string. The first character has index 1, and positions are measured in
characters not bytes.

346

Chapter 27. libpq - C Library

PG_DIAG_INTERNAL_POSITION

This is defined the same as thePG_DIAG_STATEMENT_POSITIONfield, but it is used when
the cursor position refers to an internally generated command rather than the one submitted
by the client. ThePG_DIAG_INTERNAL_QUERYfield will always appear when this field
appears.

PG_DIAG_INTERNAL_QUERY

The text of a failed internally-generated command. This could be, for example, a SQL query
issued by a PL/pgSQL function.

PG_DIAG_CONTEXT

An indication of the context in which the error occurred. Presently this includes a call stack
traceback of active procedural language functions and internally-generated queries. The
trace is one entry per line, most recent first.

PG_DIAG_SOURCE_FILE

The file name of the source-code location where the error was reported.

PG_DIAG_SOURCE_LINE

The line number of the source-code location where the error was reported.

PG_DIAG_SOURCE_FUNCTION

The name of the source-code function reporting the error.

The client is responsible for formatting displayed information to meet its needs; in particular
it should break long lines as needed. Newline characters appearing in the error message fields
should be treated as paragraph breaks, not line breaks.

Errors generated internally by libpq will have severity and primary message, but typically no
other fields. Errors returned by a pre-3.0-protocol server will include severity and primary mes-
sage, and sometimes a detail message, but no other fields.

Note that error fields are only available fromPGresult objects, notPGconn objects; there is no
PQerrorField function.

PQclear

Frees the storage associated with aPGresult . Every command result should be freed via
PQclear when it is no longer needed.

void PQclear(PGresult *res);

You can keep aPGresult object around for as long as you need it; it does not go away when
you issue a new command, nor even if you close the connection. To get rid of it, you must call
PQclear . Failure to do this will result in memory leaks in your application.

PQmakeEmptyPGresult

Constructs an emptyPGresult object with the given status.

PGresult* PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status);

This is libpq’s internal function to allocate and initialize an emptyPGresult object. It is ex-
ported because some applications find it useful to generate result objects (particularly objects

347

Chapter 27. libpq - C Library

with error status) themselves. Ifconn is not null andstatus indicates an error, the current error
message of the specified connection is copied into thePGresult . Note thatPQclear should
eventually be called on the object, just as with aPGresult returned by libpq itself.

27.3.2. Retrieving Query Result Information

These functions are used to extract information from aPGresult object that represents a successful
query result (that is, one that has statusPGRES_TUPLES_OK). For objects with other status values they
will act as though the result has zero rows and zero columns.

PQntuples

Returns the number of rows (tuples) in the query result.

int PQntuples(const PGresult *res);

PQnfields

Returns the number of columns (fields) in each row of the query result.

int PQnfields(const PGresult *res);

PQfname

Returns the column name associated with the given column number. Column numbers start at
0. The caller should not free the result directly. It will be freed when the associatedPGresult

handle is passed toPQclear .

char *PQfname(const PGresult *res,
int column_number);

NULL is returned if the column number is out of range.

PQfnumber

Returns the column number associated with the given column name.

int PQfnumber(const PGresult *res,
const char *column_name);

-1 is returned if the given name does not match any column.

The given name is treated like an identifier in an SQL command, that is, it is downcased unless
double-quoted. For example, given a query result generated from the SQL command

select 1 as FOO, 2 as "BAR";

we would have the results:

PQfname(res, 0) foo
PQfname(res, 1) BAR
PQfnumber(res, "FOO") 0
PQfnumber(res, "foo") 0
PQfnumber(res, "BAR") -1
PQfnumber(res, "\"BAR\"") 1

348

Chapter 27. libpq - C Library

PQftable

Returns the OID of the table from which the given column was fetched. Column numbers start
at 0.

Oid PQftable(const PGresult *res,
int column_number);

InvalidOid is returned if the column number is out of range, or if the specified column is not
a simple reference to a table column, or when using pre-3.0 protocol. You can query the system
tablepg_class to determine exactly which table is referenced.

The typeOid and the constantInvalidOid will be defined when you include the libpq header
file. They will both be some integer type.

PQftablecol

Returns the column number (within its table) of the column making up the specified query result
column. Query-result column numbers start at 0, but table columns have nonzero numbers.

int PQftablecol(const PGresult *res,
int column_number);

Zero is returned if the column number is out of range, or if the specified column is not a simple
reference to a table column, or when using pre-3.0 protocol.

PQfformat

Returns the format code indicating the format of the given column. Column numbers start at 0.

int PQfformat(const PGresult *res,
int column_number);

Format code zero indicates textual data representation, while format code one indicates binary
representation. (Other codes are reserved for future definition.)

PQftype

Returns the data type associated with the given column number. The integer returned is the
internal OID number of the type. Column numbers start at 0.

Oid PQftype(const PGresult *res,
int column_number);

You can query the system tablepg_type to obtain the names and properties of
the various data types. The OIDs of the built-in data types are defined in the file
src/include/catalog/pg_type.h in the source tree.

PQfmod

Returns the type modifier of the column associated with the given column number. Column
numbers start at 0.

int PQfmod(const PGresult *res,
int column_number);

349

Chapter 27. libpq - C Library

The interpretation of modifier values is type-specific; they typically indicate precision or size
limits. The value -1 is used to indicate “no information available”. Most data types do not use
modifiers, in which case the value is always -1.

PQfsize

Returns the size in bytes of the column associated with the given column number. Column num-
bers start at 0.

int PQfsize(const PGresult *res,
int column_number);

PQfsize returns the space allocated for this column in a database row, in other words the size
of the server’s internal representation of the data type. (Accordingly, it is not really very useful
to clients.) A negative value indicates the data type is variable-length.

PQbinaryTuples

Returns 1 if thePGresult contains binary data and 0 if it contains text data.

int PQbinaryTuples(const PGresult *res);

This function is deprecated (except for its use in connection withCOPY), because it is possible for
a singlePGresult to contain text data in some columns and binary data in others.PQfformat

is preferred.PQbinaryTuples returns 1 only if all columns of the result are binary (format 1).

PQgetvalue

Returns a single field value of one row of aPGresult . Row and column numbers start at 0. The
caller should not free the result directly. It will be freed when the associatedPGresult handle
is passed toPQclear .

char *PQgetvalue(const PGresult *res,
int row_number,
int column_number);

For data in text format, the value returned byPQgetvalue is a null-terminated character string
representation of the field value. For data in binary format, the value is in the binary representa-
tion determined by the data type’stypsend andtypreceive functions. (The value is actually
followed by a zero byte in this case too, but that is not ordinarily useful, since the value is likely
to contain embedded nulls.)

An empty string is returned if the field value is null. SeePQgetisnull to distinguish null values
from empty-string values.

The pointer returned byPQgetvalue points to storage that is part of thePGresult structure.
One should not modify the data it points to, and one must explicitly copy the data into other
storage if it is to be used past the lifetime of thePGresult structure itself.

PQgetisnull

Tests a field for a null value. Row and column numbers start at 0.

int PQgetisnull(const PGresult *res,
int row_number,
int column_number);

350

Chapter 27. libpq - C Library

This function returns 1 if the field is null and 0 if it contains a non-null value. (Note that
PQgetvalue will return an empty string, not a null pointer, for a null field.)

PQgetlength

Returns the actual length of a field value in bytes. Row and column numbers start at 0.

int PQgetlength(const PGresult *res,
int row_number,
int column_number);

This is the actual data length for the particular data value, that is, the size of the object pointed
to by PQgetvalue . For text data format this is the same asstrlen() . For binary format this is
essential information. Note that one shouldnot rely onPQfsize to obtain the actual data length.

PQprint

Prints out all the rows and, optionally, the column names to the specified output stream.

void PQprint(FILE *fout, /* output stream */
const PGresult *res,
const PQprintOpt *po);

typedef struct {
pqbool header; /* print output field headings and row count */
pqbool align; /* fill align the fields */
pqbool standard; /* old brain dead format */
pqbool html3; /* output HTML tables */
pqbool expanded; /* expand tables */
pqbool pager; /* use pager for output if needed */
char *fieldSep; /* field separator */
char *tableOpt; /* attributes for HTML table element */
char *caption; /* HTML table caption */
char **fieldName; /* null-terminated array of replacement field names */

} PQprintOpt;

This function was formerly used by psql to print query results, but this is no longer the case.
Note that it assumes all the data is in text format.

27.3.3. Retrieving Result Information for Other Commands

These functions are used to extract information fromPGresult objects that are notSELECTresults.

PQcmdStatus

Returns the command status tag from the SQL command that generated thePGresult .

char *PQcmdStatus(PGresult *res);

Commonly this is just the name of the command, but it may include additional data such as the
number of rows processed. The caller should not free the result directly. It will be freed when the
associatedPGresult handle is passed toPQclear .

351

Chapter 27. libpq - C Library

PQcmdTuples

Returns the number of rows affected by the SQL command.

char *PQcmdTuples(PGresult *res);

This function returns a string containing the number of rows affected by the SQL statement that
generated thePGresult . This function can only be used following the execution of anINSERT,
UPDATE, DELETE, MOVE, or FETCHstatement, or anEXECUTEof a prepared query that contains
a INSERT, UPDATE, or DELETEstatement. If the command that generated thePGresult was
anything else,PQcmdTuples returns the empty string. The caller should not free the return value
directly. It will be freed when the associatedPGresult handle is passed toPQclear .

PQoidValue

Returns the OID of the inserted row, if the SQL command was anINSERT that inserted exactly
one row into a table that has OIDs, or aEXECUTEof a prepared query containing a suitable
INSERT statement. Otherwise, this function returnsInvalidOid . This function will also return
InvalidOid if the table affected by theINSERT statement does not contain OIDs.

Oid PQoidValue(const PGresult *res);

PQoidStatus

Returns a string with the OID of the inserted row, if the SQL command was anINSERT that
inserted exactly one row, or aEXECUTEof a prepared statement consisting of a suitableINSERT.
(The string will be0 if the INSERT did not insert exactly one row, or if the target table does not
have OIDs.) If the command was not anINSERT, returns an empty string.

char *PQoidStatus(const PGresult *res);

This function is deprecated in favor ofPQoidValue . It is not thread-safe.

27.3.4. Escaping Strings for Inclusion in SQL Commands

PQescapeString escapes a string for use within an SQL command. This is useful when inserting
data values as literal constants in SQL commands. Certain characters (such as quotes and
backslashes) must be escaped to prevent them from being interpreted specially by the SQL parser.
PQescapeString performs this operation.

Tip: It is especially important to do proper escaping when handling strings that were received from
an untrustworthy source. Otherwise there is a security risk: you are vulnerable to “SQL injection”
attacks wherein unwanted SQL commands are fed to your database.

Note that it is not necessary nor correct to do escaping when a data value is passed as a separate
parameter inPQexecParams or its sibling routines.

size_t PQescapeString (char *to, const char *from, size_t length);

352

Chapter 27. libpq - C Library

The parameterfrom points to the first character of the string that is to be escaped, and thelength

parameter gives the number of characters in this string. A terminating zero byte is not required, and
should not be counted inlength . (If a terminating zero byte is found beforelength bytes are
processed,PQescapeString stops at the zero; the behavior is thus rather likestrncpy .) to shall
point to a buffer that is able to hold at least one more character than twice the value oflength ,
otherwise the behavior is undefined. A call toPQescapeString writes an escaped version of the
from string to theto buffer, replacing special characters so that they cannot cause any harm, and
adding a terminating zero byte. The single quotes that must surround PostgreSQL string literals are
not included in the result string; they should be provided in the SQL command that the result is
inserted into.

PQescapeString returns the number of characters written toto , not including the terminating zero
byte.

Behavior is undefined if theto andfrom strings overlap.

27.3.5. Escaping Binary Strings for Inclusion in SQL Commands

PQescapeBytea

Escapes binary data for use within an SQL command with the typebytea . As with
PQescapeString , this is only used when inserting data directly into an SQL command string.

unsigned char *PQescapeBytea(const unsigned char *from,
size_t from_length,
size_t *to_length);

Certain byte valuesmustbe escaped (but all byte valuesmaybe escaped) when used as part of a
bytea literal in an SQL statement. In general, to escape a byte, it is converted into the three digit
octal number equal to the octet value, and preceded by two backslashes. The single quote (’)
and backslash (\) characters have special alternative escape sequences. SeeSection 8.4for more
information.PQescapeBytea performs this operation, escaping only the minimally required
bytes.

The from parameter points to the first byte of the string that is to be escaped, and the
from_length parameter gives the number of bytes in this binary string. (A terminating zero
byte is neither necessary nor counted.) Theto_length parameter points to a variable that will
hold the resultant escaped string length. The result string length includes the terminating zero
byte of the result.

PQescapeBytea returns an escaped version of thefrom parameter binary string in memory
allocated withmalloc() . This memory must be freed usingPQfreemem when the result is no
longer needed. The return string has all special characters replaced so that they can be properly
processed by the PostgreSQL string literal parser, and thebytea input function. A terminating
zero byte is also added. The single quotes that must surround PostgreSQL string literals are not
part of the result string.

PQunescapeBytea

Converts an escaped string representation of binary data into binary data — the reverse of
PQescapeBytea . This is needed when retrievingbytea data in text format, but not when re-
trieving it in binary format.

unsigned char *PQunescapeBytea(const unsigned char *from, size_t *to_length);

353

Chapter 27. libpq - C Library

The from parameter points to an escaped string such as might be returned byPQgetvalue

when applied to abytea column.PQunescapeBytea converts this string representation into its
binary representation. It returns a pointer to a buffer allocated withmalloc() , or null on error,
and puts the size of the buffer into_length . The result must be freed usingPQfreemem when
it is no longer needed.

PQfreemem

Frees memory allocated by libpq.

void PQfreemem(void *ptr);

Frees memory allocated by libpq, particularlyPQescapeBytea , PQunescapeBytea , and
PQnotifies . It is needed by Microsoft Windows, which cannot free memory across DLLs,
unless multithreaded DLLs (/MD in VC6) are used. On other platforms, this function is the same
as the standard library functionfree() .

27.4. Asynchronous Command Processing
ThePQexec function is adequate for submitting commands in normal, synchronous applications. It
has a couple of deficiencies, however, that can be of importance to some users:

• PQexec waits for the command to be completed. The application may have other work to do (such
as maintaining a user interface), in which case it won’t want to block waiting for the response.

• Since the execution of the client application is suspended while it waits for the result, it is hard for
the application to decide that it would like to try to cancel the ongoing command. (It can be done
from a signal handler, but not otherwise.)

• PQexec can return only onePGresult structure. If the submitted command string contains multi-
ple SQL commands, all but the lastPGresult are discarded byPQexec.

Applications that do not like these limitations can instead use the underlying functions that
PQexec is built from: PQsendQuery and PQgetResult . There are alsoPQsendQueryParams ,
PQsendPrepare , and PQsendQueryPrepared , which can be used withPQgetResult to
duplicate the functionality ofPQexecParams , PQprepare , andPQexecPrepared respectively.

PQsendQuery

Submits a command to the server without waiting for the result(s). 1 is returned if the command
was successfully dispatched and 0 if not (in which case, usePQerrorMessage to get more
information about the failure).

int PQsendQuery(PGconn *conn, const char *command);

After successfully callingPQsendQuery , call PQgetResult one or more times to obtain the
results.PQsendQuery may not be called again (on the same connection) untilPQgetResult

has returned a null pointer, indicating that the command is done.

PQsendQueryParams

Submits a command and separate parameters to the server without waiting for the result(s).

int PQsendQueryParams(PGconn *conn,

354

Chapter 27. libpq - C Library

const char *command,
int nParams,
const Oid *paramTypes,
const char * const *paramValues,
const int *paramLengths,
const int *paramFormats,
int resultFormat);

This is equivalent toPQsendQuery except that query parameters can be specified separately
from the query string. The function’s parameters are handled identically toPQexecParams . Like
PQexecParams , it will not work on 2.0-protocol connections, and it allows only one command
in the query string.

PQsendPrepare

Sends a request to create a prepared statement with the given parameters, without waiting for
completion.

int PQsendPrepare(PGconn *conn,
const char *stmtName,
const char *query,
int nParams,
const Oid *paramTypes);

This is an asynchronous version ofPQprepare : it returns 1 if it was able to dispatch the re-
quest, and 0 if not. After a successful call, callPQgetResult to determine whether the server
successfully created the prepared statement. The function’s parameters are handled identically
to PQprepare . Like PQprepare , it will not work on 2.0-protocol connections.

PQsendQueryPrepared

Sends a request to execute a prepared statement with given parameters, without waiting for the
result(s).

int PQsendQueryPrepared(PGconn *conn,
const char *stmtName,
int nParams,
const char * const *paramValues,
const int *paramLengths,
const int *paramFormats,
int resultFormat);

This is similar toPQsendQueryParams , but the command to be executed is specified by naming
a previously-prepared statement, instead of giving a query string. The function’s parameters
are handled identically toPQexecPrepared . Like PQexecPrepared , it will not work on 2.0-
protocol connections.

PQgetResult

Waits for the next result from a priorPQsendQuery , PQsendQueryParams , PQsendPrepare ,
or PQsendQueryPrepared call, and returns it. A null pointer is returned when the command is
complete and there will be no more results.

PGresult *PQgetResult(PGconn *conn);

PQgetResult must be called repeatedly until it returns a null pointer, indicating that the com-
mand is done. (If called when no command is active,PQgetResult will just return a null
pointer at once.) Each non-null result fromPQgetResult should be processed using the same
PGresult accessor functions previously described. Don’t forget to free each result object with

355

Chapter 27. libpq - C Library

PQclear when done with it. Note thatPQgetResult will block only if a command is active
and the necessary response data has not yet been read byPQconsumeInput .

Using PQsendQuery and PQgetResult solves one ofPQexec’s problems: If a command string
contains multiple SQL commands, the results of those commands can be obtained individually. (This
allows a simple form of overlapped processing, by the way: the client can be handling the results
of one command while the server is still working on later queries in the same command string.)
However, callingPQgetResult will still cause the client to block until the server completes the next
SQL command. This can be avoided by proper use of two more functions:

PQconsumeInput

If input is available from the server, consume it.

int PQconsumeInput(PGconn *conn);

PQconsumeInput normally returns 1 indicating “no error”, but returns 0 if there was some kind
of trouble (in which casePQerrorMessage can be consulted). Note that the result does not say
whether any input data was actually collected. After callingPQconsumeInput , the application
may checkPQisBusy and/orPQnotifies to see if their state has changed.

PQconsumeInput may be called even if the application is not prepared to deal with a result or
notification just yet. The function will read available data and save it in a buffer, thereby causing
a select() read-ready indication to go away. The application can thus usePQconsumeInput

to clear theselect() condition immediately, and then examine the results at leisure.

PQisBusy

Returns 1 if a command is busy, that is,PQgetResult would block waiting for input. A 0 return
indicates thatPQgetResult can be called with assurance of not blocking.

int PQisBusy(PGconn *conn);

PQisBusy will not itself attempt to read data from the server; thereforePQconsumeInput must
be invoked first, or the busy state will never end.

A typical application using these functions will have a main loop that usesselect() or poll()

to wait for all the conditions that it must respond to. One of the conditions will be input available
from the server, which in terms ofselect() means readable data on the file descriptor identified
by PQsocket . When the main loop detects input ready, it should callPQconsumeInput to read the
input. It can then callPQisBusy , followed byPQgetResult if PQisBusy returns false (0). It can
also callPQnotifies to detectNOTIFY messages (seeSection 27.7).

A client that usesPQsendQuery /PQgetResult can also attempt to cancel a command that is still
being processed by the server; seeSection 27.5. But regardless of the return value ofPQcancel , the
application must continue with the normal result-reading sequence usingPQgetResult . A successful
cancellation will simply cause the command to terminate sooner than it would have otherwise.

By using the functions described above, it is possible to avoid blocking while waiting for input from
the database server. However, it is still possible that the application will block waiting to send output to
the server. This is relatively uncommon but can happen if very long SQL commands or data values are

356

Chapter 27. libpq - C Library

sent. (It is much more probable if the application sends data viaCOPY IN, however.) To prevent this
possibility and achieve completely nonblocking database operation, the following additional functions
may be used.

PQsetnonblocking

Sets the nonblocking status of the connection.

int PQsetnonblocking(PGconn *conn, int arg);

Sets the state of the connection to nonblocking ifarg is 1, or blocking ifarg is 0. Returns 0 if
OK, -1 if error.

In the nonblocking state, calls toPQsendQuery , PQputline , PQputnbytes , andPQendcopy

will not block but instead return an error if they need to be called again.

Note thatPQexec does not honor nonblocking mode; if it is called, it will act in blocking fashion
anyway.

PQisnonblocking

Returns the blocking status of the database connection.

int PQisnonblocking(const PGconn *conn);

Returns 1 if the connection is set to nonblocking mode and 0 if blocking.

PQflush

Attempts to flush any queued output data to the server. Returns 0 if successful (or if the send
queue is empty), -1 if it failed for some reason, or 1 if it was unable to send all the data in the
send queue yet (this case can only occur if the connection is nonblocking).

int PQflush(PGconn *conn);

After sending any command or data on a nonblocking connection, callPQflush . If it returns 1, wait
for the socket to be write-ready and call it again; repeat until it returns 0. OncePQflush returns 0,
wait for the socket to be read-ready and then read the response as described above.

27.5. Cancelling Queries in Progress
A client application can request cancellation of a command that is still being processed by the server,
using the functions described in this section.

PQgetCancel

Creates a data structure containing the information needed to cancel a command issued through
a particular database connection.

PGcancel *PQgetCancel(PGconn *conn);

PQgetCancel creates aPGcancel object given aPGconn connection object. It will return
NULL if the given conn is NULL or an invalid connection. ThePGcancel object is an opaque

357

Chapter 27. libpq - C Library

structure that is not meant to be accessed directly by the application; it can only be passed to
PQcancel or PQfreeCancel .

PQfreeCancel

Frees a data structure created byPQgetCancel .

void PQfreeCancel(PGcancel *cancel);

PQfreeCancel frees a data object previously created byPQgetCancel .

PQcancel

Requests that the server abandon processing of the current command.

int PQcancel(PGcancel *cancel, char *errbuf, int errbufsize);

The return value is 1 if the cancel request was successfully dispatched and 0 if not. If not,
errbuf is filled with an error message explaining why not.errbuf must be a char array of
sizeerrbufsize (the recommended size is 256 bytes).

Successful dispatch is no guarantee that the request will have any effect, however. If the can-
cellation is effective, the current command will terminate early and return an error result. If the
cancellation fails (say, because the server was already done processing the command), then there
will be no visible result at all.

PQcancel can safely be invoked from a signal handler, if theerrbuf is a local variable in the
signal handler. ThePGcancel object is read-only as far asPQcancel is concerned, so it can
also be invoked from a thread that is separate from the one manipulating thePGconn object.

PQrequestCancel

Requests that the server abandon processing of the current command.

int PQrequestCancel(PGconn *conn);

PQrequestCancel is a deprecated variant ofPQcancel . It operates directly on thePGconn

object, and in case of failure stores the error message in thePGconn object (whence it can be
retrieved byPQerrorMessage). Although the functionality is the same, this approach creates
hazards for multiple-thread programs and signal handlers, since it is possible that overwriting
thePGconn’s error message will mess up the operation currently in progress on the connection.

27.6. The Fast-Path Interface
PostgreSQL provides a fast-path interface to send simple function calls to the server.

Tip: This interface is somewhat obsolete, as one may achieve similar performance and greater
functionality by setting up a prepared statement to define the function call. Then, executing the
statement with binary transmission of parameters and results substitutes for a fast-path function
call.

358

Chapter 27. libpq - C Library

The functionPQfn requests execution of a server function via the fast-path interface:

PGresult *PQfn(PGconn *conn,
int fnid,
int *result_buf,
int *result_len,
int result_is_int,
const PQArgBlock *args,
int nargs);

typedef struct {
int len;
int isint;
union {

int *ptr;
int integer;

} u;
} PQArgBlock;

Thefnid argument is the OID of the function to be executed.args andnargs define the parameters
to be passed to the function; they must match the declared function argument list. When theisint

field of a parameter structure is true, theu.integer value is sent to the server as an integer of the
indicated length (this must be 1, 2, or 4 bytes); proper byte-swapping occurs. Whenisint is false,
the indicated number of bytes at*u.ptr are sent with no processing; the data must be in the format
expected by the server for binary transmission of the function’s argument data type.result_buf is
the buffer in which to place the return value. The caller must have allocated sufficient space to store
the return value. (There is no check!) The actual result length will be returned in the integer pointed
to by result_len . If a 1, 2, or 4-byte integer result is expected, setresult_is_int to 1, otherwise
set it to 0. Settingresult_is_int to 1 causes libpq to byte-swap the value if necessary, so that it is
delivered as a properint value for the client machine. Whenresult_is_int is 0, the binary-format
byte string sent by the server is returned unmodified.

PQfn always returns a validPGresult pointer. The result status should be checked before the result is
used. The caller is responsible for freeing thePGresult with PQclear when it is no longer needed.

Note that it is not possible to handle null arguments, null results, nor set-valued results when using
this interface.

27.7. Asynchronous Notification
PostgreSQL offers asynchronous notification via theLISTEN andNOTIFY commands. A client ses-
sion registers its interest in a particular notification condition with theLISTEN command (and can
stop listening with theUNLISTEN command). All sessions listening on a particular condition will be
notified asynchronously when aNOTIFY command with that condition name is executed by any ses-
sion. No additional information is passed from the notifier to the listener. Thus, typically, any actual
data that needs to be communicated is transferred through a database table. Commonly, the condition
name is the same as the associated table, but it is not necessary for there to be any associated table.

libpq applications submitLISTEN andUNLISTENcommands as ordinary SQL commands. The arrival
of NOTIFY messages can subsequently be detected by callingPQnotifies .

The functionPQnotifies returns the next notification from a list of unhandled notification messages
received from the server. It returns a null pointer if there are no pending notifications. Once a noti-

359

Chapter 27. libpq - C Library

fication is returned fromPQnotifies , it is considered handled and will be removed from the list of
notifications.

PGnotify *PQnotifies(PGconn *conn);

typedef struct pgNotify {
char *relname; /* notification condition name */
int be_pid; /* process ID of server process */
char *extra; /* notification parameter */

} PGnotify;

After processing aPGnotify object returned byPQnotifies , be sure to free it withPQfreemem. It
is sufficient to free thePGnotify pointer; therelname andextra fields do not represent separate
allocations. (At present, theextra field is unused and will always point to an empty string.)

Note: In PostgreSQL 6.4 and later, the be_pid is that of the notifying server process, whereas in
earlier versions it was always the PID of your own server process.

Example 27-2gives a sample program that illustrates the use of asynchronous notification.

PQnotifies does not actually read data from the server; it just returns messages previously absorbed
by another libpq function. In prior releases of libpq, the only way to ensure timely receipt ofNOTIFY

messages was to constantly submit commands, even empty ones, and then checkPQnotifies after
eachPQexec. While this still works, it is deprecated as a waste of processing power.

A better way to check forNOTIFY messages when you have no useful commands to execute is to
call PQconsumeInput , then checkPQnotifies . You can useselect() to wait for data to arrive
from the server, thereby using no CPU power unless there is something to do. (SeePQsocket to
obtain the file descriptor number to use withselect() .) Note that this will work OK whether you
submit commands withPQsendQuery /PQgetResult or simply usePQexec. You should, however,
remember to checkPQnotifies after eachPQgetResult or PQexec, to see if any notifications
came in during the processing of the command.

27.8. Functions Associated with the COPYCommand
TheCOPYcommand in PostgreSQL has options to read from or write to the network connection used
by libpq. The functions described in this section allow applications to take advantage of this capability
by supplying or consuming copied data.

The overall process is that the application first issues the SQLCOPYcommand viaPQexec or one of
the equivalent functions. The response to this (if there is no error in the command) will be aPGresult

object bearing a status code ofPGRES_COPY_OUTor PGRES_COPY_IN(depending on the specified
copy direction). The application should then use the functions of this section to receive or transmit data
rows. When the data transfer is complete, anotherPGresult object is returned to indicate success or
failure of the transfer. Its status will bePGRES_COMMAND_OKfor success orPGRES_FATAL_ERRORif
some problem was encountered. At this point further SQL commands may be issued viaPQexec. (It
is not possible to execute other SQL commands using the same connection while theCOPYoperation
is in progress.)

If a COPYcommand is issued viaPQexec in a string that could contain additional commands, the
application must continue fetching results viaPQgetResult after completing theCOPYsequence.
Only whenPQgetResult returnsNULL is it certain that thePQexec command string is done and it
is safe to issue more commands.

360

Chapter 27. libpq - C Library

The functions of this section should be executed only after obtaining a result status of
PGRES_COPY_OUTor PGRES_COPY_INfrom PQexec or PQgetResult .

A PGresult object bearing one of these status values carries some additional data about theCOPY

operation that is starting. This additional data is available using functions that are also used in con-
nection with query results:

PQnfields

Returns the number of columns (fields) to be copied.

PQbinaryTuples

0 indicates the overall copy format is textual (rows separated by newlines, columns separated
by separator characters, etc). 1 indicates the overall copy format is binary. SeeCOPY for more
information.

PQfformat

Returns the format code (0 for text, 1 for binary) associated with each column of the copy oper-
ation. The per-column format codes will always be zero when the overall copy format is textual,
but the binary format can support both text and binary columns. (However, as of the current im-
plementation ofCOPY, only binary columns appear in a binary copy; so the per-column formats
always match the overall format at present.)

Note: These additional data values are only available when using protocol 3.0. When using pro-
tocol 2.0, all these functions will return 0.

27.8.1. Functions for Sending COPYData

These functions are used to send data duringCOPY FROM STDIN. They will fail if called when the
connection is not inCOPY_INstate.

PQputCopyData

Sends data to the server duringCOPY_INstate.

int PQputCopyData(PGconn *conn,
const char *buffer,
int nbytes);

Transmits theCOPYdata in the specifiedbuffer , of lengthnbytes , to the server. The result
is 1 if the data was sent, zero if it was not sent because the attempt would block (this case
is only possible if the connection is in nonblocking mode), or -1 if an error occurred. (Use
PQerrorMessage to retrieve details if the return value is -1. If the value is zero, wait for write-
ready and try again.)

The application may divide theCOPYdata stream into buffer loads of any convenient size. Buffer-
load boundaries have no semantic significance when sending. The contents of the data stream
must match the data format expected by theCOPYcommand; seeCOPYfor details.

361

Chapter 27. libpq - C Library

PQputCopyEnd

Sends end-of-data indication to the server duringCOPY_INstate.

int PQputCopyEnd(PGconn *conn,
const char *errormsg);

Ends theCOPY_INoperation successfully iferrormsg is NULL. If errormsg is notNULL then
the COPYis forced to fail, with the string pointed to byerrormsg used as the error message.
(One should not assume that this exact error message will come back from the server, however,
as the server might have already failed theCOPYfor its own reasons. Also note that the option to
force failure does not work when using pre-3.0-protocol connections.)

The result is 1 if the termination data was sent, zero if it was not sent because the attempt would
block (this case is only possible if the connection is in nonblocking mode), or -1 if an error
occurred. (UsePQerrorMessage to retrieve details if the return value is -1. If the value is zero,
wait for write-ready and try again.)

After successfully callingPQputCopyEnd , call PQgetResult to obtain the final result status of
theCOPYcommand. One may wait for this result to be available in the usual way. Then return to
normal operation.

27.8.2. Functions for Receiving COPYData

These functions are used to receive data duringCOPY TO STDOUT. They will fail if called when the
connection is not inCOPY_OUTstate.

PQgetCopyData

Receives data from the server duringCOPY_OUTstate.

int PQgetCopyData(PGconn *conn,
char **buffer,
int async);

Attempts to obtain another row of data from the server during aCOPY. Data is always returned
one data row at a time; if only a partial row is available, it is not returned. Successful return of a
data row involves allocating a chunk of memory to hold the data. Thebuffer parameter must be
non-NULL. *buffer is set to point to the allocated memory, or toNULL in cases where no buffer
is returned. A non-NULL result buffer must be freed usingPQfreemem when no longer needed.

When a row is successfully returned, the return value is the number of data bytes in the row (this
will always be greater than zero). The returned string is always null-terminated, though this is
probably only useful for textualCOPY. A result of zero indicates that theCOPYis still in progress,
but no row is yet available (this is only possible whenasync is true). A result of -1 indicates that
theCOPYis done. A result of -2 indicates that an error occurred (consultPQerrorMessage for
the reason).

Whenasync is true (not zero),PQgetCopyData will not block waiting for input; it will return
zero if theCOPYis still in progress but no complete row is available. (In this case wait for read-
ready before trying again; it does not matter whether you callPQconsumeInput .) Whenasync

is false (zero),PQgetCopyData will block until data is available or the operation completes.

362

Chapter 27. libpq - C Library

After PQgetCopyData returns -1, callPQgetResult to obtain the final result status of theCOPY

command. One may wait for this result to be available in the usual way. Then return to normal
operation.

27.8.3. Obsolete Functions for COPY

These functions represent older methods of handlingCOPY. Although they still work, they are depre-
cated due to poor error handling, inconvenient methods of detecting end-of-data, and lack of support
for binary or nonblocking transfers.

PQgetline

Reads a newline-terminated line of characters (transmitted by the server) into a buffer string of
sizelength .

int PQgetline(PGconn *conn,
char *buffer,
int length);

This function copies up tolength -1 characters into the buffer and converts the terminating
newline into a zero byte.PQgetline returnsEOFat the end of input, 0 if the entire line has been
read, and 1 if the buffer is full but the terminating newline has not yet been read.

Note that the application must check to see if a new line consists of the two characters\. , which
indicates that the server has finished sending the results of theCOPYcommand. If the application
might receive lines that are more thanlength -1 characters long, care is needed to be sure it
recognizes the\. line correctly (and does not, for example, mistake the end of a long data line
for a terminator line).

PQgetlineAsync

Reads a row ofCOPYdata (transmitted by the server) into a buffer without blocking.

int PQgetlineAsync(PGconn *conn,
char *buffer,
int bufsize);

This function is similar toPQgetline , but it can be used by applications that must read
COPYdata asynchronously, that is, without blocking. Having issued theCOPYcommand and
gotten a PGRES_COPY_OUTresponse, the application should callPQconsumeInput and
PQgetlineAsync until the end-of-data signal is detected.

Unlike PQgetline , this function takes responsibility for detecting end-of-data.

On each call,PQgetlineAsync will return data if a complete data row is available in libpq’s
input buffer. Otherwise, no data is returned until the rest of the row arrives. The function returns
-1 if the end-of-copy-data marker has been recognized, or 0 if no data is available, or a positive
number giving the number of bytes of data returned. If -1 is returned, the caller must next call
PQendcopy , and then return to normal processing.

The data returned will not extend beyond a data-row boundary. If possible a whole row will be
returned at one time. But if the buffer offered by the caller is too small to hold a row sent by the
server, then a partial data row will be returned. With textual data this can be detected by testing
whether the last returned byte is\n or not. (In a binaryCOPY, actual parsing of theCOPYdata

363

Chapter 27. libpq - C Library

format will be needed to make the equivalent determination.) The returned string is not null-
terminated. (If you want to add a terminating null, be sure to pass abufsize one smaller than
the room actually available.)

PQputline

Sends a null-terminated string to the server. Returns 0 if OK andEOFif unable to send the string.

int PQputline(PGconn *conn,
const char *string);

TheCOPYdata stream sent by a series of calls toPQputline has the same format as that returned
by PQgetlineAsync , except that applications are not obliged to send exactly one data row per
PQputline call; it is okay to send a partial line or multiple lines per call.

Note: Before PostgreSQL protocol 3.0, it was necessary for the application to explicitly send
the two characters \. as a final line to indicate to the server that it had finished sending COPY

data. While this still works, it is deprecated and the special meaning of \. can be expected to
be removed in a future release. It is sufficient to call PQendcopy after having sent the actual
data.

PQputnbytes

Sends a non-null-terminated string to the server. Returns 0 if OK andEOFif unable to send the
string.

int PQputnbytes(PGconn *conn,
const char *buffer,
int nbytes);

This is exactly likePQputline , except that the data buffer need not be null-terminated since the
number of bytes to send is specified directly. Use this procedure when sending binary data.

PQendcopy

Synchronizes with the server.

int PQendcopy(PGconn *conn);

This function waits until the server has finished the copying. It should either be issued when the
last string has been sent to the server usingPQputline or when the last string has been received
from the server usingPGgetline . It must be issued or the server will get “out of sync” with
the client. Upon return from this function, the server is ready to receive the next SQL command.
The return value is 0 on successful completion, nonzero otherwise. (UsePQerrorMessage to
retrieve details if the return value is nonzero.)

When usingPQgetResult , the application should respond to aPGRES_COPY_OUTresult by
executingPQgetline repeatedly, followed byPQendcopy after the terminator line is seen. It
should then return to thePQgetResult loop untilPQgetResult returns a null pointer. Similarly
aPGRES_COPY_INresult is processed by a series ofPQputline calls followed byPQendcopy ,
then return to thePQgetResult loop. This arrangement will ensure that aCOPYcommand em-
bedded in a series of SQL commands will be executed correctly.

Older applications are likely to submit aCOPYvia PQexec and assume that the transaction is
done afterPQendcopy . This will work correctly only if theCOPYis the only SQL command in
the command string.

364

Chapter 27. libpq - C Library

27.9. Control Functions
These functions control miscellaneous details of libpq’s behavior.

PQsetErrorVerbosity

Determines the verbosity of messages returned byPQerrorMessage and
PQresultErrorMessage .

typedef enum {
PQERRORS_TERSE,
PQERRORS_DEFAULT,
PQERRORS_VERBOSE

} PGVerbosity;

PGVerbosity PQsetErrorVerbosity(PGconn *conn, PGVerbosity verbosity);

PQsetErrorVerbosity sets the verbosity mode, returning the connection’s previous setting.
In TERSEmode, returned messages include severity, primary text, and position only; this will
normally fit on a single line. The default mode produces messages that include the above plus
any detail, hint, or context fields (these may span multiple lines). TheVERBOSEmode includes
all available fields. Changing the verbosity does not affect the messages available from already-
existingPGresult objects, only subsequently-created ones.

PQtrace

Enables tracing of the client/server communication to a debugging file stream.

void PQtrace(PGconn *conn, FILE *stream);

PQuntrace

Disables tracing started byPQtrace .

void PQuntrace(PGconn *conn);

27.10. Notice Processing
Notice and warning messages generated by the server are not returned by the query execution func-
tions, since they do not imply failure of the query. Instead they are passed to a notice handling func-
tion, and execution continues normally after the handler returns. The default notice handling function
prints the message onstderr , but the application can override this behavior by supplying its own
handling function.

For historical reasons, there are two levels of notice handling, called the notice receiver and notice
processor. The default behavior is for the notice receiver to format the notice and pass a string to the
notice processor for printing. However, an application that chooses to provide its own notice receiver
will typically ignore the notice processor layer and just do all the work in the notice receiver.

The functionPQsetNoticeReceiver sets or examines the current notice receiver for a connection
object. Similarly,PQsetNoticeProcessor sets or examines the current notice processor.

365

Chapter 27. libpq - C Library

typedef void (*PQnoticeReceiver) (void *arg, const PGresult *res);

PQnoticeReceiver
PQsetNoticeReceiver(PGconn *conn,

PQnoticeReceiver proc,
void *arg);

typedef void (*PQnoticeProcessor) (void *arg, const char *message);

PQnoticeProcessor
PQsetNoticeProcessor(PGconn *conn,

PQnoticeProcessor proc,
void *arg);

Each of these functions returns the previous notice receiver or processor function pointer, and sets the
new value. If you supply a null function pointer, no action is taken, but the current pointer is returned.

When a notice or warning message is received from the server, or generated internally by libpq, the
notice receiver function is called. It is passed the message in the form of aPGRES_NONFATAL_ERROR

PGresult . (This allows the receiver to extract individual fields usingPQresultErrorField , or the
complete preformatted message usingPQresultErrorMessage .) The same void pointer passed to
PQsetNoticeReceiver is also passed. (This pointer can be used to access application-specific state
if needed.)

The default notice receiver simply extracts the message (usingPQresultErrorMessage) and passes
it to the notice processor.

The notice processor is responsible for handling a notice or warning message given in text form. It is
passed the string text of the message (including a trailing newline), plus a void pointer that is the same
one passed toPQsetNoticeProcessor . (This pointer can be used to access application-specific state
if needed.)

The default notice processor is simply

static void
defaultNoticeProcessor(void *arg, const char *message)
{

fprintf(stderr, "%s", message);
}

Once you have set a notice receiver or processor, you should expect that that function could be
called as long as either thePGconn object orPGresult objects made from it exist. At creation of a
PGresult , thePGconn’s current notice handling pointers are copied into thePGresult for possible
use by functions likePQgetvalue .

27.11. Environment Variables
The following environment variables can be used to select default connection parameter values, which
will be used byPQconnectdb , PQsetdbLogin andPQsetdb if no value is directly specified by the

366

Chapter 27. libpq - C Library

calling code. These are useful to avoid hard-coding database connection information into simple client
applications, for example.

• PGHOSTsets the database server name. If this begins with a slash, it specifies Unix-domain com-
munication rather than TCP/IP communication; the value is then the name of the directory in which
the socket file is stored (in a default installation setup this would be/tmp).

• PGHOSTADDRspecifies the numeric IP address of the database server. This can be set instead of or
in addition toPGHOSTto avoid DNS lookup overhead. See the documentation of these parameters,
underPQconnectdb above, for details on their interaction.

When neitherPGHOSTnor PGHOSTADDRis set, the default behavior is to connect using a local
Unix-domain socket; or on machines without Unix-domain sockets, libpq will attempt to connect
to localhost .

• PGPORTsets the TCP port number or Unix-domain socket file extension for communicating with
the PostgreSQL server.

• PGDATABASEsets the PostgreSQL database name.

• PGUSERsets the user name used to connect to the database.

• PGPASSWORDsets the password used if the server demands password authentication. This environ-
ment variable is deprecated for security reasons; instead consider using the~/.pgpass file (see
Section 27.12).

• PGSERVICEsets the service name to be looked up inpg_service.conf . This offers a shorthand
way of setting all the parameters.

• PGREALMsets the Kerberos realm to use with PostgreSQL, if it is different from the local realm. If
PGREALMis set, libpq applications will attempt authentication with servers for this realm and use
separate ticket files to avoid conflicts with local ticket files. This environment variable is only used
if Kerberos authentication is selected by the server.

• PGOPTIONSsets additional run-time options for the PostgreSQL server.

• PGSSLMODEdetermines whether and with what priority an SSL connection will be negotiated
with the server. There are four modes:disable will attempt only an unencrypted SSL connection;
allow will negotiate, trying first a non-SSL connection, then if that fails, trying an SSL connection;
prefer (the default) will negotiate, trying first an SSL connection, then if that fails, trying a regular
non-SSL connection;require will try only an SSL connection. If PostgreSQL is compiled without
SSL support, using optionrequire will cause an error, while optionsallow andprefer will be
accepted but libpq will not in fact attempt an SSL connection.

• PGREQUIRESSLsets whether or not the connection must be made over SSL. If set to “1”, libpq will
refuse to connect if the server does not accept an SSL connection (equivalent tosslmode prefer).
This option is deprecated in favor of thesslmode setting, and is only available if PostgreSQL is
compiled with SSL support.

• PGCONNECT_TIMEOUTsets the maximum number of seconds that libpq will wait when attempting
to connect to the PostgreSQL server. If unset or set to zero, libpq will wait indefinitely. It is not
recommended to set the timeout to less than 2 seconds.

The following environment variables can be used to specify default behavior for each PostgreSQL ses-
sion. (See also theALTER USERandALTER DATABASEcommands for ways to set default behavior
on a per-user or per-database basis.)

367

Chapter 27. libpq - C Library

• PGDATESTYLEsets the default style of date/time representation. (Equivalent toSET datestyle

TO)

• PGTZsets the default time zone. (Equivalent toSET timezone TO)

• PGCLIENTENCODINGsets the default client character set encoding. (Equivalent toSET

client_encoding TO)

• PGGEQOsets the default mode for the genetic query optimizer. (Equivalent toSET geqo TO)

Refer to the SQL commandSETfor information on correct values for these environment variables.

The following environment variables determine internal behavior of libpq; they override compiled-in
defaults.

• PGSYSCONFDIRsets the directory containing thepg_service.conf file.

• PGLOCALEDIRsets the directory containing thelocale files for message internationalization.

27.12. The Password File
The file .pgpass in a user’s home directory is a file that can contain passwords to be used if the
connection requires a password (and no password has been specified otherwise). On Microsoft Win-
dows the file is named%APPDATA%\postgresql\pgpass.conf (where%APPDATA%refers to the
Application Data subdirectory in the user’s profile).

This file should contain lines of the following format:

hostname : port : database : username : password

Each of the first four fields may be a literal value, or* , which matches anything. The password field
from the first line that matches the current connection parameters will be used. (Therefore, put more-
specific entries first when you are using wildcards.) If an entry needs to contain: or \ , escape this
character with\ .

The permissions on.pgpass must disallow any access to world or group; achieve this by the com-
mandchmod 0600 ~/.pgpass . If the permissions are less strict than this, the file will be ignored.
(The file permissions are not currently checked on Microsoft Windows, however.)

27.13. SSL Support
PostgreSQL has native support for using SSL connections to encrypt client/server communications
for increased security. SeeSection 16.7for details about the server-side SSL functionality.

If the server demands a client certificate, libpq will send the certificate stored in file
~/.postgresql/postgresql.crt within the user’s home directory. A matching private key
file ~/.postgresql/postgresql.key must also be present, and must not be world-readable.
(On Microsoft Windows these files are named%APPDATA%\postgresql\postgresql.crt and
%APPDATA%\postgresql\postgresql.key .)

If the file ~/.postgresql/root.crt is present in the user’s home directory, libpq will use the
certificate list stored therein to verify the server’s certificate. (On Microsoft Windows the file is named
%APPDATA%\postgresql\root.crt .) The SSL connection will fail if the server does not present a
certificate; therefore, to use this feature the server must also have aroot.crt file.

368

Chapter 27. libpq - C Library

27.14. Behavior in Threaded Programs
libpq is reentrant and thread-safe if theconfigure command-line option
--enable-thread-safety was used when the PostgreSQL distribution was built. In addition, you
might need to use additional compiler command-line options when you compile your application
code. Refer to your system’s documentation for information about how to build thread-enabled
applications, or look insrc/Makefile.global for PTHREAD_CFLAGSandPTHREAD_LIBS.

One restriction is that no two threads attempt to manipulate the samePGconn object at the same
time. In particular, you cannot issue concurrent commands from different threads through the same
connection object. (If you need to run concurrent commands, use multiple connections.)

PGresult objects are read-only after creation, and so can be passed around freely between threads.

The deprecated functionsPQrequestCancel , PQoidStatus and fe_setauthsvc are not
thread-safe and should not be used in multithread programs.PQrequestCancel can be replaced
by PQcancel . PQoidStatus can be replaced byPQoidValue . There is no good reason to call
fe_setauthsvc at all.

libpq applications that use thecrypt authentication method rely on thecrypt() operating system
function, which is often not thread-safe. It is better to use themd5method, which is thread-safe on all
platforms.

If you experience problems with threaded applications, run the program insrc/tools/thread to
see if your platform has thread-unsafe functions. This program is run byconfigure , but for binary
distributions your library might not match the library used to build the binaries.

27.15. Building libpq Programs
To build (i.e., compile and link) a program using libpq you need to do all of the following things:

• Include thelibpq-fe.h header file:

#include <libpq-fe.h >

If you failed to do that then you will normally get error messages from your compiler similar to

foo.c: In function ‘main’:
foo.c:34: ‘PGconn’ undeclared (first use in this function)
foo.c:35: ‘PGresult’ undeclared (first use in this function)
foo.c:54: ‘CONNECTION_BAD’ undeclared (first use in this function)
foo.c:68: ‘PGRES_COMMAND_OK’ undeclared (first use in this function)
foo.c:95: ‘PGRES_TUPLES_OK’ undeclared (first use in this function)

• Point your compiler to the directory where the PostgreSQL header files were installed, by supplying
the-I directory option to your compiler. (In some cases the compiler will look into the directory
in question by default, so you can omit this option.) For instance, your compile command line could
look like:

cc -c -I/usr/local/pgsql/include testprog.c

If you are using makefiles then add the option to theCPPFLAGSvariable:

CPPFLAGS += -I/usr/local/pgsql/include

If there is any chance that your program might be compiled by other users then you should not
hardcode the directory location like that. Instead, you can run the utilitypg_config to find out
where the header files are on the local system:

369

Chapter 27. libpq - C Library

$ pg_config --includedir
/usr/local/include

Failure to specify the correct option to the compiler will result in an error message such as

testlibpq.c:8:22: libpq-fe.h: No such file or directory

• When linking the final program, specify the option-lpq so that the libpq library gets pulled in,
as well as the option-L directory to point the compiler to the directory where the libpq library
resides. (Again, the compiler will search some directories by default.) For maximum portability,
put the-L option before the-lpq option. For example:

cc -o testprog testprog1.o testprog2.o -L/usr/local/pgsql/lib -lpq

You can find out the library directory usingpg_config as well:

$ pg_config --libdir
/usr/local/pgsql/lib

Error messages that point to problems in this area could look like the following.

testlibpq.o: In function ‘main’:
testlibpq.o(.text+0x60): undefined reference to ‘PQsetdbLogin’
testlibpq.o(.text+0x71): undefined reference to ‘PQstatus’
testlibpq.o(.text+0xa4): undefined reference to ‘PQerrorMessage’

This means you forgot-lpq .

/usr/bin/ld: cannot find -lpq

This means you forgot the-L option or did not specify the right directory.

If your codes references the header filelibpq-int.h and you refuse to fix
your code to not use it, starting in PostgreSQL 7.2, this file will be found in
includedir /postgresql/internal/libpq-int.h , so you need to add the appropriate-I

option to your compiler command line.

27.16. Example Programs
These examples and others can be found in the directorysrc/test/examples in the source code
distribution.

Example 27-1. libpq Example Program 1

/*
* testlibpq.c
*
* Test the C version of LIBPQ, the POSTGRES frontend library.
*/

#include <stdio.h >

#include <stdlib.h >

370

Chapter 27. libpq - C Library

#include "libpq-fe.h"

static void
exit_nicely(PGconn *conn)
{

PQfinish(conn);
exit(1);

}

int
main(int argc, char **argv)
{

const char *conninfo;
PGconn *conn;
PGresult *res;
int nFields;
int i,

j;

/*
* If the user supplies a parameter on the command line, use it as
* the conninfo string; otherwise default to setting dbname=template1
* and using environment variables or defaults for all other connection
* parameters.
*/

if (argc > 1)
conninfo = argv[1];

else
conninfo = "dbname = template1";

/* Make a connection to the database */
conn = PQconnectdb(conninfo);

/* Check to see that the backend connection was successfully made */
if (PQstatus(conn) != CONNECTION_OK)
{

fprintf(stderr, "Connection to database failed: %s",
PQerrorMessage(conn));

exit_nicely(conn);
}

/*
* Our test case here involves using a cursor, for which we must be
* inside a transaction block. We could do the whole thing with a
* single PQexec() of "select * from pg_database", but that’s too
* trivial to make a good example.
*/

/* Start a transaction block */
res = PQexec(conn, "BEGIN");
if (PQresultStatus(res) != PGRES_COMMAND_OK)
{

fprintf(stderr, "BEGIN command failed: %s", PQerrorMessage(conn));
PQclear(res);
exit_nicely(conn);

}

371

Chapter 27. libpq - C Library

/*
* Should PQclear PGresult whenever it is no longer needed to avoid
* memory leaks
*/

PQclear(res);

/*
* Fetch rows from pg_database, the system catalog of databases
*/

res = PQexec(conn, "DECLARE myportal CURSOR FOR select * from pg_database");
if (PQresultStatus(res) != PGRES_COMMAND_OK)
{

fprintf(stderr, "DECLARE CURSOR failed: %s", PQerrorMessage(conn));
PQclear(res);
exit_nicely(conn);

}
PQclear(res);

res = PQexec(conn, "FETCH ALL in myportal");
if (PQresultStatus(res) != PGRES_TUPLES_OK)
{

fprintf(stderr, "FETCH ALL failed: %s", PQerrorMessage(conn));
PQclear(res);
exit_nicely(conn);

}

/* first, print out the attribute names */
nFields = PQnfields(res);
for (i = 0; i < nFields; i++)

printf("%-15s", PQfname(res, i));
printf("\n\n");

/* next, print out the rows */
for (i = 0; i < PQntuples(res); i++)
{

for (j = 0; j < nFields; j++)
printf("%-15s", PQgetvalue(res, i, j));

printf("\n");
}

PQclear(res);

/* close the portal ... we don’t bother to check for errors ... */
res = PQexec(conn, "CLOSE myportal");
PQclear(res);

/* end the transaction */
res = PQexec(conn, "END");
PQclear(res);

/* close the connection to the database and cleanup */
PQfinish(conn);

return 0;
}

372

Chapter 27. libpq - C Library

Example 27-2. libpq Example Program 2

/*
* testlibpq2.c
* Test of the asynchronous notification interface
*
* Start this program, then from psql in another window do
* NOTIFY TBL2;
* Repeat four times to get this program to exit.
*
* Or, if you want to get fancy, try this:
* populate a database with the following commands
* (provided in src/test/examples/testlibpq2.sql):
*
* CREATE TABLE TBL1 (i int4);
*
* CREATE TABLE TBL2 (i int4);
*
* CREATE RULE r1 AS ON INSERT TO TBL1 DO
* (INSERT INTO TBL2 VALUES (new.i); NOTIFY TBL2);
*
* and do this four times:
*
* INSERT INTO TBL1 VALUES (10);
*/

#include <stdio.h >

#include <stdlib.h >

#include <string.h >

#include <errno.h >

#include <sys/time.h >

#include "libpq-fe.h"

static void
exit_nicely(PGconn *conn)
{

PQfinish(conn);
exit(1);

}

int
main(int argc, char **argv)
{

const char *conninfo;
PGconn *conn;
PGresult *res;
PGnotify *notify;
int nnotifies;

/*
* If the user supplies a parameter on the command line, use it as
* the conninfo string; otherwise default to setting dbname=template1
* and using environment variables or defaults for all other connection
* parameters.
*/

if (argc > 1)
conninfo = argv[1];

else

373

Chapter 27. libpq - C Library

conninfo = "dbname = template1";

/* Make a connection to the database */
conn = PQconnectdb(conninfo);

/* Check to see that the backend connection was successfully made */
if (PQstatus(conn) != CONNECTION_OK)
{

fprintf(stderr, "Connection to database failed: %s",
PQerrorMessage(conn));

exit_nicely(conn);
}

/*
* Issue LISTEN command to enable notifications from the rule’s NOTIFY.
*/

res = PQexec(conn, "LISTEN TBL2");
if (PQresultStatus(res) != PGRES_COMMAND_OK)
{

fprintf(stderr, "LISTEN command failed: %s", PQerrorMessage(conn));
PQclear(res);
exit_nicely(conn);

}

/*
* should PQclear PGresult whenever it is no longer needed to avoid
* memory leaks
*/

PQclear(res);

/* Quit after four notifies are received. */
nnotifies = 0;
while (nnotifies < 4)
{

/*
* Sleep until something happens on the connection. We use select(2)
* to wait for input, but you could also use poll() or similar
* facilities.
*/

int sock;
fd_set input_mask;

sock = PQsocket(conn);

if (sock < 0)
break; /* shouldn’t happen */

FD_ZERO(&input_mask);
FD_SET(sock, &input_mask);

if (select(sock + 1, &input_mask, NULL, NULL, NULL) < 0)
{

fprintf(stderr, "select() failed: %s\n", strerror(errno));
exit_nicely(conn);

}

/* Now check for input */

374

Chapter 27. libpq - C Library

PQconsumeInput(conn);
while ((notify = PQnotifies(conn)) != NULL)
{

fprintf(stderr,
"ASYNC NOTIFY of ’%s’ received from backend pid %d\n",
notify- >relname, notify- >be_pid);

PQfreemem(notify);
nnotifies++;

}
}

fprintf(stderr, "Done.\n");

/* close the connection to the database and cleanup */
PQfinish(conn);

return 0;
}

Example 27-3. libpq Example Program 3

/*
* testlibpq3.c
* Test out-of-line parameters and binary I/O.
*
* Before running this, populate a database with the following commands
* (provided in src/test/examples/testlibpq3.sql):
*
* CREATE TABLE test1 (i int4, t text, b bytea);
*
* INSERT INTO test1 values (1, ’joe”s place’, ’\\000\\001\\002\\003\\004’);
* INSERT INTO test1 values (2, ’ho there’, ’\\004\\003\\002\\001\\000’);
*
* The expected output is:
*
* tuple 0: got
* i = (4 bytes) 1
* t = (11 bytes) ’joe’s place’
* b = (5 bytes) \000\001\002\003\004
*
*/

#include <stdio.h >

#include <stdlib.h >

#include <string.h >

#include <sys/types.h >

#include "libpq-fe.h"

/* for ntohl/htonl */
#include <netinet/in.h >

#include <arpa/inet.h >

static void
exit_nicely(PGconn *conn)
{

PQfinish(conn);
exit(1);

375

Chapter 27. libpq - C Library

}

int
main(int argc, char **argv)
{

const char *conninfo;
PGconn *conn;
PGresult *res;
const char *paramValues[1];
int i,

j;
int i_fnum,

t_fnum,
b_fnum;

/*
* If the user supplies a parameter on the command line, use it as
* the conninfo string; otherwise default to setting dbname=template1
* and using environment variables or defaults for all other connection
* parameters.
*/

if (argc > 1)
conninfo = argv[1];

else
conninfo = "dbname = template1";

/* Make a connection to the database */
conn = PQconnectdb(conninfo);

/* Check to see that the backend connection was successfully made */
if (PQstatus(conn) != CONNECTION_OK)
{

fprintf(stderr, "Connection to database failed: %s",
PQerrorMessage(conn));

exit_nicely(conn);
}

/*
* The point of this program is to illustrate use of PQexecParams()
* with out-of-line parameters, as well as binary transmission of
* results. By using out-of-line parameters we can avoid a lot of
* tedious mucking about with quoting and escaping. Notice how we
* don’t have to do anything special with the quote mark in the
* parameter value.
*/

/* Here is our out-of-line parameter value */
paramValues[0] = "joe’s place";

res = PQexecParams(conn,
"SELECT * FROM test1 WHERE t = $1",
1, /* one param */
NULL, /* let the backend deduce param type */
paramValues,
NULL, /* don’t need param lengths since text */
NULL, /* default to all text params */
1); /* ask for binary results */

376

Chapter 27. libpq - C Library

if (PQresultStatus(res) != PGRES_TUPLES_OK)
{

fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
PQclear(res);
exit_nicely(conn);

}

/* Use PQfnumber to avoid assumptions about field order in result */
i_fnum = PQfnumber(res, "i");
t_fnum = PQfnumber(res, "t");
b_fnum = PQfnumber(res, "b");

for (i = 0; i < PQntuples(res); i++)
{

char *iptr;
char *tptr;
char *bptr;
int blen;
int ival;

/* Get the field values (we ignore possibility they are null!) */
iptr = PQgetvalue(res, i, i_fnum);
tptr = PQgetvalue(res, i, t_fnum);
bptr = PQgetvalue(res, i, b_fnum);

/*
* The binary representation of INT4 is in network byte order,
* which we’d better coerce to the local byte order.
*/

ival = ntohl(*((uint32_t *) iptr));

/*
* The binary representation of TEXT is, well, text, and since
* libpq was nice enough to append a zero byte to it, it’ll work
* just fine as a C string.
*
* The binary representation of BYTEA is a bunch of bytes, which
* could include embedded nulls so we have to pay attention to
* field length.
*/

blen = PQgetlength(res, i, b_fnum);

printf("tuple %d: got\n", i);
printf(" i = (%d bytes) %d\n",

PQgetlength(res, i, i_fnum), ival);
printf(" t = (%d bytes) ’%s’\n",

PQgetlength(res, i, t_fnum), tptr);
printf(" b = (%d bytes) ", blen);
for (j = 0; j < blen; j++)

printf("\\%03o", bptr[j]);
printf("\n\n");

}

PQclear(res);

/* close the connection to the database and cleanup */

377

Chapter 27. libpq - C Library

PQfinish(conn);

return 0;
}

378

Chapter 28. Large Objects
PostgreSQL has alarge objectfacility, which provides stream-style access to user data that is stored
in a special large-object structure. Streaming access is useful when working with data values that are
too large to manipulate conveniently as a whole.

This chapter describes the implementation and the programming and query language interfaces to
PostgreSQL large object data. We use the libpq C library for the examples in this chapter, but most
programming interfaces native to PostgreSQL support equivalent functionality. Other interfaces may
use the large object interface internally to provide generic support for large values. This is not de-
scribed here.

28.1. History
POSTGRES 4.2, the indirect predecessor of PostgreSQL, supported three standard implementations
of large objects: as files external to the POSTGRES server, as external files managed by the POST-
GRES server, and as data stored within the POSTGRES database. This caused considerable confusion
among users. As a result, only support for large objects as data stored within the database is retained
in PostgreSQL. Even though this is slower to access, it provides stricter data integrity. For historical
reasons, this storage scheme is referred to asInversion large objects. (You will see the term Inversion
used occasionally to mean the same thing as large object.) Since PostgreSQL 7.1, all large objects are
placed in one system table calledpg_largeobject .

PostgreSQL 7.1 introduced a mechanism (nicknamed “TOAST”) that allows data values to be much
larger than single pages. This makes the large object facility partially obsolete. One remaining advan-
tage of the large object facility is that it allows values up to 2 GB in size, whereas TOASTed fields
can be at most 1 GB. Also, large objects can be manipulated piece-by-piece much more easily than
ordinary data fields, so the practical limits are considerably different.

28.2. Implementation Features
The large object implementation breaks large objects up into “chunks” and stores the chunks in rows
in the database. A B-tree index guarantees fast searches for the correct chunk number when doing
random access reads and writes.

28.3. Client Interfaces
This section describes the facilities that PostgreSQL client interface libraries provide for accessing
large objects. All large object manipulation using these functionsmust take place within an SQL
transaction block. (This requirement is strictly enforced as of PostgreSQL 6.5, though it has been
an implicit requirement in previous versions, resulting in misbehavior if ignored.) The PostgreSQL
large object interface is modeled after the Unix file-system interface, with analogues ofopen , read ,
write , lseek , etc.

Client applications which use the large object interface in libpq should include the header file
libpq/libpq-fs.h and link with the libpq library.

379

Chapter 28. Large Objects

28.3.1. Creating a Large Object

The function

Oid lo_creat(PGconn *conn, int mode);

creates a new large object.mode is a bit mask describing several different attributes of the new object.
The symbolic constants used here are defined in the header filelibpq/libpq-fs.h . The access type
(read, write, or both) is controlled by or’ing together the bitsINV_READandINV_WRITE. The low-
order sixteen bits of the mask have historically been used at Berkeley to designate the storage manager
number on which the large object should reside. These bits should always be zero now. (The access
type does not actually do anything anymore either, but one or both flag bits must be set to avoid an
error.) The return value is the OID that was assigned to the new large object, or InvalidOid (zero) on
failure.

An example:

inv_oid = lo_creat(conn, INV_READ|INV_WRITE);

28.3.2. Importing a Large Object

To import an operating system file as a large object, call

Oid lo_import(PGconn *conn, const char *filename);

filename specifies the operating system name of the file to be imported as a large object. The return
value is the OID that was assigned to the new large object, or InvalidOid (zero) on failure. Note that
the file is read by the client interface library, not by the server; so it must exist in the client filesystem
and be readable by the client application.

28.3.3. Exporting a Large Object

To export a large object into an operating system file, call

int lo_export(PGconn *conn, Oid lobjId, const char *filename);

The lobjId argument specifies the OID of the large object to export and thefilename argument
specifies the operating system name of the file. Note that the file is written by the client interface
library, not by the server. Returns 1 on success, -1 on failure.

28.3.4. Opening an Existing Large Object

To open an existing large object for reading or writing, call

int lo_open(PGconn *conn, Oid lobjId, int mode);

The lobjId argument specifies the OID of the large object to open. Themode bits control whether
the object is opened for reading (INV_READ), writing (INV_WRITE), or both. A large object cannot
be opened before it is created.lo_open returns a (non-negative) large object descriptor for later use
in lo_read , lo_write , lo_lseek , lo_tell , andlo_close . The descriptor is only valid for the
duration of the current transaction. On failure, -1 is returned.

380

Chapter 28. Large Objects

28.3.5. Writing Data to a Large Object

The function

int lo_write(PGconn *conn, int fd, const char *buf, size_t len);

writes len bytes frombuf to large object descriptorfd . The fd argument must have been returned
by a previouslo_open . The number of bytes actually written is returned. In the event of an error, the
return value is negative.

28.3.6. Reading Data from a Large Object

The function

int lo_read(PGconn *conn, int fd, char *buf, size_t len);

readslen bytes from large object descriptorfd into buf . Thefd argument must have been returned
by a previouslo_open . The number of bytes actually read is returned. In the event of an error, the
return value is negative.

28.3.7. Seeking in a Large Object

To change the current read or write location associated with a large object descriptor, call

int lo_lseek(PGconn *conn, int fd, int offset, int whence);

This function moves the current location pointer for the large object descriptor identified byfd to
the new location specified byoffset . The valid values forwhence areSEEK_SET(seek from object
start),SEEK_CUR(seek from current position), andSEEK_END(seek from object end). The return
value is the new location pointer, or -1 on error.

28.3.8. Obtaining the Seek Position of a Large Object

To obtain the current read or write location of a large object descriptor, call

int lo_tell(PGconn *conn, int fd);

If there is an error, the return value is negative.

28.3.9. Closing a Large Object Descriptor

A large object descriptor may be closed by calling

int lo_close(PGconn *conn, int fd);

wherefd is a large object descriptor returned bylo_open . On success,lo_close returns zero. On
error, the return value is negative.

Any large object descriptors that remain open at the end of a transaction will be closed automatically.

381

Chapter 28. Large Objects

28.3.10. Removing a Large Object

To remove a large object from the database, call

int lo_unlink(PGconn *conn, Oid lobjId);

The lobjId argument specifies the OID of the large object to remove. Returns 1 if successful, -1 on
failure.

28.4. Server-Side Functions
There are server-side functions callable from SQL that correspond to each of the client-side functions
described above; indeed, for the most part the client-side functions are simply interfaces to the equiva-
lent server-side functions. The ones that are actually useful to call via SQL commands arelo_creat ,
lo_unlink , lo_import , andlo_export . Here are examples of their use:

CREATE TABLE image (
name text,
raster oid

);

SELECT lo_creat(-1); -- returns OID of new, empty large object

SELECT lo_unlink(173454); -- deletes large object with OID 173454

INSERT INTO image (name, raster)
VALUES (’beautiful image’, lo_import(’/etc/motd’));

SELECT lo_export(image.raster, ’/tmp/motd’) FROM image
WHERE name = ’beautiful image’;

The server-sidelo_import and lo_export functions behave considerably differently from their
client-side analogs. These two functions read and write files in the server’s file system, using the
permissions of the database’s owning user. Therefore, their use is restricted to superusers. In contrast,
the client-side import and export functions read and write files in the client’s file system, using the
permissions of the client program. The client-side functions can be used by any PostgreSQL user.

28.5. Example Program
Example 28-1is a sample program which shows how the large object interface in libpq can be used.
Parts of the program are commented out but are left in the source for the reader’s benefit. This program
can also be found insrc/test/examples/testlo.c in the source distribution.

Example 28-1. Large Objects with libpq Example Program

/*--
*
* testlo.c--
* test using large objects with libpq
*
* Copyright (c) 1994, Regents of the University of California

382

Chapter 28. Large Objects

*
*--
*/

#include <stdio.h >

#include "libpq-fe.h"
#include "libpq/libpq-fs.h"

#define BUFSIZE 1024

/*
* importFile
* import file "in_filename" into database as large object "lobjOid"
*
*/

Oid
importFile(PGconn *conn, char *filename)
{

Oid lobjId;
int lobj_fd;
char buf[BUFSIZE];
int nbytes,

tmp;
int fd;

/*
* open the file to be read in
*/

fd = open(filename, O_RDONLY, 0666);
if (fd < 0)
{ /* error */

fprintf(stderr, "can’t open unix file %s\n", filename);
}

/*
* create the large object
*/

lobjId = lo_creat(conn, INV_READ | INV_WRITE);
if (lobjId == 0)

fprintf(stderr, "can’t create large object\n");

lobj_fd = lo_open(conn, lobjId, INV_WRITE);

/*
* read in from the Unix file and write to the inversion file
*/

while ((nbytes = read(fd, buf, BUFSIZE)) > 0)
{

tmp = lo_write(conn, lobj_fd, buf, nbytes);
if (tmp < nbytes)

fprintf(stderr, "error while reading large object\n");
}

(void) close(fd);
(void) lo_close(conn, lobj_fd);

return lobjId;
}

383

Chapter 28. Large Objects

void
pickout(PGconn *conn, Oid lobjId, int start, int len)
{

int lobj_fd;
char *buf;
int nbytes;
int nread;

lobj_fd = lo_open(conn, lobjId, INV_READ);
if (lobj_fd < 0)
{

fprintf(stderr, "can’t open large object %d\n",
lobjId);

}

lo_lseek(conn, lobj_fd, start, SEEK_SET);
buf = malloc(len + 1);

nread = 0;
while (len - nread > 0)
{

nbytes = lo_read(conn, lobj_fd, buf, len - nread);
buf[nbytes] = ’ ’;
fprintf(stderr, " >>> %s", buf);
nread += nbytes;

}
free(buf);
fprintf(stderr, "\n");
lo_close(conn, lobj_fd);

}

void
overwrite(PGconn *conn, Oid lobjId, int start, int len)
{

int lobj_fd;
char *buf;
int nbytes;
int nwritten;
int i;

lobj_fd = lo_open(conn, lobjId, INV_READ);
if (lobj_fd < 0)
{

fprintf(stderr, "can’t open large object %d\n",
lobjId);

}

lo_lseek(conn, lobj_fd, start, SEEK_SET);
buf = malloc(len + 1);

for (i = 0; i < len; i++)
buf[i] = ’X’;

buf[i] = ’ ’;

nwritten = 0;
while (len - nwritten > 0)

384

Chapter 28. Large Objects

{
nbytes = lo_write(conn, lobj_fd, buf + nwritten, len - nwritten);
nwritten += nbytes;

}
free(buf);
fprintf(stderr, "\n");
lo_close(conn, lobj_fd);

}

/*
* exportFile * export large object "lobjOid" to file "out_filename"
*
*/

void
exportFile(PGconn *conn, Oid lobjId, char *filename)
{

int lobj_fd;
char buf[BUFSIZE];
int nbytes,

tmp;
int fd;

/*
* create an inversion "object"
*/

lobj_fd = lo_open(conn, lobjId, INV_READ);
if (lobj_fd < 0)
{

fprintf(stderr, "can’t open large object %d\n",
lobjId);

}

/*
* open the file to be written to
*/

fd = open(filename, O_CREAT | O_WRONLY, 0666);
if (fd < 0)
{ /* error */

fprintf(stderr, "can’t open unix file %s\n",
filename);

}

/*
* read in from the Unix file and write to the inversion file
*/

while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0)
{

tmp = write(fd, buf, nbytes);
if (tmp < nbytes)
{

fprintf(stderr, "error while writing %s\n",
filename);

}
}

(void) lo_close(conn, lobj_fd);
(void) close(fd);

385

Chapter 28. Large Objects

return;
}

void
exit_nicely(PGconn *conn)
{

PQfinish(conn);
exit(1);

}

int
main(int argc, char **argv)
{

char *in_filename,
*out_filename;

char *database;
Oid lobjOid;
PGconn *conn;
PGresult *res;

if (argc != 4)
{

fprintf(stderr, "Usage: %s database_name in_filename out_filename\n",
argv[0]);

exit(1);
}

database = argv[1];
in_filename = argv[2];
out_filename = argv[3];

/*
* set up the connection
*/

conn = PQsetdb(NULL, NULL, NULL, NULL, database);

/* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD)
{

fprintf(stderr, "Connection to database ’%s’ failed.\n", database);
fprintf(stderr, "%s", PQerrorMessage(conn));
exit_nicely(conn);

}

res = PQexec(conn, "begin");
PQclear(res);

printf("importing file %s\n", in_filename);
/* lobjOid = importFile(conn, in_filename); */

lobjOid = lo_import(conn, in_filename);
/*

printf("as large object %d.\n", lobjOid);

printf("picking out bytes 1000-2000 of the large object\n");
pickout(conn, lobjOid, 1000, 1000);

386

Chapter 28. Large Objects

printf("overwriting bytes 1000-2000 of the large object with X’s\n");
overwrite(conn, lobjOid, 1000, 1000);

*/

printf("exporting large object to file %s\n", out_filename);
/* exportFile(conn, lobjOid, out_filename); */

lo_export(conn, lobjOid, out_filename);

res = PQexec(conn, "end");
PQclear(res);
PQfinish(conn);
exit(0);

}

387

Chapter 29. ECPG - Embedded SQL in C
This chapter describes the embedded SQL package for PostgreSQL. It was written by Linus Tolke
(<linus@epact.se >) and Michael Meskes (<meskes@postgresql.org >). Originally it was writ-
ten to work with C. It also works with C++, but it does not recognize all C++ constructs yet.

This documentation is quite incomplete. But since this interface is standardized, additional informa-
tion can be found in many resources about SQL.

29.1. The Concept
An embedded SQL program consists of code written in an ordinary programming language, in this
case C, mixed with SQL commands in specially marked sections. To build the program, the source
code is first passed through the embedded SQL preprocessor, which converts it to an ordinary C
program, and afterwards it can be processed by a C compiler.

Embedded SQL has advantages over other methods for handling SQL commands from C code. First,
it takes care of the tedious passing of information to and from variables in your C program. Second,
the SQL code in the program is checked at build time for syntactical correctness. Third, embedded
SQL in C is specified in the SQL standard and supported by many other SQL database systems.
The PostgreSQL implementation is designed to match this standard as much as possible, and it is
usually possible to port embedded SQL programs written for other SQL databases to PostgreSQL
with relative ease.

As already stated, programs written for the embedded SQL interface are normal C programs with
special code inserted to perform database-related actions. This special code always has the form

EXEC SQL ...;

These statements syntactically take the place of a C statement. Depending on the particular statement,
they may appear at the global level or within a function. Embedded SQL statements follow the case-
sensitivity rules of normal SQL code, and not those of C.

The following sections explain all the embedded SQL statements.

29.2. Connecting to the Database Server
One connects to a database using the following statement:

EXEC SQL CONNECT TOtarget [AS connection-name] [USER user-name];

Thetarget can be specified in the following ways:

• dbname[@hostname][: port]

• tcp:postgresql:// hostname [: port][/ dbname][? options]

• unix:postgresql:// hostname [: port][/ dbname][? options]

• an SQL string literal containing one of the above forms

• a reference to a character variable containing one of the above forms (see examples)

• DEFAULT

388

Chapter 29. ECPG - Embedded SQL in C

If you specify the connection target literally (that is, not through a variable reference) and you don’t
quote the value, then the case-insensitivity rules of normal SQL are applied. In that case you can also
double-quote the individual parameters separately as needed. In practice, it is probably less error-
prone to use a (single-quoted) string literal or a variable reference. The connection targetDEFAULT

initiates a connection to the default database under the default user name. No separate user name or
connection name may be specified in that case.

There are also different ways to specify the user name:

• username

• username / password

• username IDENTIFIED BY password

• username USING password

As above, the parametersusername andpassword may be an SQL identifier, an SQL string literal,
or a reference to a character variable.

Theconnection-name is used to handle multiple connections in one program. It can be omitted
if a program uses only one connection. The most recently opened connection becomes the current
connection, which is used by default when an SQL statement is to be executed (see later in this
chapter).

Here are some examples ofCONNECTstatements:

EXEC SQL CONNECT TO mydb@sql.mydomain.com;

EXEC SQL CONNECT TO ’unix:postgresql://sql.mydomain.com/mydb’ AS myconnection USER john;

EXEC SQL BEGIN DECLARE SECTION;
const char *target = "mydb@sql.mydomain.com";
const char *user = "john";
EXEC SQL END DECLARE SECTION;

...
EXEC SQL CONNECT TO :target USER :user;

The last form makes use of the variant referred to above as character variable reference. You will see
in later sections how C variables can be used in SQL statements when you prefix them with a colon.

Be advised that the format of the connection target is not specified in the SQL standard. So if you
want to develop portable applications, you might want to use something based on the last example
above to encapsulate the connection target string somewhere.

29.3. Closing a Connection
To close a connection, use the following statement:

EXEC SQL DISCONNECT [connection];

Theconnection can be specified in the following ways:

• connection-name

• DEFAULT

389

Chapter 29. ECPG - Embedded SQL in C

• CURRENT

• ALL

If no connection name is specified, the current connection is closed.

It is good style that an application always explicitly disconnect from every connection it opened.

29.4. Running SQL Commands
Any SQL command can be run from within an embedded SQL application. Below are some examples
of how to do that.

Creating a table:

EXEC SQL CREATE TABLE foo (number integer, ascii char(16));
EXEC SQL CREATE UNIQUE INDEX num1 ON foo(number);
EXEC SQL COMMIT;

Inserting rows:

EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, ’doodad’);
EXEC SQL COMMIT;

Deleting rows:

EXEC SQL DELETE FROM foo WHERE number = 9999;
EXEC SQL COMMIT;

Single-row select:

EXEC SQL SELECT foo INTO :FooBar FROM table1 WHERE ascii = ’doodad’;

Select using cursors:

EXEC SQL DECLARE foo_bar CURSOR FOR
SELECT number, ascii FROM foo
ORDER BY ascii;

EXEC SQL OPEN foo_bar;
EXEC SQL FETCH foo_bar INTO :FooBar, DooDad;
...
EXEC SQL CLOSE foo_bar;
EXEC SQL COMMIT;

Updates:

EXEC SQL UPDATE foo
SET ascii = ’foobar’
WHERE number = 9999;

EXEC SQL COMMIT;

390

Chapter 29. ECPG - Embedded SQL in C

The tokens of the form: something arehost variables, that is, they refer to variables in the C pro-
gram. They are explained inSection 29.6.

In the default mode, statements are committed only whenEXEC SQL COMMITis issued. The embed-
ded SQL interface also supports autocommit of transactions (similar to libpq behavior) via the-t

command-line option toecpg (see below) or via theEXEC SQL SET AUTOCOMMIT TO ONstate-
ment. In autocommit mode, each command is automatically committed unless it is inside an explicit
transaction block. This mode can be explicitly turned off usingEXEC SQL SET AUTOCOMMIT TO

OFF.

29.5. Choosing a Connection
The SQL statements shown in the previous section are executed on the current connection, that is, the
most recently opened one. If an application needs to manage multiple connections, then there are two
ways to handle this.

The first option is to explicitly choose a connection for each SQL statement, for example

EXEC SQL ATconnection-name SELECT ...;

This option is particularly suitable if the application needs to use several connections in mixed order.

If your application uses multiple threads of execution, they cannot share a connection concurrently.
You must either explicitly control access to the connection (using mutexes) or use a connection for
each thread. If each thread uses its own connection, you will need to use the AT clause to specify
which connection the thread will use.

The second option is to execute a statement to switch the current connection. That statement is:

EXEC SQL SET CONNECTIONconnection-name ;

This option is particularly convenient if many statements are to be executed on the same connection.
It is not thread-aware.

29.6. Using Host Variables
In Section 29.4you saw how you can execute SQL statements from an embedded SQL program.
Some of those statements only used fixed values and did not provide a way to insert user-supplied
values into statements or have the program process the values returned by the query. Those kinds of
statements are not really useful in real applications. This section explains in detail how you can pass
data between your C program and the embedded SQL statements using a simple mechanism called
host variables.

29.6.1. Overview

Passing data between the C program and the SQL statements is particularly simple in embedded SQL.
Instead of having the program paste the data into the statement, which entails various complications,
such as properly quoting the value, you can simply write the name of a C variable into the SQL
statement, prefixed by a colon. For example:

EXEC SQL INSERT INTO sometable VALUES (:v1, ’foo’, :v2);

391

Chapter 29. ECPG - Embedded SQL in C

This statements refers to two C variables namedv1 andv2 and also uses a regular SQL string literal,
to illustrate that you are not restricted to use one kind of data or the other.

This style of inserting C variables in SQL statements works anywhere a value expression is expected
in an SQL statement. In the SQL environment we call the references to C variableshost variables.

29.6.2. Declare Sections

To pass data from the program to the database, for example as parameters in a query, or to pass data
from the database back to the program, the C variables that are intended to contain this data need to
be declared in specially marked sections, so the embedded SQL preprocessor is made aware of them.

This section starts with

EXEC SQL BEGIN DECLARE SECTION;

and ends with

EXEC SQL END DECLARE SECTION;

Between those lines, there must be normal C variable declarations, such as

int x;
char foo[16], bar[16];

You can have as many declare sections in a program as you like.

The declarations are also echoed to the output file as a normal C variables, so there’s no need to
declare them again. Variables that are not intended to be used in SQL commands can be declared
normally outside these special sections.

The definition of a structure or union also must be listed inside aDECLAREsection. Otherwise the
preprocessor cannot handle these types since it does not know the definition.

The special typeVARCHARis converted into a namedstruct for every variable. A declaration like

VARCHAR var[180];

is converted into

struct varchar_var { int len; char arr[180]; } var;

This structure is suitable for interfacing with SQL datums of typevarchar .

29.6.3. SELECT INTOand FETCH INTO

Now you should be able to pass data generated by your program into an SQL command. But how
do you retrieve the results of a query? For that purpose, embedded SQL provides special variants of
the usual commandsSELECTandFETCH. These commands have a specialINTO clause that specifies
which host variables the retrieved values are to be stored in.

Here is an example:

/*
* assume this table:
* CREATE TABLE test1 (a int, b varchar(50));
*/

392

Chapter 29. ECPG - Embedded SQL in C

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

...

EXEC SQL SELECT a, b INTO :v1, :v2 FROM test;

So theINTO clause appears between the select list and theFROMclause. The number of elements in
the select list and the list afterINTO (also called the target list) must be equal.

Here is an example using the commandFETCH:

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

...

EXEC SQL DECLARE foo CURSOR FOR SELECT a, b FROM test;

...

do {
...
EXEC SQL FETCH NEXT FROM foo INTO :v1, :v2;
...

} while (...);

Here theINTO clause appears after all the normal clauses.

Both of these methods only allow retrieving one row at a time. If you need to process result sets that
potentially contain more than one row, you need to use a cursor, as shown in the second example.

29.6.4. Indicators

The examples above do not handle null values. In fact, the retrieval examples will raise an error if
they fetch a null value from the database. To be able to pass null values to the database or retrieve
null values from the database, you need to append a second host variable specification to each host
variable that contains data. This second host variable is called theindicator and contains a flag that
tells whether the datum is null, in which case the value of the real host variable is ignored. Here is an
example that handles the retrieval of null values correctly:

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR val;
int val_ind;
EXEC SQL END DECLARE SECTION:

...

EXEC SQL SELECT b INTO :val :val_ind FROM test1;

The indicator variableval_ind will be zero if the value was not null, and it will be negative if the
value was null.

393

Chapter 29. ECPG - Embedded SQL in C

The indicator has another function: if the indicator value is positive, it means that the value is not null,
but it was truncated when it was stored in the host variable.

29.7. Dynamic SQL
In many cases, the particular SQL statements that an application has to execute are known at the time
the application is written. In some cases, however, the SQL statements are composed at run time or
provided by an external source. In these cases you cannot embed the SQL statements directly into the
C source code, but there is a facility that allows you to call arbitrary SQL statements that you provide
in a string variable.

The simplest way to execute an arbitrary SQL statement is to use the commandEXECUTE

IMMEDIATE. For example:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "CREATE TABLE test1 (...);";
EXEC SQL END DECLARE SECTION;

EXEC SQL EXECUTE IMMEDIATE :stmt;

You may not execute statements that retrieve data (e.g.,SELECT) this way.

A more powerful way to execute arbitrary SQL statements is to prepare them once and execute the pre-
pared statement as often as you like. It is also possible to prepare a generalized version of a statement
and then execute specific versions of it by substituting parameters. When preparing the statement,
write question marks where you want to substitute parameters later. For example:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "INSERT INTO test1 VALUES(?, ?);";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
...

EXEC SQL EXECUTE mystmt USING 42, ’foobar’;

If the statement you are executing returns values, then add anINTO clause:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "SELECT a, b, c FROM test1 WHERE a > ?";
int v1, v2;
VARCHAR v3;
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
...

EXEC SQL EXECUTE mystmt INTO v1, v2, v3 USING 37;

An EXECUTEcommand may have anINTO clause, aUSINGclause, both, or neither.

When you don’t need the prepared statement anymore, you should deallocate it:

EXEC SQL DEALLOCATE PREPAREname;

394

Chapter 29. ECPG - Embedded SQL in C

29.8. Using SQL Descriptor Areas
An SQL descriptor area is a more sophisticated method for processing the result of aSELECTor
FETCHstatement. An SQL descriptor area groups the data of one row of data together with meta-
data items into one data structure. The metadata is particularly useful when executing dynamic SQL
statements, where the nature of the result columns may not be known ahead of time.

An SQL descriptor area consists of a header, which contains information concerning the entire de-
scriptor, and one or more item descriptor areas, which basically each describe one column in the result
row.

Before you can use an SQL descriptor area, you need to allocate one:

EXEC SQL ALLOCATE DESCRIPTORidentifier ;

The identifier serves as the “variable name” of the descriptor area. When you don’t need the descriptor
anymore, you should deallocate it:

EXEC SQL DEALLOCATE DESCRIPTORidentifier ;

To use a descriptor area, specify it as the storage target in anINTO clause, instead of listing host
variables:

EXEC SQL FETCH NEXT FROM mycursor INTO DESCRIPTOR mydesc;

Now how do you get the data out of the descriptor area? You can think of the descriptor area as a
structure with named fields. To retrieve the value of a field from the header and store it into a host
variable, use the following command:

EXEC SQL GET DESCRIPTORname : hostvar = field ;

Currently, there is only one header field defined:COUNT, which tells how many item descriptor areas
exist (that is, how many columns are contained in the result). The host variable needs to be of an
integer type. To get a field from the item descriptor area, use the following command:

EXEC SQL GET DESCRIPTORname VALUE num : hostvar = field ;

numcan be a literal integer or a host variable containing an integer. Possible fields are:

CARDINALITY (integer)

number of rows in the result set

DATA

actual data item (therefore, the data type of this field depends on the query)

DATETIME_INTERVAL_CODE(integer)

?

DATETIME_INTERVAL_PRECISION(integer)

not implemented

INDICATOR (integer)

the indicator (indicating a null value or a value truncation)

395

Chapter 29. ECPG - Embedded SQL in C

KEY_MEMBER(integer)

not implemented

LENGTH(integer)

length of the datum in characters

NAME(string)

name of the column

NULLABLE(integer)

not implemented

OCTET_LENGTH(integer)

length of the character representation of the datum in bytes

PRECISION (integer)

precision (for typenumeric)

RETURNED_LENGTH(integer)

length of the datum in characters

RETURNED_OCTET_LENGTH(integer)

length of the character representation of the datum in bytes

SCALE(integer)

scale (for typenumeric)

TYPE(integer)

numeric code of the data type of the column

29.9. Error Handling
This section describes how you can handle exceptional conditions and warnings in an embedded SQL
program. There are several nonexclusive facilities for this.

29.9.1. Setting Callbacks

One simple method to catch errors and warnings is to set a specific action to be executed whenever a
particular condition occurs. In general:

EXEC SQL WHENEVERcondition action ;

condition can be one of the following:

SQLERROR

The specified action is called whenever an error occurs during the execution of an SQL statement.

396

Chapter 29. ECPG - Embedded SQL in C

SQLWARNING

The specified action is called whenever a warning occurs during the execution of an SQL state-
ment.

NOT FOUND

The specified action is called whenever an SQL statement retrieves or affects zero rows. (This
condition is not an error, but you might be interested in handling it specially.)

action can be one of the following:

CONTINUE

This effectively means that the condition is ignored. This is the default.

GOTOlabel

GO TOlabel

Jump to the specified label (using a Cgoto statement).

SQLPRINT

Print a message to standard error. This is useful for simple programs or during prototyping. The
details of the message cannot be configured.

STOP

Call exit(1) , which will terminate the program.

BREAK

Execute the C statementbreak . This should only be used in loops orswitch statements.

CALL name (args)

DO name (args)

Call the specified C functions with the specified arguments.

The SQL standard only provides for the actionsCONTINUEandGOTO(andGO TO).

Here is an example that you might want to use in a simple program. It prints a simple message when
a warning occurs and aborts the program when an error happens.

EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLERROR STOP;

The statementEXEC SQL WHENEVERis a directive of the SQL preprocessor, not a C statement. The
error or warning actions that it sets apply to all embedded SQL statements that appear below the point
where the handler is set, unless a different action was set for the same condition between the first
EXEC SQL WHENEVERand the SQL statement causing the condition, regardless of the flow of control
in the C program. So neither of the two following C program excerpts will have the desired effect.

/*
* WRONG
*/

int main(int argc, char *argv[])
{

397

Chapter 29. ECPG - Embedded SQL in C

...
if (verbose) {

EXEC SQL WHENEVER SQLWARNING SQLPRINT;
}
...
EXEC SQL SELECT ...;
...

}

/*
* WRONG
*/

int main(int argc, char *argv[])
{

...
set_error_handler();
...
EXEC SQL SELECT ...;
...

}

static void set_error_handler(void)
{

EXEC SQL WHENEVER SQLERROR STOP;
}

29.9.2. sqlca

For more powerful error handling, the embedded SQL interface provides a global variable with the
namesqlca that has the following structure:

struct
{

char sqlcaid[8];
long sqlabc;
long sqlcode;
struct
{

int sqlerrml;
char sqlerrmc[70];

} sqlerrm;
char sqlerrp[8];
long sqlerrd[6];
char sqlwarn[8];
char sqlstate[5];

} sqlca;

(In a multithreaded program, every thread automatically gets its own copy ofsqlca . This works
similarly to the handling of the standard C global variableerrno .)

sqlca covers both warnings and errors. If multiple warnings or errors occur during the execution of
a statement, thensqlca will only contain information about the last one.

If no error occurred in the last SQL statement,sqlca.sqlcode will be 0 andsqlca.sqlstate

will be "00000" . If a warning or error occurred, thensqlca.sqlcode will be negative and

398

Chapter 29. ECPG - Embedded SQL in C

sqlca.sqlstate will be different from "00000" . A positive sqlca.sqlcode indicates a
harmless condition, such as that the last query returned zero rows.sqlcode andsqlstate are two
different error code schemes; details appear below.

If the last SQL statement was successful, thensqlca.sqlerrd[1] contains the OID of the processed
row, if applicable, andsqlca.sqlerrd[2] contains the number of processed or returned rows, if
applicable to the command.

In case of an error or warning,sqlca.sqlerrm.sqlerrmc will contain a string that describes the
error. The fieldsqlca.sqlerrm.sqlerrml contains the length of the error message that is stored
in sqlca.sqlerrm.sqlerrmc (the result ofstrlen() , not really interesting for a C programmer).
Note that some messages are too long to fit in the fixed-sizesqlerrmc array; they will be truncated.

In case of a warning,sqlca.sqlwarn[2] is set toW. (In all other cases, it is set to something different
from W.) If sqlca.sqlwarn[1] is set toW, then a value was truncated when it was stored in a host
variable.sqlca.sqlwarn[0] is set toWif any of the other elements are set to indicate a warning.

The fieldssqlcaid , sqlcabc , sqlerrp , and the remaining elements ofsqlerrd and sqlwarn

currently contain no useful information.

The structuresqlca is not defined in the SQL standard, but is implemented in several other SQL
database systems. The definitions are similar at the core, but if you want to write portable applications,
then you should investigate the different implementations carefully.

29.9.3. SQLSTATEvs SQLCODE

The fieldssqlca.sqlstate and sqlca.sqlcode are two different schemes that provide error
codes. Both are specified in the SQL standard, butSQLCODEhas been marked deprecated in the
1992 edition of the standard and has been dropped in the 1999 edition. Therefore, new applications
are strongly encouraged to useSQLSTATE.

SQLSTATEis a five-character array. The five characters contain digits or upper-case letters that rep-
resent codes of various error and warning conditions.SQLSTATEhas a hierarchical scheme: the first
two characters indicate the general class of the condition, the last three characters indicate a subclass
of the general condition. A successful state is indicated by the code00000 . TheSQLSTATEcodes are
for the most part defined in the SQL standard. The PostgreSQL server natively supportsSQLSTATE

error codes; therefore a high degree of consistency can be achieved by using this error code scheme
throughout all applications. For further information seeAppendix A.

SQLCODE, the deprecated error code scheme, is a simple integer. A value of 0 indicates success, a
positive value indicates success with additional information, a negative value indicates an error. The
SQL standard only defines the positive value +100, which indicates that the last command returned
or affected zero rows, and no specific negative values. Therefore, this scheme can only achieve poor
portability and does not have a hierarchical code assignment. Historically, the embedded SQL pro-
cessor for PostgreSQL has assigned some specificSQLCODEvalues for its use, which are listed below
with their numeric value and their symbolic name. Remember that these are not portable to other SQL
implementations. To simplify the porting of applications to theSQLSTATEscheme, the corresponding
SQLSTATEis also listed. There is, however, no one-to-one or one-to-many mapping between the two
schemes (indeed it is many-to-many), so you should consult the globalSQLSTATElisting in Appendix
A in each case.

These are the assignedSQLCODEvalues:

-12 (ECPG_OUT_OF_MEMORY)

Indicates that your virtual memory is exhausted. (SQLSTATE YE001)

399

Chapter 29. ECPG - Embedded SQL in C

-200 (ECPG_UNSUPPORTED)

Indicates the preprocessor has generated something that the library does not know about. Perhaps
you are running incompatible versions of the preprocessor and the library. (SQLSTATE YE002)

-201 (ECPG_TOO_MANY_ARGUMENTS)

This means that the command specified more host variables than the command expected. (SQL-
STATE 07001 or 07002)

-202 (ECPG_TOO_FEW_ARGUMENTS)

This means that the command specified fewer host variables than the command expected. (SQL-
STATE 07001 or 07002)

-203 (ECPG_TOO_MANY_MATCHES)

This means a query has returned multiple rows but the statement was only prepared to store one
result row (for example, because the specified variables are not arrays). (SQLSTATE 21000)

-204 (ECPG_INT_FORMAT)

The host variable is of typeint and the datum in the database is of a different type and contains
a value that cannot be interpreted as anint . The library usesstrtol() for this conversion.
(SQLSTATE 42804)

-205 (ECPG_UINT_FORMAT)

The host variable is of typeunsigned int and the datum in the database is of a different
type and contains a value that cannot be interpreted as anunsigned int . The library uses
strtoul() for this conversion. (SQLSTATE 42804)

-206 (ECPG_FLOAT_FORMAT)

The host variable is of typefloat and the datum in the database is of another type and contains
a value that cannot be interpreted as afloat . The library usesstrtod() for this conversion.
(SQLSTATE 42804)

-207 (ECPG_CONVERT_BOOL)

This means the host variable is of typebool and the datum in the database is neither’t’ nor
’f’ . (SQLSTATE 42804)

-208 (ECPG_EMPTY)

The statement sent to the PostgreSQL server was empty. (This cannot normally happen in an
embedded SQL program, so it may point to an internal error.) (SQLSTATE YE002)

-209 (ECPG_MISSING_INDICATOR)

A null value was returned and no null indicator variable was supplied. (SQLSTATE 22002)

-210 (ECPG_NO_ARRAY)

An ordinary variable was used in a place that requires an array. (SQLSTATE 42804)

-211 (ECPG_DATA_NOT_ARRAY)

The database returned an ordinary variable in a place that requires array value. (SQLSTATE
42804)

-220 (ECPG_NO_CONN)

The program tried to access a connection that does not exist. (SQLSTATE 08003)

400

Chapter 29. ECPG - Embedded SQL in C

-221 (ECPG_NOT_CONN)

The program tried to access a connection that does exist but is not open. (This is an internal
error.) (SQLSTATE YE002)

-230 (ECPG_INVALID_STMT)

The statement you are trying to use has not been prepared. (SQLSTATE 26000)

-240 (ECPG_UNKNOWN_DESCRIPTOR)

The descriptor specified was not found. The statement you are trying to use has not been pre-
pared. (SQLSTATE 33000)

-241 (ECPG_INVALID_DESCRIPTOR_INDEX)

The descriptor index specified was out of range. (SQLSTATE 07009)

-242 (ECPG_UNKNOWN_DESCRIPTOR_ITEM)

An invalid descriptor item was requested. (This is an internal error.) (SQLSTATE YE002)

-243 (ECPG_VAR_NOT_NUMERIC)

During the execution of a dynamic statement, the database returned a numeric value and the host
variable was not numeric. (SQLSTATE 07006)

-244 (ECPG_VAR_NOT_CHAR)

During the execution of a dynamic statement, the database returned a non-numeric value and the
host variable was numeric. (SQLSTATE 07006)

-400 (ECPG_PGSQL)

Some error caused by the PostgreSQL server. The message contains the error message from the
PostgreSQL server.

-401 (ECPG_TRANS)

The PostgreSQL server signaled that we cannot start, commit, or rollback the transaction. (SQL-
STATE 08007)

-402 (ECPG_CONNECT)

The connection attempt to the database did not succeed. (SQLSTATE 08001)

100 (ECPG_NOT_FOUND)

This is a harmless condition indicating that the last command retrieved or processed zero rows,
or that you are at the end of the cursor. (SQLSTATE 02000)

29.10. Including Files
To include an external file into your embedded SQL program, use:

EXEC SQL INCLUDEfilename ;

The embedded SQL preprocessor will look for a file namedfilename .h , preprocess it, and include
it in the resulting C output. Thus, embedded SQL statements in the included file are handled correctly.

Note that this isnot the same as

401

Chapter 29. ECPG - Embedded SQL in C

#include <filename .h >

because this file would not be subject to SQL command preprocessing. Naturally, you can continue
to use the C#include directive to include other header files.

Note: The include file name is case-sensitive, even though the rest of the EXEC SQL INCLUDE

command follows the normal SQL case-sensitivity rules.

29.11. Processing Embedded SQL Programs
Now that you have an idea how to form embedded SQL C programs, you probably want to know
how to compile them. Before compiling you run the file through the embedded SQL C preprocessor,
which converts the SQL statements you used to special function calls. After compiling, you must link
with a special library that contains the needed functions. These functions fetch information from the
arguments, perform the SQL command using the libpq interface, and put the result in the arguments
specified for output.

The preprocessor program is calledecpg and is included in a normal PostgreSQL installation. Em-
bedded SQL programs are typically named with an extension.pgc . If you have a program file called
prog1.pgc , you can preprocess it by simply calling

ecpg prog1.pgc

This will create a file calledprog1.c . If your input files do not follow the suggested naming pattern,
you can specify the output file explicitly using the-o option.

The preprocessed file can be compiled normally, for example:

cc -c prog1.c

The generated C source files include header files from the PostgreSQL installation, so if you in-
stalled PostgreSQL in a location that is not searched by default, you have to add an option such as
-I/usr/local/pgsql/include to the compilation command line.

To link an embedded SQL program, you need to include thelibecpg library, like so:

cc -o myprog prog1.o prog2.o ... -lecpg

Again, you might have to add an option like-L/usr/local/pgsql/lib to that command line.

If you manage the build process of a larger project using make, it may be convenient to include the
following implicit rule to your makefiles:

ECPG = ecpg

%.c: %.pgc
$(ECPG) $<

The complete syntax of theecpg command is detailed inecpg.

The ecpg library is thread-safe if it is built using the--enable-thread-safety command-line
option toconfigure . (You might need to use other threading command-line options to compile your
client code.)

402

Chapter 29. ECPG - Embedded SQL in C

29.12. Library Functions
The libecpg library primarily contains “hidden” functions that are used to implement the function-
ality expressed by the embedded SQL commands. But there are some functions that can usefully be
called directly. Note that this makes your code unportable.

• ECPGdebug(int on , FILE * stream) turns on debug logging if called with the first argument
non-zero. Debug logging is done onstream . The log contains all SQL statements with all the
input variables inserted, and the results from the PostgreSQL server. This can be very useful when
searching for errors in your SQL statements.

• ECPGstatus(int lineno , const char* connection_name) returns true if you are con-
nected to a database and false if not.connection_name can beNULL if a single connection is
being used.

29.13. Internals
This section explains how ECPG works internally. This information can occasionally be useful to help
users understand how to use ECPG.

The first four lines written byecpg to the output are fixed lines. Two are comments and two are
include lines necessary to interface to the library. Then the preprocessor reads through the file and
writes output. Normally it just echoes everything to the output.

When it sees anEXEC SQLstatement, it intervenes and changes it. The command starts withEXEC

SQLand ends with; . Everything in between is treated as an SQL statement and parsed for variable
substitution.

Variable substitution occurs when a symbol starts with a colon (:). The variable with that name is
looked up among the variables that were previously declared within aEXEC SQL DECLAREsection.

The most important function in the library isECPGdo, which takes care of executing most commands.
It takes a variable number of arguments. This can easily add up to 50 or so arguments, and we hope
this will not be a problem on any platform.

The arguments are:

A line number

This is the line number of the original line; used in error messages only.

A string

This is the SQL command that is to be issued. It is modified by the input variables, i.e., the
variables that where not known at compile time but are to be entered in the command. Where the
variables should go the string contains?.

Input variables

Every input variable causes ten arguments to be created. (See below.)

ECPGt_EOIT

An enum telling that there are no more input variables.

Output variables

Every output variable causes ten arguments to be created. (See below.) These variables are filled
by the function.

403

Chapter 29. ECPG - Embedded SQL in C

ECPGt_EORT

An enum telling that there are no more variables.

For every variable that is part of the SQL command, the function gets ten arguments:

1. The type as a special symbol.

2. A pointer to the value or a pointer to the pointer.

3. The size of the variable if it is achar or varchar .

4. The number of elements in the array (for array fetches).

5. The offset to the next element in the array (for array fetches).

6. The type of the indicator variable as a special symbol.

7. A pointer to the indicator variable.

8. 0

9. The number of elements in the indicator array (for array fetches).

10.The offset to the next element in the indicator array (for array fetches).

Note that not all SQL commands are treated in this way. For instance, an open cursor statement like

EXEC SQL OPENcursor ;

is not copied to the output. Instead, the cursor’sDECLAREcommand is used at the position of the
OPENcommand because it indeed opens the cursor.

Here is a complete example describing the output of the preprocessor of a filefoo.pgc (details may
change with each particular version of the preprocessor):

EXEC SQL BEGIN DECLARE SECTION;
int index;
int result;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT res INTO :result FROM mytable WHERE index = :index;

is translated into:

/* Processed by ecpg (2.6.0) */
/* These two include files are added by the preprocessor */
#include <ecpgtype.h >;
#include <ecpglib.h >;

/* exec sql begin declare section */

#line 1 "foo.pgc"

int index;
int result;

/* exec sql end declare section */
...
ECPGdo(__LINE__, NULL, "SELECT res FROM mytable WHERE index = ? ",

404

Chapter 29. ECPG - Embedded SQL in C

ECPGt_int,&(index),1L,1L,sizeof(int),
ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EOIT,
ECPGt_int,&(result),1L,1L,sizeof(int),
ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EORT);

#line 147 "foo.pgc"

(The indentation here is added for readability and not something the preprocessor does.)

405

Chapter 30. The Information Schema
The information schema consists of a set of views that contain information about the objects defined
in the current database. The information schema is defined in the SQL standard and can therefore
be expected to be portable and remain stable — unlike the system catalogs, which are specific to
PostgreSQL and are modelled after implementation concerns. The information schema views do not,
however, contain information about PostgreSQL-specific features; to inquire about those you need to
query the system catalogs or other PostgreSQL-specific views.

30.1. The Schema
The information schema itself is a schema namedinformation_schema . This schema automati-
cally exists in all databases. The owner of this schema is the initial database user in the cluster, and
that user naturally has all the privileges on this schema, including the ability to drop it (but the space
savings achieved by that are minuscule).

By default, the information schema is not in the schema search path, so you need to access all objects
in it through qualified names. Since the names of some of the objects in the information schema are
generic names that might occur in user applications, you should be careful if you want to put the
information schema in the path.

30.2. Data Types
The columns of the information schema views use special data types that are defined in the informa-
tion schema. These are defined as simple domains over ordinary built-in types. You should not use
these types for work outside the information schema, but your applications must be prepared for them
if they select from the information schema.

These types are:

cardinal_number

A nonnegative integer.

character_data

A character string (without specific maximum length).

sql_identifier

A character string. This type is used for SQL identifiers, the typecharacter_data is used for
any other kind of text data.

time_stamp

A domain over the typetimestamp

Every column in the information schema has one of these four types.

Boolean (true/false) data is represented in the information schema by a column of type
character_data that contains eitherYES or NO. (The information schema was invented before
the typeboolean was added to the SQL standard, so this convention is necessary to keep the
information schema backward compatible.)

406

Chapter 30. The Information Schema

30.3. information_schema_catalog_name

information_schema_catalog_name is a table that always contains one row and one column
containing the name of the current database (current catalog, in SQL terminology).

Table 30-1.information_schema_catalog_name Columns

Name Data Type Description

catalog_name sql_identifier Name of the database that
contains this information schema

30.4. applicable_roles

The viewapplicable_roles identifies all groups that the current user is a member of. (A role is
the same thing as a group.) Generally, it is better to use the viewenabled_roles instead of this one;
see also there.

Table 30-2.applicable_roles Columns

Name Data Type Description

grantee sql_identifier Always the name of the current
user

role_name sql_identifier Name of a group

is_grantable character_data Applies to a feature not available
in PostgreSQL

30.5. check_constraints

The view check_constraints contains all check constraints, either defined on a table or on a
domain, that are owned by the current user. (The owner of the table or domain is the owner of the
constraint.)

Table 30-3.check_constraints Columns

Name Data Type Description

constraint_catalog sql_identifier Name of the database containing
the constraint (always the current
database)

constraint_schema sql_identifier Name of the schema containing
the constraint

constraint_name sql_identifier Name of the constraint

check_clause character_data The check expression of the
check constraint

407

Chapter 30. The Information Schema

30.6. column_domain_usage

The viewcolumn_domain_usage identifies all columns (of a table or a view) that make use of some
domain defined in the current database and owned by the current user.

Table 30-4.column_domain_usage Columns

Name Data Type Description

domain_catalog sql_identifier Name of the database containing
the domain (always the current
database)

domain_schema sql_identifier Name of the schema containing
the domain

domain_name sql_identifier Name of the domain

table_catalog sql_identifier Name of the database containing
the table (always the current
database)

table_schema sql_identifier Name of the schema containing
the table

table_name sql_identifier Name of the table

column_name sql_identifier Name of the column

30.7. column_privileges

The viewcolumn_privileges identifies all privileges granted on columns to the current user or by
the current user. There is one row for each combination of column, grantor, and grantee. Privileges
granted to groups are identified in the viewrole_column_grants .

In PostgreSQL, you can only grant privileges on entire tables, not individual columns. Therefore,
this view contains the same information astable_privileges , just represented through one row
for each column in each appropriate table, but it only covers privilege types where column gran-
ularity is possible:SELECT, INSERT, UPDATE, REFERENCES. If you want to make your applica-
tions fit for possible future developments, it is generally the right choice to use this view instead
of table_privileges if one of those privilege types is concerned.

Table 30-5.column_privileges Columns

Name Data Type Description

grantor sql_identifier Name of the user that granted the
privilege

grantee sql_identifier Name of the user or group that
the privilege was granted to

table_catalog sql_identifier Name of the database that
contains the table that contains
the column (always the current
database)

table_schema sql_identifier Name of the schema that
contains the table that contains
the column

408

Chapter 30. The Information Schema

Name Data Type Description

table_name sql_identifier Name of the table that contains
the column

column_name sql_identifier Name of the column

privilege_type character_data Type of the privilege:SELECT,
INSERT, UPDATE, or
REFERENCES

is_grantable character_data YES if the privilege is grantable,
NOif not

Note that the columngrantee makes no distinction between users and groups. If you have users and
groups with the same name, there is unfortunately no way to distinguish them. A future version of
PostgreSQL will possibly prohibit having users and groups with the same name.

30.8. column_udt_usage

The viewcolumn_udt_usage identifies all columns that use data types owned by the current user.
Note that in PostgreSQL, built-in data types behave like user-defined types, so they are included here
as well. See alsoSection 30.9for details.

Table 30-6.column_udt_usage Columns

Name Data Type Description

udt_catalog sql_identifier Name of the database that the
column data type (the underlying
type of the domain, if applicable)
is defined in (always the current
database)

udt_schema sql_identifier Name of the schema that the
column data type (the underlying
type of the domain, if applicable)
is defined in

udt_name sql_identifier Name of the column data type
(the underlying type of the
domain, if applicable)

table_catalog sql_identifier Name of the database containing
the table (always the current
database)

table_schema sql_identifier Name of the schema containing
the table

table_name sql_identifier Name of the table

column_name sql_identifier Name of the column

30.9. columns

The viewcolumns contains information about all table columns (or view columns) in the database.
System columns (oid , etc.) are not included. Only those columns are shown that the current user has

409

Chapter 30. The Information Schema

access to (by way of being the owner or having some privilege).

Table 30-7.columns Columns

Name Data Type Description

table_catalog sql_identifier Name of the database containing
the table (always the current
database)

table_schema sql_identifier Name of the schema containing
the table

table_name sql_identifier Name of the table

column_name sql_identifier Name of the column

ordinal_position cardinal_number Ordinal position of the column
within the table (count starts at 1)

column_default character_data Default expression of the
column (null if the current user is
not the owner of the table
containing the column)

is_nullable character_data YES if the column is possibly
nullable,NOif it is known not
nullable. A not-null constraint is
one way a column can be known
not nullable, but there may be
others.

data_type character_data Data type of the column, if it is a
built-in type, orARRAYif it is
some array (in that case, see the
view element_types), else
USER-DEFINED(in that case, the
type is identified inudt_name

and associated columns). If the
column is based on a domain,
this column refers to the type
underlying the domain (and the
domain is identified in
domain_name and associated
columns).

character_maximum_length cardinal_number If data_type identifies a
character or bit string type, the
declared maximum length; null
for all other data types or if no
maximum length was declared.

character_octet_length cardinal_number If data_type identifies a
character type, the maximum
possible length in octets (bytes)
of a datum (this should not be of
concern to PostgreSQL users);
null for all other data types.

410

Chapter 30. The Information Schema

Name Data Type Description

numeric_precision cardinal_number If data_type identifies a
numeric type, this column
contains the (declared or
implicit) precision of the type for
this column. The precision
indicates the number of
significant digits. It may be
expressed in decimal (base 10) or
binary (base 2) terms, as
specified in the column
numeric_precision_radix .
For all other data types, this
column is null.

numeric_precision_radix cardinal_number If data_type identifies a
numeric type, this column
indicates in which base the
values in the columns
numeric_precision and
numeric_scale are expressed.
The value is either 2 or 10. For
all other data types, this column
is null.

numeric_scale cardinal_number If data_type identifies an exact
numeric type, this column
contains the (declared or
implicit) scale of the type for this
column. The scale indicates the
number of significant digits to
the right of the decimal point. It
may be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix .
For all other data types, this
column is null.

datetime_precision cardinal_number If data_type identifies a date,
time, or interval type, the
declared precision; null for all
other data types or if no precision
was declared.

interval_type character_data Not yet implemented

interval_precision character_data Not yet implemented

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

411

Chapter 30. The Information Schema

Name Data Type Description

collation_catalog sql_identifier Applies to a feature not available
in PostgreSQL

collation_schema sql_identifier Applies to a feature not available
in PostgreSQL

collation_name sql_identifier Applies to a feature not available
in PostgreSQL

domain_catalog sql_identifier If the column has a domain type,
the name of the database that the
domain is defined in (always the
current database), else null.

domain_schema sql_identifier If the column has a domain type,
the name of the schema that the
domain is defined in, else null.

domain_name sql_identifier If the column has a domain type,
the name of the domain, else
null.

udt_catalog sql_identifier Name of the database that the
column data type (the underlying
type of the domain, if applicable)
is defined in (always the current
database)

udt_schema sql_identifier Name of the schema that the
column data type (the underlying
type of the domain, if applicable)
is defined in

udt_name sql_identifier Name of the column data type
(the underlying type of the
domain, if applicable)

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

dtd_identifier sql_identifier An identifier of the data type
descriptor of the column, unique
among the data type descriptors
pertaining to the table. This is
mainly useful for joining with
other instances of such
identifiers. (The specific format
of the identifier is not defined and
not guaranteed to remain the
same in future versions.)

412

Chapter 30. The Information Schema

Name Data Type Description

is_self_referencing character_data Applies to a feature not available
in PostgreSQL

Since data types can be defined in a variety of ways in SQL, and PostgreSQL contains additional ways
to define data types, their representation in the information schema can be somewhat difficult. The
columndata_type is supposed to identify the underlying built-in type of the column. In PostgreSQL,
this means that the type is defined in the system catalog schemapg_catalog . This column may be
useful if the application can handle the well-known built-in types specially (for example, format
the numeric types differently or use the data in the precision columns). The columnsudt_name ,
udt_schema , andudt_catalog always identify the underlying data type of the column, even if the
column is based on a domain. (Since PostgreSQL treats built-in types like user-defined types, built-in
types appear here as well. This is an extension of the SQL standard.) These columns should be used if
an application wants to process data differently according to the type, because in that case it wouldn’t
matter if the column is really based on a domain. If the column is based on a domain, the identity
of the domain is stored in the columnsdomain_name , domain_schema , anddomain_catalog . If
you want to pair up columns with their associated data types and treat domains as separate types, you
could writecoalesce(domain_name, udt_name) , etc.

30.10. constraint_column_usage

The viewconstraint_column_usage identifies all columns in the current database that are used
by some constraint. Only those columns are shown that are contained in a table owned the current
user. For a check constraint, this view identifies the columns that are used in the check expression.
For a foreign key constraint, this view identifies the columns that the foreign key references. For a
unique or primary key constraint, this view identifies the constrained columns.

Table 30-8.constraint_column_usage Columns

Name Data Type Description

table_catalog sql_identifier Name of the database that
contains the table that contains
the column that is used by some
constraint (always the current
database)

table_schema sql_identifier Name of the schema that
contains the table that contains
the column that is used by some
constraint

table_name sql_identifier Name of the table that contains
the column that is used by some
constraint

column_name sql_identifier Name of the column that is used
by some constraint

constraint_catalog sql_identifier Name of the database that
contains the constraint (always
the current database)

constraint_schema sql_identifier Name of the schema that
contains the constraint

413

Chapter 30. The Information Schema

Name Data Type Description

constraint_name sql_identifier Name of the constraint

30.11. constraint_table_usage

The view constraint_table_usage identifies all tables in the current database that are
used by some constraint and are owned by the current user. (This is different from the view
table_constraints , which identifies all table constraints along with the table they are defined
on.) For a foreign key constraint, this view identifies the table that the foreign key references. For a
unique or primary key constraint, this view simply identifies the table the constraint belongs to.
Check constraints and not-null constraints are not included in this view.

Table 30-9.constraint_table_usage Columns

Name Data Type Description

table_catalog sql_identifier Name of the database that
contains the table that is used by
some constraint (always the
current database)

table_schema sql_identifier Name of the schema that
contains the table that is used by
some constraint

table_name sql_identifier Name of the table that is used by
some constraint

constraint_catalog sql_identifier Name of the database that
contains the constraint (always
the current database)

constraint_schema sql_identifier Name of the schema that
contains the constraint

constraint_name sql_identifier Name of the constraint

30.12. data_type_privileges

The viewdata_type_privileges identifies all data type descriptors that the current user has access
to, by way of being the owner of the described object or having some privilege for it. A data type
descriptor is generated whenever a data type is used in the definition of a table column, a domain, or
a function (as parameter or return type) and stores some information about how the data type is used
in that instance (for example, the declared maximum length, if applicable). Each data type descriptor
is assigned an arbitrary identifier that is unique among the data type descriptor identifiers assigned for
one object (table, domain, function). This view is probably not useful for applications, but it is used
to define some other views in the information schema.

Table 30-10.data_type_privileges Columns

Name Data Type Description

414

Chapter 30. The Information Schema

Name Data Type Description

object_catalog sql_identifier Name of the database that
contains the described object
(always the current database)

object_schema sql_identifier Name of the schema that
contains the described object

object_name sql_identifier Name of the described object

object_type character_data The type of the described object:
one ofTABLE(the data type
descriptor pertains to a column of
that table),DOMAIN(the data type
descriptors pertains to that
domain),ROUTINE(the data type
descriptor pertains to a parameter
or the return data type of that
function).

dtd_identifier sql_identifier The identifier of the data type
descriptor, which is unique
among the data type descriptors
for that same object.

30.13. domain_constraints

The viewdomain_constraints contains all constraints belonging to domains owned by the current
user.

Table 30-11.domain_constraints Columns

Name Data Type Description

constraint_catalog sql_identifier Name of the database that
contains the constraint (always
the current database)

constraint_schema sql_identifier Name of the schema that
contains the constraint

constraint_name sql_identifier Name of the constraint

domain_catalog sql_identifier Name of the database that
contains the domain (always the
current database)

domain_schema sql_identifier Name of the schema that
contains the domain

domain_name sql_identifier Name of the domain

is_deferrable character_data YES if the constraint is
deferrable,NOif not

initially_deferred character_data YES if the constraint is deferrable
and initially deferred,NOif not

415

Chapter 30. The Information Schema

30.14. domain_udt_usage

The viewdomain_udt_usage identifies all columns that use data types owned by the current user.
Note that in PostgreSQL, built-in data types behave like user-defined types, so they are included here
as well.

Table 30-12.domain_udt_usage Columns

Name Data Type Description

udt_catalog sql_identifier Name of the database that the
domain data type is defined in
(always the current database)

udt_schema sql_identifier Name of the schema that the
domain data type is defined in

udt_name sql_identifier Name of the domain data type

domain_catalog sql_identifier Name of the database that
contains the domain (always the
current database)

domain_schema sql_identifier Name of the schema that
contains the domain

domain_name sql_identifier Name of the domain

30.15. domains

The viewdomains contains all domains defined in the current database.

Table 30-13.domains Columns

Name Data Type Description

domain_catalog sql_identifier Name of the database that
contains the domain (always the
current database)

domain_schema sql_identifier Name of the schema that
contains the domain

domain_name sql_identifier Name of the domain

data_type character_data Data type of the domain, if it is a
built-in type, orARRAYif it is
some array (in that case, see the
view element_types), else
USER-DEFINED(in that case, the
type is identified inudt_name

and associated columns).

character_maximum_length cardinal_number If the domain has a character or
bit string type, the declared
maximum length; null for all
other data types or if no
maximum length was declared.

416

Chapter 30. The Information Schema

Name Data Type Description

character_octet_length cardinal_number If the domain has a character
type, the maximum possible
length in octets (bytes) of a
datum (this should not be of
concern to PostgreSQL users);
null for all other data types.

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Applies to a feature not available
in PostgreSQL

collation_schema sql_identifier Applies to a feature not available
in PostgreSQL

collation_name sql_identifier Applies to a feature not available
in PostgreSQL

numeric_precision cardinal_number If the domain has a numeric
type, this column contains the
(declared or implicit) precision
of the type for this column. The
precision indicates the number of
significant digits. It may be
expressed in decimal (base 10) or
binary (base 2) terms, as
specified in the column
numeric_precision_radix .
For all other data types, this
column is null.

numeric_precision_radix cardinal_number If the domain has a numeric
type, this column indicates in
which base the values in the
columnsnumeric_precision

andnumeric_scale are
expressed. The value is either 2
or 10. For all other data types,
this column is null.

417

Chapter 30. The Information Schema

Name Data Type Description

numeric_scale cardinal_number If the domain has an exact
numeric type, this column
contains the (declared or
implicit) scale of the type for this
column. The scale indicates the
number of significant digits to
the right of the decimal point. It
may be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix .
For all other data types, this
column is null.

datetime_precision cardinal_number If the domain has a date, time, or
interval type, the declared
precision; null for all other data
types or if no precision was
declared.

interval_type character_data Not yet implemented

interval_precision character_data Not yet implemented

domain_default character_data Default expression of the domain

udt_catalog sql_identifier Name of the database that the
domain data type is defined in
(always the current database)

udt_schema sql_identifier Name of the schema that the
domain data type is defined in

udt_name sql_identifier Name of the domain data type

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

418

Chapter 30. The Information Schema

Name Data Type Description

dtd_identifier sql_identifier An identifier of the data type
descriptor of the domain, unique
among the data type descriptors
pertaining to the domain (which
is trivial, because a domain only
contains one data type
descriptor). This is mainly useful
for joining with other instances
of such identifiers. (The specific
format of the identifier is not
defined and not guaranteed to
remain the same in future
versions.)

30.16. element_types

The view element_types contains the data type descriptors of the elements of arrays. When a
table column, domain, function parameter, or function return value is defined to be of an array type,
the respective information schema view only containsARRAYin the columndata_type . To obtain
information on the element type of the array, you can join the respective view with this view. For
example, to show the columns of a table with data types and array element types, if applicable, you
could do

SELECT c.column_name, c.data_type, e.data_type AS element_type
FROM information_schema.columns c LEFT JOIN information_schema.element_types e

ON ((c.table_catalog, c.table_schema, c.table_name, ’TABLE’, c.dtd_identifier)
= (e.object_catalog, e.object_schema, e.object_name, e.object_type, e.array_type_identifier))

WHERE c.table_schema = ’...’ AND c.table_name = ’...’
ORDER BY c.ordinal_position;

This view only includes objects that the current user has access to, by way of being the owner or
having some privilege.

Table 30-14.element_types Columns

Name Data Type Description

object_catalog sql_identifier Name of the database that
contains the object that uses the
array being described (always the
current database)

object_schema sql_identifier Name of the schema that
contains the object that uses the
array being described

object_name sql_identifier Name of the object that uses the
array being described

419

Chapter 30. The Information Schema

Name Data Type Description

object_type character_data The type of the object that uses
the array being described: one of
TABLE(the array is used by a
column of that table),DOMAIN

(the array is used by that
domain),ROUTINE(the array is
used by a parameter or the return
data type of that function).

array_type_identifier sql_identifier The identifier of the data type
descriptor of the array being
described. Use this to join with
thedtd_identifier columns
of other information schema
views.

data_type character_data Data type of the array elements,
if it is a built-in type, else
USER-DEFINED(in that case, the
type is identified inudt_name

and associated columns).

character_maximum_length cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

character_octet_length cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Applies to a feature not available
in PostgreSQL

collation_schema sql_identifier Applies to a feature not available
in PostgreSQL

collation_name sql_identifier Applies to a feature not available
in PostgreSQL

numeric_precision cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

numeric_precision_radix cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

420

Chapter 30. The Information Schema

Name Data Type Description

numeric_scale cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

datetime_precision cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

interval_type character_data Always null, since this
information is not applied to
array element data types in
PostgreSQL

interval_precision character_data Always null, since this
information is not applied to
array element data types in
PostgreSQL

domain_default character_data Not yet implemented

udt_catalog sql_identifier Name of the database that the
data type of the elements is
defined in (always the current
database)

udt_schema sql_identifier Name of the schema that the
data type of the elements is
defined in

udt_name sql_identifier Name of the data type of the
elements

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

dtd_identifier sql_identifier An identifier of the data type
descriptor of the element. This is
currently not useful.

30.17. enabled_roles

The viewenabled_roles identifies all groups that the current user is a member of. (A role is the
same thing as a group.) The difference between this view andapplicable_roles is that in the
future there may be a mechanism to enable and disable groups during a session. In that case this view
identifies those groups that are currently enabled.

421

Chapter 30. The Information Schema

Table 30-15.enabled_roles Columns

Name Data Type Description

role_name sql_identifier Name of a group

30.18. key_column_usage

The viewkey_column_usage identifies all columns in the current database that are restricted by
some unique, primary key, or foreign key constraint. Check constraints are not included in this view.
Only those columns are shown that are contained in a table owned by the current user.

Table 30-16.key_column_usage Columns

Name Data Type Description

constraint_catalog sql_identifier Name of the database that
contains the constraint (always
the current database)

constraint_schema sql_identifier Name of the schema that
contains the constraint

constraint_name sql_identifier Name of the constraint

table_catalog sql_identifier Name of the database that
contains the table that contains
the column that is restricted by
some constraint (always the
current database)

table_schema sql_identifier Name of the schema that
contains the table that contains
the column that is restricted by
some constraint

table_name sql_identifier Name of the table that contains
the column that is restricted by
some constraint

column_name sql_identifier Name of the column that is
restricted by some constraint

ordinal_position cardinal_number Ordinal position of the column
within the constraint key (count
starts at 1)

30.19. parameters

The viewparameters contains information about the parameters (arguments) of all functions in the
current database. Only those functions are shown that the current user has access to (by way of being
the owner or having some privilege).

Table 30-17.parameters Columns

Name Data Type Description

422

Chapter 30. The Information Schema

Name Data Type Description

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. SeeSection 30.26for
more information.

ordinal_position cardinal_number Ordinal position of the
parameter in the argument list of
the function (count starts at 1)

parameter_mode character_data Always IN , meaning input
parameter (in the future there
might be other parameter modes)

is_result character_data Applies to a feature not available
in PostgreSQL

as_locator character_data Applies to a feature not available
in PostgreSQL

parameter_name sql_identifier Name of the parameter, or null if
the parameter has no name

data_type character_data Data type of the parameter, if it
is a built-in type, orARRAYif it is
some array (in that case, see the
view element_types), else
USER-DEFINED(in that case, the
type is identified inudt_name

and associated columns).

character_maximum_length cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

character_octet_length cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Applies to a feature not available
in PostgreSQL

collation_schema sql_identifier Applies to a feature not available
in PostgreSQL

423

Chapter 30. The Information Schema

Name Data Type Description

collation_name sql_identifier Applies to a feature not available
in PostgreSQL

numeric_precision cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

numeric_precision_radix cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

numeric_scale cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

datetime_precision cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

interval_type character_data Always null, since this
information is not applied to
parameter data types in
PostgreSQL

interval_precision character_data Always null, since this
information is not applied to
parameter data types in
PostgreSQL

udt_catalog sql_identifier Name of the database that the
data type of the parameter is
defined in (always the current
database)

udt_schema sql_identifier Name of the schema that the
data type of the parameter is
defined in

udt_name sql_identifier Name of the data type of the
parameter

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

424

Chapter 30. The Information Schema

Name Data Type Description

dtd_identifier sql_identifier An identifier of the data type
descriptor of the parameter,
unique among the data type
descriptors pertaining to the
function. This is mainly useful
for joining with other instances
of such identifiers. (The specific
format of the identifier is not
defined and not guaranteed to
remain the same in future
versions.)

30.20. referential_constraints

The viewreferential_constraints contains all referential (foreign key) constraints in the cur-
rent database that belong to a table owned by the current user.

Table 30-18.referential_constraints Columns

Name Data Type Description

constraint_catalog sql_identifier Name of the database containing
the constraint (always the current
database)

constraint_schema sql_identifier Name of the schema containing
the constraint

constraint_name sql_identifier Name of the constraint

unique_constraint_catalog sql_identifier Name of the database that
contains the unique or primary
key constraint that the foreign
key constraint references (always
the current database)

unique_constraint_schema sql_identifier Name of the schema that
contains the unique or primary
key constraint that the foreign
key constraint references

unique_constraint_name sql_identifier Name of the unique or primary
key constraint that the foreign
key constraint references

match_option character_data Match option of the foreign key
constraint:FULL, PARTIAL, or
NONE.

update_rule character_data Update rule of the foreign key
constraint:CASCADE, SET NULL,
SET DEFAULT, RESTRICT, or NO

ACTION.

425

Chapter 30. The Information Schema

Name Data Type Description

delete_rule character_data Delete rule of the foreign key
constraint:CASCADE, SET NULL,
SET DEFAULT, RESTRICT, or NO

ACTION.

30.21. role_column_grants

The view role_column_grants identifies all privileges granted on columns to a group that the
current user is a member of. Further information can be found undercolumn_privileges .

Table 30-19.role_column_grants Columns

Name Data Type Description

grantor sql_identifier Name of the user that granted the
privilege

grantee sql_identifier Name of the group that the
privilege was granted to

table_catalog sql_identifier Name of the database that
contains the table that contains
the column (always the current
database)

table_schema sql_identifier Name of the schema that
contains the table that contains
the column

table_name sql_identifier Name of the table that contains
the column

column_name sql_identifier Name of the column

privilege_type character_data Type of the privilege:SELECT,
INSERT, UPDATE, or
REFERENCES

is_grantable character_data YES if the privilege is grantable,
NOif not

30.22. role_routine_grants

The viewrole_routine_grants identifies all privileges granted on functions to a group that the
current user is a member of. Further information can be found underroutine_privileges .

Table 30-20.role_routine_grants Columns

Name Data Type Description

grantor sql_identifier Name of the user that granted the
privilege

grantee sql_identifier Name of the group that the
privilege was granted to

426

Chapter 30. The Information Schema

Name Data Type Description

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. SeeSection 30.26for
more information.

routine_catalog sql_identifier Name of the database containing
the function (always the current
database)

routine_schema sql_identifier Name of the schema containing
the function

routine_name sql_identifier Name of the function (may be
duplicated in case of
overloading)

privilege_type character_data Always EXECUTE(the only
privilege type for functions)

is_grantable character_data YES if the privilege is grantable,
NOif not

30.23. role_table_grants

The viewrole_table_grants identifies all privileges granted on tables or views to a group that the
current user is a member of. Further information can be found undertable_privileges .

Table 30-21.role_table_grants Columns

Name Data Type Description

grantor sql_identifier Name of the user that granted the
privilege

grantee sql_identifier Name of the group that the
privilege was granted to

table_catalog sql_identifier Name of the database that
contains the table (always the
current database)

table_schema sql_identifier Name of the schema that
contains the table

table_name sql_identifier Name of the table

privilege_type character_data Type of the privilege:SELECT,
DELETE, INSERT, UPDATE,
REFERENCES, RULE, or TRIGGER

is_grantable character_data YES if the privilege is grantable,
NOif not

427

Chapter 30. The Information Schema

Name Data Type Description

with_hierarchy character_data Applies to a feature not available
in PostgreSQL

30.24. role_usage_grants

The view role_usage_grants is meant to identifyUSAGEprivileges granted on various kinds of
objects to a group that the current user is a member of. In PostgreSQL, this currently only applies to
domains, and since domains do not have real privileges in PostgreSQL, this view is empty. Further
information can be found underusage_privileges . In the future, this view may contain more
useful information.

Table 30-22.role_usage_grants Columns

Name Data Type Description

grantor sql_identifier In the future, the name of the
user that granted the privilege

grantee sql_identifier In the future, the name of the
group that the privilege was
granted to

object_catalog sql_identifier Name of the database containing
the object (always the current
database)

object_schema sql_identifier Name of the schema containing
the object

object_name sql_identifier Name of the object

object_type character_data In the future, the type of the
object

privilege_type character_data Always USAGE

is_grantable character_data YES if the privilege is grantable,
NOif not

30.25. routine_privileges

The viewroutine_privileges identifies all privileges granted on functions to the current user or
by the current user. There is one row for each combination of function, grantor, and grantee. Privileges
granted to groups are identified in the viewrole_routine_grants .

Table 30-23.routine_privileges Columns

Name Data Type Description

grantor sql_identifier Name of the user that granted the
privilege

grantee sql_identifier Name of the user or group that
the privilege was granted to

428

Chapter 30. The Information Schema

Name Data Type Description

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. SeeSection 30.26for
more information.

routine_catalog sql_identifier Name of the database containing
the function (always the current
database)

routine_schema sql_identifier Name of the schema containing
the function

routine_name sql_identifier Name of the function (may be
duplicated in case of
overloading)

privilege_type character_data Always EXECUTE(the only
privilege type for functions)

is_grantable character_data YES if the privilege is grantable,
NOif not

Note that the columngrantee makes no distinction between users and groups. If you have users and
groups with the same name, there is unfortunately no way to distinguish them. A future version of
PostgreSQL will possibly prohibit having users and groups with the same name.

30.26. routines

The viewroutines contains all functions in the current database. Only those functions are shown
that the current user has access to (by way of being the owner or having some privilege).

Table 30-24.routines Columns

Name Data Type Description

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. This is a name that
uniquely identifies the function in
the schema, even if the real name
of the function is overloaded. The
format of the specific name is not
defined, it should only be used to
compare it to other instances of
specific routine names.

429

Chapter 30. The Information Schema

Name Data Type Description

routine_catalog sql_identifier Name of the database containing
the function (always the current
database)

routine_schema sql_identifier Name of the schema containing
the function

routine_name sql_identifier Name of the function (may be
duplicated in case of
overloading)

routine_type character_data Always FUNCTION(In the future
there might be other types of
routines.)

module_catalog sql_identifier Applies to a feature not available
in PostgreSQL

module_schema sql_identifier Applies to a feature not available
in PostgreSQL

module_name sql_identifier Applies to a feature not available
in PostgreSQL

udt_catalog sql_identifier Applies to a feature not available
in PostgreSQL

udt_schema sql_identifier Applies to a feature not available
in PostgreSQL

udt_name sql_identifier Applies to a feature not available
in PostgreSQL

data_type character_data Return data type of the function,
if it is a built-in type, orARRAYif
it is some array (in that case, see
the viewelement_types), else
USER-DEFINED(in that case, the
type is identified in
type_udt_name and associated
columns).

character_maximum_length cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

character_octet_length cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Applies to a feature not available
in PostgreSQL

collation_schema sql_identifier Applies to a feature not available
in PostgreSQL

430

Chapter 30. The Information Schema

Name Data Type Description

collation_name sql_identifier Applies to a feature not available
in PostgreSQL

numeric_precision cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

numeric_precision_radix cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

numeric_scale cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

datetime_precision cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

interval_type character_data Always null, since this
information is not applied to
return data types in PostgreSQL

interval_precision character_data Always null, since this
information is not applied to
return data types in PostgreSQL

type_udt_catalog sql_identifier Name of the database that the
return data type of the function is
defined in (always the current
database)

type_udt_schema sql_identifier Name of the schema that the
return data type of the function is
defined in

type_udt_name sql_identifier Name of the return data type of
the function

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

431

Chapter 30. The Information Schema

Name Data Type Description

dtd_identifier sql_identifier An identifier of the data type
descriptor of the return data type
of this function, unique among
the data type descriptors
pertaining to the function. This is
mainly useful for joining with
other instances of such
identifiers. (The specific format
of the identifier is not defined and
not guaranteed to remain the
same in future versions.)

routine_body character_data If the function is an SQL
function, thenSQL, else
EXTERNAL.

routine_definition character_data The source text of the function
(null if the current user is not the
owner of the function).
(According to the SQL standard,
this column is only applicable if
routine_body is SQL, but in
PostgreSQL it will contain
whatever source text was
specified when the function was
created.)

external_name character_data If this function is a C function,
then the external name (link
symbol) of the function; else
null. (This works out to be the
same value that is shown in
routine_definition .)

external_language character_data The language the function is
written in

parameter_style character_data Always GENERAL(The SQL
standard defines other parameter
styles, which are not available in
PostgreSQL.)

is_deterministic character_data If the function is declared
immutable (called deterministic
in the SQL standard), thenYES,
elseNO. (You cannot query the
other volatility levels available in
PostgreSQL through the
information schema.)

sql_data_access character_data Always MODIFIES, meaning
that the function possibly
modifies SQL data. This
information is not useful for
PostgreSQL.

432

Chapter 30. The Information Schema

Name Data Type Description

is_null_call character_data If the function automatically
returns null if any of its
arguments are null, thenYES,
elseNO.

sql_path character_data Applies to a feature not available
in PostgreSQL

schema_level_routine character_data Always YES(The opposite
would be a method of a
user-defined type, which is a
feature not available in
PostgreSQL.)

max_dynamic_result_sets cardinal_number Applies to a feature not available
in PostgreSQL

is_user_defined_cast character_data Applies to a feature not available
in PostgreSQL

is_implicitly_invocable character_data Applies to a feature not available
in PostgreSQL

security_type character_data If the function runs with the
privileges of the current user,
thenINVOKER, if the function
runs with the privileges of the
user who defined it, then
DEFINER.

to_sql_specific_catalog sql_identifier Applies to a feature not available
in PostgreSQL

to_sql_specific_schema sql_identifier Applies to a feature not available
in PostgreSQL

to_sql_specific_name sql_identifier Applies to a feature not available
in PostgreSQL

as_locator character_data Applies to a feature not available
in PostgreSQL

30.27. schemata

The viewschemata contains all schemas in the current database that are owned by the current user.

Table 30-25.schemata Columns

Name Data Type Description

catalog_name sql_identifier Name of the database that the
schema is contained in (always
the current database)

schema_name sql_identifier Name of the schema

schema_owner sql_identifier Name of the owner of the schema

433

Chapter 30. The Information Schema

Name Data Type Description

default_character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

default_character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

default_character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

sql_path character_data Applies to a feature not available
in PostgreSQL

30.28. sql_features

The tablesql_features contains information about which formal features defined in the SQL stan-
dard are supported by PostgreSQL. This is the same information that is presented inAppendix D.
There you can also find some additional background information.

Table 30-26.sql_features Columns

Name Data Type Description

feature_id character_data Identifier string of the feature

feature_name character_data Descriptive name of the feature

sub_feature_id character_data Identifier string of the subfeature,
or a zero-length string if not a
subfeature

sub_feature_name character_data Descriptive name of the
subfeature, or a zero-length
string if not a subfeature

is_supported character_data YES if the feature is fully
supported by the current version
of PostgreSQL,NOif not

is_verified_by character_data Always null, since the
PostgreSQL development group
does not perform formal testing
of feature conformance

comments character_data Possibly a comment about the
supported status of the feature

30.29. sql_implementation_info

The table sql_information_info contains information about various aspects that are left
implementation-defined by the SQL standard. This information is primarily intended for use in the
context of the ODBC interface; users of other interfaces will probably find this information to be of
little use. For this reason, the individual implementation information items are not described here;
you will find them in the description of the ODBC interface.

434

Chapter 30. The Information Schema

Table 30-27.sql_implementation_info Columns

Name Data Type Description

implementation_info_id character_data Identifier string of the
implementation information item

implementation_info_name character_data Descriptive name of the
implementation information item

integer_value cardinal_number Value of the implementation
information item, or null if the
value is contained in the column
character_value

character_value character_data Value of the implementation
information item, or null if the
value is contained in the column
integer_value

comments character_data Possibly a comment pertaining to
the implementation information
item

30.30. sql_languages

The tablesql_languages contains one row for each SQL language binding that is supported by
PostgreSQL. PostgreSQL supports direct SQL and embedded SQL in C; that is all you will learn
from this table.

Table 30-28.sql_languages Columns

Name Data Type Description

sql_language_source character_data The name of the source of the
language definition; alwaysISO

9075 , that is, the SQL standard

sql_language_year character_data The year the standard referenced
in sql_language_source was
approved; currently2003

sql_language_comformance character_data The standard conformance level
for the language binding. For ISO
9075:2003 this is alwaysCORE.

sql_language_integrity character_data Always null (This value is
relevant to an earlier version of
the SQL standard.)

sql_language_implementation character_data Always null

sql_language_binding_style character_data The language binding style,
eitherDIRECT or EMBEDDED

435

Chapter 30. The Information Schema

Name Data Type Description

sql_language_programming_languagecharacter_data The programming language, if
the binding style isEMBEDDED,
else null. PostgreSQL only
supports the language C.

30.31. sql_packages

The tablesql_packages contains information about which feature packages defined in the SQL
standard are supported by PostgreSQL. Refer toAppendix Dfor background information on feature
packages.

Table 30-29.sql_packages Columns

Name Data Type Description

feature_id character_data Identifier string of the package

feature_name character_data Descriptive name of the package

is_supported character_data YES if the package is fully
supported by the current version
of PostgreSQL,NOif not

is_verified_by character_data Always null, since the
PostgreSQL development group
does not perform formal testing
of feature conformance

comments character_data Possibly a comment about the
supported status of the package

30.32. sql_sizing

The tablesql_sizing contains information about various size limits and maximum values in Post-
greSQL. This information is primarily intended for use in the context of the ODBC interface; users of
other interfaces will probably find this information to be of little use. For this reason, the individual
sizing items are not described here; you will find them in the description of the ODBC interface.

Table 30-30.sql_sizing Columns

Name Data Type Description

sizing_id cardinal_number Identifier of the sizing item

sizing_name character_data Descriptive name of the sizing
item

supported_value cardinal_number Value of the sizing item, or 0 if
the size is unlimited or cannot be
determined, or null if the features
for which the sizing item is
applicable are not supported

436

Chapter 30. The Information Schema

Name Data Type Description

comments character_data Possibly a comment pertaining to
the sizing item

30.33. sql_sizing_profiles

The tablesql_sizing_profiles contains information about thesql_sizing values that are re-
quired by various profiles of the SQL standard. PostgreSQL does not track any SQL profiles, so this
table is empty.

Table 30-31.sql_sizing_profiles Columns

Name Data Type Description

sizing_id cardinal_number Identifier of the sizing item

sizing_name character_data Descriptive name of the sizing
item

profile_id character_data Identifier string of a profile

required_value cardinal_number The value required by the SQL
profile for the sizing item, or 0 if
the profile places no limit on the
sizing item, or null if the profile
does not require any of the
features for which the sizing item
is applicable

comments character_data Possibly a comment pertaining to
the sizing item within the profile

30.34. table_constraints

The view table_constraints contains all constraints belonging to tables owned by the current
user.

Table 30-32.table_constraints Columns

Name Data Type Description

constraint_catalog sql_identifier Name of the database that
contains the constraint (always
the current database)

constraint_schema sql_identifier Name of the schema that
contains the constraint

constraint_name sql_identifier Name of the constraint

table_catalog sql_identifier Name of the database that
contains the table (always the
current database)

table_schema sql_identifier Name of the schema that
contains the table

437

Chapter 30. The Information Schema

Name Data Type Description

table_name sql_identifier Name of the table

constraint_type character_data Type of the constraint:CHECK,
FOREIGN KEY, PRIMARY KEY,
or UNIQUE

is_deferrable character_data YES if the constraint is
deferrable,NOif not

initially_deferred character_data YES if the constraint is deferrable
and initially deferred,NOif not

30.35. table_privileges

The viewtable_privileges identifies all privileges granted on tables or views to the current user
or by the current user. There is one row for each combination of table, grantor, and grantee. Privileges
granted to groups are identified in the viewrole_table_grants .

Table 30-33.table_privileges Columns

Name Data Type Description

grantor sql_identifier Name of the user that granted the
privilege

grantee sql_identifier Name of the user or group that
the privilege was granted to

table_catalog sql_identifier Name of the database that
contains the table (always the
current database)

table_schema sql_identifier Name of the schema that
contains the table

table_name sql_identifier Name of the table

privilege_type character_data Type of the privilege:SELECT,
DELETE, INSERT, UPDATE,
REFERENCES, RULE, or TRIGGER

is_grantable character_data YES if the privilege is grantable,
NOif not

with_hierarchy character_data Applies to a feature not available
in PostgreSQL

Note that the columngrantee makes no distinction between users and groups. If you have users and
groups with the same name, there is unfortunately no way to distinguish them. A future version of
PostgreSQL will possibly prohibit having users and groups with the same name.

30.36. tables

The view tables contains all tables and views defined in the current database. Only those tables
and views are shown that the current user has access to (by way of being the owner or having some
privilege).

438

Chapter 30. The Information Schema

Table 30-34.tables Columns

Name Data Type Description

table_catalog sql_identifier Name of the database that
contains the table (always the
current database)

table_schema sql_identifier Name of the schema that
contains the table

table_name sql_identifier Name of the table

table_type character_data Type of the table:BASE TABLE

for a persistent base table (the
normal table type),VIEW for a
view, orLOCAL TEMPORARYfor
a temporary table

self_referencing_column_name sql_identifier Applies to a feature not available
in PostgreSQL

reference_generation character_data Applies to a feature not available
in PostgreSQL

user_defined_type_catalog sql_identifier Applies to a feature not available
in PostgreSQL

user_defined_type_schema sql_identifier Applies to a feature not available
in PostgreSQL

user_defined_type_name sql_identifier Applies to a feature not available
in PostgreSQL

30.37. triggers

The viewtriggers contains all triggers defined in the current database that are owned by the current
user. (The owner of the table is the owner of the trigger.)

Table 30-35.triggers Columns

Name Data Type Description

trigger_catalog sql_identifier Name of the database that
contains the trigger (always the
current database)

trigger_schema sql_identifier Name of the schema that
contains the trigger

trigger_name sql_identifier Name of the trigger

event_manipulation character_data Event that fires the trigger
(INSERT, UPDATE, or DELETE)

event_object_catalog sql_identifier Name of the database that
contains the table that the trigger
is defined on (always the current
database)

439

Chapter 30. The Information Schema

Name Data Type Description

event_object_schema sql_identifier Name of the schema that
contains the table that the trigger
is defined on

event_object_name sql_identifier Name of the table that the trigger
is defined on

action_order cardinal_number Not yet implemented

action_condition character_data Applies to a feature not available
in PostgreSQL

action_statement character_data Statement that is executed by the
trigger (currently always
EXECUTE PROCEDURE

function (...))

action_orientation character_data Identifies whether the trigger
fires once for each processed row
or once for each statement (ROW

or STATEMENT)

condition_timing character_data Time at which the trigger fires
(BEFOREor AFTER)

condition_reference_old_table sql_identifier Applies to a feature not available
in PostgreSQL

condition_reference_new_table sql_identifier Applies to a feature not available
in PostgreSQL

Triggers in PostgreSQL have two incompatibilities with the SQL standard that affect the
representation in the information schema. First, trigger names are local to the table in PostgreSQL,
rather than being independent schema objects. Therefore there may be duplicate trigger names
defined in one schema, as long as they belong to different tables. (trigger_catalog and
trigger_schema are really the values pertaining to the table that the trigger is defined on.) Second,
triggers can be defined to fire on multiple events in PostgreSQL (e.g.,ON INSERT OR UPDATE),
whereas the SQL standard only allows one. If a trigger is defined to fire on multiple events, it is
represented as multiple rows in the information schema, one for each type of event. As a consequence
of these two issues, the primary key of the viewtriggers is really (trigger_catalog,

trigger_schema, trigger_name, event_object_name, event_manipulation) instead
of (trigger_catalog, trigger_schema, trigger_name) , which is what the SQL standard
specifies. Nonetheless, if you define your triggers in a manner that conforms with the SQL standard
(trigger names unique in the schema and only one event type per trigger), this will not affect you.

30.38. usage_privileges

The viewusage_privileges is meant to identifyUSAGEprivileges granted on various kinds of ob-
jects to the current user or by the current user. In PostgreSQL, this currently only applies to domains,
and since domains do not have real privileges in PostgreSQL, this view shows implicitUSAGEprivi-
leges granted toPUBLIC for all domains. In the future, this view may contain more useful information.

Table 30-36.usage_privileges Columns

Name Data Type Description

440

Chapter 30. The Information Schema

Name Data Type Description

grantor sql_identifier Currently set to the name of the
owner of the object

grantee sql_identifier Currently alwaysPUBLIC

object_catalog sql_identifier Name of the database containing
the object (always the current
database)

object_schema sql_identifier Name of the schema containing
the object

object_name sql_identifier Name of the object

object_type character_data Currently alwaysDOMAIN

privilege_type character_data Always USAGE

is_grantable character_data Currently alwaysNO

30.39. view_column_usage

The viewview_column_usage identifies all columns that are used in the query expression of a view
(the SELECTstatement that defines the view). A column is only included if the current user is the
owner of the table that contains the column.

Note: Columns of system tables are not included. This should be fixed sometime.

Table 30-37.view_column_usage Columns

Name Data Type Description

view_catalog sql_identifier Name of the database that
contains the view (always the
current database)

view_schema sql_identifier Name of the schema that
contains the view

view_name sql_identifier Name of the view

table_catalog sql_identifier Name of the database that
contains the table that contains
the column that is used by the
view (always the current
database)

table_schema sql_identifier Name of the schema that
contains the table that contains
the column that is used by the
view

table_name sql_identifier Name of the table that contains
the column that is used by the
view

column_name sql_identifier Name of the column that is used
by the view

441

Chapter 30. The Information Schema

30.40. view_table_usage

The viewview_table_usage identifies all tables that are used in the query expression of a view
(theSELECTstatement that defines the view). A table is only included if the current user is the owner
of that table.

Note: System tables are not included. This should be fixed sometime.

Table 30-38.view_table_usage Columns

Name Data Type Description

view_catalog sql_identifier Name of the database that
contains the view (always the
current database)

view_schema sql_identifier Name of the schema that
contains the view

view_name sql_identifier Name of the view

table_catalog sql_identifier Name of the database that
contains the table that is used by
the view (always the current
database)

table_schema sql_identifier Name of the schema that
contains the table that is used by
the view

table_name sql_identifier Name of the table that is used by
the view

30.41. views

The viewviews contains all views defined in the current database. Only those views are shown that
the current user has access to (by way of being the owner or having some privilege).

Table 30-39.views Columns

Name Data Type Description

table_catalog sql_identifier Name of the database that
contains the view (always the
current database)

table_schema sql_identifier Name of the schema that
contains the view

table_name sql_identifier Name of the view

view definition character_data Query expression defining the
view (null if the current user is
not the owner of the view)

check_option character_data Applies to a feature not available
in PostgreSQL

442

Chapter 30. The Information Schema

Name Data Type Description

is_updatable character_data Not yet implemented

is_insertable_into character_data Not yet implemented

443

V. Server Programming
This part is about extending the server functionality with user-defined functions, data types, triggers,
etc. These are advanced topics which should probably be approached only after all the other user doc-
umentation about PostgreSQL has been understood. Later chapters in this part describe the server-side
programming languages available in the PostgreSQL distribution as well as general issues concerning
server-side programming languages. It is essential to read at least the earlier sections ofChapter 31
(covering functions) before diving into the material about server-side programming languages.

Chapter 31. Extending SQL
In the sections that follow, we will discuss how you can extend the PostgreSQL SQL query language
by adding:

• functions (starting inSection 31.3)
• aggregates (starting inSection 31.10)
• data types (starting inSection 31.11)
• operators (starting inSection 31.12)
• operator classes for indexes (starting inSection 31.14)

31.1. How Extensibility Works
PostgreSQL is extensible because its operation is catalog-driven. If you are familiar with standard
relational database systems, you know that they store information about databases, tables, columns,
etc., in what are commonly known as system catalogs. (Some systems call this the data dictionary.)
The catalogs appear to the user as tables like any other, but the DBMS stores its internal bookkeeping
in them. One key difference between PostgreSQL and standard relational database systems is that
PostgreSQL stores much more information in its catalogs: not only information about tables and
columns, but also information about data types, functions, access methods, and so on. These tables
can be modified by the user, and since PostgreSQL bases its operation on these tables, this means
that PostgreSQL can be extended by users. By comparison, conventional database systems can only
be extended by changing hardcoded procedures in the source code or by loading modules specially
written by the DBMS vendor.

The PostgreSQL server can moreover incorporate user-written code into itself through dynamic load-
ing. That is, the user can specify an object code file (e.g., a shared library) that implements a new type
or function, and PostgreSQL will load it as required. Code written in SQL is even more trivial to add
to the server. This ability to modify its operation “on the fly” makes PostgreSQL uniquely suited for
rapid prototyping of new applications and storage structures.

31.2. The PostgreSQL Type System
PostgreSQL data types are divided into base types, composite types, domains, and pseudo-types.

31.2.1. Base Types

Base types are those, likeint4 , that are implemented below the level of the SQL language (typically
in a low-level language such as C). They generally correspond to what are often known as abstract
data types. PostgreSQL can only operate on such types through functions provided by the user and
only understands the behavior of such types to the extent that the user describes them. Base types
are further subdivided into scalar and array types. For each scalar type, a corresponding array type is
automatically created that can hold variable-size arrays of that scalar type.

446

Chapter 31. Extending SQL

31.2.2. Composite Types

Composite types, or row types, are created whenever the user creates a table; it’s also possible to
define a “stand-alone” composite type with no associated table. A composite type is simply a list of
base types with associated field names. A value of a composite type is a row or record of field values.
The user can access the component fields from SQL queries.

31.2.3. Domains

A domain is based on a particular base type and for many purposes is interchangeable with its base
type. However, a domain may have constraints that restrict its valid values to a subset of what the
underlying base type would allow.

Domains can be created using the SQL commandCREATE DOMAIN. Their creation and use is not
discussed in this chapter.

31.2.4. Pseudo-Types

There are a few “pseudo-types” for special purposes. Pseudo-types cannot appear as columns of tables
or attributes of composite types, but they can be used to declare the argument and result types of
functions. This provides a mechanism within the type system to identify special classes of functions.
Table 8-20lists the existing pseudo-types.

31.2.5. Polymorphic Types

Two pseudo-types of special interest areanyelement andanyarray , which are collectively called
polymorphic types. Any function declared using these types is said to be apolymorphic function. A
polymorphic function can operate on many different data types, with the specific data type(s) being
determined by the data types actually passed to it in a particular call.

Polymorphic arguments and results are tied to each other and are resolved to a specific data type
when a query calling a polymorphic function is parsed. Each position (either argument or return
value) declared asanyelement is allowed to have any specific actual data type, but in any given
call they must all be thesameactual type. Each position declared asanyarray can have any array
data type, but similarly they must all be the same type. If there are positions declaredanyarray and
others declaredanyelement , the actual array type in theanyarray positions must be an array whose
elements are the same type appearing in theanyelement positions.

Thus, when more than one argument position is declared with a polymorphic type, the net effect is
that only certain combinations of actual argument types are allowed. For example, a function declared
asequal(anyelement, anyelement) will take any two input values, so long as they are of the
same data type.

When the return value of a function is declared as a polymorphic type, there must be at least one
argument position that is also polymorphic, and the actual data type supplied as the argument deter-
mines the actual result type for that call. For example, if there were not already an array subscripting
mechanism, one could define a function that implements subscripting assubscript(anyarray,

integer) returns anyelement . This declaration constrains the actual first argument to be an
array type, and allows the parser to infer the correct result type from the actual first argument’s type.

447

Chapter 31. Extending SQL

31.3. User-Defined Functions
PostgreSQL provides four kinds of functions:

• query language functions (functions written in SQL) (Section 31.4)

• procedural language functions (functions written in, for example, PL/pgSQL or PL/Tcl) (Section
31.7)

• internal functions (Section 31.8)

• C-language functions (Section 31.9)

Every kind of function can take base types, composite types, or combinations of these as arguments
(parameters). In addition, every kind of function can return a base type or a composite type. Functions
may also be defined to return sets of base or composite values.

Many kinds of functions can take or return certain pseudo-types (such as polymorphic types), but the
available facilities vary. Consult the description of each kind of function for more details.

It’s easiest to define SQL functions, so we’ll start by discussing those. Most of the concepts presented
for SQL functions will carry over to the other types of functions.

Throughout this chapter, it can be useful to look at the reference page of theCREATE FUNCTION
command to understand the examples better. Some examples from this chapter can be found in
funcs.sql andfuncs.c in thesrc/tutorial directory in the PostgreSQL source distribution.

31.4. Query Language (SQL) Functions
SQL functions execute an arbitrary list of SQL statements, returning the result of the last query in
the list. In the simple (non-set) case, the first row of the last query’s result will be returned. (Bear in
mind that “the first row” of a multirow result is not well-defined unless you useORDER BY.) If the
last query happens to return no rows at all, the null value will be returned.

Alternatively, an SQL function may be declared to return a set, by specifying the function’s return
type asSETOF sometype . In this case all rows of the last query’s result are returned. Further details
appear below.

The body of an SQL function must be a list of SQL statements separated by semicolons. A semicolon
after the last statement is optional. Unless the function is declared to returnvoid , the last statement
must be aSELECT.

Any collection of commands in the SQL language can be packaged together and defined as a function.
BesidesSELECTqueries, the commands can include data modification queries (INSERT, UPDATE, and
DELETE), as well as other SQL commands. (The only exception is that you can’t putBEGIN, COMMIT,
ROLLBACK, or SAVEPOINTcommands into a SQL function.) However, the final command must be
a SELECTthat returns whatever is specified as the function’s return type. Alternatively, if you want
to define a SQL function that performs actions but has no useful value to return, you can define it
as returningvoid . In that case, the function body must not end with aSELECT. For example, this
function removes rows with negative salaries from theemp table:

CREATE FUNCTION clean_emp() RETURNS void AS ’
DELETE FROM emp

WHERE salary < 0;
’ LANGUAGE SQL;

448

Chapter 31. Extending SQL

SELECT clean_emp();

clean_emp

(1 row)

The syntax of theCREATE FUNCTIONcommand requires the function body to be written as a string
constant. It is usually most convenient to use dollar quoting (seeSection 4.1.2.2) for the string con-
stant. If you choose to use regular single-quoted string constant syntax, you must escape single quote
marks (’) and backslashes (\) used in the body of the function, typically by doubling them (see
Section 4.1.2.1).

Arguments to the SQL function are referenced in the function body using the syntax$n: $1 refers to
the first argument,$2 to the second, and so on. If an argument is of a composite type, then the dot
notation, e.g.,$1.name , may be used to access attributes of the argument. The arguments can only be
used as data values, not as identifiers. Thus for example this is reasonable:

INSERT INTO mytable VALUES ($1);

but this will not work:

INSERT INTO $1 VALUES (42);

31.4.1. SQL Functions on Base Types

The simplest possible SQL function has no arguments and simply returns a base type, such as
integer :

CREATE FUNCTION one() RETURNS integer AS $$
SELECT 1 AS result;

$$ LANGUAGE SQL;

-- Alternative syntax for string literal:
CREATE FUNCTION one() RETURNS integer AS ’

SELECT 1 AS result;
’ LANGUAGE SQL;

SELECT one();

one

1

Notice that we defined a column alias within the function body for the result of the function (with the
nameresult), but this column alias is not visible outside the function. Hence, the result is labeled
one instead ofresult .

It is almost as easy to define SQL functions that take base types as arguments. In the example below,
notice how we refer to the arguments within the function as$1 and$2.

CREATE FUNCTION add_em(integer, integer) RETURNS integer AS $$

449

Chapter 31. Extending SQL

SELECT $1 + $2;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

answer

3

Here is a more useful function, which might be used to debit a bank account:

CREATE FUNCTION tf1 (integer, numeric) RETURNS integer AS $$
UPDATE bank

SET balance = balance - $2
WHERE accountno = $1;

SELECT 1;
$$ LANGUAGE SQL;

A user could execute this function to debit account 17 by $100.00 as follows:

SELECT tf1(17, 100.0);

In practice one would probably like a more useful result from the function than a constant 1, so a
more likely definition is

CREATE FUNCTION tf1 (integer, numeric) RETURNS numeric AS $$
UPDATE bank

SET balance = balance - $2
WHERE accountno = $1;

SELECT balance FROM bank WHERE accountno = $1;
$$ LANGUAGE SQL;

which adjusts the balance and returns the new balance.

31.4.2. SQL Functions on Composite Types

When writing functions with arguments of composite types, we must not only specify which argument
we want (as we did above with$1 and$2) but also the desired attribute (field) of that argument. For
example, suppose thatemp is a table containing employee data, and therefore also the name of the
composite type of each row of the table. Here is a functiondouble_salary that computes what
someone’s salary would be if it were doubled:

CREATE TABLE emp (
name text,
salary numeric,
age integer,
cubicle point

);

CREATE FUNCTION double_salary(emp) RETURNS numeric AS $$
SELECT $1.salary * 2 AS salary;

$$ LANGUAGE SQL;

450

Chapter 31. Extending SQL

SELECT name, double_salary(emp.*) AS dream
FROM emp
WHERE emp.cubicle ~= point ’(2,1)’;

name | dream
------+-------

Bill | 8400

Notice the use of the syntax$1.salary to select one field of the argument row value. Also notice
how the callingSELECTcommand uses* to select the entire current row of a table as a composite
value. The table row can alternatively be referenced using just the table name, like this:

SELECT name, double_salary(emp) AS dream
FROM emp
WHERE emp.cubicle ~= point ’(2,1)’;

but this usage is deprecated since it’s easy to get confused.

Sometimes it is handy to construct a composite argument value on-the-fly. This can be done with the
ROWconstruct. For example, we could adjust the data being passed to the function:

SELECT name, double_salary(ROW(name, salary*1.1, age, cubicle)) AS dream
FROM emp;

It is also possible to build a function that returns a composite type. This is an example of a function
that returns a singleemp row:

CREATE FUNCTION new_emp() RETURNS emp AS $$
SELECT text ’None’ AS name,

1000.0 AS salary,
25 AS age,
point ’(2,2)’ AS cubicle;

$$ LANGUAGE SQL;

In this example we have specified each of the attributes with a constant value, but any computation
could have been substituted for these constants.

Note two important things about defining the function:

• The select list order in the query must be exactly the same as that in which the columns appear in
the table associated with the composite type. (Naming the columns, as we did above, is irrelevant
to the system.)

• You must typecast the expressions to match the definition of the composite type, or you will get
errors like this:

ERROR: function declared to return emp returns varchar instead of text at column 1

A different way to define the same function is:

CREATE FUNCTION new_emp() RETURNS emp AS $$
SELECT ROW(’None’, 1000.0, 25, ’(2,2)’)::emp;

$$ LANGUAGE SQL;

451

Chapter 31. Extending SQL

Here we wrote aSELECTthat returns just a single column of the correct composite type. This isn’t
really better in this situation, but it is a handy alternative in some cases — for example, if we need to
compute the result by calling another function that returns the desired composite value.

We could call this function directly in either of two ways:

SELECT new_emp();

new_emp

(None,1000.0,25,"(2,2)")

SELECT * FROM new_emp();

name | salary | age | cubicle
------+--------+-----+---------

None | 1000.0 | 25 | (2,2)

The second way is described more fully inSection 31.4.3.

When you use a function that returns a composite type, you might want only one field (attribute) from
its result. You can do that with syntax like this:

SELECT (new_emp()).name;

name

None

The extra parentheses are needed to keep the parser from getting confused. If you try to do it without
them, you get something like this:

SELECT new_emp().name;
ERROR: syntax error at or near "." at character 17
LINE 1: SELECT new_emp().name;

^

Another option is to use functional notation for extracting an attribute. The simple way to explain this
is that we can use the notationsattribute(table) andtable.attribute interchangeably.

SELECT name(new_emp());

name

None

-- This is the same as:
-- SELECT emp.name AS youngster FROM emp WHERE emp.age < 30;

SELECT name(emp) AS youngster FROM emp WHERE age(emp) < 30;

youngster

Sam
Andy

452

Chapter 31. Extending SQL

Tip: The equivalence between functional notation and attribute notation makes it possible to use
functions on composite types to emulate “computed fields”. For example, using the previous
definition for double_salary(emp) , we can write

SELECT emp.name, emp.double_salary FROM emp;

An application using this wouldn’t need to be directly aware that double_salary isn’t a real col-
umn of the table. (You can also emulate computed fields with views.)

Another way to use a function returning a row result is to pass the result to another function that
accepts the correct row type as input:

CREATE FUNCTION getname(emp) RETURNS text AS $$
SELECT $1.name;

$$ LANGUAGE SQL;

SELECT getname(new_emp());
getname

None

(1 row)

Another way to use a function that returns a composite type is to call it as a table function, as described
below.

31.4.3. SQL Functions as Table Sources

All SQL functions may be used in theFROMclause of a query, but it is particularly useful for functions
returning composite types. If the function is defined to return a base type, the table function produces
a one-column table. If the function is defined to return a composite type, the table function produces
a column for each attribute of the composite type.

Here is an example:

CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES (1, 1, ’Joe’);
INSERT INTO foo VALUES (1, 2, ’Ed’);
INSERT INTO foo VALUES (2, 1, ’Mary’);

CREATE FUNCTION getfoo(int) RETURNS foo AS $$
SELECT * FROM foo WHERE fooid = $1;

$$ LANGUAGE SQL;

SELECT *, upper(fooname) FROM getfoo(1) AS t1;

fooid | foosubid | fooname | upper
-------+----------+---------+-------

1 | 1 | Joe | JOE
(2 rows)

As the example shows, we can work with the columns of the function’s result just the same as if they
were columns of a regular table.

453

Chapter 31. Extending SQL

Note that we only got one row out of the function. This is because we did not useSETOF. That is
described in the next section.

31.4.4. SQL Functions Returning Sets

When an SQL function is declared as returningSETOF sometype , the function’s finalSELECTquery
is executed to completion, and each row it outputs is returned as an element of the result set.

This feature is normally used when calling the function in theFROMclause. In this case each row
returned by the function becomes a row of the table seen by the query. For example, assume that table
foo has the same contents as above, and we say:

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;

$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

Then we would get:

fooid | foosubid | fooname
-------+----------+---------

1 | 1 | Joe
1 | 2 | Ed

(2 rows)

Currently, functions returning sets may also be called in the select list of a query. For each row that
the query generates by itself, the function returning set is invoked, and an output row is generated for
each element of the function’s result set. Note, however, that this capability is deprecated and may be
removed in future releases. The following is an example function returning a set from the select list:

CREATE FUNCTION listchildren(text) RETURNS SETOF text AS $$
SELECT name FROM nodes WHERE parent = $1

$$ LANGUAGE SQL;

SELECT * FROM nodes;
name | parent

-----------+--------
Top |
Child1 | Top
Child2 | Top
Child3 | Top
SubChild1 | Child1
SubChild2 | Child1

(6 rows)

SELECT listchildren(’Top’);
listchildren

Child1
Child2
Child3

(3 rows)

SELECT name, listchildren(name) FROM nodes;

454

Chapter 31. Extending SQL

name | listchildren
--------+--------------

Top | Child1
Top | Child2
Top | Child3
Child1 | SubChild1
Child1 | SubChild2

(5 rows)

In the lastSELECT, notice that no output row appears forChild2 , Child3 , etc. This happens because
listchildren returns an empty set for those arguments, so no result rows are generated.

31.4.5. Polymorphic SQL Functions

SQL functions may be declared to accept and return the polymorphic typesanyelement and
anyarray . SeeSection 31.2.5for a more detailed explanation of polymorphic functions. Here is a
polymorphic functionmake_array that builds up an array from two arbitrary data type elements:

CREATE FUNCTION make_array(anyelement, anyelement) RETURNS anyarray AS $$
SELECT ARRAY[$1, $2];

$$ LANGUAGE SQL;

SELECT make_array(1, 2) AS intarray, make_array(’a’::text, ’b’) AS textarray;
intarray | textarray

----------+-----------
{1,2} | {a,b}

(1 row)

Notice the use of the typecast’a’::text to specify that the argument is of typetext . This is
required if the argument is just a string literal, since otherwise it would be treated as typeunknown ,
and array ofunknown is not a valid type. Without the typecast, you will get errors like this:

ERROR: could not determine "anyarray"/"anyelement" type because input has type "unknown"

It is permitted to have polymorphic arguments with a fixed return type, but the converse is not. For
example:

CREATE FUNCTION is_greater(anyelement, anyelement) RETURNS boolean AS $$
SELECT $1 > $2;

$$ LANGUAGE SQL;

SELECT is_greater(1, 2);
is_greater

f

(1 row)

CREATE FUNCTION invalid_func() RETURNS anyelement AS $$
SELECT 1;

$$ LANGUAGE SQL;
ERROR: cannot determine result data type
DETAIL: A function returning "anyarray" or "anyelement" must have at least one argument of either type.

455

Chapter 31. Extending SQL

31.5. Function Overloading
More than one function may be defined with the same SQL name, so long as the arguments they take
are different. In other words, function names can beoverloaded. When a query is executed, the server
will determine which function to call from the data types and the number of the provided arguments.
Overloading can also be used to simulate functions with a variable number of arguments, up to a finite
maximum number.

When creating a family of overloaded functions, one should be careful not to create ambiguities. For
instance, given the functions

CREATE FUNCTION test(int, real) RETURNS ...
CREATE FUNCTION test(smallint, double precision) RETURNS ...

it is not immediately clear which function would be called with some trivial input liketest(1,

1.5) . The currently implemented resolution rules are described inChapter 10, but it is unwise to
design a system that subtly relies on this behavior.

A function that takes a single argument of a composite type should generally not have the same
name as any attribute (field) of that type. Recall thatattribute(table) is considered equivalent
to table.attribute . In the case that there is an ambiguity between a function on a composite type
and an attribute of the composite type, the attribute will always be used. It is possible to override that
choice by schema-qualifying the function name (that is,schema.func(table)) but it’s better to
avoid the problem by not choosing conflicting names.

When overloading C-language functions, there is an additional constraint: The C name of each func-
tion in the family of overloaded functions must be different from the C names of all other functions,
either internal or dynamically loaded. If this rule is violated, the behavior is not portable. You might
get a run-time linker error, or one of the functions will get called (usually the internal one). The alter-
native form of theAS clause for the SQLCREATE FUNCTIONcommand decouples the SQL function
name from the function name in the C source code. For instance,

CREATE FUNCTION test(int) RETURNS int
AS ’ filename ’, ’test_1arg’
LANGUAGE C;

CREATE FUNCTION test(int, int) RETURNS int
AS ’ filename ’, ’test_2arg’
LANGUAGE C;

The names of the C functions here reflect one of many possible conventions.

31.6. Function Volatility Categories
Every function has avolatility classification, with the possibilities beingVOLATILE, STABLE, or
IMMUTABLE. VOLATILE is the default if theCREATE FUNCTIONcommand does not specify a cat-
egory. The volatility category is a promise to the optimizer about the behavior of the function:

• A VOLATILE function can do anything, including modifying the database. It can return different
results on successive calls with the same arguments. The optimizer makes no assumptions about

456

Chapter 31. Extending SQL

the behavior of such functions. A query using a volatile function will re-evaluate the function at
every row where its value is needed.

• A STABLEfunction cannot modify the database and is guaranteed to return the same results given
the same arguments for all calls within a single surrounding query. This category allows the opti-
mizer to optimize away multiple calls of the function within a single query. In particular, it is safe to
use an expression containing such a function in an index scan condition. (Since an index scan will
evaluate the comparison value only once, not once at each row, it is not valid to use aVOLATILE

function in an index scan condition.)

• An IMMUTABLEfunction cannot modify the database and is guaranteed to return the same results
given the same arguments forever. This category allows the optimizer to pre-evaluate the function
when a query calls it with constant arguments. For example, a query likeSELECT ... WHERE x =

2 + 2 can be simplified on sight toSELECT ... WHERE x = 4 , because the function underlying
the integer addition operator is markedIMMUTABLE.

For best optimization results, you should label your functions with the strictest volatility category that
is valid for them.

Any function with side-effectsmustbe labeledVOLATILE, so that calls to it cannot be optimized
away. Even a function with no side-effects needs to be labeledVOLATILE if its value can change
within a single query; some examples arerandom() , currval() , timeofday() .

There is relatively little difference betweenSTABLE and IMMUTABLEcategories when considering
simple interactive queries that are planned and immediately executed: it doesn’t matter a lot whether
a function is executed once during planning or once during query execution startup. But there is a big
difference if the plan is saved and reused later. Labeling a functionIMMUTABLEwhen it really isn’t
may allow it to be prematurely folded to a constant during planning, resulting in a stale value being
re-used during subsequent uses of the plan. This is a hazard when using prepared statements or when
using function languages that cache plans (such as PL/pgSQL).

Because of the snapshotting behavior of MVCC (seeChapter 12) a function containing onlySELECT

commands can safely be markedSTABLE, even if it selects from tables that might be undergoing
modifications by concurrent queries. PostgreSQL will execute aSTABLEfunction using the snapshot
established for the calling query, and so it will see a fixed view of the database throughout that query.
Also note that thecurrent_timestamp family of functions qualify as stable, since their values do
not change within a transaction.

The same snapshotting behavior is used forSELECTcommands withinIMMUTABLEfunctions. It is
generally unwise to select from database tables within anIMMUTABLEfunction at all, since the im-
mutability will be broken if the table contents ever change. However, PostgreSQL does not enforce
that you do not do that.

A common error is to label a functionIMMUTABLEwhen its results depend on a configuration param-
eter. For example, a function that manipulates timestamps might well have results that depend on the
timezonesetting. For safety, such functions should be labeledSTABLEinstead.

Note: Before PostgreSQL release 8.0, the requirement that STABLE and IMMUTABLEfunctions
cannot modify the database was not enforced by the system. Release 8.0 enforces it by requiring
SQL functions and procedural language functions of these categories to contain no SQL com-
mands other than SELECT. (This is not a completely bulletproof test, since such functions could
still call VOLATILE functions that modify the database. If you do that, you will find that the STABLE

or IMMUTABLEfunction does not notice the database changes applied by the called function.)

457

Chapter 31. Extending SQL

31.7. Procedural Language Functions
PostgreSQL allows user-defined functions to be written in other languages besides SQL and C. These
other languages are generically calledprocedural languages(PLs). Procedural languages aren’t built
into the PostgreSQL server; they are offered by loadable modules. SeeChapter 34and following
chapters for more information.

31.8. Internal Functions
Internal functions are functions written in C that have been statically linked into the PostgreSQL
server. The “body” of the function definition specifies the C-language name of the function, which
need not be the same as the name being declared for SQL use. (For reasons of backwards compatibil-
ity, an empty body is accepted as meaning that the C-language function name is the same as the SQL
name.)

Normally, all internal functions present in the server are declared during the initialization of the
database cluster (initdb), but a user could useCREATE FUNCTIONto create additional alias names
for an internal function. Internal functions are declared inCREATE FUNCTIONwith language name
internal . For instance, to create an alias for thesqrt function:

CREATE FUNCTION square_root(double precision) RETURNS double precision
AS ’dsqrt’
LANGUAGE internal
STRICT;

(Most internal functions expect to be declared “strict”.)

Note: Not all “predefined” functions are “internal” in the above sense. Some predefined functions
are written in SQL.

31.9. C-Language Functions
User-defined functions can be written in C (or a language that can be made compatible with C, such as
C++). Such functions are compiled into dynamically loadable objects (also called shared libraries) and
are loaded by the server on demand. The dynamic loading feature is what distinguishes “C language”
functions from “internal” functions — the actual coding conventions are essentially the same for both.
(Hence, the standard internal function library is a rich source of coding examples for user-defined C
functions.)

Two different calling conventions are currently used for C functions. The newer “version 1” calling
convention is indicated by writing aPG_FUNCTION_INFO_V1() macro call for the function, as illus-
trated below. Lack of such a macro indicates an old-style (“version 0”) function. The language name
specified inCREATE FUNCTIONis C in either case. Old-style functions are now deprecated because
of portability problems and lack of functionality, but they are still supported for compatibility reasons.

31.9.1. Dynamic Loading

The first time a user-defined function in a particular loadable object file is called in a session, the
dynamic loader loads that object file into memory so that the function can be called. TheCREATE

FUNCTIONfor a user-defined C function must therefore specify two pieces of information for the

458

Chapter 31. Extending SQL

function: the name of the loadable object file, and the C name (link symbol) of the specific function to
call within that object file. If the C name is not explicitly specified then it is assumed to be the same
as the SQL function name.

The following algorithm is used to locate the shared object file based on the name given in theCREATE

FUNCTIONcommand:

1. If the name is an absolute path, the given file is loaded.

2. If the name starts with the string$libdir , that part is replaced by the PostgreSQL package
library directory name, which is determined at build time.

3. If the name does not contain a directory part, the file is searched for in the path specified by the
configuration variabledynamic_library_path.

4. Otherwise (the file was not found in the path, or it contains a non-absolute directory part), the
dynamic loader will try to take the name as given, which will most likely fail. (It is unreliable to
depend on the current working directory.)

If this sequence does not work, the platform-specific shared library file name extension (often.so) is
appended to the given name and this sequence is tried again. If that fails as well, the load will fail.

The user ID the PostgreSQL server runs as must be able to traverse the path to the file you intend to
load. Making the file or a higher-level directory not readable and/or not executable by the postgres
user is a common mistake.

In any case, the file name that is given in theCREATE FUNCTIONcommand is recorded literally in
the system catalogs, so if the file needs to be loaded again the same procedure is applied.

Note: PostgreSQL will not compile a C function automatically. The object file must be compiled
before it is referenced in a CREATE FUNCTIONcommand. See Section 31.9.6 for additional infor-
mation.

After it is used for the first time, a dynamically loaded object file is retained in memory. Future calls
in the same session to the function(s) in that file will only incur the small overhead of a symbol table
lookup. If you need to force a reload of an object file, for example after recompiling it, use theLOAD

command or begin a fresh session.

It is recommended to locate shared libraries either relative to$libdir or through the dynamic library
path. This simplifies version upgrades if the new installation is at a different location. The actual
directory that$libdir stands for can be found out with the commandpg_config --pkglibdir .

Before PostgreSQL release 7.2, only exact absolute paths to object files could be specified inCREATE

FUNCTION. This approach is now deprecated since it makes the function definition unnecessarily
unportable. It’s best to specify just the shared library name with no path nor extension, and let the
search mechanism provide that information instead.

31.9.2. Base Types in C-Language Functions

To know how to write C-language functions, you need to know how PostgreSQL internally represents
base data types and how they can be passed to and from functions. Internally, PostgreSQL regards a
base type as a “blob of memory”. The user-defined functions that you define over a type in turn define
the way that PostgreSQL can operate on it. That is, PostgreSQL will only store and retrieve the data
from disk and use your user-defined functions to input, process, and output the data.

Base types can have one of three internal formats:

459

Chapter 31. Extending SQL

• pass by value, fixed-length

• pass by reference, fixed-length

• pass by reference, variable-length

By-value types can only be 1, 2, or 4 bytes in length (also 8 bytes, ifsizeof(Datum) is 8 on your
machine). You should be careful to define your types such that they will be the same size (in bytes) on
all architectures. For example, thelong type is dangerous because it is 4 bytes on some machines and
8 bytes on others, whereasint type is 4 bytes on most Unix machines. A reasonable implementation
of the int4 type on Unix machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

On the other hand, fixed-length types of any size may be passed by-reference. For example, here is a
sample implementation of a PostgreSQL type:

/* 16-byte structure, passed by reference */
typedef struct
{

double x, y;
} Point;

Only pointers to such types can be used when passing them in and out of PostgreSQL functions. To
return a value of such a type, allocate the right amount of memory withpalloc , fill in the allocated
memory, and return a pointer to it. (You can also return an input value that has the same type as
the return value directly by returning the pointer to the input value.Nevermodify the contents of a
pass-by-reference input value, however.)

Finally, all variable-length types must also be passed by reference. All variable-length types must
begin with a length field of exactly 4 bytes, and all data to be stored within that type must be located
in the memory immediately following that length field. The length field contains the total length of
the structure, that is, it includes the size of the length field itself.

As an example, we can define the typetext as follows:

typedef struct {
int4 length;
char data[1];

} text;

Obviously, the data field declared here is not long enough to hold all possible strings. Since it’s
impossible to declare a variable-size structure in C, we rely on the knowledge that the C compiler
won’t range-check array subscripts. We just allocate the necessary amount of space and then access
the array as if it were declared the right length. (This is a common trick, which you can read about in
many textbooks about C.)

When manipulating variable-length types, we must be careful to allocate the correct amount of mem-
ory and set the length field correctly. For example, if we wanted to store 40 bytes in atext structure,
we might use a code fragment like this:

#include "postgres.h"
...
char buffer[40]; /* our source data */
...

460

Chapter 31. Extending SQL

text *destination = (text *) palloc(VARHDRSZ + 40);
destination- >length = VARHDRSZ + 40;
memcpy(destination- >data, buffer, 40);
...

VARHDRSZis the same assizeof(int4) , but it’s considered good style to use the macroVARHDRSZ

to refer to the size of the overhead for a variable-length type.

Table 31-1specifies which C type corresponds to which SQL type when writing a C-language function
that uses a built-in type of PostgreSQL. The “Defined In” column gives the header file that needs to
be included to get the type definition. (The actual definition may be in a different file that is included
by the listed file. It is recommended that users stick to the defined interface.) Note that you should
always includepostgres.h first in any source file, because it declares a number of things that you
will need anyway.

Table 31-1. Equivalent C Types for Built-In SQL Types

SQL Type C Type Defined In

abstime AbsoluteTime utils/nabstime.h

boolean bool postgres.h (maybe compiler
built-in)

box BOX* utils/geo_decls.h

bytea bytea* postgres.h

"char" char (compiler built-in)

character BpChar* postgres.h

cid CommandId postgres.h

date DateADT utils/date.h

smallint (int2) int2 or int16 postgres.h

int2vector int2vector* postgres.h

integer (int4) int4 or int32 postgres.h

real (float4) float4* postgres.h

double precision (float8) float8* postgres.h

interval Interval* utils/timestamp.h

lseg LSEG* utils/geo_decls.h

name Name postgres.h

oid Oid postgres.h

oidvector oidvector* postgres.h

path PATH* utils/geo_decls.h

point POINT* utils/geo_decls.h

regproc regproc postgres.h

reltime RelativeTime utils/nabstime.h

text text* postgres.h

tid ItemPointer storage/itemptr.h

time TimeADT utils/date.h

time with time zone TimeTzADT utils/date.h

timestamp Timestamp* utils/timestamp.h

tinterval TimeInterval utils/nabstime.h

461

Chapter 31. Extending SQL

SQL Type C Type Defined In

varchar VarChar* postgres.h

xid TransactionId postgres.h

Now that we’ve gone over all of the possible structures for base types, we can show some examples
of real functions.

31.9.3. Calling Conventions Version 0 for C-Language Functions

We present the “old style” calling convention first — although this approach is now deprecated, it’s
easier to get a handle on initially. In the version-0 method, the arguments and result of the C function
are just declared in normal C style, but being careful to use the C representation of each SQL data
type as shown above.

Here are some examples:

#include "postgres.h"
#include <string.h >

/* by value */

int
add_one(int arg)
{

return arg + 1;
}

/* by reference, fixed length */

float8 *
add_one_float8(float8 *arg)
{

float8 *result = (float8 *) palloc(sizeof(float8));

*result = *arg + 1.0;

return result;
}

Point *
makepoint(Point *pointx, Point *pointy)
{

Point *new_point = (Point *) palloc(sizeof(Point));

new_point->x = pointx->x;
new_point->y = pointy->y;

return new_point;
}

/* by reference, variable length */

text *
copytext(text *t)
{

462

Chapter 31. Extending SQL

/*
* VARSIZE is the total size of the struct in bytes.
*/

text *new_t = (text *) palloc(VARSIZE(t));
VARATT_SIZEP(new_t) = VARSIZE(t);
/*

* VARDATA is a pointer to the data region of the struct.
*/

memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(t), /* source */
VARSIZE(t)-VARHDRSZ); /* how many bytes */

return new_t;
}

text *
concat_text(text *arg1, text *arg2)
{

int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ;
text *new_text = (text *) palloc(new_text_size);

VARATT_SIZEP(new_text) = new_text_size;
memcpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1)-VARHDRSZ);
memcpy(VARDATA(new_text) + (VARSIZE(arg1)-VARHDRSZ),

VARDATA(arg2), VARSIZE(arg2)-VARHDRSZ);
return new_text;

}

Supposing that the above code has been prepared in filefuncs.c and compiled into a shared object,
we could define the functions to PostgreSQL with commands like this:

CREATE FUNCTION add_one(integer) RETURNS integer
AS ’ DIRECTORY/funcs’, ’add_one’
LANGUAGE C STRICT;

-- note overloading of SQL function name "add_one"
CREATE FUNCTION add_one(double precision) RETURNS double precision

AS ’ DIRECTORY/funcs’, ’add_one_float8’
LANGUAGE C STRICT;

CREATE FUNCTION makepoint(point, point) RETURNS point
AS ’ DIRECTORY/funcs’, ’makepoint’
LANGUAGE C STRICT;

CREATE FUNCTION copytext(text) RETURNS text
AS ’ DIRECTORY/funcs’, ’copytext’
LANGUAGE C STRICT;

CREATE FUNCTION concat_text(text, text) RETURNS text
AS ’ DIRECTORY/funcs’, ’concat_text’,
LANGUAGE C STRICT;

Here,DIRECTORYstands for the directory of the shared library file (for instance the PostgreSQL
tutorial directory, which contains the code for the examples used in this section). (Better style would

463

Chapter 31. Extending SQL

be to use just’funcs’ in theAS clause, after having addedDIRECTORYto the search path. In any
case, we may omit the system-specific extension for a shared library, commonly.so or .sl .)

Notice that we have specified the functions as “strict”, meaning that the system should automatically
assume a null result if any input value is null. By doing this, we avoid having to check for null inputs
in the function code. Without this, we’d have to check for null values explicitly, by checking for a
null pointer for each pass-by-reference argument. (For pass-by-value arguments, we don’t even have
a way to check!)

Although this calling convention is simple to use, it is not very portable; on some architectures there
are problems with passing data types that are smaller thanint this way. Also, there is no simple way
to return a null result, nor to cope with null arguments in any way other than making the function
strict. The version-1 convention, presented next, overcomes these objections.

31.9.4. Calling Conventions Version 1 for C-Language Functions

The version-1 calling convention relies on macros to suppress most of the complexity of passing
arguments and results. The C declaration of a version-1 function is always

Datum funcname(PG_FUNCTION_ARGS)

In addition, the macro call

PG_FUNCTION_INFO_V1(funcname);

must appear in the same source file. (Conventionally. it’s written just before the function itself.) This
macro call is not needed forinternal -language functions, since PostgreSQL assumes that all inter-
nal functions use the version-1 convention. It is, however, required for dynamically-loaded functions.

In a version-1 function, each actual argument is fetched using aPG_GETARG_xxx () macro that cor-
responds to the argument’s data type, and the result is returned using aPG_RETURN_xxx () macro
for the return type.PG_GETARG_xxx () takes as its argument the number of the function argument to
fetch, where the count starts at 0.PG_RETURN_xxx () takes as its argument the actual value to return.

Here we show the same functions as above, coded in version-1 style:

#include "postgres.h"
#include <string.h >

#include "fmgr.h"

/* by value */

PG_FUNCTION_INFO_V1(add_one);

Datum
add_one(PG_FUNCTION_ARGS)
{

int32 arg = PG_GETARG_INT32(0);

PG_RETURN_INT32(arg + 1);
}

/* b reference, fixed length */

PG_FUNCTION_INFO_V1(add_one_float8);

Datum

464

Chapter 31. Extending SQL

add_one_float8(PG_FUNCTION_ARGS)
{

/* The macros for FLOAT8 hide its pass-by-reference nature. */
float8 arg = PG_GETARG_FLOAT8(0);

PG_RETURN_FLOAT8(arg + 1.0);
}

PG_FUNCTION_INFO_V1(makepoint);

Datum
makepoint(PG_FUNCTION_ARGS)
{

/* Here, the pass-by-reference nature of Point is not hidden. */
Point *pointx = PG_GETARG_POINT_P(0);
Point *pointy = PG_GETARG_POINT_P(1);
Point *new_point = (Point *) palloc(sizeof(Point));

new_point->x = pointx->x;
new_point->y = pointy->y;

PG_RETURN_POINT_P(new_point);
}

/* by reference, variable length */

PG_FUNCTION_INFO_V1(copytext);

Datum
copytext(PG_FUNCTION_ARGS)
{

text *t = PG_GETARG_TEXT_P(0);
/*

* VARSIZE is the total size of the struct in bytes.
*/

text *new_t = (text *) palloc(VARSIZE(t));
VARATT_SIZEP(new_t) = VARSIZE(t);
/*

* VARDATA is a pointer to the data region of the struct.
*/

memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(t), /* source */
VARSIZE(t)-VARHDRSZ); /* how many bytes */

PG_RETURN_TEXT_P(new_t);
}

PG_FUNCTION_INFO_V1(concat_text);

Datum
concat_text(PG_FUNCTION_ARGS)
{

text *arg1 = PG_GETARG_TEXT_P(0);
text *arg2 = PG_GETARG_TEXT_P(1);
int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ;
text *new_text = (text *) palloc(new_text_size);

VARATT_SIZEP(new_text) = new_text_size;

465

Chapter 31. Extending SQL

memcpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1)-VARHDRSZ);
memcpy(VARDATA(new_text) + (VARSIZE(arg1)-VARHDRSZ),

VARDATA(arg2), VARSIZE(arg2)-VARHDRSZ);
PG_RETURN_TEXT_P(new_text);

}

TheCREATE FUNCTIONcommands are the same as for the version-0 equivalents.

At first glance, the version-1 coding conventions may appear to be just pointless obscurantism. They
do, however, offer a number of improvements, because the macros can hide unnecessary detail. An
example is that in codingadd_one_float8 , we no longer need to be aware thatfloat8 is a pass-
by-reference type. Another example is that theGETARGmacros for variable-length types allow for
more efficient fetching of “toasted” (compressed or out-of-line) values.

One big improvement in version-1 functions is better handling of null inputs and results. The macro
PG_ARGISNULL(n) allows a function to test whether each input is null. (Of course, doing this is
only necessary in functions not declared “strict”.) As with thePG_GETARG_xxx () macros, the
input arguments are counted beginning at zero. Note that one should refrain from executing
PG_GETARG_xxx () until one has verified that the argument isn’t null. To return a null result, execute
PG_RETURN_NULL(); this works in both strict and nonstrict functions.

Other options provided in the new-style interface are two variants of thePG_GETARG_xxx () macros.
The first of these,PG_GETARG_xxx _COPY() , guarantees to return a copy of the specified argument
that is safe for writing into. (The normal macros will sometimes return a pointer to a value that
is physically stored in a table, which must not be written to. Using thePG_GETARG_xxx _COPY()

macros guarantees a writable result.) The second variant consists of thePG_GETARG_xxx _SLICE()

macros which take three arguments. The first is the number of the function argument (as above). The
second and third are the offset and length of the segment to be returned. Offsets are counted from
zero, and a negative length requests that the remainder of the value be returned. These macros provide
more efficient access to parts of large values in the case where they have storage type “external”.
(The storage type of a column can be specified usingALTER TABLE tablename ALTER COLUMN

colname SET STORAGEstoragetype . storagetype is one ofplain , external , extended ,
or main .)

Finally, the version-1 function call conventions make it possible to return set results (Section 31.9.10)
and implement trigger functions (Chapter 32) and procedural-language call handlers (Chapter 45).
Version-1 code is also more portable than version-0, because it does not break restrictions on function
call protocol in the C standard. For more details seesrc/backend/utils/fmgr/README in the
source distribution.

31.9.5. Writing Code

Before we turn to the more advanced topics, we should discuss some coding rules for PostgreSQL
C-language functions. While it may be possible to load functions written in languages other than C
into PostgreSQL, this is usually difficult (when it is possible at all) because other languages, such
as C++, FORTRAN, or Pascal often do not follow the same calling convention as C. That is, other
languages do not pass argument and return values between functions in the same way. For this reason,
we will assume that your C-language functions are actually written in C.

The basic rules for writing and building C functions are as follows:

• Usepg_config --includedir-server to find out where the PostgreSQL server header files
are installed on your system (or the system that your users will be running on). This option is new

466

Chapter 31. Extending SQL

with PostgreSQL 7.2. For PostgreSQL 7.1 you should use the option--includedir . (pg_config

will exit with a non-zero status if it encounters an unknown option.) For releases prior to 7.1 you
will have to guess, but since that was before the current calling conventions were introduced, it is
unlikely that you want to support those releases.

• When allocating memory, use the PostgreSQL functionspalloc andpfree instead of the corre-
sponding C library functionsmalloc and free . The memory allocated bypalloc will be freed
automatically at the end of each transaction, preventing memory leaks.

• Always zero the bytes of your structures usingmemset. Without this, it’s difficult to support hash
indexes or hash joins, as you must pick out only the significant bits of your data structure to compute
a hash. Even if you initialize all fields of your structure, there may be alignment padding (holes in
the structure) that may contain garbage values.

• Most of the internal PostgreSQL types are declared inpostgres.h , while the function manager
interfaces (PG_FUNCTION_ARGS, etc.) are infmgr.h , so you will need to include at least these two
files. For portability reasons it’s best to includepostgres.h first, before any other system or user
header files. Includingpostgres.h will also includeelog.h andpalloc.h for you.

• Symbol names defined within object files must not conflict with each other or with symbols defined
in the PostgreSQL server executable. You will have to rename your functions or variables if you
get error messages to this effect.

• Compiling and linking your code so that it can be dynamically loaded into PostgreSQL always re-
quires special flags. SeeSection 31.9.6for a detailed explanation of how to do it for your particular
operating system.

31.9.6. Compiling and Linking Dynamically-Loaded Functions

Before you are able to use your PostgreSQL extension functions written in C, they must be compiled
and linked in a special way to produce a file that can be dynamically loaded by the server. To be
precise, ashared libraryneeds to be created.

For information beyond what is contained in this section you should read the documentation of your
operating system, in particular the manual pages for the C compiler,cc , and the link editor,ld . In
addition, the PostgreSQL source code contains several working examples in thecontrib directory.
If you rely on these examples you will make your modules dependent on the availability of the Post-
greSQL source code, however.

Creating shared libraries is generally analogous to linking executables: first the source files are com-
piled into object files, then the object files are linked together. The object files need to be created as
position-independent code(PIC), which conceptually means that they can be placed at an arbitrary
location in memory when they are loaded by the executable. (Object files intended for executables
are usually not compiled that way.) The command to link a shared library contains special flags to
distinguish it from linking an executable (at least in theory — on some systems the practice is much
uglier).

In the following examples we assume that your source code is in a filefoo.c and we will create a
shared libraryfoo.so . The intermediate object file will be calledfoo.o unless otherwise noted. A
shared library can contain more than one object file, but we only use one here.

BSD/OS

The compiler flag to create PIC is-fpic . The linker flag to create shared libraries is-shared .

gcc -fpic -c foo.c

467

Chapter 31. Extending SQL

ld -shared -o foo.so foo.o

This is applicable as of version 4.0 of BSD/OS.

FreeBSD

The compiler flag to create PIC is-fpic . To create shared libraries the compiler flag is-shared .

gcc -fpic -c foo.c
gcc -shared -o foo.so foo.o

This is applicable as of version 3.0 of FreeBSD.

HP-UX

The compiler flag of the system compiler to create PIC is+z . When using GCC it’s-fpic . The
linker flag for shared libraries is-b . So

cc +z -c foo.c

or

gcc -fpic -c foo.c

and then

ld -b -o foo.sl foo.o

HP-UX uses the extension.sl for shared libraries, unlike most other systems.

IRIX

PIC is the default, no special compiler options are necessary. The linker option to produce shared
libraries is-shared .

cc -c foo.c
ld -shared -o foo.so foo.o

Linux

The compiler flag to create PIC is-fpic . On some platforms in some situations-fPIC must be
used if-fpic does not work. Refer to the GCC manual for more information. The compiler flag
to create a shared library is-shared . A complete example looks like this:

cc -fpic -c foo.c
cc -shared -o foo.so foo.o

MacOS X

Here is an example. It assumes the developer tools are installed.

cc -c foo.c
cc -bundle -flat_namespace -undefined suppress -o foo.so foo.o

NetBSD

The compiler flag to create PIC is-fpic . For ELF systems, the compiler with the flag-shared

is used to link shared libraries. On the older non-ELF systems,ld -Bshareable is used.

gcc -fpic -c foo.c
gcc -shared -o foo.so foo.o

468

Chapter 31. Extending SQL

OpenBSD

The compiler flag to create PIC is-fpic . ld -Bshareable is used to link shared libraries.

gcc -fpic -c foo.c
ld -Bshareable -o foo.so foo.o

Solaris

The compiler flag to create PIC is-KPIC with the Sun compiler and-fpic with GCC. To link
shared libraries, the compiler option is-G with either compiler or alternatively-shared with
GCC.

cc -KPIC -c foo.c
cc -G -o foo.so foo.o

or

gcc -fpic -c foo.c
gcc -G -o foo.so foo.o

Tru64 UNIX

PIC is the default, so the compilation command is the usual one.ld with special options is used
to do the linking:

cc -c foo.c
ld -shared -expect_unresolved ’*’ -o foo.so foo.o

The same procedure is used with GCC instead of the system compiler; no special options are
required.

UnixWare

The compiler flag to create PIC is-K PIC with the SCO compiler and-fpic with GCC. To link
shared libraries, the compiler option is-G with the SCO compiler and-shared with GCC.

cc -K PIC -c foo.c
cc -G -o foo.so foo.o

or

gcc -fpic -c foo.c
gcc -shared -o foo.so foo.o

Tip: If this is too complicated for you, you should consider using GNU Libtool1, which hides the
platform differences behind a uniform interface.

The resulting shared library file can then be loaded into PostgreSQL. When specifying the file name
to theCREATE FUNCTIONcommand, one must give it the name of the shared library file, not the
intermediate object file. Note that the system’s standard shared-library extension (usually.so or
.sl) can be omitted from theCREATE FUNCTIONcommand, and normally should be omitted for
best portability.

Refer back toSection 31.9.1about where the server expects to find the shared library files.

1. http://www.gnu.org/software/libtool/

469

Chapter 31. Extending SQL

31.9.7. Extension Building Infrastructure

If you are thinking about distributing your PostgreSQL extension modules, setting up a portable build
system for them can be fairly difficult. Therefore the PostgreSQL installation provides a build infras-
tructure for extensions, called PGXS, so that simple extension modules can be built simply against
an already installed server. Note that this infrastructure is not intended to be a universal build system
framework that can be used to build all software interfacing to PostgreSQL; it simply automates com-
mon build rules for simple server extension modules. For more complicated packages, you need to
write your own build system.

To use the infrastructure for your extension, you must write a simple makefile. In that makefile, you
need to set some variables and finally include the global PGXS makefile. Here is an example that
builds an extension module namedisbn_issn consisting of a shared library, an SQL script, and a
documentation text file:

MODULES = isbn_issn
DATA_built = isbn_issn.sql
DOCS = README.isbn_issn

PGXS := $(shell pg_config --pgxs)
include $(PGXS)

The last two lines should always be the same. Earlier in the file, you assign variables or add custom
make rules.

The following variables can be set:

MODULES

list of shared objects to be build from source file with same stem (do not include suffix in this
list)

DATA

random files to install intoprefix /share/contrib

DATA_built

random files to install intoprefix /share/contrib , which need to be built first

DOCS

random files to install underprefix /doc/contrib

SCRIPTS

script files (not binaries) to install intoprefix /bin

SCRIPTS_built

script files (not binaries) to install intoprefix /bin , which need to be built first

REGRESS

list of regression test cases (without suffix)

or at most one of these two:

PROGRAM

a binary program to build (list objects files inOBJS)

470

Chapter 31. Extending SQL

MODULE_big

a shared object to build (list object files inOBJS)

The following can also be set:

EXTRA_CLEAN

extra files to remove inmake clean

PG_CPPFLAGS

will be added toCPPFLAGS

PG_LIBS

will be added toPROGRAMlink line

SHLIB_LINK

will be added toMODULE_big link line

Put this makefile asMakefile in the directory which holds your extension. Then you can domake to
compile, and latermake install to install your module. The extension is compiled and installed for
the PostgreSQL installation that corresponds to the firstpg_config command found in your path.

31.9.8. Composite-Type Arguments in C-Language Functions

Composite types do not have a fixed layout like C structures. Instances of a composite type may
contain null fields. In addition, composite types that are part of an inheritance hierarchy may have
different fields than other members of the same inheritance hierarchy. Therefore, PostgreSQL provides
a function interface for accessing fields of composite types from C.

Suppose we want to write a function to answer the query

SELECT name, c_overpaid(emp, 1500) AS overpaid
FROM emp
WHERE name = ’Bill’ OR name = ’Sam’;

Using call conventions version 0, we can definec_overpaid as:

#include "postgres.h"
#include "executor/executor.h" /* for GetAttributeByName() */

bool
c_overpaid(HeapTupleHeader t, /* the current row of emp */

int32 limit)
{

bool isnull;
int32 salary;

salary = DatumGetInt32(GetAttributeByName(t, "salary", &isnull));
if (isnull)

return false;
return salary > limit;

}

In version-1 coding, the above would look like this:

471

Chapter 31. Extending SQL

#include "postgres.h"
#include "executor/executor.h" /* for GetAttributeByName() */

PG_FUNCTION_INFO_V1(c_overpaid);

Datum
c_overpaid(PG_FUNCTION_ARGS)
{

HeapTupleHeader t = PG_GETARG_HEAPTUPLEHEADER(0);
int32 limit = PG_GETARG_INT32(1);
bool isnull;
Datum salary;

salary = GetAttributeByName(t, "salary", &isnull);
if (isnull)

PG_RETURN_BOOL(false);
/* Alternatively, we might prefer to do PG_RETURN_NULL() for null salary. */

PG_RETURN_BOOL(DatumGetInt32(salary) > limit);
}

GetAttributeByName is the PostgreSQL system function that returns attributes out of the spec-
ified row. It has three arguments: the argument of typeHeapTupleHeader passed into the func-
tion, the name of the desired attribute, and a return parameter that tells whether the attribute is null.
GetAttributeByName returns aDatum value that you can convert to the proper data type by using
the appropriateDatumGet XXX() macro. Note that the return value is meaningless if the null flag is
set; always check the null flag before trying to do anything with the result.

There is alsoGetAttributeByNum , which selects the target attribute by column number instead of
name.

The following command declares the functionc_overpaid in SQL:

CREATE FUNCTION c_overpaid(emp, integer) RETURNS boolean
AS ’ DIRECTORY/funcs’, ’c_overpaid’
LANGUAGE C STRICT;

Notice we have usedSTRICT so that we did not have to check whether the input arguments were
NULL.

31.9.9. Returning Rows (Composite Types) from C-Language
Functions

To return a row or composite-type value from a C-language function, you can use a special API that
provides macros and functions to hide most of the complexity of building composite data types. To
use this API, the source file must include:

#include "funcapi.h"

There are two ways you can build a composite data value (henceforth a “tuple”): you can build
it from an array of Datum values, or from an array of C strings that can be passed to the input
conversion functions of the tuple’s column data types. In either case, you first need to obtain or
construct aTupleDesc descriptor for the tuple structure. When working with Datums, you pass

472

Chapter 31. Extending SQL

the TupleDesc to BlessTupleDesc , and then callheap_formtuple for each row. When work-
ing with C strings, you pass theTupleDesc to TupleDescGetAttInMetadata , and then call
BuildTupleFromCStrings for each row. In the case of a function returning a set of tuples, the
setup steps can all be done once during the first call of the function.

Several helper functions are available for setting up the initialTupleDesc . If you want to use a named
composite type, you can fetch the information from the system catalogs. Use

TupleDesc RelationNameGetTupleDesc(const char *relname)

to get aTupleDesc for a named relation, or

TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases)

to get aTupleDesc based on a type OID. This can be used to get aTupleDesc for a base or com-
posite type. When writing a function that returnsrecord , the expectedTupleDesc must be passed
in by the caller.

Once you have aTupleDesc , call

TupleDesc BlessTupleDesc(TupleDesc tupdesc)

if you plan to work with Datums, or

AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc)

if you plan to work with C strings. If you are writing a function returning set, you can save the results
of these functions in theFuncCallContext structure — use thetuple_desc or attinmeta field
respectively.

When working with Datums, use

HeapTuple heap_formtuple(TupleDesc tupdesc, Datum *values, char *nulls)

to build aHeapTuple given user data in Datum form.

When working with C strings, use

HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)

to build aHeapTuple given user data in C string form.values is an array of C strings, one for each
attribute of the return row. Each C string should be in the form expected by the input function of the
attribute data type. In order to return a null value for one of the attributes, the corresponding pointer
in the values array should be set toNULL. This function will need to be called again for each row
you return.

Once you have built a tuple to return from your function, it must be converted into aDatum. Use

HeapTupleGetDatum(HeapTuple tuple)

to convert aHeapTuple into a valid Datum. ThisDatum can be returned directly if you intend to
return just a single row, or it can be used as the current return value in a set-returning function.

An example appears in the next section.

473

Chapter 31. Extending SQL

31.9.10. Returning Sets from C-Language Functions

There is also a special API that provides support for returning sets (multiple rows) from a C-language
function. A set-returning function must follow the version-1 calling conventions. Also, source files
must includefuncapi.h , as above.

A set-returning function (SRF) is called once for each item it returns. The SRF must therefore
save enough state to remember what it was doing and return the next item on each call. The
structure FuncCallContext is provided to help control this process. Within a function,
fcinfo- >flinfo- >fn_extra is used to hold a pointer toFuncCallContext across calls.

typedef struct
{

/*
* Number of times we’ve been called before
*
* call_cntr is initialized to 0 for you by SRF_FIRSTCALL_INIT(), and
* incremented for you every time SRF_RETURN_NEXT() is called.
*/

uint32 call_cntr;

/*
* OPTIONAL maximum number of calls
*
* max_calls is here for convenience only and setting it is optional.
* If not set, you must provide alternative means to know when the
* function is done.
*/

uint32 max_calls;

/*
* OPTIONAL pointer to result slot
*
* This is obsolete and only present for backwards compatibility, viz,
* user-defined SRFs that use the deprecated TupleDescGetSlot().
*/

TupleTableSlot *slot;

/*
* OPTIONAL pointer to miscellaneous user-provided context information
*
* user_fctx is for use as a pointer to your own data to retain
* arbitrary context information between calls of your function.
*/

void *user_fctx;

/*
* OPTIONAL pointer to struct containing attribute type input metadata
*
* attinmeta is for use when returning tuples (i.e., composite data types)
* and is not used when returning base data types. It is only needed
* if you intend to use BuildTupleFromCStrings() to create the return
* tuple.
*/

AttInMetadata *attinmeta;

/*
* memory context used for structures that must live for multiple calls

474

Chapter 31. Extending SQL

*
* multi_call_memory_ctx is set by SRF_FIRSTCALL_INIT() for you, and used
* by SRF_RETURN_DONE() for cleanup. It is the most appropriate memory
* context for any memory that is to be reused across multiple calls
* of the SRF.
*/

MemoryContext multi_call_memory_ctx;

/*
* OPTIONAL pointer to struct containing tuple description
*
* tuple_desc is for use when returning tuples (i.e. composite data types)
* and is only needed if you are going to build the tuples with
* heap_formtuple() rather than with BuildTupleFromCStrings(). Note that
* the TupleDesc pointer stored here should usually have been run through
* BlessTupleDesc() first.
*/

TupleDesc tuple_desc;

} FuncCallContext;

An SRF uses several functions and macros that automatically manipulate theFuncCallContext

structure (and expect to find it viafn_extra). Use

SRF_IS_FIRSTCALL()

to determine if your function is being called for the first or a subsequent time. On the first call (only)
use

SRF_FIRSTCALL_INIT()

to initialize theFuncCallContext . On every function call, including the first, use

SRF_PERCALL_SETUP()

to properly set up for using theFuncCallContext and clearing any previously returned data left
over from the previous pass.

If your function has data to return, use

SRF_RETURN_NEXT(funcctx, result)

to return it to the caller. (result must be of typeDatum, either a single value or a tuple prepared as
described above.) Finally, when your function is finished returning data, use

SRF_RETURN_DONE(funcctx)

to clean up and end the SRF.

The memory context that is current when the SRF is called is a transient context that will be cleared be-
tween calls. This means that you do not need to callpfree on everything you allocated usingpalloc ;
it will go away anyway. However, if you want to allocate any data structures to live across calls, you
need to put them somewhere else. The memory context referenced bymulti_call_memory_ctx is
a suitable location for any data that needs to survive until the SRF is finished running. In most cases,
this means that you should switch intomulti_call_memory_ctx while doing the first-call setup.

A complete pseudo-code example looks like the following:

475

Chapter 31. Extending SQL

Datum
my_set_returning_function(PG_FUNCTION_ARGS)
{

FuncCallContext *funcctx;
Datum result;
MemoryContext oldcontext;
further declarations as needed

if (SRF_IS_FIRSTCALL())
{

funcctx = SRF_FIRSTCALL_INIT();
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* One-time setup code appears here: */
user code
if returning composite

build TupleDesc, and perhaps AttInMetadata
endif returning composite
user code
MemoryContextSwitchTo(oldcontext);

}

/* Each-time setup code appears here: */
user code
funcctx = SRF_PERCALL_SETUP();
user code

/* this is just one way we might test whether we are done: */
if (funcctx- >call_cntr < funcctx- >max_calls)
{

/* Here we want to return another item: */
user code
obtain result Datum
SRF_RETURN_NEXT(funcctx, result);

}
else
{

/* Here we are done returning items and just need to clean up: */
user code
SRF_RETURN_DONE(funcctx);

}
}

A complete example of a simple SRF returning a composite type looks like:

PG_FUNCTION_INFO_V1(testpassbyval);

Datum
testpassbyval(PG_FUNCTION_ARGS)
{

FuncCallContext *funcctx;
int call_cntr;
int max_calls;
TupleDesc tupdesc;
AttInMetadata *attinmeta;

/* stuff done only on the first call of the function */

476

Chapter 31. Extending SQL

if (SRF_IS_FIRSTCALL())
{

MemoryContext oldcontext;

/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();

/* switch to memory context appropriate for multiple function calls */
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);

/* total number of tuples to be returned */
funcctx- >max_calls = PG_GETARG_UINT32(0);

/* Build a tuple description for a __testpassbyval tuple */
tupdesc = RelationNameGetTupleDesc("__testpassbyval");

/*
* generate attribute metadata needed later to produce tuples from raw
* C strings
*/

attinmeta = TupleDescGetAttInMetadata(tupdesc);
funcctx- >attinmeta = attinmeta;

MemoryContextSwitchTo(oldcontext);
}

/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();

call_cntr = funcctx- >call_cntr;
max_calls = funcctx- >max_calls;
attinmeta = funcctx- >attinmeta;

if (call_cntr < max_calls) /* do when there is more left to send */
{

char **values;
HeapTuple tuple;
Datum result;

/*
* Prepare a values array for building the returned tuple.
* This should be an array of C strings which will
* be processed later by the type input functions.
*/

values = (char **) palloc(3 * sizeof(char *));
values[0] = (char *) palloc(16 * sizeof(char));
values[1] = (char *) palloc(16 * sizeof(char));
values[2] = (char *) palloc(16 * sizeof(char));

snprintf(values[0], 16, "%d", 1 * PG_GETARG_INT32(1));
snprintf(values[1], 16, "%d", 2 * PG_GETARG_INT32(1));
snprintf(values[2], 16, "%d", 3 * PG_GETARG_INT32(1));

/* build a tuple */
tuple = BuildTupleFromCStrings(attinmeta, values);

/* make the tuple into a datum */

477

Chapter 31. Extending SQL

result = HeapTupleGetDatum(tuple);

/* clean up (this is not really necessary) */
pfree(values[0]);
pfree(values[1]);
pfree(values[2]);
pfree(values);

SRF_RETURN_NEXT(funcctx, result);
}
else /* do when there is no more left */
{

SRF_RETURN_DONE(funcctx);
}

}

The SQL code to declare this function is:

CREATE TYPE __testpassbyval AS (f1 integer, f2 integer, f3 integer);

CREATE OR REPLACE FUNCTION testpassbyval(integer, integer) RETURNS SETOF __testpassbyval
AS ’ filename ’, ’testpassbyval’
LANGUAGE C IMMUTABLE STRICT;

The directory contrib/tablefunc in the source distribution contains more examples of
set-returning functions.

31.9.11. Polymorphic Arguments and Return Types

C-language functions may be declared to accept and return the polymorphic typesanyelement and
anyarray . SeeSection 31.2.5for a more detailed explanation of polymorphic functions. When func-
tion arguments or return types are defined as polymorphic types, the function author cannot know
in advance what data type it will be called with, or need to return. There are two routines provided
in fmgr.h to allow a version-1 C function to discover the actual data types of its arguments and the
type it is expected to return. The routines are calledget_fn_expr_rettype(FmgrInfo *flinfo)

andget_fn_expr_argtype(FmgrInfo *flinfo, int argnum) . They return the result or argu-
ment type OID, orInvalidOid if the information is not available. The structureflinfo is normally
accessed asfcinfo- >flinfo . The parameterargnum is zero based.

For example, suppose we want to write a function to accept a single element of any type, and return a
one-dimensional array of that type:

PG_FUNCTION_INFO_V1(make_array);
Datum
make_array(PG_FUNCTION_ARGS)
{

ArrayType *result;
Oid element_type = get_fn_expr_argtype(fcinfo- >flinfo, 0);
Datum element;
int16 typlen;
bool typbyval;
char typalign;
int ndims;
int dims[MAXDIM];

478

Chapter 31. Extending SQL

int lbs[MAXDIM];

if (!OidIsValid(element_type))
elog(ERROR, "could not determine data type of input");

/* get the provided element */
element = PG_GETARG_DATUM(0);

/* we have one dimension */
ndims = 1;
/* and one element */
dims[0] = 1;
/* and lower bound is 1 */
lbs[0] = 1;

/* get required info about the element type */
get_typlenbyvalalign(element_type, &typlen, &typbyval, &typalign);

/* now build the array */
result = construct_md_array(&element, ndims, dims, lbs,

element_type, typlen, typbyval, typalign);

PG_RETURN_ARRAYTYPE_P(result);
}

The following command declares the functionmake_array in SQL:

CREATE FUNCTION make_array(anyelement) RETURNS anyarray
AS ’ DIRECTORY/funcs’, ’make_array’
LANGUAGE C STRICT;

Note the use ofSTRICT; this is essential since the code is not bothering to test for a null input.

31.10. User-Defined Aggregates
Aggregate functions in PostgreSQL are expressed asstate valuesandstate transition functions. That
is, an aggregate can be defined in terms of state that is modified whenever an input item is processed.
To define a new aggregate function, one selects a data type for the state value, an initial value for
the state, and a state transition function. The state transition function is just an ordinary function that
could also be used outside the context of the aggregate. Afinal functioncan also be specified, in case
the desired result of the aggregate is different from the data that needs to be kept in the running state
value.

Thus, in addition to the argument and result data types seen by a user of the aggregate, there is an
internal state-value data type that may be different from both the argument and result types.

If we define an aggregate that does not use a final function, we have an aggregate that computes a
running function of the column values from each row.sum is an example of this kind of aggregate.
sum starts at zero and always adds the current row’s value to its running total. For example, if we
want to make asum aggregate to work on a data type for complex numbers, we only need the addition
function for that data type. The aggregate definition would be:

CREATE AGGREGATE complex_sum (

479

Chapter 31. Extending SQL

sfunc = complex_add,
basetype = complex,
stype = complex,
initcond = ’(0,0)’

);

SELECT complex_sum(a) FROM test_complex;

complex_sum

(34,53.9)

(In practice, we’d just name the aggregatesum and rely on PostgreSQL to figure out which kind of
sum to apply to a column of typecomplex .)

The above definition ofsum will return zero (the initial state condition) if there are no nonnull input
values. Perhaps we want to return null in that case instead — the SQL standard expectssum to behave
that way. We can do this simply by omitting theinitcond phrase, so that the initial state condition
is null. Ordinarily this would mean that thesfunc would need to check for a null state-condition
input, but forsum and some other simple aggregates likemax andmin , it is sufficient to insert the
first nonnull input value into the state variable and then start applying the transition function at the
second nonnull input value. PostgreSQL will do that automatically if the initial condition is null and
the transition function is marked “strict” (i.e., not to be called for null inputs).

Another bit of default behavior for a “strict” transition function is that the previous state value is
retained unchanged whenever a null input value is encountered. Thus, null values are ignored. If you
need some other behavior for null inputs, just do not define your transition function as strict, and code
it to test for null inputs and do whatever is needed.

avg (average) is a more complex example of an aggregate. It requires two pieces of running state:
the sum of the inputs and the count of the number of inputs. The final result is obtained by dividing
these quantities. Average is typically implemented by using a two-element array as the state value.
For example, the built-in implementation ofavg(float8) looks like:

CREATE AGGREGATE avg (
sfunc = float8_accum,
basetype = float8,
stype = float8[],
finalfunc = float8_avg,
initcond = ’{0,0}’

);

Aggregate functions may use polymorphic state transition functions or final functions, so that the
same functions can be used to implement multiple aggregates. SeeSection 31.2.5for an explanation
of polymorphic functions. Going a step further, the aggregate function itself may be specified with
a polymorphic base type and state type, allowing a single aggregate definition to serve for multiple
input data types. Here is an example of a polymorphic aggregate:

CREATE AGGREGATE array_accum (
sfunc = array_append,
basetype = anyelement,
stype = anyarray,
initcond = ’{}’

);

480

Chapter 31. Extending SQL

Here, the actual state type for any aggregate call is the array type having the actual input type as
elements.

Here’s the output using two different actual data types as arguments:

SELECT attrelid::regclass, array_accum(attname)
FROM pg_attribute
WHERE attnum > 0 AND attrelid = ’pg_user’::regclass
GROUP BY attrelid;

attrelid | array_accum
----------+---

pg_user | {usename,usesysid,usecreatedb,usesuper,usecatupd,passwd,valuntil,useconfig}
(1 row)

SELECT attrelid::regclass, array_accum(atttypid)
FROM pg_attribute
WHERE attnum > 0 AND attrelid = ’pg_user’::regclass
GROUP BY attrelid;

attrelid | array_accum
----------+------------------------------

pg_user | {19,23,16,16,16,25,702,1009}
(1 row)

For further details see theCREATE AGGREGATEcommand.

31.11. User-Defined Types
As described inSection 31.2, PostgreSQL can be extended to support new data types. This section
describes how to define new base types, which are data types defined below the level of the SQL
language. Creating a new base type requires implementing functions to operate on the type in a low-
level language, usually C.

The examples in this section can be found incomplex.sql andcomplex.c in thesrc/tutorial

directory of the source distribution. See theREADMEfile in that directory for instructions about running
the examples.

A user-defined type must always have input and output functions. These functions determine how the
type appears in strings (for input by the user and output to the user) and how the type is organized in
memory. The input function takes a null-terminated character string as its argument and returns the
internal (in memory) representation of the type. The output function takes the internal representation
of the type as argument and returns a null-terminated character string. If we want to do anything
more with the type than merely store it, we must provide additional functions to implement whatever
operations we’d like to have for the type.

Suppose we want to define a typecomplex that represents complex numbers. A natural way to rep-
resent a complex number in memory would be the following C structure:

typedef struct Complex {
double x;
double y;

} Complex;

We will need to make this a pass-by-reference type, since it’s too large to fit into a singleDatum value.

481

Chapter 31. Extending SQL

As the external string representation of the type, we choose a string of the form(x,y) .

The input and output functions are usually not hard to write, especially the output function. But when
defining the external string representation of the type, remember that you must eventually write a
complete and robust parser for that representation as your input function. For instance:

PG_FUNCTION_INFO_V1(complex_in);

Datum
complex_in(PG_FUNCTION_ARGS)
{

char *str = PG_GETARG_CSTRING(0);
double x,

y;
Complex *result;

if (sscanf(str, " (%lf , %lf)", &x, &y) != 2)
ereport(ERROR,

(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for complex: \"%s\"",

str)));

result = (Complex *) palloc(sizeof(Complex));
result- >x = x;
result- >y = y;
PG_RETURN_POINTER(result);

}

The output function can simply be:

PG_FUNCTION_INFO_V1(complex_out);

Datum
complex_out(PG_FUNCTION_ARGS)
{

Complex *complex = (Complex *) PG_GETARG_POINTER(0);
char *result;

result = (char *) palloc(100);
snprintf(result, 100, "(%g,%g)", complex- >x, complex- >y);
PG_RETURN_CSTRING(result);

}

You should be careful to make the input and output functions inverses of each other. If you do not,
you will have severe problems when you need to dump your data into a file and then read it back in.
This is a particularly common problem when floating-point numbers are involved.

Optionally, a user-defined type can provide binary input and output routines. Binary I/O is nor-
mally faster but less portable than textual I/O. As with textual I/O, it is up to you to define exactly
what the external binary representation is. Most of the built-in data types try to provide a machine-
independent binary representation. Forcomplex , we will piggy-back on the binary I/O converters for
type float8 :

PG_FUNCTION_INFO_V1(complex_recv);

Datum

482

Chapter 31. Extending SQL

complex_recv(PG_FUNCTION_ARGS)
{

StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
Complex *result;

result = (Complex *) palloc(sizeof(Complex));
result- >x = pq_getmsgfloat8(buf);
result- >y = pq_getmsgfloat8(buf);
PG_RETURN_POINTER(result);

}

PG_FUNCTION_INFO_V1(complex_send);

Datum
complex_send(PG_FUNCTION_ARGS)
{

Complex *complex = (Complex *) PG_GETARG_POINTER(0);
StringInfoData buf;

pq_begintypsend(&buf);
pq_sendfloat8(&buf, complex- >x);
pq_sendfloat8(&buf, complex- >y);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));

}

To define thecomplex type, we need to create the user-defined I/O functions before creating the type:

CREATE FUNCTION complex_in(cstring)
RETURNS complex
AS ’ filename ’
LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_out(complex)
RETURNS cstring
AS ’ filename ’
LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_recv(internal)
RETURNS complex
AS ’ filename ’
LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_send(complex)
RETURNS bytea
AS ’ filename ’
LANGUAGE C IMMUTABLE STRICT;

Notice that the declarations of the input and output functions must reference the not-yet-defined type.
This is allowed, but will draw warning messages that may be ignored. The input function must appear
first.

Finally, we can declare the data type:

CREATE TYPE complex (
internallength = 16,
input = complex_in,

483

Chapter 31. Extending SQL

output = complex_out,
receive = complex_recv,
send = complex_send,
alignment = double

);

When you define a new base type, PostgreSQL automatically provides support for arrays of that type.
For historical reasons, the array type has the same name as the base type with the underscore character
(_) prepended.

Once the data type exists, we can declare additional functions to provide useful operations on the data
type. Operators can then be defined atop the functions, and if needed, operator classes can be created
to support indexing of the data type. These additional layers are discussed in following sections.

If the values of your data type might exceed a few hundred bytes in size (in internal form), you should
make the data type TOAST-able (seeSection 49.2). To do this, the internal representation must follow
the standard layout for variable-length data: the first four bytes must be anint32 containing the total
length in bytes of the datum (including itself). The C functions operating on the data type must be
careful to unpack any toasted values they are handed, by usingPG_DETOAST_DATUM. (This detail
is customarily hidden by defining type-specificGETARGmacros.) Then, when running theCREATE

TYPEcommand, specify the internal length asvariable and select the appropriate storage option.

For further details see the description of theCREATE TYPEcommand.

31.12. User-Defined Operators
Every operator is “syntactic sugar” for a call to an underlying function that does the real work; so
you must first create the underlying function before you can create the operator. However, an operator
is not merelysyntactic sugar, because it carries additional information that helps the query planner
optimize queries that use the operator. The next section will be devoted to explaining that additional
information.

PostgreSQL supports left unary, right unary, and binary operators. Operators can be overloaded; that
is, the same operator name can be used for different operators that have different numbers and types
of operands. When a query is executed, the system determines the operator to call from the number
and types of the provided operands.

Here is an example of creating an operator for adding two complex numbers. We assume we’ve
already created the definition of typecomplex (seeSection 31.11). First we need a function that does
the work, then we can define the operator:

CREATE FUNCTION complex_add(complex, complex)
RETURNS complex
AS ’ filename ’, ’complex_add’
LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR + (
leftarg = complex,
rightarg = complex,
procedure = complex_add,
commutator = +

);

484

Chapter 31. Extending SQL

Now we could execute a query like this:

SELECT (a + b) AS c FROM test_complex;

c

(5.2,6.05)
(133.42,144.95)

We’ve shown how to create a binary operator here. To create unary operators, just omit one of
leftarg (for left unary) orrightarg (for right unary). Theprocedure clause and the argument
clauses are the only required items inCREATE OPERATOR. The commutator clause shown in the
example is an optional hint to the query optimizer. Further details aboutcommutator and other opti-
mizer hints appear in the next section.

31.13. Operator Optimization Information
A PostgreSQL operator definition can include several optional clauses that tell the system useful
things about how the operator behaves. These clauses should be provided whenever appropriate, be-
cause they can make for considerable speedups in execution of queries that use the operator. But if
you provide them, you must be sure that they are right! Incorrect use of an optimization clause can
result in server process crashes, subtly wrong output, or other Bad Things. You can always leave out
an optimization clause if you are not sure about it; the only consequence is that queries might run
slower than they need to.

Additional optimization clauses might be added in future versions of PostgreSQL. The ones described
here are all the ones that release 8.0.0 understands.

31.13.1. COMMUTATOR

TheCOMMUTATORclause, if provided, names an operator that is the commutator of the operator being
defined. We say that operator A is the commutator of operator B if (x A y) equals (y B x) for all
possible input values x, y. Notice that B is also the commutator of A. For example, operators< and>

for a particular data type are usually each others’ commutators, and operator+ is usually commutative
with itself. But operator- is usually not commutative with anything.

The left operand type of a commutable operator is the same as the right operand type of its commuta-
tor, and vice versa. So the name of the commutator operator is all that PostgreSQL needs to be given
to look up the commutator, and that’s all that needs to be provided in theCOMMUTATORclause.

It’s critical to provide commutator information for operators that will be used in indexes and join
clauses, because this allows the query optimizer to “flip around” such a clause to the forms needed for
different plan types. For example, consider a query with a WHERE clause liketab1.x = tab2.y ,
where tab1.x and tab2.y are of a user-defined type, and suppose thattab2.y is indexed. The
optimizer cannot generate an index scan unless it can determine how to flip the clause around to
tab2.y = tab1.x , because the index-scan machinery expects to see the indexed column on the left
of the operator it is given. PostgreSQL willnot simply assume that this is a valid transformation —
the creator of the= operator must specify that it is valid, by marking the operator with commutator
information.

When you are defining a self-commutative operator, you just do it. When you are defining a pair of
commutative operators, things are a little trickier: how can the first one to be defined refer to the other
one, which you haven’t defined yet? There are two solutions to this problem:

485

Chapter 31. Extending SQL

• One way is to omit theCOMMUTATORclause in the first operator that you define, and then provide
one in the second operator’s definition. Since PostgreSQL knows that commutative operators come
in pairs, when it sees the second definition it will automatically go back and fill in the missing
COMMUTATORclause in the first definition.

• The other, more straightforward way is just to includeCOMMUTATORclauses in both definitions.
When PostgreSQL processes the first definition and realizes thatCOMMUTATORrefers to a nonex-
istent operator, the system will make a dummy entry for that operator in the system catalog. This
dummy entry will have valid data only for the operator name, left and right operand types, and
result type, since that’s all that PostgreSQL can deduce at this point. The first operator’s catalog
entry will link to this dummy entry. Later, when you define the second operator, the system updates
the dummy entry with the additional information from the second definition. If you try to use the
dummy operator before it’s been filled in, you’ll just get an error message.

31.13.2. NEGATOR

TheNEGATORclause, if provided, names an operator that is the negator of the operator being defined.
We say that operator A is the negator of operator B if both return Boolean results and (x A y) equals
NOT (x B y) for all possible inputs x, y. Notice that B is also the negator of A. For example,< and
>= are a negator pair for most data types. An operator can never validly be its own negator.

Unlike commutators, a pair of unary operators could validly be marked as each others’ negators; that
would mean (A x) equals NOT (B x) for all x, or the equivalent for right unary operators.

An operator’s negator must have the same left and/or right operand types as the operator to be defined,
so just as withCOMMUTATOR, only the operator name need be given in theNEGATORclause.

Providing a negator is very helpful to the query optimizer since it allows expressions likeNOT (x

= y) to be simplified intox <> y . This comes up more often than you might think, becauseNOT

operations can be inserted as a consequence of other rearrangements.

Pairs of negator operators can be defined using the same methods explained above for commutator
pairs.

31.13.3. RESTRICT

TheRESTRICTclause, if provided, names a restriction selectivity estimation function for the operator.
(Note that this is a function name, not an operator name.)RESTRICT clauses only make sense for
binary operators that returnboolean . The idea behind a restriction selectivity estimator is to guess
what fraction of the rows in a table will satisfy aWHERE-clause condition of the form

column OP constant

for the current operator and a particular constant value. This assists the optimizer by giving it some
idea of how many rows will be eliminated byWHEREclauses that have this form. (What happens if
the constant is on the left, you may be wondering? Well, that’s one of the things thatCOMMUTATORis
for...)

Writing new restriction selectivity estimation functions is far beyond the scope of this chapter, but
fortunately you can usually just use one of the system’s standard estimators for many of your own
operators. These are the standard restriction estimators:

eqsel for =

486

Chapter 31. Extending SQL

neqsel for <>

scalarltsel for < or <=

scalargtsel for > or >=

It might seem a little odd that these are the categories, but they make sense if you think about it.
= will typically accept only a small fraction of the rows in a table;<> will typically reject only a
small fraction.< will accept a fraction that depends on where the given constant falls in the range
of values for that table column (which, it just so happens, is information collected byANALYZEand
made available to the selectivity estimator).<= will accept a slightly larger fraction than< for the
same comparison constant, but they’re close enough to not be worth distinguishing, especially since
we’re not likely to do better than a rough guess anyhow. Similar remarks apply to> and>=.

You can frequently get away with using eithereqsel or neqsel for operators that have very high or
very low selectivity, even if they aren’t really equality or inequality. For example, the approximate-
equality geometric operators useeqsel on the assumption that they’ll usually only match a small
fraction of the entries in a table.

You can use scalarltsel and scalargtsel for comparisons on data types that have
some sensible means of being converted into numeric scalars for range comparisons. If
possible, add the data type to those understood by the functionconvert_to_scalar() in
src/backend/utils/adt/selfuncs.c . (Eventually, this function should be replaced by
per-data-type functions identified through a column of thepg_type system catalog; but that hasn’t
happened yet.) If you do not do this, things will still work, but the optimizer’s estimates won’t be as
good as they could be.

There are additional selectivity estimation functions designed for geometric operators in
src/backend/utils/adt/geo_selfuncs.c : areasel , positionsel , and contsel . At this
writing these are just stubs, but you may want to use them (or even better, improve them) anyway.

31.13.4. JOIN

TheJOIN clause, if provided, names a join selectivity estimation function for the operator. (Note that
this is a function name, not an operator name.)JOIN clauses only make sense for binary operators
that returnboolean . The idea behind a join selectivity estimator is to guess what fraction of the rows
in a pair of tables will satisfy aWHERE-clause condition of the form

table1.column1 OP table2.column2

for the current operator. As with theRESTRICTclause, this helps the optimizer very substantially by
letting it figure out which of several possible join sequences is likely to take the least work.

As before, this chapter will make no attempt to explain how to write a join selectivity estimator
function, but will just suggest that you use one of the standard estimators if one is applicable:

eqjoinsel for =

neqjoinsel for <>

scalarltjoinsel for < or <=

scalargtjoinsel for > or >=

areajoinsel for 2D area-based comparisons
positionjoinsel for 2D position-based comparisons
contjoinsel for 2D containment-based comparisons

487

Chapter 31. Extending SQL

31.13.5. HASHES

TheHASHESclause, if present, tells the system that it is permissible to use the hash join method for
a join based on this operator.HASHESonly makes sense for a binary operator that returnsboolean ,
and in practice the operator had better be equality for some data type.

The assumption underlying hash join is that the join operator can only return true for pairs of left and
right values that hash to the same hash code. If two values get put in different hash buckets, the join
will never compare them at all, implicitly assuming that the result of the join operator must be false.
So it never makes sense to specifyHASHESfor operators that do not represent equality.

To be markedHASHES, the join operator must appear in a hash index operator class. This is not
enforced when you create the operator, since of course the referencing operator class couldn’t exist
yet. But attempts to use the operator in hash joins will fail at runtime if no such operator class exists.
The system needs the operator class to find the data-type-specific hash function for the operator’s
input data type. Of course, you must also supply a suitable hash function before you can create the
operator class.

Care should be exercised when preparing a hash function, because there are machine-dependent ways
in which it might fail to do the right thing. For example, if your data type is a structure in which
there may be uninteresting pad bits, you can’t simply pass the whole structure tohash_any . (Unless
you write your other operators and functions to ensure that the unused bits are always zero, which
is the recommended strategy.) Another example is that on machines that meet the IEEE floating-
point standard, negative zero and positive zero are different values (different bit patterns) but they are
defined to compare equal. If a float value might contain negative zero then extra steps are needed to
ensure it generates the same hash value as positive zero.

Note: The function underlying a hash-joinable operator must be marked immutable or stable. If it
is volatile, the system will never attempt to use the operator for a hash join.

Note: If a hash-joinable operator has an underlying function that is marked strict, the function must
also be complete: that is, it should return true or false, never null, for any two nonnull inputs. If this
rule is not followed, hash-optimization of IN operations may generate wrong results. (Specifically,
IN might return false where the correct answer according to the standard would be null; or it might
yield an error complaining that it wasn’t prepared for a null result.)

31.13.6. MERGES(SORT1, SORT2, LTCMP, GTCMP)

TheMERGESclause, if present, tells the system that it is permissible to use the merge-join method for
a join based on this operator.MERGESonly makes sense for a binary operator that returnsboolean ,
and in practice the operator must represent equality for some data type or pair of data types.

Merge join is based on the idea of sorting the left- and right-hand tables into order and then scanning
them in parallel. So, both data types must be capable of being fully ordered, and the join operator
must be one that can only succeed for pairs of values that fall at the “same place” in the sort order. In
practice this means that the join operator must behave like equality. But unlike hash join, where the left
and right data types had better be the same (or at least bitwise equivalent), it is possible to merge-join
two distinct data types so long as they are logically compatible. For example, thesmallint -versus-
integer equality operator is merge-joinable. We only need sorting operators that will bring both data
types into a logically compatible sequence.

488

Chapter 31. Extending SQL

Execution of a merge join requires that the system be able to identify four operators related to the
merge-join equality operator: less-than comparison for the left operand data type, less-than compari-
son for the right operand data type, less-than comparison between the two data types, and greater-than
comparison between the two data types. (These are actually four distinct operators if the merge-
joinable operator has two different operand data types; but when the operand types are the same the
three less-than operators are all the same operator.) It is possible to specify these operators individu-
ally by name, as theSORT1, SORT2, LTCMP, andGTCMPoptions respectively. The system will fill in
the default names<, <, <, > respectively if any of these are omitted whenMERGESis specified. Also,
MERGESwill be assumed to be implied if any of these four operator options appear, so it is possible to
specify just some of them and let the system fill in the rest.

The operand data types of the four comparison operators can be deduced from the operand types of
the merge-joinable operator, so just as withCOMMUTATOR, only the operator names need be given in
these clauses. Unless you are using peculiar choices of operator names, it’s sufficient to writeMERGES

and let the system fill in the details. (As withCOMMUTATORandNEGATOR, the system is able to make
dummy operator entries if you happen to define the equality operator before the other ones.)

There are additional restrictions on operators that you mark merge-joinable. These restrictions are not
currently checked byCREATE OPERATOR, but errors may occur when the operator is used if any are
not true:

• A merge-joinable equality operator must have a merge-joinable commutator (itself if the two
operand data types are the same, or a related equality operator if they are different).

• If there is a merge-joinable operator relating any two data types A and B, and another merge-
joinable operator relating B to any third data type C, then A and C must also have a merge-joinable
operator; in other words, having a merge-joinable operator must be transitive.

• Bizarre results will ensue at runtime if the four comparison operators you name do not sort the data
values compatibly.

Note: The function underlying a merge-joinable operator must be marked immutable or stable. If
it is volatile, the system will never attempt to use the operator for a merge join.

Note: In PostgreSQL versions before 7.3, the MERGESshorthand was not available: to make a
merge-joinable operator one had to write both SORT1and SORT2explicitly. Also, the LTCMPand
GTCMPoptions did not exist; the names of those operators were hardwired as < and > respectively.

31.14. Interfacing Extensions To Indexes
The procedures described thus far let you define new types, new functions, and new operators. How-
ever, we cannot yet define an index on a column of a new data type. To do this, we must define an
operator classfor the new data type. Later in this section, we will illustrate this concept in an ex-
ample: a new operator class for the B-tree index method that stores and sorts complex numbers in
ascending absolute value order.

Note: Prior to PostgreSQL release 7.3, it was necessary to make manual additions to the system
catalogs pg_amop, pg_amproc , and pg_opclass in order to create a user-defined operator class.

489

Chapter 31. Extending SQL

That approach is now deprecated in favor of using CREATE OPERATOR CLASS, which is a much
simpler and less error-prone way of creating the necessary catalog entries.

31.14.1. Index Methods and Operator Classes

The pg_am table contains one row for every index method (internally known as access method).
Support for regular access to tables is built into PostgreSQL, but all index methods are described in
pg_am. It is possible to add a new index method by defining the required interface routines and then
creating a row inpg_am — but that is far beyond the scope of this chapter.

The routines for an index method do not directly know anything about the data types that the index
method will operate on. Instead, anoperator classidentifies the set of operations that the index method
needs to use to work with a particular data type. Operator classes are so called because one thing they
specify is the set ofWHERE-clause operators that can be used with an index (i.e., can be converted
into an index-scan qualification). An operator class may also specify somesupport proceduresthat
are needed by the internal operations of the index method, but do not directly correspond to any
WHERE-clause operator that can be used with the index.

It is possible to define multiple operator classes for the same data type and index method. By doing
this, multiple sets of indexing semantics can be defined for a single data type. For example, a B-tree
index requires a sort ordering to be defined for each data type it works on. It might be useful for a
complex-number data type to have one B-tree operator class that sorts the data by complex absolute
value, another that sorts by real part, and so on. Typically, one of the operator classes will be deemed
most commonly useful and will be marked as the default operator class for that data type and index
method.

The same operator class name can be used for several different index methods (for example, both
B-tree and hash index methods have operator classes namedint4_ops), but each such class is an
independent entity and must be defined separately.

31.14.2. Index Method Strategies

The operators associated with an operator class are identified by “strategy numbers”, which serve to
identify the semantics of each operator within the context of its operator class. For example, B-trees
impose a strict ordering on keys, lesser to greater, and so operators like “less than” and “greater than
or equal to” are interesting with respect to a B-tree. Because PostgreSQL allows the user to define
operators, PostgreSQL cannot look at the name of an operator (e.g.,< or >=) and tell what kind
of comparison it is. Instead, the index method defines a set of “strategies”, which can be thought
of as generalized operators. Each operator class specifies which actual operator corresponds to each
strategy for a particular data type and interpretation of the index semantics.

The B-tree index method defines five strategies, shown inTable 31-2.

Table 31-2. B-tree Strategies

Operation Strategy Number

less than 1

less than or equal 2

equal 3

greater than or equal 4

greater than 5

490

Chapter 31. Extending SQL

Hash indexes express only bitwise equality, and so they use only one strategy, shown inTable 31-3.

Table 31-3. Hash Strategies

Operation Strategy Number

equal 1

R-tree indexes express rectangle-containment relationships. They use eight strategies, shown inTable
31-4.

Table 31-4. R-tree Strategies

Operation Strategy Number

left of 1

left of or overlapping 2

overlapping 3

right of or overlapping 4

right of 5

same 6

contains 7

contained by 8

GiST indexes are even more flexible: they do not have a fixed set of strategies at all. Instead, the
“consistency” support routine of each particular GiST operator class interprets the strategy numbers
however it likes.

Note that all strategy operators return Boolean values. In practice, all operators defined as index
method strategies must return typeboolean , since they must appear at the top level of aWHERE

clause to be used with an index.

By the way, theamorderstrategy column inpg_am tells whether the index method supports or-
dered scans. Zero means it doesn’t; if it does,amorderstrategy is the strategy number that corre-
sponds to the ordering operator. For example, B-tree hasamorderstrategy = 1, which is its “less
than” strategy number.

31.14.3. Index Method Support Routines

Strategies aren’t usually enough information for the system to figure out how to use an index. In
practice, the index methods require additional support routines in order to work. For example, the B-
tree index method must be able to compare two keys and determine whether one is greater than, equal
to, or less than the other. Similarly, the R-tree index method must be able to compute intersections,
unions, and sizes of rectangles. These operations do not correspond to operators used in qualifications
in SQL commands; they are administrative routines used by the index methods, internally.

Just as with strategies, the operator class identifies which specific functions should play each of these
roles for a given data type and semantic interpretation. The index method defines the set of functions
it needs, and the operator class identifies the correct functions to use by assigning them to the “support
function numbers”.

B-trees require a single support function, shown inTable 31-5.

491

Chapter 31. Extending SQL

Table 31-5. B-tree Support Functions

Function Support Number

Compare two keys and return an integer less than
zero, zero, or greater than zero, indicating whether
the first key is less than, equal to, or greater than
the second.

1

Hash indexes likewise require one support function, shown inTable 31-6.

Table 31-6. Hash Support Functions

Function Support Number

Compute the hash value for a key 1

R-tree indexes require three support functions, shown inTable 31-7.

Table 31-7. R-tree Support Functions

Function Support Number

union 1

intersection 2

size 3

GiST indexes require seven support functions, shown inTable 31-8.

Table 31-8. GiST Support Functions

Function Support Number

consistent 1

union 2

compress 3

decompress 4

penalty 5

picksplit 6

equal 7

Unlike strategy operators, support functions return whichever data type the particular index method
expects, for example in the case of the comparison function for B-trees, a signed integer.

31.14.4. An Example

Now that we have seen the ideas, here is the promised example of creating a new operator
class. (You can find a working copy of this example insrc/tutorial/complex.c and
src/tutorial/complex.sql in the source distribution.) The operator class encapsulates
operators that sort complex numbers in absolute value order, so we choose the name
complex_abs_ops . First, we need a set of operators. The procedure for defining operators was

492

Chapter 31. Extending SQL

discussed inSection 31.12. For an operator class on B-trees, the operators we require are:

• absolute-value less-than (strategy 1)
• absolute-value less-than-or-equal (strategy 2)
• absolute-value equal (strategy 3)
• absolute-value greater-than-or-equal (strategy 4)
• absolute-value greater-than (strategy 5)

The least error-prone way to define a related set of comparison operators is to write the B-tree com-
parison support function first, and then write the other functions as one-line wrappers around the
support function. This reduces the odds of getting inconsistent results for corner cases. Following this
approach, we first write

#define Mag(c) ((c)- >x*(c)- >x + (c)- >y*(c)- >y)

static int
complex_abs_cmp_internal(Complex *a, Complex *b)
{

double amag = Mag(a),
bmag = Mag(b);

if (amag < bmag)
return -1;

if (amag > bmag)
return 1;

return 0;
}

Now the less-than function looks like

PG_FUNCTION_INFO_V1(complex_abs_lt);

Datum
complex_abs_lt(PG_FUNCTION_ARGS)
{

Complex *a = (Complex *) PG_GETARG_POINTER(0);
Complex *b = (Complex *) PG_GETARG_POINTER(1);

PG_RETURN_BOOL(complex_abs_cmp_internal(a, b) < 0);
}

The other four functions differ only in how they compare the internal function’s result to zero.

Next we declare the functions and the operators based on the functions to SQL:

CREATE FUNCTION complex_abs_lt(complex, complex) RETURNS bool
AS ’ filename ’, ’complex_abs_lt’
LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR< (
leftarg = complex, rightarg = complex, procedure = complex_abs_lt,
commutator = > , negator = >= ,
restrict = scalarltsel, join = scalarltjoinsel

);

493

Chapter 31. Extending SQL

It is important to specify the correct commutator and negator operators, as well as suitable restriction
and join selectivity functions, otherwise the optimizer will be unable to make effective use of the
index. Note that the less-than, equal, and greater-than cases should use different selectivity functions.

Other things worth noting are happening here:

• There can only be one operator named, say,= and taking typecomplex for both operands. In this
case we don’t have any other operator= for complex , but if we were building a practical data
type we’d probably want= to be the ordinary equality operation for complex numbers (and not
the equality of the absolute values). In that case, we’d need to use some other operator name for
complex_abs_eq .

• Although PostgreSQL can cope with functions having the same name as long as they have differ-
ent argument data types, C can only cope with one global function having a given name. So we
shouldn’t name the C function something simple likeabs_eq . Usually it’s a good practice to in-
clude the data type name in the C function name, so as not to conflict with functions for other data
types.

• We could have made the PostgreSQL name of the functionabs_eq , relying on PostgreSQL to
distinguish it by argument data types from any other PostgreSQL function of the same name. To
keep the example simple, we make the function have the same names at the C level and PostgreSQL
level.

The next step is the registration of the support routine required by B-trees. The example C code that
implements this is in the same file that contains the operator functions. This is how we declare the
function:

CREATE FUNCTION complex_abs_cmp(complex, complex)
RETURNS integer
AS ’ filename ’
LANGUAGE C IMMUTABLE STRICT;

Now that we have the required operators and support routine, we can finally create the operator class:

CREATE OPERATOR CLASS complex_abs_ops
DEFAULT FOR TYPE complex USING btree AS

OPERATOR 1 < ,
OPERATOR 2 <= ,
OPERATOR 3 = ,
OPERATOR 4 >= ,
OPERATOR 5 > ,
FUNCTION 1 complex_abs_cmp(complex, complex);

And we’re done! It should now be possible to create and use B-tree indexes oncomplex columns.

We could have written the operator entries more verbosely, as in

OPERATOR 1 < (complex, complex) ,

but there is no need to do so when the operators take the same data type we are defining the operator
class for.

The above example assumes that you want to make this new operator class the default B-tree operator
class for thecomplex data type. If you don’t, just leave out the wordDEFAULT.

494

Chapter 31. Extending SQL

31.14.5. Cross-Data-Type Operator Classes

So far we have implicitly assumed that an operator class deals with only one data type. While there
certainly can be only one data type in a particular index column, it is often useful to index operations
that compare an indexed column to a value of a different data type. This is presently supported by the
B-tree and GiST index methods.

B-trees require the left-hand operand of each operator to be the indexed data type, but the right-hand
operand can be of a different type. There must be a support function having a matching signature. For
example, the built-in operator class for typebigint (int8) allows cross-type comparisons toint4

andint2 . It could be duplicated by this definition:

CREATE OPERATOR CLASS int8_ops
DEFAULT FOR TYPE int8 USING btree AS

-- standard int8 comparisons
OPERATOR 1< ,
OPERATOR 2<= ,
OPERATOR 3 = ,
OPERATOR 4>= ,
OPERATOR 5> ,
FUNCTION 1 btint8cmp(int8, int8) ,

-- cross-type comparisons to int2 (smallint)
OPERATOR 1< (int8, int2) ,
OPERATOR 2<= (int8, int2) ,
OPERATOR 3 = (int8, int2) ,
OPERATOR 4>= (int8, int2) ,
OPERATOR 5> (int8, int2) ,
FUNCTION 1 btint82cmp(int8, int2) ,

-- cross-type comparisons to int4 (integer)
OPERATOR 1< (int8, int4) ,
OPERATOR 2<= (int8, int4) ,
OPERATOR 3 = (int8, int4) ,
OPERATOR 4>= (int8, int4) ,
OPERATOR 5> (int8, int4) ,
FUNCTION 1 btint84cmp(int8, int4) ;

Notice that this definition “overloads” the operator strategy and support function numbers. This is al-
lowed (for B-tree operator classes only) so long as each instance of a particular number has a different
right-hand data type. The instances that are not cross-type are the default or primary operators of the
operator class.

GiST indexes do not allow overloading of strategy or support function numbers, but it is still possible
to get the effect of supporting multiple right-hand data types, by assigning a distinct strategy number
to each operator that needs to be supported. Theconsistent support function must determine what
it needs to do based on the strategy number, and must be prepared to accept comparison values of the
appropriate data types.

31.14.6. System Dependencies on Operator Classes

PostgreSQL uses operator classes to infer the properties of operators in more ways than just whether
they can be used with indexes. Therefore, you might want to create operator classes even if you have
no intention of indexing any columns of your data type.

495

Chapter 31. Extending SQL

In particular, there are SQL features such asORDER BYandDISTINCT that require comparison and
sorting of values. To implement these features on a user-defined data type, PostgreSQL looks for the
default B-tree operator class for the data type. The “equals” member of this operator class defines the
system’s notion of equality of values forGROUP BYandDISTINCT , and the sort ordering imposed by
the operator class defines the defaultORDER BYordering.

Comparison of arrays of user-defined types also relies on the semantics defined by the default B-tree
operator class.

If there is no default B-tree operator class for a data type, the system will look for a default hash
operator class. But since that kind of operator class only provides equality, in practice it is only
enough to support array equality.

When there is no default operator class for a data type, you will get errors like “could not identify an
ordering operator” if you try to use these SQL features with the data type.

Note: In PostgreSQL versions before 7.4, sorting and grouping operations would implicitly use
operators named =, <, and >. The new behavior of relying on default operator classes avoids
having to make any assumption about the behavior of operators with particular names.

31.14.7. Special Features of Operator Classes

There are two special features of operator classes that we have not discussed yet, mainly because they
are not useful with the most commonly used index methods.

Normally, declaring an operator as a member of an operator class means that the index method can
retrieve exactly the set of rows that satisfy aWHEREcondition using the operator. For example,

SELECT * FROM table WHERE integer_column < 4;

can be satisfied exactly by a B-tree index on the integer column. But there are cases where an index is
useful as an inexact guide to the matching rows. For example, if an R-tree index stores only bounding
boxes for objects, then it cannot exactly satisfy aWHEREcondition that tests overlap between non-
rectangular objects such as polygons. Yet we could use the index to find objects whose bounding box
overlaps the bounding box of the target object, and then do the exact overlap test only on the objects
found by the index. If this scenario applies, the index is said to be “lossy” for the operator, and we add
RECHECKto theOPERATORclause in theCREATE OPERATOR CLASScommand.RECHECKis valid if
the index is guaranteed to return all the required rows, plus perhaps some additional rows, which can
be eliminated by performing the original operator invocation.

Consider again the situation where we are storing in the index only the bounding box of a complex
object such as a polygon. In this case there’s not much value in storing the whole polygon in the index
entry — we may as well store just a simpler object of typebox . This situation is expressed by the
STORAGEoption inCREATE OPERATOR CLASS: we’d write something like

CREATE OPERATOR CLASS polygon_ops
DEFAULT FOR TYPE polygon USING gist AS

...
STORAGE box;

At present, only the GiST index method supports aSTORAGEtype that’s different from the column data
type. The GiSTcompress anddecompress support routines must deal with data-type conversion
whenSTORAGEis used.

496

Chapter 32. Triggers
This chapter describes how to write trigger functions. Trigger functions can be written in C or in
some of the available procedural languages. It is not currently possible to write a SQL-language
trigger function.

32.1. Overview of Trigger Behavior
A trigger can be defined to execute before or after anINSERT, UPDATE, or DELETEoperation, either
once per modified row, or once per SQL statement. If a trigger event occurs, the trigger’s function is
called at the appropriate time to handle the event.

The trigger function must be defined before the trigger itself can be created. The trigger function must
be declared as a function taking no arguments and returning typetrigger . (The trigger function
receives its input through a specially-passedTriggerData structure, not in the form of ordinary
function arguments.)

Once a suitable trigger function has been created, the trigger is established withCREATE TRIGGER.
The same trigger function can be used for multiple triggers.

There are two types of triggers: per-row triggers and per-statement triggers. In a per-row trigger, the
trigger function is invoked once for every row that is affected by the statement that fired the trigger.
In contrast, a per-statement trigger is invoked only once when an appropriate statement is executed,
regardless of the number of rows affected by that statement. In particular, a statement that affects
zero rows will still result in the execution of any applicable per-statement triggers. These two types
of triggers are sometimes called “row-level triggers” and “statement-level triggers”, respectively.

Statement-level “before” triggers naturally fire before the statement starts to do anything, while
statement-level “after” triggers fire at the very end of the statement. Row-level “before” triggers fire
immediately before a particular row is operated on, while row-level “after” triggers fire at the end of
the statement (but before any statement-level “after” triggers).

Trigger functions invoked by per-statement triggers should always returnNULL. Trigger functions
invoked by per-row triggers can return a table row (a value of typeHeapTuple) to the calling executor,
if they choose. A row-level trigger fired before an operation has the following choices:

• It can returnNULL to skip the operation for the current row. This instructs the executor to not
perform the row-level operation that invoked the trigger (the insertion or modification of a particular
table row).

• For row-levelINSERT andUPDATEtriggers only, the returned row becomes the row that will be
inserted or will replace the row being updated. This allows the trigger function to modify the row
being inserted or updated.

A row-level before trigger that does not intend to cause either of these behaviors must be careful to
return as its result the same row that was passed in (that is, theNEWrow for INSERT andUPDATE

triggers, theOLDrow for DELETEtriggers).

The return value is ignored for row-level triggers fired after an operation, and so they may as well
returnNULL.

If more than one trigger is defined for the same event on the same relation, the triggers will be fired in
alphabetical order by trigger name. In the case of before triggers, the possibly-modified row returned
by each trigger becomes the input to the next trigger. If any before trigger returnsNULL, the operation
is abandoned and subsequent triggers are not fired.

497

Chapter 32. Triggers

Typically, row before triggers are used for checking or modifying the data that will be inserted or
updated. For example, a before trigger might be used to insert the current time into a timestamp
column, or to check that two elements of the row are consistent. Row after triggers are most sensibly
used to propagate the updates to other tables, or make consistency checks against other tables. The
reason for this division of labor is that an after trigger can be certain it is seeing the final value of the
row, while a before trigger cannot; there might be other before triggers firing after it. If you have no
specific reason to make a trigger before or after, the before case is more efficient, since the information
about the operation doesn’t have to be saved until end of statement.

If a trigger function executes SQL commands then these commands may fire triggers again. This is
known as cascading triggers. There is no direct limitation on the number of cascade levels. It is pos-
sible for cascades to cause a recursive invocation of the same trigger; for example, anINSERT trigger
might execute a command that inserts an additional row into the same table, causing theINSERT trig-
ger to be fired again. It is the trigger programmer’s responsibility to avoid infinite recursion in such
scenarios.

When a trigger is being defined, arguments can be specified for it. The purpose of including argu-
ments in the trigger definition is to allow different triggers with similar requirements to call the same
function. As an example, there could be a generalized trigger function that takes as its arguments two
column names and puts the current user in one and the current time stamp in the other. Properly writ-
ten, this trigger function would be independent of the specific table it is triggering on. So the same
function could be used forINSERT events on any table with suitable columns, to automatically track
creation of records in a transaction table for example. It could also be used to track last-update events
if defined as anUPDATEtrigger.

Each programming language that supports triggers has its own method for making the trigger input
data available to the trigger function. This input data includes the type of trigger event (e.g.,INSERT

or UPDATE) as well as any arguments that were listed inCREATE TRIGGER. For a row-level trigger,
the input data also includes theNEWrow for INSERT andUPDATEtriggers, and/or theOLDrow for
UPDATEandDELETEtriggers. Statement-level triggers do not currently have any way to examine the
individual row(s) modified by the statement.

32.2. Visibility of Data Changes
If you execute SQL commands in your trigger function, and these commands access the table that the
trigger is for, then you need to be aware of the data visibility rules, because they determine whether
these SQL commands will see the data change that the trigger is fired for. Briefly:

• Statement-level triggers follow simple visibility rules: none of the changes made by a statement are
visible to statement-level triggers that are invoked before the statement, whereas all modifications
are visible to statement-level after triggers.

• The data change (insertion, update, or deletion) causing the trigger to fire is naturallynot visible to
SQL commands executed in a row-level before trigger, because it hasn’t happened yet.

• However, SQL commands executed in a row-level before triggerwill see the effects of data changes
for rows previously processed in the same outer command. This requires caution, since the ordering
of these change events is not in general predictable; a SQL command that affects multiple rows may
visit the rows in any order.

• When a row-level after trigger is fired, all data changes made by the outer command are already
complete, and are visible to the invoked trigger function.

498

Chapter 32. Triggers

Further information about data visibility rules can be found inSection 39.4. The example inSection
32.4contains a demonstration of these rules.

32.3. Writing Trigger Functions in C
This section describes the low-level details of the interface to a trigger function. This information is
only needed when writing a trigger function in C. If you are using a higher-level language then these
details are handled for you. The documentation of each procedural language explains how to write a
trigger in that language.

Trigger functions must use the “version 1” function manager interface.

When a function is called by the trigger manager, it is not passed any normal arguments, but it is
passed a “context” pointer pointing to aTriggerData structure. C functions can check whether they
were called from the trigger manager or not by executing the macro

CALLED_AS_TRIGGER(fcinfo)

which expands to

((fcinfo)->context != NULL && IsA((fcinfo)->context, TriggerData))

If this returns true, then it is safe to castfcinfo->context to typeTriggerData * and make use
of the pointed-toTriggerData structure. The function mustnot alter theTriggerData structure or
any of the data it points to.

struct TriggerData is defined incommands/trigger.h :

typedef struct TriggerData
{

NodeTag type;
TriggerEvent tg_event;
Relation tg_relation;
HeapTuple tg_trigtuple;
HeapTuple tg_newtuple;
Trigger *tg_trigger;
Buffer tg_trigtuplebuf;
Buffer tg_newtuplebuf;

} TriggerData;

where the members are defined as follows:

type

Always T_TriggerData .

tg_event

Describes the event for which the function is called. You may use the following macros to exam-
ine tg_event :

TRIGGER_FIRED_BEFORE(tg_event)

Returns true if the trigger fired before the operation.

TRIGGER_FIRED_AFTER(tg_event)

Returns true if the trigger fired after the operation.

499

Chapter 32. Triggers

TRIGGER_FIRED_FOR_ROW(tg_event)

Returns true if the trigger fired for a row-level event.

TRIGGER_FIRED_FOR_STATEMENT(tg_event)

Returns true if the trigger fired for a statement-level event.

TRIGGER_FIRED_BY_INSERT(tg_event)

Returns true if the trigger was fired by anINSERT command.

TRIGGER_FIRED_BY_UPDATE(tg_event)

Returns true if the trigger was fired by anUPDATEcommand.

TRIGGER_FIRED_BY_DELETE(tg_event)

Returns true if the trigger was fired by aDELETEcommand.

tg_relation

A pointer to a structure describing the relation that the trigger fired for. Look atutils/rel.h for
details about this structure. The most interesting things aretg_relation->rd_att (descriptor
of the relation tuples) andtg_relation->rd_rel->relname (relation name; the type is not
char* but NameData; useSPI_getrelname(tg_relation) to get achar* if you need a
copy of the name).

tg_trigtuple

A pointer to the row for which the trigger was fired. This is the row being inserted, updated, or
deleted. If this trigger was fired for anINSERT or DELETEthen this is what you should return
from the function if you don’t want to replace the row with a different one (in the case ofINSERT)
or skip the operation.

tg_newtuple

A pointer to the new version of the row, if the trigger was fired for anUPDATE, andNULL if it is
for an INSERT or aDELETE. This is what you have to return from the function if the event is an
UPDATEand you don’t want to replace this row by a different one or skip the operation.

tg_trigger

A pointer to a structure of typeTrigger , defined inutils/rel.h :

typedef struct Trigger
{

Oid tgoid;
char *tgname;
Oid tgfoid;
int16 tgtype;
bool tgenabled;
bool tgisconstraint;
Oid tgconstrrelid;
bool tgdeferrable;
bool tginitdeferred;
int16 tgnargs;
int16 tgattr[FUNC_MAX_ARGS];
char **tgargs;

} Trigger;

500

Chapter 32. Triggers

wheretgname is the trigger’s name,tgnargs is number of arguments intgargs , andtgargs

is an array of pointers to the arguments specified in theCREATE TRIGGERstatement. The other
members are for internal use only.

tg_trigtuplebuf

The buffer containingtg_trigtuple , or InvalidBuffer if there is no such tuple or it is not
stored in a disk buffer.

tg_newtuplebuf

The buffer containingtg_newtuple , or InvalidBuffer if there is no such tuple or it is not
stored in a disk buffer.

A trigger function must return either aHeapTuple pointer or aNULLpointer (not an SQL null value,
that is, do not setisNull true). Be careful to return eithertg_trigtuple or tg_newtuple , as
appropriate, if you don’t want to modify the row being operated on.

32.4. A Complete Example
Here is a very simple example of a trigger function written in C. (Examples of triggers written in
procedural languages may be found in the documentation of the procedural languages.)

The functiontrigf reports the number of rows in the tablettest and skips the actual operation
if the command attempts to insert a null value into the columnx . (So the trigger acts as a not-null
constraint but doesn’t abort the transaction.)

First, the table definition:

CREATE TABLE ttest (
x integer

);

This is the source code of the trigger function:

#include "postgres.h"
#include "executor/spi.h" /* this is what you need to work with SPI */
#include "commands/trigger.h" /* ... and triggers */

extern Datum trigf(PG_FUNCTION_ARGS);

PG_FUNCTION_INFO_V1(trigf);

Datum
trigf(PG_FUNCTION_ARGS)
{

TriggerData *trigdata = (TriggerData *) fcinfo->context;
TupleDesc tupdesc;
HeapTuple rettuple;
char *when;
bool checknull = false;
bool isnull;
int ret, i;

501

Chapter 32. Triggers

/* make sure it’s called as a trigger at all */
if (!CALLED_AS_TRIGGER(fcinfo))

elog(ERROR, "trigf: not called by trigger manager");

/* tuple to return to executor */
if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))

rettuple = trigdata->tg_newtuple;
else

rettuple = trigdata->tg_trigtuple;

/* check for null values */
if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event)

&& TRIGGER_FIRED_BEFORE(trigdata->tg_event))
checknull = true;

if (TRIGGER_FIRED_BEFORE(trigdata->tg_event))
when = "before";

else
when = "after ";

tupdesc = trigdata->tg_relation->rd_att;

/* connect to SPI manager */
if ((ret = SPI_connect()) < 0)

elog(INFO, "trigf (fired %s): SPI_connect returned %d", when, ret);

/* get number of rows in table */
ret = SPI_exec("SELECT count(*) FROM ttest", 0);

if (ret < 0)
elog(NOTICE, "trigf (fired %s): SPI_exec returned %d", when, ret);

/* count(*) returns int8, so be careful to convert */
i = DatumGetInt64(SPI_getbinval(SPI_tuptable->vals[0],

SPI_tuptable->tupdesc,
1,
&isnull));

elog (INFO, "trigf (fired %s): there are %d rows in ttest", when, i);

SPI_finish();

if (checknull)
{

SPI_getbinval(rettuple, tupdesc, 1, &isnull);
if (isnull)

rettuple = NULL;
}

return PointerGetDatum(rettuple);
}

After you have compiled the source code, declare the function and the triggers:

CREATE FUNCTION trigf() RETURNS trigger
AS ’ filename ’

502

Chapter 32. Triggers

LANGUAGE C;

CREATE TRIGGER tbefore BEFORE INSERT OR UPDATE OR DELETE ON ttest
FOR EACH ROW EXECUTE PROCEDURE trigf();

CREATE TRIGGER tafter AFTER INSERT OR UPDATE OR DELETE ON ttest
FOR EACH ROW EXECUTE PROCEDURE trigf();

Now you can test the operation of the trigger:

=> INSERT INTO ttest VALUES (NULL);
INFO: trigf (fired before): there are 0 rows in ttest
INSERT 0 0

-- Insertion skipped and AFTER trigger is not fired

=> SELECT * FROM ttest;
x

(0 rows)

=> INSERT INTO ttest VALUES (1);
INFO: trigf (fired before): there are 0 rows in ttest
INFO: trigf (fired after): there are 1 rows in ttest

^^^^^^^^
remember what we said about visibility.

INSERT 167793 1
vac=> SELECT * FROM ttest;

x

1
(1 row)

=> INSERT INTO ttest SELECT x * 2 FROM ttest;
INFO: trigf (fired before): there are 1 rows in ttest
INFO: trigf (fired after): there are 2 rows in ttest

^^^^^^
remember what we said about visibility.

INSERT 167794 1
=> SELECT * FROM ttest;

x

1
2

(2 rows)

=> UPDATE ttest SET x = NULL WHERE x = 2;
INFO: trigf (fired before): there are 2 rows in ttest
UPDATE 0
=> UPDATE ttest SET x = 4 WHERE x = 2;
INFO: trigf (fired before): there are 2 rows in ttest
INFO: trigf (fired after): there are 2 rows in ttest
UPDATE 1
vac=> SELECT * FROM ttest;

x

503

Chapter 32. Triggers

1
4

(2 rows)

=> DELETE FROM ttest;
INFO: trigf (fired before): there are 2 rows in ttest
INFO: trigf (fired after): there are 1 rows in ttest
INFO: trigf (fired before): there are 1 rows in ttest
INFO: trigf (fired after): there are 0 rows in ttest

^^^^^^
remember what we said about visibility.

DELETE 2
=> SELECT * FROM ttest;

x

(0 rows)

There are more complex examples insrc/test/regress/regress.c and incontrib/spi .

504

Chapter 33. The Rule System
This chapter discusses the rule system in PostgreSQL. Production rule systems are conceptually sim-
ple, but there are many subtle points involved in actually using them.

Some other database systems define active database rules, which are usually stored procedures and
triggers. In PostgreSQL, these can be implemented using functions and triggers as well.

The rule system (more precisely speaking, the query rewrite rule system) is totally different from
stored procedures and triggers. It modifies queries to take rules into consideration, and then passes
the modified query to the query planner for planning and execution. It is very powerful, and can
be used for many things such as query language procedures, views, and versions. The theoretical
foundations and the power of this rule system are also discussed inOn Rules, Procedures, Caching
and Views in Database SystemsandA Unified Framework for Version Modeling Using Production
Rules in a Database System.

33.1. The Query Tree
To understand how the rule system works it is necessary to know when it is invoked and what its input
and results are.

The rule system is located between the parser and the planner. It takes the output of the parser, one
query tree, and the user-defined rewrite rules, which are also query trees with some extra information,
and creates zero or more query trees as result. So its input and output are always things the parser
itself could have produced and thus, anything it sees is basically representable as an SQL statement.

Now what is a query tree? It is an internal representation of an SQL statement where the single
parts that it is built from are stored separately. These query trees can be shown in the server log
if you set the configuration parametersdebug_print_parse , debug_print_rewritten , or
debug_print_plan . The rule actions are also stored as query trees, in the system catalog
pg_rewrite . They are not formatted like the log output, but they contain exactly the same
information.

Reading a raw query tree requires some experience. But since SQL representations of query trees are
sufficient to understand the rule system, this chapter will not teach how to read them.

When reading the SQL representations of the query trees in this chapter it is necessary to be able to
identify the parts the statement is broken into when it is in the query tree structure. The parts of a
query tree are

the command type

This is a simple value telling which command (SELECT, INSERT, UPDATE, DELETE) produced
the query tree.

the range table

The range table is a list of relations that are used in the query. In aSELECTstatement these are
the relations given after theFROMkey word.

Every range table entry identifies a table or view and tells by which name it is called in the other
parts of the query. In the query tree, the range table entries are referenced by number rather than
by name, so here it doesn’t matter if there are duplicate names as it would in an SQL statement.
This can happen after the range tables of rules have been merged in. The examples in this chapter
will not have this situation.

505

Chapter 33. The Rule System

the result relation

This is an index into the range table that identifies the relation where the results of the query go.

SELECTqueries normally don’t have a result relation. The special case of aSELECT INTO is
mostly identical to aCREATE TABLEfollowed by aINSERT ... SELECT and is not discussed
separately here.

For INSERT, UPDATE, andDELETEcommands, the result relation is the table (or view!) where
the changes are to take effect.

the target list

The target list is a list of expressions that define the result of the query. In the case of aSELECT,
these expressions are the ones that build the final output of the query. They correspond to the
expressions between the key wordsSELECTand FROM. (* is just an abbreviation for all the
column names of a relation. It is expanded by the parser into the individual columns, so the rule
system never sees it.)

DELETEcommands don’t need a target list because they don’t produce any result. In fact, the
planner will add a special CTID entry to the empty target list, but this is after the rule system and
will be discussed later; for the rule system, the target list is empty.

For INSERT commands, the target list describes the new rows that should go into the result
relation. It consists of the expressions in theVALUESclause or the ones from theSELECTclause
in INSERT ... SELECT . The first step of the rewrite process adds target list entries for any
columns that were not assigned to by the original command but have defaults. Any remaining
columns (with neither a given value nor a default) will be filled in by the planner with a constant
null expression.

For UPDATEcommands, the target list describes the new rows that should replace the old ones.
In the rule system, it contains just the expressions from theSET column = expression part
of the command. The planner will handle missing columns by inserting expressions that copy
the values from the old row into the new one. And it will add the special CTID entry just as for
DELETE, too.

Every entry in the target list contains an expression that can be a constant value, a variable
pointing to a column of one of the relations in the range table, a parameter, or an expression tree
made of function calls, constants, variables, operators, etc.

the qualification

The query’s qualification is an expression much like one of those contained in the target list
entries. The result value of this expression is a Boolean that tells whether the operation (INSERT,
UPDATE, DELETE, or SELECT) for the final result row should be executed or not. It corresponds
to theWHEREclause of an SQL statement.

the join tree

The query’s join tree shows the structure of theFROMclause. For a simple query likeSELECT

... FROM a, b, c , the join tree is just a list of theFROMitems, because we are allowed to
join them in any order. But whenJOIN expressions, particularly outer joins, are used, we have
to join in the order shown by the joins. In that case, the join tree shows the structure of the
JOIN expressions. The restrictions associated with particularJOIN clauses (fromONor USING

expressions) are stored as qualification expressions attached to those join-tree nodes. It turns out
to be convenient to store the top-levelWHEREexpression as a qualification attached to the top-
level join-tree item, too. So really the join tree represents both theFROMandWHEREclauses of a
SELECT.

506

Chapter 33. The Rule System

the others

The other parts of the query tree like theORDER BYclause aren’t of interest here. The rule system
substitutes some entries there while applying rules, but that doesn’t have much to do with the
fundamentals of the rule system.

33.2. Views and the Rule System
Views in PostgreSQL are implemented using the rule system. In fact, there is essentially no difference
between

CREATE VIEW myview AS SELECT * FROM mytab;

compared against the two commands

CREATE TABLE myview (same column list as mytab);
CREATE RULE "_RETURN" AS ON SELECT TO myview DO INSTEAD

SELECT * FROM mytab;

because this is exactly what theCREATE VIEWcommand does internally. This has some side effects.
One of them is that the information about a view in the PostgreSQL system catalogs is exactly the
same as it is for a table. So for the parser, there is absolutely no difference between a table and a view.
They are the same thing: relations.

33.2.1. How SELECTRules Work

RulesON SELECTare applied to all queries as the last step, even if the command given is anINSERT,
UPDATEor DELETE. And they have different semantics from rules on the other command types in that
they modify the query tree in place instead of creating a new one. SoSELECTrules are described first.

Currently, there can be only one action in anON SELECTrule, and it must be an unconditionalSELECT

action that isINSTEAD. This restriction was required to make rules safe enough to open them for
ordinary users, and it restrictsON SELECTrules to act like views.

The examples for this chapter are two join views that do some calculations and some more views using
them in turn. One of the two first views is customized later by adding rules forINSERT, UPDATE, and
DELETEoperations so that the final result will be a view that behaves like a real table with some magic
functionality. This is not such a simple example to start from and this makes things harder to get into.
But it’s better to have one example that covers all the points discussed step by step rather than having
many different ones that might mix up in mind.

For the example, we need a littlemin function that returns the lower of 2 integer values. We create
that as

CREATE FUNCTION min(integer, integer) RETURNS integer AS $$
SELECT CASE WHEN $1 < $2 THEN $1 ELSE $2 END

$$ LANGUAGE SQL STRICT;

The real tables we need in the first two rule system descriptions are these:

CREATE TABLE shoe_data (

507

Chapter 33. The Rule System

shoename text, -- primary key
sh_avail integer, -- available number of pairs
slcolor text, -- preferred shoelace color
slminlen real, -- minimum shoelace length
slmaxlen real, -- maximum shoelace length
slunit text -- length unit

);

CREATE TABLE shoelace_data (
sl_name text, -- primary key
sl_avail integer, -- available number of pairs
sl_color text, -- shoelace color
sl_len real, -- shoelace length
sl_unit text -- length unit

);

CREATE TABLE unit (
un_name text, -- primary key
un_fact real -- factor to transform to cm

);

As you can see, they represent shoe-store data.

The views are created as

CREATE VIEW shoe AS
SELECT sh.shoename,

sh.sh_avail,
sh.slcolor,
sh.slminlen,
sh.slminlen * un.un_fact AS slminlen_cm,
sh.slmaxlen,
sh.slmaxlen * un.un_fact AS slmaxlen_cm,
sh.slunit

FROM shoe_data sh, unit un
WHERE sh.slunit = un.un_name;

CREATE VIEW shoelace AS
SELECT s.sl_name,

s.sl_avail,
s.sl_color,
s.sl_len,
s.sl_unit,
s.sl_len * u.un_fact AS sl_len_cm

FROM shoelace_data s, unit u
WHERE s.sl_unit = u.un_name;

CREATE VIEW shoe_ready AS
SELECT rsh.shoename,

rsh.sh_avail,
rsl.sl_name,
rsl.sl_avail,
min(rsh.sh_avail, rsl.sl_avail) AS total_avail

FROM shoe rsh, shoelace rsl
WHERE rsl.sl_color = rsh.slcolor

AND rsl.sl_len_cm >= rsh.slminlen_cm
AND rsl.sl_len_cm <= rsh.slmaxlen_cm;

508

Chapter 33. The Rule System

TheCREATE VIEWcommand for theshoelace view (which is the simplest one we have) will create
a relationshoelace and an entry inpg_rewrite that tells that there is a rewrite rule that must be
applied whenever the relationshoelace is referenced in a query’s range table. The rule has no rule
qualification (discussed later, with the non-SELECTrules, sinceSELECTrules currently cannot have
them) and it isINSTEAD. Note that rule qualifications are not the same as query qualifications. The
action of our rule has a query qualification. The action of the rule is one query tree that is a copy of
theSELECTstatement in the view creation command.

Note: The two extra range table entries for NEWand OLD(named *NEW* and *OLD* for historical
reasons in the printed query tree) you can see in the pg_rewrite entry aren’t of interest for
SELECTrules.

Now we populateunit , shoe_data andshoelace_data and run a simple query on a view:

INSERT INTO unit VALUES (’cm’, 1.0);
INSERT INTO unit VALUES (’m’, 100.0);
INSERT INTO unit VALUES (’inch’, 2.54);

INSERT INTO shoe_data VALUES (’sh1’, 2, ’black’, 70.0, 90.0, ’cm’);
INSERT INTO shoe_data VALUES (’sh2’, 0, ’black’, 30.0, 40.0, ’inch’);
INSERT INTO shoe_data VALUES (’sh3’, 4, ’brown’, 50.0, 65.0, ’cm’);
INSERT INTO shoe_data VALUES (’sh4’, 3, ’brown’, 40.0, 50.0, ’inch’);

INSERT INTO shoelace_data VALUES (’sl1’, 5, ’black’, 80.0, ’cm’);
INSERT INTO shoelace_data VALUES (’sl2’, 6, ’black’, 100.0, ’cm’);
INSERT INTO shoelace_data VALUES (’sl3’, 0, ’black’, 35.0 , ’inch’);
INSERT INTO shoelace_data VALUES (’sl4’, 8, ’black’, 40.0 , ’inch’);
INSERT INTO shoelace_data VALUES (’sl5’, 4, ’brown’, 1.0 , ’m’);
INSERT INTO shoelace_data VALUES (’sl6’, 0, ’brown’, 0.9 , ’m’);
INSERT INTO shoelace_data VALUES (’sl7’, 7, ’brown’, 60 , ’cm’);
INSERT INTO shoelace_data VALUES (’sl8’, 1, ’brown’, 40 , ’inch’);

SELECT * FROM shoelace;

sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
-----------+----------+----------+--------+---------+-----------

sl1 | 5 | black | 80 | cm | 80
sl2 | 6 | black | 100 | cm | 100
sl7 | 7 | brown | 60 | cm | 60
sl3 | 0 | black | 35 | inch | 88.9
sl4 | 8 | black | 40 | inch | 101.6
sl8 | 1 | brown | 40 | inch | 101.6
sl5 | 4 | brown | 1 | m | 100
sl6 | 0 | brown | 0.9 | m | 90

(8 rows)

This is the simplestSELECTyou can do on our views, so we take this opportunity to explain the basics
of view rules. TheSELECT * FROM shoelace was interpreted by the parser and produced the query
tree

SELECT shoelace.sl_name, shoelace.sl_avail,
shoelace.sl_color, shoelace.sl_len,
shoelace.sl_unit, shoelace.sl_len_cm

509

Chapter 33. The Rule System

FROM shoelace shoelace;

and this is given to the rule system. The rule system walks through the range table and checks if there
are rules for any relation. When processing the range table entry forshoelace (the only one up to
now) it finds the_RETURNrule with the query tree

SELECT s.sl_name, s.sl_avail,
s.sl_color, s.sl_len, s.sl_unit,
s.sl_len * u.un_fact AS sl_len_cm

FROM shoelace *OLD*, shoelace *NEW*,
shoelace_data s, unit u

WHERE s.sl_unit = u.un_name;

To expand the view, the rewriter simply creates a subquery range-table entry containing the rule’s
action query tree, and substitutes this range table entry for the original one that referenced the view.
The resulting rewritten query tree is almost the same as if you had typed

SELECT shoelace.sl_name, shoelace.sl_avail,
shoelace.sl_color, shoelace.sl_len,
shoelace.sl_unit, shoelace.sl_len_cm

FROM (SELECT s.sl_name,
s.sl_avail,
s.sl_color,
s.sl_len,
s.sl_unit,
s.sl_len * u.un_fact AS sl_len_cm

FROM shoelace_data s, unit u
WHERE s.sl_unit = u.un_name) shoelace;

There is one difference however: the subquery’s range table has two extra entriesshoelace *OLD*

andshoelace *NEW* . These entries don’t participate directly in the query, since they aren’t refer-
enced by the subquery’s join tree or target list. The rewriter uses them to store the access privilege
check information that was originally present in the range-table entry that referenced the view. In this
way, the executor will still check that the user has proper privileges to access the view, even though
there’s no direct use of the view in the rewritten query.

That was the first rule applied. The rule system will continue checking the remaining range-table
entries in the top query (in this example there are no more), and it will recursively check the range-
table entries in the added subquery to see if any of them reference views. (But it won’t expand*OLD*

or *NEW* — otherwise we’d have infinite recursion!) In this example, there are no rewrite rules for
shoelace_data or unit , so rewriting is complete and the above is the final result given to the
planner.

No we want to write a query that finds out for which shoes currently in the store we have the matching
shoelaces (color and length) and where the total number of exactly matching pairs is greater or equal
to two.

SELECT * FROM shoe_ready WHERE total_avail >= 2;

shoename | sh_avail | sl_name | sl_avail | total_avail
----------+----------+---------+----------+-------------

sh1 | 2 | sl1 | 5 | 2
sh3 | 4 | sl7 | 7 | 4

(2 rows)

510

Chapter 33. The Rule System

The output of the parser this time is the query tree

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
shoe_ready.sl_name, shoe_ready.sl_avail,
shoe_ready.total_avail

FROM shoe_ready shoe_ready
WHERE shoe_ready.total_avail >= 2;

The first rule applied will be the one for theshoe_ready view and it results in the query tree

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
shoe_ready.sl_name, shoe_ready.sl_avail,
shoe_ready.total_avail

FROM (SELECT rsh.shoename,
rsh.sh_avail,
rsl.sl_name,
rsl.sl_avail,
min(rsh.sh_avail, rsl.sl_avail) AS total_avail

FROM shoe rsh, shoelace rsl
WHERE rsl.sl_color = rsh.slcolor

AND rsl.sl_len_cm >= rsh.slminlen_cm
AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready

WHERE shoe_ready.total_avail >= 2;

Similarly, the rules forshoe and shoelace are substituted into the range table of the subquery,
leading to a three-level final query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
shoe_ready.sl_name, shoe_ready.sl_avail,
shoe_ready.total_avail

FROM (SELECT rsh.shoename,
rsh.sh_avail,
rsl.sl_name,
rsl.sl_avail,
min(rsh.sh_avail, rsl.sl_avail) AS total_avail

FROM (SELECT sh.shoename,
sh.sh_avail,
sh.slcolor,
sh.slminlen,
sh.slminlen * un.un_fact AS slminlen_cm,
sh.slmaxlen,
sh.slmaxlen * un.un_fact AS slmaxlen_cm,
sh.slunit

FROM shoe_data sh, unit un
WHERE sh.slunit = un.un_name) rsh,

(SELECT s.sl_name,
s.sl_avail,
s.sl_color,
s.sl_len,
s.sl_unit,
s.sl_len * u.un_fact AS sl_len_cm

FROM shoelace_data s, unit u
WHERE s.sl_unit = u.un_name) rsl

WHERE rsl.sl_color = rsh.slcolor
AND rsl.sl_len_cm >= rsh.slminlen_cm
AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready

511

Chapter 33. The Rule System

WHERE shoe_ready.total_avail > 2;

It turns out that the planner will collapse this tree into a two-level query tree: the bottommostSELECT

commands will be “pulled up” into the middleSELECTsince there’s no need to process them sep-
arately. But the middleSELECT will remain separate from the top, because it contains aggregate
functions. If we pulled those up it would change the behavior of the topmostSELECT, which we don’t
want. However, collapsing the query tree is an optimization that the rewrite system doesn’t have to
concern itself with.

Note: There is currently no recursion stopping mechanism for view rules in the rule system (only
for the other kinds of rules). This doesn’t hurt much, because the only way to push this into an
endless loop (bloating up the server process until it reaches the memory limit) is to create tables
and then setup the view rules by hand with CREATE RULEin such a way, that one selects from the
other that selects from the one. This could never happen if CREATE VIEWis used because for the
first CREATE VIEW, the second relation does not exist and thus the first view cannot select from
the second.

33.2.2. View Rules in Non- SELECTStatements

Two details of the query tree aren’t touched in the description of view rules above. These are the
command type and the result relation. In fact, view rules don’t need this information.

There are only a few differences between a query tree for aSELECTand one for any other command.
Obviously, they have a different command type and for a command other than aSELECT, the result
relation points to the range-table entry where the result should go. Everything else is absolutely the
same. So having two tablest1 andt2 with columnsa andb, the query trees for the two statements

SELECT t2.b FROM t1, t2 WHERE t1.a = t2.a;

UPDATE t1 SET b = t2.b WHERE t1.a = t2.a;

are nearly identical. In particular:

• The range tables contain entries for the tablest1 andt2 .

• The target lists contain one variable that points to columnb of the range table entry for tablet2 .

• The qualification expressions compare the columnsa of both range-table entries for equality.

• The join trees show a simple join betweent1 andt2 .

The consequence is, that both query trees result in similar execution plans: They are both joins over
the two tables. For theUPDATEthe missing columns fromt1 are added to the target list by the planner
and the final query tree will read as

UPDATE t1 SET a = t1.a, b = t2.b WHERE t1.a = t2.a;

and thus the executor run over the join will produce exactly the same result set as a

SELECT t1.a, t2.b FROM t1, t2 WHERE t1.a = t2.a;

512

Chapter 33. The Rule System

will do. But there is a little problem inUPDATE: The executor does not care what the results from the
join it is doing are meant for. It just produces a result set of rows. The difference that one is aSELECT

command and the other is anUPDATEis handled in the caller of the executor. The caller still knows
(looking at the query tree) that this is anUPDATE, and it knows that this result should go into tablet1 .
But which of the rows that are there has to be replaced by the new row?

To resolve this problem, another entry is added to the target list inUPDATE(and also inDELETE)
statements: the current tuple ID (CTID). This is a system column containing the file block number
and position in the block for the row. Knowing the table, the CTID can be used to retrieve the original
row of t1 to be updated. After adding the CTID to the target list, the query actually looks like

SELECT t1.a, t2.b, t1.ctid FROM t1, t2 WHERE t1.a = t2.a;

Now another detail of PostgreSQL enters the stage. Old table rows aren’t overwritten, and this is
why ROLLBACKis fast. In anUPDATE, the new result row is inserted into the table (after stripping the
CTID) and in the row header of the old row, which the CTID pointed to, thecmax andxmax entries
are set to the current command counter and current transaction ID. Thus the old row is hidden, and
after the transaction committed the vacuum cleaner can really move it out.

Knowing all that, we can simply apply view rules in absolutely the same way to any command. There
is no difference.

33.2.3. The Power of Views in PostgreSQL

The above demonstrates how the rule system incorporates view definitions into the original query
tree. In the second example, a simpleSELECTfrom one view created a final query tree that is a join
of 4 tables (unit was used twice with different names).

The benefit of implementing views with the rule system is, that the planner has all the information
about which tables have to be scanned plus the relationships between these tables plus the restrictive
qualifications from the views plus the qualifications from the original query in one single query tree.
And this is still the situation when the original query is already a join over views. The planner has
to decide which is the best path to execute the query, and the more information the planner has, the
better this decision can be. And the rule system as implemented in PostgreSQL ensures, that this is
all information available about the query up to that point.

33.2.4. Updating a View

What happens if a view is named as the target relation for anINSERT, UPDATE, or DELETE? After
doing the substitutions described above, we will have a query tree in which the result relation points
at a subquery range-table entry. This will not work, so the rewriter throws an error if it sees it has
produced such a thing.

To change this, we can define rules that modify the behavior of these kinds of commands. This is the
topic of the next section.

33.3. Rules on INSERT, UPDATE, and DELETE

Rules that are defined onINSERT, UPDATE, andDELETEare significantly different from the view rules

513

Chapter 33. The Rule System

described in the previous section. First, theirCREATE RULEcommand allows more:

• They are allowed to have no action.

• They can have multiple actions.

• They can beINSTEADor ALSO(default).

• The pseudorelationsNEWandOLDbecome useful.

• They can have rule qualifications.

Second, they don’t modify the query tree in place. Instead they create zero or more new query trees
and can throw away the original one.

33.3.1. How Update Rules Work

Keep the syntax

CREATE RULErule_name AS ON event
TO object [WHERE rule_qualification]
DO [ALSO|INSTEAD] [action | (actions) | NOTHING];

in mind. In the following,update rulesmeans rules that are defined onINSERT, UPDATE, or DELETE.

Update rules get applied by the rule system when the result relation and the command type of a query
tree are equal to the object and event given in theCREATE RULEcommand. For update rules, the rule
system creates a list of query trees. Initially the query-tree list is empty. There can be zero (NOTHING

key word), one, or multiple actions. To simplify, we will look at a rule with one action. This rule can
have a qualification or not and it can beINSTEADor ALSO(default).

What is a rule qualification? It is a restriction that tells when the actions of the rule should be done and
when not. This qualification can only reference the pseudorelationsNEWand/orOLD, which basically
represent the relation that was given as object (but with a special meaning).

So we have four cases that produce the following query trees for a one-action rule.

No qualification andALSO

the query tree from the rule action with the original query tree’s qualification added

No qualification butINSTEAD

the query tree from the rule action with the original query tree’s qualification added

Qualification given andALSO

the query tree from the rule action with the rule qualification and the original query tree’s quali-
fication added

Qualification given andINSTEAD

the query tree from the rule action with the rule qualification and the original query tree’s quali-
fication; and the original query tree with the negated rule qualification added

Finally, if the rule isALSO, the unchanged original query tree is added to the list. Since only qualified
INSTEADrules already add the original query tree, we end up with either one or two output query trees
for a rule with one action.

For ON INSERTrules, the original query (if not suppressed byINSTEAD) is done before any actions
added by rules. This allows the actions to see the inserted row(s). But forON UPDATEandON DELETE

514

Chapter 33. The Rule System

rules, the original query is done after the actions added by rules. This ensures that the actions can see
the to-be-updated or to-be-deleted rows; otherwise, the actions might do nothing because they find no
rows matching their qualifications.

The query trees generated from rule actions are thrown into the rewrite system again, and maybe more
rules get applied resulting in more or less query trees. So the query trees in the rule actions must have
either a different command type or a different result relation, otherwise, this recursive process will
end up in a loop. There is a fixed recursion limit of currently 100 iterations. If after 100 iterations
there are still update rules to apply, the rule system assumes a loop over multiple rule definitions and
reports an error.

The query trees found in the actions of thepg_rewrite system catalog are only templates. Since
they can reference the range-table entries forNEWandOLD, some substitutions have to be made before
they can be used. For any reference toNEW, the target list of the original query is searched for a
corresponding entry. If found, that entry’s expression replaces the reference. Otherwise,NEWmeans
the same asOLD(for anUPDATE) or is replaced by a null value (for anINSERT). Any reference toOLD

is replaced by a reference to the range-table entry that is the result relation.

After the system is done applying update rules, it applies view rules to the produced query tree(s).
Views cannot insert new update actions so there is no need to apply update rules to the output of view
rewriting.

33.3.1.1. A First Rule Step by Step

Say we want to trace changes to thesl_avail column in theshoelace_data relation. So we set
up a log table and a rule that conditionally writes a log entry when anUPDATEis performed on
shoelace_data .

CREATE TABLE shoelace_log (
sl_name text, -- shoelace changed
sl_avail integer, -- new available value
log_who text, -- who did it
log_when timestamp -- when

);

CREATE RULE log_shoelace AS ON UPDATE TO shoelace_data
WHERE NEW.sl_avail <> OLD.sl_avail
DO INSERT INTO shoelace_log VALUES (

NEW.sl_name,
NEW.sl_avail,
current_user,
current_timestamp

);

Now someone does:

UPDATE shoelace_data SET sl_avail = 6 WHERE sl_name = ’sl7’;

and we look at the log table:

SELECT * FROM shoelace_log;

sl_name | sl_avail | log_who | log_when
---------+----------+---------+----------------------------------

sl7 | 6 | Al | Tue Oct 20 16:14:45 1998 MET DST
(1 row)

515

Chapter 33. The Rule System

That’s what we expected. What happened in the background is the following. The parser created the
query tree

UPDATE shoelace_data SET sl_avail = 6
FROM shoelace_data shoelace_data

WHERE shoelace_data.sl_name = ’sl7’;

There is a rulelog_shoelace that isON UPDATEwith the rule qualification expression

NEW.sl_avail <> OLD.sl_avail

and the action

INSERT INTO shoelace_log VALUES (
NEW.sl_name, *NEW*.sl_avail,
current_user, current_timestamp)

FROM shoelace_data *NEW*, shoelace_data *OLD*;

(This looks a little strange since you can’t normally writeINSERT ... VALUES ... FROM . The
FROMclause here is just to indicate that there are range-table entries in the query tree for*NEW* and
OLD . These are needed so that they can be referenced by variables in theINSERT command’s query
tree.)

The rule is a qualifiedALSOrule, so the rule system has to return two query trees: the modified rule
action and the original query tree. In step 1, the range table of the original query is incorporated into
the rule’s action query tree. This results in:

INSERT INTO shoelace_log VALUES (
NEW.sl_name, *NEW*.sl_avail,
current_user, current_timestamp)

FROM shoelace_data *NEW*, shoelace_data *OLD*,
shoelace_data shoelace_data ;

In step 2, the rule qualification is added to it, so the result set is restricted to rows wheresl_avail

changes:

INSERT INTO shoelace_log VALUES (
NEW.sl_name, *NEW*.sl_avail,
current_user, current_timestamp)

FROM shoelace_data *NEW*, shoelace_data *OLD*,
shoelace_data shoelace_data

WHERE *NEW*.sl_avail <> *OLD*.sl_avail ;

(This looks even stranger, sinceINSERT ... VALUES doesn’t have aWHEREclause either, but the
planner and executor will have no difficulty with it. They need to support this same functionality
anyway forINSERT ... SELECT .)

In step 3, the original query tree’s qualification is added, restricting the result set further to only the
rows that would have been touched by the original query:

INSERT INTO shoelace_log VALUES (
NEW.sl_name, *NEW*.sl_avail,
current_user, current_timestamp)

FROM shoelace_data *NEW*, shoelace_data *OLD*,
shoelace_data shoelace_data

WHERE *NEW*.sl_avail <> *OLD*.sl_avail
AND shoelace_data.sl_name = ’sl7’ ;

516

Chapter 33. The Rule System

Step 4 replaces references toNEWby the target list entries from the original query tree or by the
matching variable references from the result relation:

INSERT INTO shoelace_log VALUES (
shoelace_data.sl_name , 6,
current_user, current_timestamp)

FROM shoelace_data *NEW*, shoelace_data *OLD*,
shoelace_data shoelace_data

WHERE6 <> *OLD*.sl_avail
AND shoelace_data.sl_name = ’sl7’;

Step 5 changesOLDreferences into result relation references:

INSERT INTO shoelace_log VALUES (
shoelace_data.sl_name, 6,
current_user, current_timestamp)

FROM shoelace_data *NEW*, shoelace_data *OLD*,
shoelace_data shoelace_data

WHERE 6<> shoelace_data.sl_avail
AND shoelace_data.sl_name = ’sl7’;

That’s it. Since the rule isALSO, we also output the original query tree. In short, the output from the
rule system is a list of two query trees that correspond to these statements:

INSERT INTO shoelace_log VALUES (
shoelace_data.sl_name, 6,
current_user, current_timestamp)

FROM shoelace_data
WHERE 6<> shoelace_data.sl_avail

AND shoelace_data.sl_name = ’sl7’;

UPDATE shoelace_data SET sl_avail = 6
WHERE sl_name = ’sl7’;

These are executed in this order, and that is exactly what the rule was meant to do.

The substitutions and the added qualifications ensure that, if the original query would be, say,

UPDATE shoelace_data SET sl_color = ’green’
WHERE sl_name = ’sl7’;

no log entry would get written. In that case, the original query tree does not contain a target list entry
for sl_avail , soNEW.sl_avail will get replaced byshoelace_data.sl_avail . Thus, the extra
command generated by the rule is

INSERT INTO shoelace_log VALUES (
shoelace_data.sl_name, shoelace_data.sl_avail ,
current_user, current_timestamp)

FROM shoelace_data
WHEREshoelace_data.sl_avail <> shoelace_data.sl_avail

AND shoelace_data.sl_name = ’sl7’;

and that qualification will never be true.

517

Chapter 33. The Rule System

It will also work if the original query modifies multiple rows. So if someone issued the command

UPDATE shoelace_data SET sl_avail = 0
WHERE sl_color = ’black’;

four rows in fact get updated (sl1 , sl2 , sl3 , andsl4). But sl3 already hassl_avail = 0 . In this
case, the original query trees qualification is different and that results in the extra query tree

INSERT INTO shoelace_log
SELECT shoelace_data.sl_name, 0,

current_user, current_timestamp
FROM shoelace_data

WHERE 0<> shoelace_data.sl_avail
AND shoelace_data.sl_color = ’black’ ;

being generated by the rule. This query tree will surely insert three new log entries. And that’s abso-
lutely correct.

Here we can see why it is important that the original query tree is executed last. If theUPDATEhad
been executed first, all the rows would have already been set to zero, so the loggingINSERT would
not find any row where0 <> shoelace_data.sl_avail .

33.3.2. Cooperation with Views

A simple way to protect view relations from the mentioned possibility that someone can try to run
INSERT, UPDATE, or DELETEon them is to let those query trees get thrown away. So we create the
rules

CREATE RULE shoe_ins_protect AS ON INSERT TO shoe
DO INSTEAD NOTHING;

CREATE RULE shoe_upd_protect AS ON UPDATE TO shoe
DO INSTEAD NOTHING;

CREATE RULE shoe_del_protect AS ON DELETE TO shoe
DO INSTEAD NOTHING;

If someone now tries to do any of these operations on the view relationshoe , the rule system will
apply these rules. Since the rules have no actions and areINSTEAD, the resulting list of query trees
will be empty and the whole query will become nothing because there is nothing left to be optimized
or executed after the rule system is done with it.

A more sophisticated way to use the rule system is to create rules that rewrite the query tree into
one that does the right operation on the real tables. To do that on theshoelace view, we create the
following rules:

CREATE RULE shoelace_ins AS ON INSERT TO shoelace
DO INSTEAD
INSERT INTO shoelace_data VALUES (

NEW.sl_name,
NEW.sl_avail,
NEW.sl_color,
NEW.sl_len,
NEW.sl_unit

);

CREATE RULE shoelace_upd AS ON UPDATE TO shoelace
DO INSTEAD

518

Chapter 33. The Rule System

UPDATE shoelace_data
SET sl_name = NEW.sl_name,

sl_avail = NEW.sl_avail,
sl_color = NEW.sl_color,
sl_len = NEW.sl_len,
sl_unit = NEW.sl_unit

WHERE sl_name = OLD.sl_name;

CREATE RULE shoelace_del AS ON DELETE TO shoelace
DO INSTEAD
DELETE FROM shoelace_data

WHERE sl_name = OLD.sl_name;

Now assume that once in a while, a pack of shoelaces arrives at the shop and a big parts list along
with it. But you don’t want to manually update theshoelace view every time. Instead we setup two
little tables: one where you can insert the items from the part list, and one with a special trick. The
creation commands for these are:

CREATE TABLE shoelace_arrive (
arr_name text,
arr_quant integer

);

CREATE TABLE shoelace_ok (
ok_name text,
ok_quant integer

);

CREATE RULE shoelace_ok_ins AS ON INSERT TO shoelace_ok
DO INSTEAD
UPDATE shoelace

SET sl_avail = sl_avail + NEW.ok_quant
WHERE sl_name = NEW.ok_name;

Now you can fill the tableshoelace_arrive with the data from the parts list:

SELECT * FROM shoelace_arrive;

arr_name | arr_quant
----------+-----------

sl3 | 10
sl6 | 20
sl8 | 20

(3 rows)

Take a quick look at the current data:

SELECT * FROM shoelace;

sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------

sl1 | 5 | black | 80 | cm | 80
sl2 | 6 | black | 100 | cm | 100
sl7 | 6 | brown | 60 | cm | 60
sl3 | 0 | black | 35 | inch | 88.9
sl4 | 8 | black | 40 | inch | 101.6

519

Chapter 33. The Rule System

sl8 | 1 | brown | 40 | inch | 101.6
sl5 | 4 | brown | 1 | m | 100
sl6 | 0 | brown | 0.9 | m | 90

(8 rows)

Now move the arrived shoelaces in:

INSERT INTO shoelace_ok SELECT * FROM shoelace_arrive;

and check the results:

SELECT * FROM shoelace ORDER BY sl_name;

sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------

sl1 | 5 | black | 80 | cm | 80
sl2 | 6 | black | 100 | cm | 100
sl7 | 6 | brown | 60 | cm | 60
sl4 | 8 | black | 40 | inch | 101.6
sl3 | 10 | black | 35 | inch | 88.9
sl8 | 21 | brown | 40 | inch | 101.6
sl5 | 4 | brown | 1 | m | 100
sl6 | 20 | brown | 0.9 | m | 90

(8 rows)

SELECT * FROM shoelace_log;

sl_name | sl_avail | log_who| log_when
---------+----------+--------+----------------------------------

sl7 | 6 | Al | Tue Oct 20 19:14:45 1998 MET DST
sl3 | 10 | Al | Tue Oct 20 19:25:16 1998 MET DST
sl6 | 20 | Al | Tue Oct 20 19:25:16 1998 MET DST
sl8 | 21 | Al | Tue Oct 20 19:25:16 1998 MET DST

(4 rows)

It’s a long way from the oneINSERT ... SELECT to these results. And the description of the query-
tree transformation will be the last in this chapter. First, there is the parser’s output

INSERT INTO shoelace_ok
SELECT shoelace_arrive.arr_name, shoelace_arrive.arr_quant

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok;

Now the first ruleshoelace_ok_ins is applied and turns this into

UPDATE shoelace
SET sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok *OLD*, shoelace_ok *NEW*,
shoelace shoelace

WHERE shoelace.sl_name = shoelace_arrive.arr_name;

and throws away the originalINSERT on shoelace_ok . This rewritten query is passed to the rule
system again, and the second applied ruleshoelace_upd produces

UPDATE shoelace_data
SET sl_name = shoelace.sl_name,

520

Chapter 33. The Rule System

sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant,
sl_color = shoelace.sl_color,
sl_len = shoelace.sl_len,
sl_unit = shoelace.sl_unit

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok *OLD*, shoelace_ok *NEW*,
shoelace shoelace, shoelace *OLD*,
shoelace *NEW*, shoelace_data shoelace_data

WHERE shoelace.sl_name = shoelace_arrive.arr_name
AND shoelace_data.sl_name = shoelace.sl_name;

Again it’s an INSTEAD rule and the previous query tree is trashed. Note that this query still uses
the viewshoelace . But the rule system isn’t finished with this step, so it continues and applies the
_RETURNrule on it, and we get

UPDATE shoelace_data
SET sl_name = s.sl_name,

sl_avail = s.sl_avail + shoelace_arrive.arr_quant,
sl_color = s.sl_color,
sl_len = s.sl_len,
sl_unit = s.sl_unit

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok *OLD*, shoelace_ok *NEW*,
shoelace shoelace, shoelace *OLD*,
shoelace *NEW*, shoelace_data shoelace_data,
shoelace *OLD*, shoelace *NEW*,
shoelace_data s, unit u

WHERE s.sl_name = shoelace_arrive.arr_name
AND shoelace_data.sl_name = s.sl_name;

Finally, the rulelog_shoelace gets applied, producing the extra query tree

INSERT INTO shoelace_log
SELECT s.sl_name,

s.sl_avail + shoelace_arrive.arr_quant,
current_user,
current_timestamp

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok *OLD*, shoelace_ok *NEW*,
shoelace shoelace, shoelace *OLD*,
shoelace *NEW*, shoelace_data shoelace_data,
shoelace *OLD*, shoelace *NEW*,
shoelace_data s, unit u,
shoelace_data *OLD*, shoelace_data *NEW*
shoelace_log shoelace_log

WHERE s.sl_name = shoelace_arrive.arr_name
AND shoelace_data.sl_name = s.sl_name
AND (s.sl_avail + shoelace_arrive.arr_quant) <> s.sl_avail;

After that the rule system runs out of rules and returns the generated query trees.

So we end up with two final query trees that are equivalent to the SQL statements

INSERT INTO shoelace_log
SELECT s.sl_name,

s.sl_avail + shoelace_arrive.arr_quant,
current_user,
current_timestamp

521

Chapter 33. The Rule System

FROM shoelace_arrive shoelace_arrive, shoelace_data shoelace_data,
shoelace_data s

WHERE s.sl_name = shoelace_arrive.arr_name
AND shoelace_data.sl_name = s.sl_name
AND s.sl_avail + shoelace_arrive.arr_quant <> s.sl_avail;

UPDATE shoelace_data
SET sl_avail = shoelace_data.sl_avail + shoelace_arrive.arr_quant

FROM shoelace_arrive shoelace_arrive,
shoelace_data shoelace_data,
shoelace_data s

WHERE s.sl_name = shoelace_arrive.sl_name
AND shoelace_data.sl_name = s.sl_name;

The result is that data coming from one relation inserted into another, changed into updates on a third,
changed into updating a fourth plus logging that final update in a fifth gets reduced into two queries.

There is a little detail that’s a bit ugly. Looking at the two queries, it turns out that theshoelace_data

relation appears twice in the range table where it could definitely be reduced to one. The planner does
not handle it and so the execution plan for the rule systems output of theINSERT will be

Nested Loop
-> Merge Join

-> Seq Scan
-> Sort

-> Seq Scan on s
-> Seq Scan

-> Sort
-> Seq Scan on shoelace_arrive

-> Seq Scan on shoelace_data

while omitting the extra range table entry would result in a

Merge Join
-> Seq Scan

-> Sort
-> Seq Scan on s

-> Seq Scan
-> Sort

-> Seq Scan on shoelace_arrive

which produces exactly the same entries in the log table. Thus, the rule system caused one extra scan
on the tableshoelace_data that is absolutely not necessary. And the same redundant scan is done
once more in theUPDATE. But it was a really hard job to make that all possible at all.

Now we make a final demonstration of the PostgreSQL rule system and its power. Say you add some
shoelaces with extraordinary colors to your database:

INSERT INTO shoelace VALUES (’sl9’, 0, ’pink’, 35.0, ’inch’, 0.0);
INSERT INTO shoelace VALUES (’sl10’, 1000, ’magenta’, 40.0, ’inch’, 0.0);

We would like to make a view to check whichshoelace entries do not fit any shoe in color. The
view for this is

CREATE VIEW shoelace_mismatch AS
SELECT * FROM shoelace WHERE NOT EXISTS

(SELECT shoename FROM shoe WHERE slcolor = sl_color);

522

Chapter 33. The Rule System

Its output is

SELECT * FROM shoelace_mismatch;

sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------

sl9 | 0 | pink | 35 | inch | 88.9
sl10 | 1000 | magenta | 40 | inch | 101.6

Now we want to set it up so that mismatching shoelaces that are not in stock are deleted from the
database. To make it a little harder for PostgreSQL, we don’t delete it directly. Instead we create one
more view

CREATE VIEW shoelace_can_delete AS
SELECT * FROM shoelace_mismatch WHERE sl_avail = 0;

and do it this way:

DELETE FROM shoelace WHERE EXISTS
(SELECT * FROM shoelace_can_delete

WHERE sl_name = shoelace.sl_name);

Voilà:

SELECT * FROM shoelace;

sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------

sl1 | 5 | black | 80 | cm | 80
sl2 | 6 | black | 100 | cm | 100
sl7 | 6 | brown | 60 | cm | 60
sl4 | 8 | black | 40 | inch | 101.6
sl3 | 10 | black | 35 | inch | 88.9
sl8 | 21 | brown | 40 | inch | 101.6
sl10 | 1000 | magenta | 40 | inch | 101.6
sl5 | 4 | brown | 1 | m | 100
sl6 | 20 | brown | 0.9 | m | 90

(9 rows)

A DELETEon a view, with a subquery qualification that in total uses 4 nesting/joined views, where
one of them itself has a subquery qualification containing a view and where calculated view columns
are used, gets rewritten into one single query tree that deletes the requested data from a real table.

There are probably only a few situations out in the real world where such a construct is necessary. But
it makes you feel comfortable that it works.

33.4. Rules and Privileges
Due to rewriting of queries by the PostgreSQL rule system, other tables/views than those used in the
original query get accessed. When update rules are used, this can include write access to tables.

Rewrite rules don’t have a separate owner. The owner of a relation (table or view) is automatically the
owner of the rewrite rules that are defined for it. The PostgreSQL rule system changes the behavior

523

Chapter 33. The Rule System

of the default access control system. Relations that are used due to rules get checked against the
privileges of the rule owner, not the user invoking the rule. This means that a user only needs the
required privileges for the tables/views that he names explicitly in his queries.

For example: A user has a list of phone numbers where some of them are private, the others are of
interest for the secretary of the office. He can construct the following:

CREATE TABLE phone_data (person text, phone text, private boolean);
CREATE VIEW phone_number AS

SELECT person, phone FROM phone_data WHERE NOT private;
GRANT SELECT ON phone_number TO secretary;

Nobody except him (and the database superusers) can access thephone_data table. But because of
theGRANT, the secretary can run aSELECTon thephone_number view. The rule system will rewrite
the SELECTfrom phone_number into a SELECTfrom phone_data and add the qualification that
only entries whereprivate is false are wanted. Since the user is the owner ofphone_number and
therefore the owner of the rule, the read access tophone_data is now checked against his privileges
and the query is permitted. The check for accessingphone_number is also performed, but this is
done against the invoking user, so nobody but the user and the secretary can use it.

The privileges are checked rule by rule. So the secretary is for now the only one who can see the public
phone numbers. But the secretary can setup another view and grant access to that to the public. Then,
anyone can see thephone_number data through the secretary’s view. What the secretary cannot do
is to create a view that directly accessesphone_data . (Actually he can, but it will not work since
every access will be denied during the permission checks.) And as soon as the user will notice, that
the secretary opened hisphone_number view, he can revoke his access. Immediately, any access to
the secretary’s view would fail.

One might think that this rule-by-rule checking is a security hole, but in fact it isn’t. But if it did not
work this way, the secretary could set up a table with the same columns asphone_number and copy
the data to there once per day. Then it’s his own data and he can grant access to everyone he wants. A
GRANTcommand means, “I trust you”. If someone you trust does the thing above, it’s time to think it
over and then useREVOKE.

This mechanism also works for update rules. In the examples of the previous section, the owner of the
tables in the example database could grant the privilegesSELECT, INSERT, UPDATE, andDELETEon
theshoelace view to someone else, but onlySELECTon shoelace_log . The rule action to write
log entries will still be executed successfully, and that other user could see the log entries. But he
cannot create fake entries, nor could he manipulate or remove existing ones.

33.5. Rules and Command Status
The PostgreSQL server returns a command status string, such asINSERT 149592 1 , for each com-
mand it receives. This is simple enough when there are no rules involved, but what happens when the
query is rewritten by rules?

Rules affect the command status as follows:

• If there is no unconditionalINSTEAD rule for the query, then the originally given query will be exe-
cuted, and its command status will be returned as usual. (But note that if there were any conditional
INSTEAD rules, the negation of their qualifications will have been added to the original query. This
may reduce the number of rows it processes, and if so the reported status will be affected.)

• If there is any unconditionalINSTEADrule for the query, then the original query will not be executed
at all. In this case, the server will return the command status for the last query that was inserted

524

Chapter 33. The Rule System

by an INSTEAD rule (conditional or unconditional) and is of the same command type (INSERT,
UPDATE, or DELETE) as the original query. If no query meeting those requirements is added by any
rule, then the returned command status shows the original query type and zeroes for the row-count
and OID fields.

(This system was established in PostgreSQL 7.3. In versions before that, the command status might
show different results when rules exist.)

The programmer can ensure that any desiredINSTEAD rule is the one that sets the command status in
the second case, by giving it the alphabetically last rule name among the active rules, so that it gets
applied last.

33.6. Rules versus Triggers
Many things that can be done using triggers can also be implemented using the PostgreSQL rule sys-
tem. One of the things that cannot be implemented by rules are some kinds of constraints, especially
foreign keys. It is possible to place a qualified rule that rewrites a command toNOTHINGif the value
of a column does not appear in another table. But then the data is silently thrown away and that’s not a
good idea. If checks for valid values are required, and in the case of an invalid value an error message
should be generated, it must be done by a trigger.

On the other hand, a trigger that is fired onINSERT on a view can do the same as a rule: put the data
somewhere else and suppress the insert in the view. But it cannot do the same thing onUPDATEor
DELETE, because there is no real data in the view relation that could be scanned, and thus the trigger
would never get called. Only a rule will help.

For the things that can be implemented by both, which is best depends on the usage of the database.
A trigger is fired for any affected row once. A rule manipulates the query or generates an additional
query. So if many rows are affected in one statement, a rule issuing one extra command is likely to
be faster than a trigger that is called for every single row and must execute its operations many times.
However, the trigger approach is conceptually far simpler than the rule approach, and is easier for
novices to get right.

Here we show an example of how the choice of rules versus triggers plays out in one situation. There
are two tables:

CREATE TABLE computer (
hostname text, -- indexed
manufacturer text -- indexed

);

CREATE TABLE software (
software text, -- indexed
hostname text -- indexed

);

Both tables have many thousands of rows and the indexes onhostname are unique. The rule or trigger
should implement a constraint that deletes rows fromsoftware that reference a deleted computer.
The trigger would use this command:

DELETE FROM software WHERE hostname = $1;

Since the trigger is called for each individual row deleted fromcomputer , it can prepare and save the
plan for this command and pass thehostname value in the parameter. The rule would be written as

CREATE RULE computer_del AS ON DELETE TO computer

525

Chapter 33. The Rule System

DO DELETE FROM software WHERE hostname = OLD.hostname;

Now we look at different types of deletes. In the case of a

DELETE FROM computer WHERE hostname = ’mypc.local.net’;

the tablecomputer is scanned by index (fast), and the command issued by the trigger would also use
an index scan (also fast). The extra command from the rule would be

DELETE FROM software WHERE computer.hostname = ’mypc.local.net’
AND software.hostname = computer.hostname;

Since there are appropriate indexes setup, the planner will create a plan of

Nestloop
-> Index Scan using comp_hostidx on computer
-> Index Scan using soft_hostidx on software

So there would be not that much difference in speed between the trigger and the rule implementation.

With the next delete we want to get rid of all the 2000 computers where thehostname starts with
old . There are two possible commands to do that. One is

DELETE FROM computer WHERE hostname >= ’old’
AND hostname < ’ole’

The command added by the rule will be

DELETE FROM software WHERE computer.hostname >= ’old’ AND computer.hostname < ’ole’
AND software.hostname = computer.hostname;

with the plan

Hash Join
-> Seq Scan on software
-> Hash

-> Index Scan using comp_hostidx on computer

The other possible command is

DELETE FROM computer WHERE hostname ~ ’^old’;

which results in the following executing plan for the command added by the rule:

Nestloop
-> Index Scan using comp_hostidx on computer
-> Index Scan using soft_hostidx on software

This shows, that the planner does not realize that the qualification forhostname in computer could
also be used for an index scan onsoftware when there are multiple qualification expressions com-
bined withAND, which is what it does in the regular-expression version of the command. The trigger
will get invoked once for each of the 2000 old computers that have to be deleted, and that will result in
one index scan overcomputer and 2000 index scans oversoftware . The rule implementation will
do it with two commands that use indexes. And it depends on the overall size of the tablesoftware

whether the rule will still be faster in the sequential scan situation. 2000 command executions from
the trigger over the SPI manager take some time, even if all the index blocks will soon be in the cache.

526

Chapter 33. The Rule System

The last command we look at is

DELETE FROM computer WHERE manufacurer = ’bim’;

Again this could result in many rows to be deleted fromcomputer . So the trigger will again run many
commands through the executor. The command generated by the rule will be

DELETE FROM software WHERE computer.manufacurer = ’bim’
AND software.hostname = computer.hostname;

The plan for that command will again be the nested loop over two index scans, only using a different
index oncomputer :

Nestloop
-> Index Scan using comp_manufidx on computer
-> Index Scan using soft_hostidx on software

In any of these cases, the extra commands from the rule system will be more or less independent from
the number of affected rows in a command.

The summary is, rules will only be significantly slower than triggers if their actions result in large and
badly qualified joins, a situation where the planner fails.

527

Chapter 34. Procedural Languages
PostgreSQL allows user-defined functions to be written in other languages besides SQL and C. These
other languages are generically calledprocedural languages(PLs). For a function written in a proce-
dural language, the database server has no built-in knowledge about how to interpret the function’s
source text. Instead, the task is passed to a special handler that knows the details of the language.
The handler could either do all the work of parsing, syntax analysis, execution, etc. itself, or it could
serve as “glue” between PostgreSQL and an existing implementation of a programming language.
The handler itself is a C language function compiled into a shared object and loaded on demand, just
like any other C function.

There are currently four procedural languages available in the standard PostgreSQL distribution:
PL/pgSQL (Chapter 35), PL/Tcl (Chapter 36), PL/Perl (Chapter 37), and PL/Python (Chapter 38).
Other languages can be defined by users. The basics of developing a new procedural language are
covered inChapter 45.

There are additional procedural languages available that are not included in the core distribution.
Appendix Hhas information about finding them.

34.1. Installing Procedural Languages
A procedural language must be “installed” into each database where it is to be used. But procedu-
ral languages installed in the databasetemplate1 are automatically available in all subsequently
created databases, since their entries intemplate1 will be copied byCREATE DATABASE. So the
database administrator can decide which languages are available in which databases and can make
some languages available by default if he chooses.

For the languages supplied with the standard distribution, the programcreatelangmay be used to
install the language instead of carrying out the details by hand. For example, to install the language
PL/pgSQL into the databasetemplate1 , use

createlang plpgsql template1

The manual procedure described below is only recommended for installing custom languages that
createlang does not know about.

Manual Procedural Language Installation

A procedural language is installed in a database in four steps, which must be carried out by a database
superuser. Thecreatelang program automates all butstep 1.

1. The shared object for the language handler must be compiled and installed into an appropriate
library directory. This works in the same way as building and installing modules with regular
user-defined C functions does; seeSection 31.9.6. Often, the language handler will depend on
an external library that provides the actual programming language engine; if so, that must be
installed as well.

2. The handler must be declared with the command

CREATE FUNCTIONhandler_function_name ()
RETURNS language_handler
AS ’ path-to-shared-object ’
LANGUAGE C;

The special return type oflanguage_handler tells the database system that this function does
not return one of the defined SQL data types and is not directly usable in SQL statements.

528

Chapter 34. Procedural Languages

3. Optionally, the language handler may provide a “validator” function that checks a function def-
inition for correctness without actually executing it. The validator function is called byCREATE

FUNCTIONif it exists. If a validator function is provided by the handler, declare it with a com-
mand like

CREATE FUNCTIONvalidator_function_name (oid)
RETURNS void
AS ’ path-to-shared-object ’
LANGUAGE C;

4. The PL must be declared with the command

CREATE [TRUSTED] [PROCEDURAL] LANGUAGElanguage-name
HANDLERhandler_function_name
[VALIDATOR validator_function_name] ;

The optional key wordTRUSTEDspecifies that ordinary database users that have no superuser
privileges should be allowed to use this language to create functions and trigger procedures. Since
PL functions are executed inside the database server, theTRUSTEDflag should only be given for
languages that do not allow access to database server internals or the file system. The languages
PL/pgSQL, PL/Tcl, and PL/Perl are considered trusted; the languages PL/TclU, PL/PerlU, and
PL/PythonU are designed to provide unlimited functionality and shouldnot be marked trusted.

Example 34-1shows how the manual installation procedure would work with the language
PL/pgSQL.

Example 34-1. Manual Installation of PL/pgSQL

The following command tells the database server where to find the shared object for the PL/pgSQL
language’s call handler function.

CREATE FUNCTION plpgsql_call_handler() RETURNS language_handler AS
’$libdir/plpgsql’ LANGUAGE C;

PL/pgSQL has a validator function, so we declare that too:

CREATE FUNCTION plpgsql_validator(oid) RETURNS void AS
’$libdir/plpgsql’ LANGUAGE C;

The command

CREATE TRUSTED PROCEDURAL LANGUAGE plpgsql
HANDLER plpgsql_call_handler
VALIDATOR plpgsql_validator;

then defines that the previously declared functions should be invoked for functions and trigger proce-
dures where the language attribute isplpgsql .

In a default PostgreSQL installation, the handler for the PL/pgSQL language is built and installed into
the “library” directory. If Tcl support is configured in, the handlers for PL/Tcl and PL/TclU are also
built and installed in the same location. Likewise, the PL/Perl and PL/PerlU handlers are built and
installed if Perl support is configured, and PL/PythonU is installed if Python support is configured.

529

Chapter 35. PL/pgSQL - SQL Procedural
Language

PL/pgSQL is a loadable procedural language for the PostgreSQL database system. The design goals
of PL/pgSQL were to create a loadable procedural language that

• can be used to create functions and trigger procedures,

• adds control structures to the SQL language,

• can perform complex computations,

• inherits all user-defined types, functions, and operators,

• can be defined to be trusted by the server,

• is easy to use.

Except for input/output conversion and calculation functions for user-defined types, anything that can
be defined in C language functions can also be done with PL/pgSQL. For example, it is possible to
create complex conditional computation functions and later use them to define operators or use them
in index expressions.

35.1. Overview
The PL/pgSQL call handler parses the function’s source text and produces an internal binary instruc-
tion tree the first time the function is called (within each session). The instruction tree fully translates
the PL/pgSQL statement structure, but individual SQL expressions and SQL commands used in the
function are not translated immediately.

As each expression and SQL command is first used in the function, the PL/pgSQL interpreter creates
a prepared execution plan (using the SPI manager’sSPI_prepare andSPI_saveplan functions).
Subsequent visits to that expression or command reuse the prepared plan. Thus, a function with con-
ditional code that contains many statements for which execution plans might be required will only
prepare and save those plans that are really used during the lifetime of the database connection. This
can substantially reduce the total amount of time required to parse, and generate execution plans
for the statements in a PL/pgSQL function. A disadvantage is that errors in a specific expression or
command may not be detected until that part of the function is reached in execution.

Once PL/pgSQL has made an execution plan for a particular command in a function, it will reuse that
plan for the life of the database connection. This is usually a win for performance, but it can cause
some problems if you dynamically alter your database schema. For example:

CREATE FUNCTION populate() RETURNS integer AS $$
DECLARE

-- declarations
BEGIN

PERFORM my_function();
END;
$$ LANGUAGE plpgsql;

If you execute the above function, it will reference the OID formy_function() in the execution
plan produced for thePERFORMstatement. Later, if you drop and recreatemy_function() , then

530

Chapter 35. PL/pgSQL - SQL Procedural Language

populate() will not be able to findmy_function() anymore. You would then have to recreate
populate() , or at least start a new database session so that it will be compiled afresh. Another way
to avoid this problem is to useCREATE OR REPLACE FUNCTIONwhen updating the definition of
my_function (when a function is “replaced”, its OID is not changed).

Because PL/pgSQL saves execution plans in this way, SQL commands that appear directly in a
PL/pgSQL function must refer to the same tables and columns on every execution; that is, you cannot
use a parameter as the name of a table or column in an SQL command. To get around this restriction,
you can construct dynamic commands using the PL/pgSQLEXECUTEstatement — at the price of
constructing a new execution plan on every execution.

Note: The PL/pgSQL EXECUTEstatement is not related to the EXECUTE SQL statement
supported by the PostgreSQL server. The server’s EXECUTEstatement cannot be used within
PL/pgSQL functions (and is not needed).

35.1.1. Advantages of Using PL/pgSQL

SQL is the language PostgreSQL and most other relational databases use as query language. It’s
portable and easy to learn. But every SQL statement must be executed individually by the database
server.

That means that your client application must send each query to the database server, wait for it to
be processed, receive the results, do some computation, then send other queries to the server. All
this incurs interprocess communication and may also incur network overhead if your client is on a
different machine than the database server.

With PL/pgSQL you can group a block of computation and a series of queriesinside the database
server, thus having the power of a procedural language and the ease of use of SQL, but saving lots of
time because you don’t have the whole client/server communication overhead. This can make for a
considerable performance increase.

Also, with PL/pgSQL you can use all the data types, operators and functions of SQL.

35.1.2. Supported Argument and Result Data Types

Functions written in PL/pgSQL can accept as arguments any scalar or array data type supported by the
server, and they can return a result of any of these types. They can also accept or return any composite
type (row type) specified by name. It is also possible to declare a PL/pgSQL function as returning
record , which means that the result is a row type whose columns are determined by specification in
the calling query, as discussed inSection 7.2.1.4.

PL/pgSQL functions may also be declared to accept and return the polymorphic typesanyelement

andanyarray . The actual data types handled by a polymorphic function can vary from call to call,
as discussed inSection 31.2.5. An example is shown inSection 35.4.1.

PL/pgSQL functions can also be declared to return a “set”, or table, of any data type they can return a
single instance of. Such a function generates its output by executingRETURN NEXTfor each desired
element of the result set.

Finally, a PL/pgSQL function may be declared to returnvoid if it has no useful return value.

PL/pgSQL does not currently have full support for domain types: it treats a domain the same as the
underlying scalar type. This means that constraints associated with the domain will not be enforced.

531

Chapter 35. PL/pgSQL - SQL Procedural Language

This is not an issue for function arguments, but it is a hazard if you declare a PL/pgSQL function as
returning a domain type.

35.2. Tips for Developing in PL/pgSQL
One good way to develop in PL/pgSQL is to use the text editor of your choice to create your functions,
and in another window, use psql to load and test those functions. If you are doing it this way, it is a
good idea to write the function usingCREATE OR REPLACE FUNCTION. That way you can just reload
the file to update the function definition. For example:

CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $$
....

$$ LANGUAGE plpgsql;

While running psql, you can load or reload such a function definition file with

\i filename.sql

and then immediately issue SQL commands to test the function.

Another good way to develop in PL/pgSQL is with a GUI database access tool that facilitates devel-
opment in a procedural language. One example of such as a tool is PgAccess, although others exist.
These tools often provide convenient features such as escaping single quotes and making it easier to
recreate and debug functions.

35.2.1. Handling of Quotation Marks

The code of a PL/pgSQL function is specified inCREATE FUNCTIONas a string literal. If you write
the string literal in the ordinary way with surrounding single quotes, then any single quotes inside the
function body must be doubled; likewise any backslashes must be doubled. Doubling quotes is at best
tedious, and in more complicated cases the code can become downright incomprehensible, because
you can easily find yourself needing half a dozen or more adjacent quote marks. It’s recommended
that you instead write the function body as a “dollar-quoted” string literal (seeSection 4.1.2.2). In the
dollar-quoting approach, you never double any quote marks, but instead take care to choose a different
dollar-quoting delimiter for each level of nesting you need. For example, you might write theCREATE

FUNCTIONcommand as

CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $PROC$
....

$PROC$ LANGUAGE plpgsql;

Within this, you might use quote marks for simple literal strings in SQL commands and$$ to delimit
fragments of SQL commands that you are assembling as strings. If you need to quote text that includes
$$, you could useQ, and so on.

The following chart shows what you have to do when writing quote marks without dollar quoting. It
may be useful when translating pre-dollar quoting code into something more comprehensible.

1 quotation mark

To begin and end the function body, for example:

CREATE FUNCTION foo() RETURNS integer AS ’

532

Chapter 35. PL/pgSQL - SQL Procedural Language

....
’ LANGUAGE plpgsql;

Anywhere within a single-quoted function body, quote marksmustappear in pairs.

2 quotation marks

For string literals inside the function body, for example:

a_output := ”Blah”;
SELECT * FROM users WHERE f_name=”foobar”;

In the dollar-quoting approach, you’d just write

a_output := ’Blah’;
SELECT * FROM users WHERE f_name=’foobar’;

which is exactly what the PL/pgSQL parser would see in either case.

4 quotation marks

When you need a single quotation mark in a string constant inside the function body, for example:

a_output := a_output || ” AND name LIKE ””foobar”” AND xyz”

The value actually appended toa_output would be: AND name LIKE ’foobar’ AND xyz .

In the dollar-quoting approach, you’d write

a_output := a_output || $$ AND name LIKE ’foobar’ AND xyz$$

being careful that any dollar-quote delimiters around this are not just$$.

6 quotation marks

When a single quotation mark in a string inside the function body is adjacent to the end of that
string constant, for example:

a_output := a_output || ” AND name LIKE ””foobar”””

The value appended toa_output would then be: AND name LIKE ’foobar’ .

In the dollar-quoting approach, this becomes

a_output := a_output || $$ AND name LIKE ’foobar’$$

10 quotation marks

When you want two single quotation marks in a string constant (which accounts for 8 quotation
marks) and this is adjacent to the end of that string constant (2 more). You will probably only
need that if you are writing a function that generates other functions, as inExample 35-5. For
example:

a_output := a_output || ” if v_” ||
referrer_keys.kind || ” like ”””””
|| referrer_keys.key_string || ”””””
then return ””” || referrer_keys.referrer_type
|| ”””; end if;”;

The value ofa_output would then be:

if v_... like ”...” then return ”...”; end if;

In the dollar-quoting approach, this becomes

a_output := a_output || $$ if v_$$ || referrer_keys.kind || $$ like ’$$
|| referrer_keys.key_string || $$’

533

Chapter 35. PL/pgSQL - SQL Procedural Language

then return ’$$ || referrer_keys.referrer_type
|| $$’; end if;$$;

where we assume we only need to put single quote marks intoa_output , because it will be
re-quoted before use.

A variant approach is to escape quotation marks in the function body with a backslash rather than by
doubling them. With this method you’ll find yourself writing things like\’\’ instead of”” . Some
find this easier to keep track of, some do not.

35.3. Structure of PL/pgSQL
PL/pgSQL is a block-structured language. The complete text of a function definition must be ablock.
A block is defined as:

[<<label >>]
[DECLARE
declarations]
BEGIN

statements
END;

Each declaration and each statement within a block is terminated by a semicolon. A block that appears
within another block must have a semicolon afterEND, as shown above; however the finalENDthat
concludes a function body does not require a semicolon.

All key words and identifiers can be written in mixed upper and lower case. Identifiers are implicitly
converted to lowercase unless double-quoted.

There are two types of comments in PL/pgSQL. A double dash (--) starts a comment that extends
to the end of the line. A/* starts a block comment that extends to the next occurrence of*/ . Block
comments cannot be nested, but double dash comments can be enclosed into a block comment and a
double dash can hide the block comment delimiters/* and*/ .

Any statement in the statement section of a block can be asubblock. Subblocks can be used for logical
grouping or to localize variables to a small group of statements.

The variables declared in the declarations section preceding a block are initialized to their default
values every time the block is entered, not only once per function call. For example:

CREATE FUNCTION somefunc() RETURNS integer AS $$
DECLARE

quantity integer := 30;
BEGIN

RAISE NOTICE ’Quantity here is %’, quantity; -- Quantity here is 30
quantity := 50;
--
-- Create a subblock
--
DECLARE

quantity integer := 80;
BEGIN

RAISE NOTICE ’Quantity here is %’, quantity; -- Quantity here is 80
END;

534

Chapter 35. PL/pgSQL - SQL Procedural Language

RAISE NOTICE ’Quantity here is %’, quantity; -- Quantity here is 50

RETURN quantity;
END;
$$ LANGUAGE plpgsql;

It is important not to confuse the use ofBEGIN/ENDfor grouping statements in PL/pgSQL with the
database commands for transaction control. PL/pgSQL’sBEGIN/ENDare only for grouping; they do
not start or end a transaction. Functions and trigger procedures are always executed within a transac-
tion established by an outer query — they cannot start or commit that transaction, since there would
be no context for them to execute in. However, a block containing anEXCEPTIONclause effectively
forms a subtransaction that can be rolled back without affecting the outer transaction. For more about
that seeSection 35.7.5.

35.4. Declarations
All variables used in a block must be declared in the declarations section of the block. (The only
exception is that the loop variable of aFORloop iterating over a range of integer values is automatically
declared as an integer variable.)

PL/pgSQL variables can have any SQL data type, such asinteger , varchar , andchar .

Here are some examples of variable declarations:

user_id integer;
quantity numeric(5);
url varchar;
myrow tablename%ROWTYPE;
myfield tablename.columnname%TYPE;
arow RECORD;

The general syntax of a variable declaration is:

name [CONSTANT] type [NOT NULL] [{ DEFAULT | := } expression];

The DEFAULTclause, if given, specifies the initial value assigned to the variable when the block is
entered. If theDEFAULTclause is not given then the variable is initialized to the SQL null value. The
CONSTANToption prevents the variable from being assigned to, so that its value remains constant for
the duration of the block. IfNOT NULLis specified, an assignment of a null value results in a run-time
error. All variables declared asNOT NULLmust have a nonnull default value specified.

The default value is evaluated every time the block is entered. So, for example, assigningnow() to a
variable of typetimestamp causes the variable to have the time of the current function call, not the
time when the function was precompiled.

Examples:

quantity integer DEFAULT 32;
url varchar := ’http://mysite.com’;
user_id CONSTANT integer := 10;

535

Chapter 35. PL/pgSQL - SQL Procedural Language

35.4.1. Aliases for Function Parameters

Parameters passed to functions are named with the identifiers$1, $2, etc. Optionally, aliases can be
declared for$n parameter names for increased readability. Either the alias or the numeric identifier
can then be used to refer to the parameter value.

There are two ways to create an alias. The preferred way is to give a name to the parameter in the
CREATE FUNCTIONcommand, for example:

CREATE FUNCTION sales_tax(subtotal real) RETURNS real AS $$
BEGIN

RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

The other way, which was the only way available before PostgreSQL 8.0, is to explicitly declare an
alias, using the declaration syntax

name ALIAS FOR $n;

The same example in this style looks like

CREATE FUNCTION sales_tax(real) RETURNS real AS $$
DECLARE

subtotal ALIAS FOR $1;
BEGIN

RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

Some more examples:

CREATE FUNCTION instr(varchar, integer) RETURNS integer AS $$
DECLARE

v_string ALIAS FOR $1;
index ALIAS FOR $2;

BEGIN
-- some computations here

END;
$$ LANGUAGE plpgsql;

CREATE FUNCTION concat_selected_fields(in_t tablename) RETURNS text AS $$
BEGIN

RETURN in_t.f1 || in_t.f3 || in_t.f5 || in_t.f7;
END;
$$ LANGUAGE plpgsql;

When the return type of a PL/pgSQL function is declared as a polymorphic type (anyelement or
anyarray), a special parameter$0 is created. Its data type is the actual return type of the function, as
deduced from the actual input types (seeSection 31.2.5). This allows the function to access its actual
return type as shown inSection 35.4.2. $0 is initialized to null and can be modified by the function,
so it can be used to hold the return value if desired, though that is not required.$0 can also be given
an alias. For example, this function works on any data type that has a+ operator:

CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3 anyelement)

536

Chapter 35. PL/pgSQL - SQL Procedural Language

RETURNS anyelement AS $$
DECLARE

result ALIAS FOR $0;
BEGIN

result := v1 + v2 + v3;
RETURN result;

END;
$$ LANGUAGE plpgsql;

35.4.2. Copying Types

variable %TYPE

%TYPEprovides the data type of a variable or table column. You can use this to declare variables that
will hold database values. For example, let’s say you have a column nameduser_id in your users

table. To declare a variable with the same data type asusers.user_id you write:

user_id users.user_id%TYPE;

By using%TYPEyou don’t need to know the data type of the structure you are referencing, and most
importantly, if the data type of the referenced item changes in the future (for instance: you change the
type ofuser_id from integer to real), you may not need to change your function definition.

%TYPEis particularly valuable in polymorphic functions, since the data types needed for internal
variables may change from one call to the next. Appropriate variables can be created by applying
%TYPEto the function’s arguments or result placeholders.

35.4.3. Row Types

name table_name %ROWTYPE;
name composite_type_name ;

A variable of a composite type is called arow variable (orrow-typevariable). Such a variable can
hold a whole row of aSELECTor FORquery result, so long as that query’s column set matches the
declared type of the variable. The individual fields of the row value are accessed using the usual dot
notation, for examplerowvar.field .

A row variable can be declared to have the same type as the rows of an existing table or view, by
using thetable_name %ROWTYPEnotation; or it can be declared by giving a composite type’s name.
(Since every table has an associated composite type of the same name, it actually does not matter in
PostgreSQL whether you write%ROWTYPEor not. But the form with%ROWTYPEis more portable.)

Parameters to a function can be composite types (complete table rows). In that case, the corresponding
identifier$n will be a row variable, and fields can be selected from it, for example$1.user_id .

Only the user-defined columns of a table row are accessible in a row-type variable, not the OID or
other system columns (because the row could be from a view). The fields of the row type inherit the
table’s field size or precision for data types such aschar(n) .

Here is an example of using composite types:

CREATE FUNCTION merge_fields(t_row tablename) RETURNS text AS $$

537

Chapter 35. PL/pgSQL - SQL Procedural Language

DECLARE
t2_row table2name%ROWTYPE;

BEGIN
SELECT * INTO t2_row FROM table2name WHERE ... ;
RETURN t_row.f1 || t2_row.f3 || t_row.f5 || t2_row.f7;

END;
$$ LANGUAGE plpgsql;

SELECT merge_fields(t.*) FROM tablename t WHERE ... ;

35.4.4. Record Types

name RECORD;

Record variables are similar to row-type variables, but they have no predefined structure. They take
on the actual row structure of the row they are assigned during aSELECTor FORcommand. The
substructure of a record variable can change each time it is assigned to. A consequence of this is that
until a record variable is first assigned to, it has no substructure, and any attempt to access a field in it
will draw a run-time error.

Note thatRECORDis not a true data type, only a placeholder. One should also realize that when a
PL/pgSQL function is declared to return typerecord , this is not quite the same concept as a record
variable, even though such a function may well use a record variable to hold its result. In both cases
the actual row structure is unknown when the function is written, but for a function returningrecord

the actual structure is determined when the calling query is parsed, whereas a record variable can
change its row structure on-the-fly.

35.4.5. RENAME

RENAMEoldname TO newname;

Using theRENAMEdeclaration you can change the name of a variable, record or row. This is primarily
useful ifNEWor OLDshould be referenced by another name inside a trigger procedure. See alsoALIAS .

Examples:

RENAME id TO user_id;
RENAME this_var TO that_var;

Note: RENAMEappears to be broken as of PostgreSQL 7.3. Fixing this is of low priority, since
ALIAS covers most of the practical uses of RENAME.

538

Chapter 35. PL/pgSQL - SQL Procedural Language

35.5. Expressions
All expressions used in PL/pgSQL statements are processed using the server’s regular SQL executor.
In effect, a query like

SELECT expression

is executed using the SPI manager. Before evaluation, occurrences of PL/pgSQL variable identifiers
are replaced by parameters, and the actual values from the variables are passed to the executor in the
parameter array. This allows the query plan for theSELECTto be prepared just once and then reused
for subsequent evaluations.

The evaluation done by the PostgreSQL main parser has some side effects on the interpretation of
constant values. In detail there is a difference between what these two functions do:

CREATE FUNCTION logfunc1(logtxt text) RETURNS timestamp AS $$
BEGIN

INSERT INTO logtable VALUES (logtxt, ’now’);
RETURN ’now’;

END;
$$ LANGUAGE plpgsql;

and

CREATE FUNCTION logfunc2(logtxt text) RETURNS timestamp AS $$
DECLARE

curtime timestamp;
BEGIN

curtime := ’now’;
INSERT INTO logtable VALUES (logtxt, curtime);
RETURN curtime;

END;
$$ LANGUAGE plpgsql;

In the case oflogfunc1 , the PostgreSQL main parser knows when preparing the plan for theINSERT,
that the string’now’ should be interpreted astimestamp because the target column oflogtable

is of that type. Thus, it will make a constant from it at this time and this constant value is then used
in all invocations oflogfunc1 during the lifetime of the session. Needless to say that this isn’t what
the programmer wanted.

In the case oflogfunc2 , the PostgreSQL main parser does not know what type’now’ should become
and therefore it returns a data value of typetext containing the stringnow. During the ensuing as-
signment to the local variablecurtime , the PL/pgSQL interpreter casts this string to thetimestamp

type by calling thetext_out and timestamp_in functions for the conversion. So, the computed
time stamp is updated on each execution as the programmer expects.

The mutable nature of record variables presents a problem in this connection. When fields of a record
variable are used in expressions or statements, the data types of the fields must not change between
calls of one and the same expression, since the expression will be planned using the data type that
is present when the expression is first reached. Keep this in mind when writing trigger procedures
that handle events for more than one table. (EXECUTEcan be used to get around this problem when
necessary.)

539

Chapter 35. PL/pgSQL - SQL Procedural Language

35.6. Basic Statements
In this section and the following ones, we describe all the statement types that are explicitly un-
derstood by PL/pgSQL. Anything not recognized as one of these statement types is presumed to
be an SQL command and is sent to the main database engine to execute (after substitution of any
PL/pgSQL variables used in the statement). Thus, for example, the SQL commandsINSERT, UPDATE,
andDELETEmay be considered to be statements of PL/pgSQL, but they are not specifically listed here.

35.6.1. Assignment

An assignment of a value to a variable or row/record field is written as:

identifier := expression ;

As explained above, the expression in such a statement is evaluated by means of an SQLSELECT

command sent to the main database engine. The expression must yield a single value.

If the expression’s result data type doesn’t match the variable’s data type, or the variable has a spe-
cific size/precision (likechar(20)), the result value will be implicitly converted by the PL/pgSQL
interpreter using the result type’s output-function and the variable type’s input-function. Note that this
could potentially result in run-time errors generated by the input function, if the string form of the
result value is not acceptable to the input function.

Examples:

user_id := 20;
tax := subtotal * 0.06;

35.6.2. SELECT INTO

The result of aSELECTcommand yielding multiple columns (but only one row) can be assigned to a
record variable, row-type variable, or list of scalar variables. This is done by:

SELECT INTO target select_expressions FROM ...;

wheretarget can be a record variable, a row variable, or a comma-separated list of simple variables
and record/row fields. Theselect_expressions and the remainder of the command are the same
as in regular SQL.

Note that this is quite different from PostgreSQL’s normal interpretation ofSELECT INTO, where
the INTO target is a newly created table. If you want to create a table from aSELECTresult inside a
PL/pgSQL function, use the syntaxCREATE TABLE ... AS SELECT.

If a row or a variable list is used as target, the selected values must exactly match the structure of
the target, or a run-time error occurs. When a record variable is the target, it automatically configures
itself to the row type of the query result columns.

Except for theINTO clause, theSELECTstatement is the same as a normal SQLSELECTcommand
and can use its full power.

The INTO clause can appear almost anywhere in theSELECTstatement. Customarily it is written
either just afterSELECTas shown above, or just beforeFROM— that is, either just before or just after
the list ofselect_expressions .

540

Chapter 35. PL/pgSQL - SQL Procedural Language

If the query returns zero rows, null values are assigned to the target(s). If the query returns multiple
rows, the first row is assigned to the target(s) and the rest are discarded. (Note that “the first row” is
not well-defined unless you’ve usedORDER BY.)

You can check the specialFOUNDvariable (seeSection 35.6.6) after aSELECT INTOstatement to
determine whether the assignment was successful, that is, at least one row was was returned by the
query. For example:

SELECT INTO myrec * FROM emp WHERE empname = myname;
IF NOT FOUND THEN

RAISE EXCEPTION ’employee % not found’, myname;
END IF;

To test for whether a record/row result is null, you can use theIS NULL conditional. There is, how-
ever, no way to tell whether any additional rows might have been discarded. Here is an example that
handles the case where no rows have been returned:

DECLARE
users_rec RECORD;

BEGIN
SELECT INTO users_rec * FROM users WHERE user_id=3;

IF users_rec.homepage IS NULL THEN
-- user entered no homepage, return "http://"
RETURN ’http://’;

END IF;
END;

35.6.3. Executing an Expression or Query With No Result

Sometimes one wishes to evaluate an expression or query but discard the result (typically because one
is calling a function that has useful side-effects but no useful result value). To do this in PL/pgSQL,
use thePERFORMstatement:

PERFORMquery ;

This executesquery and discards the result. Write thequery the same way as you would in an
SQLSELECTcommand, but replace the initial keywordSELECTwith PERFORM. PL/pgSQL variables
will be substituted into the query as usual. Also, the special variableFOUNDis set to true if the query
produced at least one row or false if it produced no rows.

Note: One might expect that SELECTwith no INTO clause would accomplish this result, but at
present the only accepted way to do it is PERFORM.

An example:

PERFORM create_mv(’cs_session_page_requests_mv’, my_query);

541

Chapter 35. PL/pgSQL - SQL Procedural Language

35.6.4. Doing Nothing At All

Sometimes a placeholder statement that does nothing is useful. For example, it can indicate that one
arm of an if/then/else chain is deliberately empty. For this purpose, use theNULLstatement:

NULL;

For example, the following two fragments of code are equivalent:

BEGIN
y := x / 0;

EXCEPTION
WHEN division_by_zero THEN

NULL; -- ignore the error
END;

BEGIN
y := x / 0;

EXCEPTION
WHEN division_by_zero THEN -- ignore the error

END;

Which is preferable is a matter of taste.

Note: In Oracle’s PL/SQL, empty statement lists are not allowed, and so NULL statements are
required for situations such as this. PL/pgSQL allows you to just write nothing, instead.

35.6.5. Executing Dynamic Commands

Oftentimes you will want to generate dynamic commands inside your PL/pgSQL functions, that
is, commands that will involve different tables or different data types each time they are executed.
PL/pgSQL’s normal attempts to cache plans for commands will not work in such scenarios. To han-
dle this sort of problem, theEXECUTEstatement is provided:

EXECUTEcommand-string ;

wherecommand-string is an expression yielding a string (of typetext) containing the command
to be executed. This string is fed literally to the SQL engine.

Note in particular that no substitution of PL/pgSQL variables is done on the command string. The
values of variables must be inserted in the command string as it is constructed.

Unlike all other commands in PL/pgSQL, a command run by anEXECUTEstatement is not prepared
and saved just once during the life of the session. Instead, the command is prepared each time the
statement is run. The command string can be dynamically created within the function to perform
actions on different tables and columns.

The results fromSELECTcommands are discarded byEXECUTE, andSELECT INTOis not currently
supported withinEXECUTE. So there is no way to extract a result from a dynamically-createdSELECT

using the plainEXECUTEcommand. There are two other ways to do it, however: one is to use the
FOR-IN-EXECUTE loop form described inSection 35.7.4, and the other is to use a cursor with
OPEN-FOR-EXECUTE, as described inSection 35.8.2.

542

Chapter 35. PL/pgSQL - SQL Procedural Language

When working with dynamic commands you will often have to handle escaping of single quotes. The
recommended method for quoting fixed text in your function body is dollar quoting. (If you have
legacy code that does not use dollar quoting, please refer to the overview inSection 35.2.1, which can
save you some effort when translating said code to a more reasonable scheme.)

Dynamic values that are to be inserted into the constructed query require special handling since they
might themselves contain quote characters. An example (this assumes that you are using dollar quot-
ing for the function as a whole, so the quote marks need not be doubled):

EXECUTE ’UPDATE tbl SET ’
|| quote_ident(colname)
|| ’ = ’
|| quote_literal(newvalue)
|| ’ WHERE key = ’
|| quote_literal(keyvalue);

This example shows use of the functionsquote_ident(text) andquote_literal(text) . For
safety, variables containing column and table identifiers should be passed to functionquote_ident .
Variables containing values that should be literal strings in the constructed command should be passed
to quote_literal . Both take the appropriate steps to return the input text enclosed in double or
single quotes respectively, with any embedded special characters properly escaped.

Note that dollar quoting is only useful for quoting fixed text. It would be a very bad idea to try to do
the above example as

EXECUTE ’UPDATE tbl SET ’
|| quote_ident(colname)
|| ’ = $$’
|| newvalue
|| ’$$ WHERE key = ’
|| quote_literal(keyvalue);

because it would break if the contents ofnewvalue happened to contain$$. The same objection
would apply to any other dollar-quoting delimiter you might pick. So, to safely quote text that is not
known in advance, youmustusequote_literal .

A much larger example of a dynamic command andEXECUTEcan be seen inExample 35-5, which
builds and executes aCREATE FUNCTIONcommand to define a new function.

35.6.6. Obtaining the Result Status

There are several ways to determine the effect of a command. The first method is to use theGET

DIAGNOSTICScommand, which has the form:

GET DIAGNOSTICSvariable = item [, ...] ;

This command allows retrieval of system status indicators. Eachitem is a key word identifying a
state value to be assigned to the specified variable (which should be of the right data type to receive
it). The currently available status items areROW_COUNT, the number of rows processed by the last
SQL command sent down to the SQL engine, andRESULT_OID, the OID of the last row inserted by
the most recent SQL command. Note thatRESULT_OIDis only useful after anINSERT command.

An example:

GET DIAGNOSTICS integer_var = ROW_COUNT;

543

Chapter 35. PL/pgSQL - SQL Procedural Language

The second method to determine the effects of a command is to check the special variable named
FOUND, which is of typeboolean . FOUNDstarts out false within each PL/pgSQL function call. It is
set by each of the following types of statements:

• A SELECT INTOstatement setsFOUNDtrue if it returns a row, false if no row is returned.

• A PERFORMstatement setsFOUNDtrue if it produces (and discards) a row, false if no row is pro-
duced.

• UPDATE, INSERT, andDELETEstatements setFOUNDtrue if at least one row is affected, false if no
row is affected.

• A FETCHstatement setsFOUNDtrue if it returns a row, false if no row is returned.

• A FORstatement setsFOUNDtrue if it iterates one or more times, else false. This applies to all three
variants of theFORstatement (integerFORloops, record-setFORloops, and dynamic record-setFOR

loops).FOUNDis set this way when theFORloop exits; inside the execution of the loop,FOUNDis
not modified by theFORstatement, although it may be changed by the execution of other statements
within the loop body.

FOUNDis a local variable within each PL/pgSQL function; so any changes to it affect only the current
function.

35.7. Control Structures
Control structures are probably the most useful (and important) part of PL/pgSQL. With PL/pgSQL’s
control structures, you can manipulate PostgreSQL data in a very flexible and powerful way.

35.7.1. Returning From a Function

There are two commands available that allow you to return data from a function:RETURNandRETURN

NEXT.

35.7.1.1. RETURN

RETURNexpression ;

RETURNwith an expression terminates the function and returns the value ofexpression to the
caller. This form is to be used for PL/pgSQL functions that do not return a set.

When returning a scalar type, any expression can be used. The expression’s result will be automat-
ically cast into the function’s return type as described for assignments. To return a composite (row)
value, you must write a record or row variable as theexpression .

The return value of a function cannot be left undefined. If control reaches the end of the top-level
block of the function without hitting aRETURNstatement, a run-time error will occur.

If you have declared the function to returnvoid , a RETURNstatement must still be provided; but in
this case the expression followingRETURNis optional and will be ignored if present.

544

Chapter 35. PL/pgSQL - SQL Procedural Language

35.7.1.2. RETURN NEXT

RETURN NEXTexpression ;

When a PL/pgSQL function is declared to returnSETOF sometype , the procedure to follow is
slightly different. In that case, the individual items to return are specified inRETURN NEXTcom-
mands, and then a finalRETURNcommand with no argument is used to indicate that the function has
finished executing.RETURN NEXTcan be used with both scalar and composite data types; in the latter
case, an entire “table” of results will be returned.

Functions that useRETURN NEXTshould be called in the following fashion:

SELECT * FROM some_func();

That is, the function must be used as a table source in aFROMclause.

RETURN NEXTdoes not actually return from the function; it simply saves away the value of the ex-
pression. Execution then continues with the next statement in the PL/pgSQL function. As successive
RETURN NEXTcommands are executed, the result set is built up. A finalRETURN, which should have
no argument, causes control to exit the function.

Note: The current implementation of RETURN NEXTfor PL/pgSQL stores the entire result set be-
fore returning from the function, as discussed above. That means that if a PL/pgSQL function
produces a very large result set, performance may be poor: data will be written to disk to avoid
memory exhaustion, but the function itself will not return until the entire result set has been gen-
erated. A future version of PL/pgSQL may allow users to define set-returning functions that do not
have this limitation. Currently, the point at which data begins being written to disk is controlled by
the work_mem configuration variable. Administrators who have sufficient memory to store larger
result sets in memory should consider increasing this parameter.

35.7.2. Conditionals

IF statements let you execute commands based on certain conditions. PL/pgSQL has five forms of
IF :

• IF ... THEN

• IF ... THEN ... ELSE

• IF ... THEN ... ELSE IF

• IF ... THEN ... ELSIF ... THEN ... ELSE

• IF ... THEN ... ELSEIF ... THEN ... ELSE

35.7.2.1. IF-THEN

IF boolean-expression THEN
statements

END IF;

IF-THEN statements are the simplest form ofIF . The statements betweenTHENandEND IF will be
executed if the condition is true. Otherwise, they are skipped.

545

Chapter 35. PL/pgSQL - SQL Procedural Language

Example:

IF v_user_id <> 0 THEN
UPDATE users SET email = v_email WHERE user_id = v_user_id;

END IF;

35.7.2.2. IF-THEN-ELSE

IF boolean-expression THEN
statements

ELSE
statements

END IF;

IF-THEN-ELSE statements add toIF-THEN by letting you specify an alternative set of statements
that should be executed if the condition evaluates to false.

Examples:

IF parentid IS NULL OR parentid = ”
THEN

RETURN fullname;
ELSE

RETURN hp_true_filename(parentid) || ’/’ || fullname;
END IF;

IF v_count > 0 THEN
INSERT INTO users_count (count) VALUES (v_count);
RETURN ’t’;

ELSE
RETURN ’f’;

END IF;

35.7.2.3. IF-THEN-ELSE IF

IF statements can be nested, as in the following example:

IF demo_row.sex = ’m’ THEN
pretty_sex := ’man’;

ELSE
IF demo_row.sex = ’f’ THEN

pretty_sex := ’woman’;
END IF;

END IF;

When you use this form, you are actually nesting anIF statement inside theELSEpart of an outerIF
statement. Thus you need oneEND IF statement for each nestedIF and one for the parentIF-ELSE .
This is workable but grows tedious when there are many alternatives to be checked. Hence the next
form.

546

Chapter 35. PL/pgSQL - SQL Procedural Language

35.7.2.4. IF-THEN-ELSIF-ELSE

IF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements
...]]
[ELSE
statements]
END IF;

IF-THEN-ELSIF-ELSE provides a more convenient method of checking many alternatives in one
statement. Formally it is equivalent to nestedIF-THEN-ELSE-IF-THEN commands, but only one
END IF is needed.

Here is an example:

IF number = 0 THEN
result := ’zero’;

ELSIF number > 0 THEN
result := ’positive’;

ELSIF number < 0 THEN
result := ’negative’;

ELSE
-- hmm, the only other possibility is that number is null
result := ’NULL’;

END IF;

35.7.2.5. IF-THEN-ELSEIF-ELSE

ELSEIF is an alias forELSIF .

35.7.3. Simple Loops

With the LOOP, EXIT , WHILE, andFORstatements, you can arrange for your PL/pgSQL function to
repeat a series of commands.

35.7.3.1. LOOP

[<<label >>]
LOOP

statements
END LOOP;

LOOPdefines an unconditional loop that is repeated indefinitely until terminated by anEXIT or
RETURNstatement. The optional label can be used byEXIT statements in nested loops to specify
which level of nesting should be terminated.

547

Chapter 35. PL/pgSQL - SQL Procedural Language

35.7.3.2. EXIT

EXIT [label] [WHEN expression];

If no label is given, the innermost loop is terminated and the statement followingEND LOOPis
executed next. Iflabel is given, it must be the label of the current or some outer level of nested loop
or block. Then the named loop or block is terminated and control continues with the statement after
the loop’s/block’s correspondingEND.

If WHENis present, loop exit occurs only if the specified condition is true, otherwise control passes to
the statement afterEXIT .

EXIT can be used to cause early exit from all types of loops; it is not limited to use with unconditional
loops.

Examples:

LOOP
-- some computations
IF count > 0 THEN

EXIT; -- exit loop
END IF;

END LOOP;

LOOP
-- some computations
EXIT WHEN count > 0; -- same result as previous example

END LOOP;

BEGIN
-- some computations
IF stocks > 100000 THEN

EXIT; -- causes exit from the BEGIN block
END IF;

END;

35.7.3.3. WHILE

[<<label >>]
WHILE expression LOOP

statements
END LOOP;

TheWHILEstatement repeats a sequence of statements so long as the condition expression evaluates
to true. The condition is checked just before each entry to the loop body.

For example:

WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP
-- some computations here

END LOOP;

WHILE NOT boolean_expression LOOP
-- some computations here

END LOOP;

548

Chapter 35. PL/pgSQL - SQL Procedural Language

35.7.3.4. FOR(integer variant)

[<<label >>]
FOR name IN [REVERSE] expression .. expression LOOP

statements
END LOOP;

This form of FORcreates a loop that iterates over a range of integer values. The variablename is
automatically defined as typeinteger and exists only inside the loop. The two expressions giving
the lower and upper bound of the range are evaluated once when entering the loop. The iteration step
is normally 1, but is -1 whenREVERSEis specified.

Some examples of integerFORloops:

FOR i IN 1..10 LOOP
-- some computations here
RAISE NOTICE ’i is %’, i;

END LOOP;

FOR i IN REVERSE 10..1 LOOP
-- some computations here

END LOOP;

If the lower bound is greater than the upper bound (or less than, in theREVERSEcase), the loop body
is not executed at all. No error is raised.

35.7.4. Looping Through Query Results

Using a different type ofFORloop, you can iterate through the results of a query and manipulate that
data accordingly. The syntax is:

[<<label >>]
FOR record_or_row IN query LOOP

statements
END LOOP;

The record or row variable is successively assigned each row resulting from thequery (which must
be aSELECTcommand) and the loop body is executed for each row. Here is an example:

CREATE FUNCTION cs_refresh_mviews() RETURNS integer AS $$
DECLARE

mviews RECORD;
BEGIN

PERFORM cs_log(’Refreshing materialized views...’);

FOR mviews IN SELECT * FROM cs_materialized_views ORDER BY sort_key LOOP

-- Now "mviews" has one record from cs_materialized_views

PERFORM cs_log(’Refreshing materialized view ’ || quote_ident(mviews.mv_name) || ’ ...’);
EXECUTE ’TRUNCATE TABLE ’ || quote_ident(mviews.mv_name);

549

Chapter 35. PL/pgSQL - SQL Procedural Language

EXECUTE ’INSERT INTO ’ || quote_ident(mviews.mv_name) || ’ ’ || mviews.mv_query;
END LOOP;

PERFORM cs_log(’Done refreshing materialized views.’);
RETURN 1;

END;
$$ LANGUAGE plpgsql;

If the loop is terminated by anEXIT statement, the last assigned row value is still accessible after the
loop.

TheFOR-IN-EXECUTE statement is another way to iterate over rows:

[<<label >>]
FOR record_or_row IN EXECUTE text_expression LOOP

statements
END LOOP;

This is like the previous form, except that the sourceSELECTstatement is specified as a string expres-
sion, which is evaluated and replanned on each entry to theFORloop. This allows the programmer
to choose the speed of a preplanned query or the flexibility of a dynamic query, just as with a plain
EXECUTEstatement.

Note: The PL/pgSQL parser presently distinguishes the two kinds of FORloops (integer or query
result) by checking whether .. appears outside any parentheses between IN and LOOP. If .. is
not seen then the loop is presumed to be a loop over rows. Mistyping the .. is thus likely to lead
to a complaint along the lines of “loop variable of loop over rows must be a record or row variable”,
rather than the simple syntax error one might expect to get.

35.7.5. Trapping Errors

By default, any error occurring in a PL/pgSQL function aborts execution of the function, and indeed
of the surrounding transaction as well. You can trap errors and recover from them by using aBEGIN

block with anEXCEPTIONclause. The syntax is an extension of the normal syntax for aBEGINblock:

[<<label >>]
[DECLARE
declarations]
BEGIN

statements
EXCEPTION

WHENcondition [OR condition ...] THEN
handler_statements

[WHEN condition [OR condition ...] THEN
handler_statements

...]
END;

If no error occurs, this form of block simply executes all thestatements , and then control passes
to the next statement afterEND. But if an error occurs within thestatements , further processing
of the statements is abandoned, and control passes to theEXCEPTIONlist. The list is searched
for the firstcondition matching the error that occurred. If a match is found, the corresponding

550

Chapter 35. PL/pgSQL - SQL Procedural Language

handler_statements are executed, and then control passes to the next statement afterEND. If
no match is found, the error propagates out as though theEXCEPTIONclause were not there at all: the
error can be caught by an enclosing block withEXCEPTION, or if there is none it aborts processing of
the function.

The condition names can be any of those shown inAppendix A. A category name matches
any error within its category. The special condition nameOTHERSmatches every error type except
QUERY_CANCELED. (It is possible, but often unwise, to trapQUERY_CANCELEDby name.) Condition
names are not case-sensitive.

If a new error occurs within the selectedhandler_statements , it cannot be caught by this
EXCEPTIONclause, but is propagated out. A surroundingEXCEPTIONclause could catch it.

When an error is caught by anEXCEPTIONclause, the local variables of the PL/pgSQL function
remain as they were when the error occurred, but all changes to persistent database state within the
block are rolled back. As an example, consider this fragment:

INSERT INTO mytab(firstname, lastname) VALUES(’Tom’, ’Jones’);
BEGIN

UPDATE mytab SET firstname = ’Joe’ WHERE lastname = ’Jones’;
x := x + 1;
y := x / 0;

EXCEPTION
WHEN division_by_zero THEN

RAISE NOTICE ’caught division_by_zero’;
RETURN x;

END;

When control reaches the assignment toy , it will fail with a division_by_zero error. This will be
caught by theEXCEPTIONclause. The value returned in theRETURNstatement will be the incremented
value ofx , but the effects of theUPDATEcommand will have been rolled back. TheINSERT command
preceding the block is not rolled back, however, so the end result is that the database containsTom

Jones not Joe Jones .

Tip: A block containing an EXCEPTIONclause is significantly more expensive to enter and exit than
a block without one. Therefore, don’t use EXCEPTIONwithout need.

35.8. Cursors
Rather than executing a whole query at once, it is possible to set up acursor that encapsulates the
query, and then read the query result a few rows at a time. One reason for doing this is to avoid
memory overrun when the result contains a large number of rows. (However, PL/pgSQL users do
not normally need to worry about that, sinceFORloops automatically use a cursor internally to avoid
memory problems.) A more interesting usage is to return a reference to a cursor that a function has
created, allowing the caller to read the rows. This provides an efficient way to return large row sets
from functions.

551

Chapter 35. PL/pgSQL - SQL Procedural Language

35.8.1. Declaring Cursor Variables

All access to cursors in PL/pgSQL goes through cursor variables, which are always of the special
data typerefcursor . One way to create a cursor variable is just to declare it as a variable of type
refcursor . Another way is to use the cursor declaration syntax, which in general is:

name CURSOR [(arguments)] FOR query ;

(FOR may be replaced byIS for Oracle compatibility.)arguments , if specified, is a comma-
separated list of pairsname datatype that define names to be replaced by parameter values in the
given query. The actual values to substitute for these names will be specified later, when the cursor is
opened.

Some examples:

DECLARE
curs1 refcursor;
curs2 CURSOR FOR SELECT * FROM tenk1;
curs3 CURSOR (key integer) IS SELECT * FROM tenk1 WHERE unique1 = key;

All three of these variables have the data typerefcursor , but the first may be used with any query,
while the second has a fully specified query alreadybound to it, and the last has a parameterized
query bound to it. (key will be replaced by an integer parameter value when the cursor is opened.)
The variablecurs1 is said to beunboundsince it is not bound to any particular query.

35.8.2. Opening Cursors

Before a cursor can be used to retrieve rows, it must beopened. (This is the equivalent action to the
SQL commandDECLARE CURSOR.) PL/pgSQL has three forms of theOPENstatement, two of which
use unbound cursor variables while the third uses a bound cursor variable.

35.8.2.1. OPEN FOR SELECT

OPEN unbound_cursor FOR SELECT ...;

The cursor variable is opened and given the specified query to execute. The cursor cannot be open al-
ready, and it must have been declared as an unbound cursor (that is, as a simplerefcursor variable).
TheSELECTquery is treated in the same way as otherSELECTstatements in PL/pgSQL: PL/pgSQL
variable names are substituted, and the query plan is cached for possible reuse.

An example:

OPEN curs1 FOR SELECT * FROM foo WHERE key = mykey;

35.8.2.2. OPEN FOR EXECUTE

OPEN unbound_cursor FOR EXECUTEquery_string ;

The cursor variable is opened and given the specified query to execute. The cursor cannot be open al-
ready, and it must have been declared as an unbound cursor (that is, as a simplerefcursor variable).
The query is specified as a string expression in the same way as in theEXECUTEcommand. As usual,
this gives flexibility so the query can vary from one run to the next.

552

Chapter 35. PL/pgSQL - SQL Procedural Language

An example:

OPEN curs1 FOR EXECUTE ’SELECT * FROM ’ || quote_ident($1);

35.8.2.3. Opening a Bound Cursor

OPEN bound_cursor [(argument_values)];

This form ofOPENis used to open a cursor variable whose query was bound to it when it was declared.
The cursor cannot be open already. A list of actual argument value expressions must appear if and only
if the cursor was declared to take arguments. These values will be substituted in the query. The query
plan for a bound cursor is always considered cacheable; there is no equivalent ofEXECUTEin this
case.

Examples:

OPEN curs2;
OPEN curs3(42);

35.8.3. Using Cursors

Once a cursor has been opened, it can be manipulated with the statements described here.

These manipulations need not occur in the same function that opened the cursor to begin with. You
can return arefcursor value out of a function and let the caller operate on the cursor. (Internally, a
refcursor value is simply the string name of a so-called portal containing the active query for the
cursor. This name can be passed around, assigned to otherrefcursor variables, and so on, without
disturbing the portal.)

All portals are implicitly closed at transaction end. Therefore arefcursor value is usable to refer-
ence an open cursor only until the end of the transaction.

35.8.3.1. FETCH

FETCH cursor INTO target ;

FETCHretrieves the next row from the cursor into a target, which may be a row variable, a record
variable, or a comma-separated list of simple variables, just likeSELECT INTO. As with SELECT

INTO, the special variableFOUNDmay be checked to see whether a row was obtained or not.

An example:

FETCH curs1 INTO rowvar;
FETCH curs2 INTO foo, bar, baz;

553

Chapter 35. PL/pgSQL - SQL Procedural Language

35.8.3.2. CLOSE

CLOSE cursor ;

CLOSEcloses the portal underlying an open cursor. This can be used to release resources earlier than
end of transaction, or to free up the cursor variable to be opened again.

An example:

CLOSE curs1;

35.8.3.3. Returning Cursors

PL/pgSQL functions can return cursors to the caller. This is useful to return multiple rows or columns,
especially with very large result sets. To do this, the function opens the cursor and returns the cursor
name to the caller (or simply opens the cursor using a portal name specified by or otherwise known
to the caller). The caller can then fetch rows from the cursor. The cursor can be closed by the caller,
or it will be closed automatically when the transaction closes.

The portal name used for a cursor can be specified by the programmer or automatically generated. To
specify a portal name, simply assign a string to therefcursor variable before opening it. The string
value of therefcursor variable will be used byOPENas the name of the underlying portal. However,
if the refcursor variable is null,OPENautomatically generates a name that does not conflict with
any existing portal, and assigns it to therefcursor variable.

Note: A bound cursor variable is initialized to the string value representing its name, so that the
portal name is the same as the cursor variable name, unless the programmer overrides it by
assignment before opening the cursor. But an unbound cursor variable defaults to the null value
initially , so it will receive an automatically-generated unique name, unless overridden.

The following example shows one way a cursor name can be supplied by the caller:

CREATE TABLE test (col text);
INSERT INTO test VALUES (’123’);

CREATE FUNCTION reffunc(refcursor) RETURNS refcursor AS ’
BEGIN

OPEN $1 FOR SELECT col FROM test;
RETURN $1;

END;
’ LANGUAGE plpgsql;

BEGIN;
SELECT reffunc(’funccursor’);
FETCH ALL IN funccursor;
COMMIT;

The following example uses automatic cursor name generation:

CREATE FUNCTION reffunc2() RETURNS refcursor AS ’
DECLARE

ref refcursor;

554

Chapter 35. PL/pgSQL - SQL Procedural Language

BEGIN
OPEN ref FOR SELECT col FROM test;
RETURN ref;

END;
’ LANGUAGE plpgsql;

BEGIN;
SELECT reffunc2();

reffunc2

<unnamed cursor 1 >

(1 row)

FETCH ALL IN "<unnamed cursor 1 >";
COMMIT;

The following example shows one way to return multiple cursors from a single function:

CREATE FUNCTION myfunc(refcursor, refcursor) RETURNS SETOF refcursor AS $$
BEGIN

OPEN $1 FOR SELECT * FROM table_1;
RETURN NEXT $1;
OPEN $2 FOR SELECT * FROM table_2;
RETURN NEXT $2;
RETURN;

END;
$$ LANGUAGE plpgsql;

-- need to be in a transaction to use cursors.
BEGIN;

SELECT * FROM myfunc(’a’, ’b’);

FETCH ALL FROM a;
FETCH ALL FROM b;
COMMIT;

35.9. Errors and Messages
Use theRAISE statement to report messages and raise errors.

RAISE level ’ format ’ [, variable [, ...]];

Possible levels areDEBUG, LOG, INFO, NOTICE, WARNING, andEXCEPTION. EXCEPTIONraises an
error (which normally aborts the current transaction); the other levels only generate messages of
different priority levels. Whether messages of a particular priority are reported to the client, written to
the server log, or both is controlled by thelog_min_messagesandclient_min_messagesconfiguration
variables. SeeSection 16.4for more information.

555

Chapter 35. PL/pgSQL - SQL Procedural Language

Inside the format string,%is replaced by the next optional argument’s string representation. Write%%

to emit a literal%. Note that the optional arguments must presently be simple variables, not expres-
sions, and the format must be a simple string literal.

In this example, the value ofv_job_id will replace the%in the string:

RAISE NOTICE ’Calling cs_create_job(%)’, v_job_id;

This example will abort the transaction with the given error message:

RAISE EXCEPTION ’Nonexistent ID --> %’, user_id;

RAISE EXCEPTIONpresently always generates the same SQLSTATE code,P0001 , no matter what
message it is invoked with. It is possible to trap this exception withEXCEPTION ... WHEN

RAISE_EXCEPTION THEN ... but there is no way to tell oneRAISE from another.

35.10. Trigger Procedures
PL/pgSQL can be used to define trigger procedures. A trigger procedure is created with theCREATE

FUNCTIONcommand, declaring it as a function with no arguments and a return type oftrigger .
Note that the function must be declared with no arguments even if it expects to receive arguments
specified inCREATE TRIGGER— trigger arguments are passed viaTG_ARGV, as described below.

When a PL/pgSQL function is called as a trigger, several special variables are created automatically
in the top-level block. They are:

NEW

Data typeRECORD; variable holding the new database row forINSERT/UPDATEoperations in
row-level triggers. This variable isNULL in statement-level triggers.

OLD

Data typeRECORD; variable holding the old database row forUPDATE/DELETEoperations in
row-level triggers. This variable isNULL in statement-level triggers.

TG_NAME

Data typename; variable that contains the name of the trigger actually fired.

TG_WHEN

Data typetext ; a string of eitherBEFOREor AFTERdepending on the trigger’s definition.

TG_LEVEL

Data typetext ; a string of eitherROWor STATEMENTdepending on the trigger’s definition.

TG_OP

Data typetext ; a string ofINSERT, UPDATE, or DELETEtelling for which operation the trigger
was fired.

TG_RELID

Data typeoid ; the object ID of the table that caused the trigger invocation.

TG_RELNAME

Data typename; the name of the table that caused the trigger invocation.

556

Chapter 35. PL/pgSQL - SQL Procedural Language

TG_NARGS

Data typeinteger ; the number of arguments given to the trigger procedure in theCREATE

TRIGGERstatement.

TG_ARGV[]

Data type array oftext ; the arguments from theCREATE TRIGGERstatement. The index counts
from 0. Invalid indices (less than 0 or greater than or equal totg_nargs) result in a null value.

A trigger function must return eitherNULL or a record/row value having exactly the structure of the
table the trigger was fired for.

Row-level triggers firedBEFOREmay return null to signal the trigger manager to skip the rest of the
operation for this row (i.e., subsequent triggers are not fired, and theINSERT/UPDATE/DELETEdoes
not occur for this row). If a nonnull value is returned then the operation proceeds with that row value.
Returning a row value different from the original value ofNEWalters the row that will be inserted
or updated (but has no direct effect in theDELETEcase). To alter the row to be stored, it is possible
to replace single values directly inNEWand return the modifiedNEW, or to build a complete new
record/row to return.

The return value of aBEFOREor AFTER statement-level trigger or anAFTER row-level trigger is
always ignored; it may as well be null. However, any of these types of triggers can still abort the
entire operation by raising an error.

Example 35-1shows an example of a trigger procedure in PL/pgSQL.

Example 35-1. A PL/pgSQL Trigger Procedure

This example trigger ensures that any time a row is inserted or updated in the table, the current user
name and time are stamped into the row. And it checks that an employee’s name is given and that the
salary is a positive value.

CREATE TABLE emp (
empname text,
salary integer,
last_date timestamp,
last_user text

);

CREATE FUNCTION emp_stamp() RETURNS trigger AS emp_stamp
BEGIN

-- Check that empname and salary are given
IF NEW.empname IS NULL THEN

RAISE EXCEPTION ’empname cannot be null’;
END IF;
IF NEW.salary IS NULL THEN

RAISE EXCEPTION ’% cannot have null salary’, NEW.empname;
END IF;

-- Who works for us when she must pay for it?
IF NEW.salary < 0 THEN

RAISE EXCEPTION ’% cannot have a negative salary’, NEW.empname;
END IF;

-- Remember who changed the payroll when

557

Chapter 35. PL/pgSQL - SQL Procedural Language

NEW.last_date := ’now’;
NEW.last_user := current_user;
RETURN NEW;

END;
emp_stamp LANGUAGE plpgsql;

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
FOR EACH ROW EXECUTE PROCEDURE emp_stamp();

Another way to log changes to a table involves creating a new table that holds a row for each insert,
update, or delete that occurs. This approach can be thought of as auditing changes to a table.Example
35-2shows an example of an audit trigger procedure in PL/pgSQL.

Example 35-2. A PL/pgSQL Trigger Procedure For Auditing

This example trigger ensures that any insert, update or delete of a row in theemp table is recorded
(i.e., audited) in theemp_audit table. The current time and user name are stamped into the row,
together with the type of operation performed on it.

CREATE TABLE emp (
empname text NOT NULL,
salary integer

);

CREATE TABLE emp_audit(
operation char(1) NOT NULL,
stamp timestamp NOT NULL,
userid text NOT NULL,
empname text NOT NULL,
salary integer

);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS emp_audit
BEGIN

--
-- Create a row in emp_audit to reflect the operation performed on emp,
-- make use of the special variable TG_OP to work out the operation.
--
IF (TG_OP = ’DELETE’) THEN

INSERT INTO emp_audit SELECT ’D’, now(), user, OLD.*;
RETURN OLD;

ELSIF (TG_OP = ’UPDATE’) THEN
INSERT INTO emp_audit SELECT ’U’, now(), user, NEW.*;
RETURN NEW;

ELSIF (TG_OP = ’INSERT’) THEN
INSERT INTO emp_audit SELECT ’I’, now(), user, NEW.*;
RETURN NEW;

END IF;
RETURN NULL; -- result is ignored since this is an AFTER trigger

END;
emp_audit language plpgsql;

CREATE TRIGGER emp_audit
AFTER INSERT OR UPDATE OR DELETE ON emp

FOR EACH ROW EXECUTE PROCEDURE process_emp_audit();

558

Chapter 35. PL/pgSQL - SQL Procedural Language

One use of triggers is to maintain a summary table of another table. The resulting summary can be
used in place of the original table for certain queries — often with vastly reduced run times. This
technique is commonly used in Data Warehousing, where the tables of measured or observed data
(called fact tables) can be extremely large.Example 35-3shows an example of a trigger procedure in
PL/pgSQL that maintains a summary table for a fact table in a data warehouse.

Example 35-3. A PL/pgSQL Trigger Procedure For Maintaining A Summary Table

The schema detailed here is partly based on theGrocery Storeexample fromThe Data Warehouse
Toolkit by Ralph Kimball.

--
-- Main tables - time dimension and sales fact.
--
CREATE TABLE time_dimension (

time_key integer NOT NULL,
day_of_week integer NOT NULL,
day_of_month integer NOT NULL,
month integer NOT NULL,
quarter integer NOT NULL,
year integer NOT NULL

);
CREATE UNIQUE INDEX time_dimension_key ON time_dimension(time_key);

CREATE TABLE sales_fact (
time_key integer NOT NULL,
product_key integer NOT NULL,
store_key integer NOT NULL,
amount_sold numeric(12,2) NOT NULL,
units_sold integer NOT NULL,
amount_cost numeric(12,2) NOT NULL

);
CREATE INDEX sales_fact_time ON sales_fact(time_key);

--
-- Summary table - sales by time.
--
CREATE TABLE sales_summary_bytime (

time_key integer NOT NULL,
amount_sold numeric(15,2) NOT NULL,
units_sold numeric(12) NOT NULL,
amount_cost numeric(15,2) NOT NULL

);
CREATE UNIQUE INDEX sales_summary_bytime_key ON sales_summary_bytime(time_key);

--
-- Function and trigger to amend summarized column(s) on UPDATE, INSERT, DELETE.
--
CREATE OR REPLACE FUNCTION maint_sales_summary_bytime() RETURNS TRIGGER AS $maint_sales_summary_bytime$

DECLARE
delta_time_key integer;
delta_amount_sold numeric(15,2);
delta_units_sold numeric(12);
delta_amount_cost numeric(15,2);

BEGIN

-- Work out the increment/decrement amount(s).

559

Chapter 35. PL/pgSQL - SQL Procedural Language

IF (TG_OP = ’DELETE’) THEN

delta_time_key = OLD.time_key;
delta_amount_sold = -1 * OLD.amount_sold;
delta_units_sold = -1 * OLD.units_sold;
delta_amount_cost = -1 * OLD.amount_cost;

ELSIF (TG_OP = ’UPDATE’) THEN

-- forbid updates that change the time_key -
-- (probably not too onerous, as DELETE + INSERT is how most
-- changes will be made).
IF (OLD.time_key != NEW.time_key) THEN

RAISE EXCEPTION ’Update of time_key : % - > % not allowed’, OLD.time_key, NEW.time_key;
END IF;

delta_time_key = OLD.time_key;
delta_amount_sold = NEW.amount_sold - OLD.amount_sold;
delta_units_sold = NEW.units_sold - OLD.units_sold;
delta_amount_cost = NEW.amount_cost - OLD.amount_cost;

ELSIF (TG_OP = ’INSERT’) THEN

delta_time_key = NEW.time_key;
delta_amount_sold = NEW.amount_sold;
delta_units_sold = NEW.units_sold;
delta_amount_cost = NEW.amount_cost;

END IF;

-- Update the summary row with the new values.
UPDATE sales_summary_bytime

SET amount_sold = amount_sold + delta_amount_sold,
units_sold = units_sold + delta_units_sold,
amount_cost = amount_cost + delta_amount_cost

WHERE time_key = delta_time_key;

-- There might have been no row with this time_key (e.g new data!).
IF (NOT FOUND) THEN

BEGIN
INSERT INTO sales_summary_bytime (

time_key,
amount_sold,
units_sold,
amount_cost)

VALUES (
delta_time_key,
delta_amount_sold,
delta_units_sold,
delta_amount_cost

);
EXCEPTION

--
-- Catch race condition when two transactions are adding data
-- for a new time_key.

560

Chapter 35. PL/pgSQL - SQL Procedural Language

--
WHEN UNIQUE_VIOLATION THEN

UPDATE sales_summary_bytime
SET amount_sold = amount_sold + delta_amount_sold,

units_sold = units_sold + delta_units_sold,
amount_cost = amount_cost + delta_amount_cost

WHERE time_key = delta_time_key;

END;
END IF;
RETURN NULL;

END;
$maint_sales_summary_bytime$ LANGUAGE plpgsql;

CREATE TRIGGER maint_sales_summary_bytime
AFTER INSERT OR UPDATE OR DELETE ON sales_fact

FOR EACH ROW EXECUTE PROCEDURE maint_sales_summary_bytime();

35.11. Porting from Oracle PL/SQL
This section explains differences between PostgreSQL’s PL/pgSQL language and Oracle’s PL/SQL
language, to help developers who port applications from Oracle® to PostgreSQL.

PL/pgSQL is similar to PL/SQL in many aspects. It is a block-structured, imperative language, and
all variables have to be declared. Assignments, loops, conditionals are similar. The main differences
you should keep in mind when porting from PL/SQL to PL/pgSQL are:

• There are no default values for parameters in PostgreSQL.

• You can overload function names in PostgreSQL. This is often used to work around the lack of
default parameters.

• No need for cursors in PL/pgSQL, just put the query in theFORstatement. (SeeExample 35-5.)

• In PostgreSQL you need to use dollar quoting or escape single quotes in the function body. See
Section 35.2.1.

• Instead of packages, use schemas to organize your functions into groups.

• Since there are no packages, there are no package-level variables either. This is somewhat annoying.
You may be able to keep per-session state in temporary tables, instead.

35.11.1. Porting Examples

Example 35-4shows how to port a simple function from PL/SQL to PL/pgSQL.

Example 35-4. Porting a Simple Function from PL/SQL to PL/pgSQL

Here is an Oracle PL/SQL function:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name IN varchar,
v_version IN varchar)

RETURN varchar IS
BEGIN

561

Chapter 35. PL/pgSQL - SQL Procedural Language

IF v_version IS NULL THEN
RETURN v_name;

END IF;
RETURN v_name || ’/’ || v_version;

END;
/
show errors;

Let’s go through this function and see the differences to PL/pgSQL:

• Oracle can haveIN , OUT, andINOUT parameters passed to functions.INOUT, for example, means
that the parameter will receive a value and return another. PostgreSQL only hasIN parameters, and
hence there is no specification of the parameter kind.

• The RETURNkey word in the function prototype (not the function body) becomesRETURNSin
PostgreSQL. Also,IS becomesAS, and you need to add aLANGUAGEclause because PL/pgSQL is
not the only possible function language.

• In PostgreSQL, the function body is considered to be a string literal, so you need to use quote marks
or dollar quotes around it. This substitutes for the terminating/ in the Oracle approach.

• The show errors command does not exist in PostgreSQL, and is not needed since errors are
reported automatically.

This is how this function would look when ported to PostgreSQL:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar,
v_version varchar)

RETURNS varchar AS $$
BEGIN

IF v_version IS NULL THEN
RETURN v_name;

END IF;
RETURN v_name || ’/’ || v_version;

END;
$$ LANGUAGE plpgsql;

Example 35-5shows how to port a function that creates another function and how to handle the
ensuing quoting problems.

Example 35-5. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL

The following procedure grabs rows from aSELECTstatement and builds a large function with the
results inIF statements, for the sake of efficiency. Notice particularly the differences in the cursor
and theFORloop.

This is the Oracle version:

CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc IS
CURSOR referrer_keys IS

SELECT * FROM cs_referrer_keys
ORDER BY try_order;

func_cmd VARCHAR(4000);
BEGIN

func_cmd := ’CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host IN VARCHAR,

562

Chapter 35. PL/pgSQL - SQL Procedural Language

v_domain IN VARCHAR, v_url IN VARCHAR) RETURN VARCHAR IS BEGIN’;

FOR referrer_key IN referrer_keys LOOP
func_cmd := func_cmd ||

’ IF v_’ || referrer_key.kind
|| ’ LIKE ”’ || referrer_key.key_string
|| ”’ THEN RETURN ”’ || referrer_key.referrer_type
|| ”’; END IF;’;

END LOOP;

func_cmd := func_cmd || ’ RETURN NULL; END;’;

EXECUTE IMMEDIATE func_cmd;
END;
/
show errors;

Here is how this function would end up in PostgreSQL:

CREATE OR REPLACE FUNCTION cs_update_referrer_type_proc() RETURNS void AS $func$
DECLARE

referrer_key RECORD; -- declare a generic record to be used in a FOR
func_body text;
func_cmd text;

BEGIN
func_body := ’BEGIN’ ;

-- Notice how we scan through the results of a query in a FOR loop
-- using the FOR <record > construct.

FOR referrer_key IN SELECT * FROM cs_referrer_keys ORDER BY try_order LOOP
func_body := func_body ||

’ IF v_’ || referrer_key.kind
|| ’ LIKE ’ || quote_literal(referrer_key.key_string)
|| ’ THEN RETURN ’ || quote_literal(referrer_key.referrer_type)
|| ’; END IF;’ ;

END LOOP;

func_body := func_body || ’ RETURN NULL; END;’;

func_cmd :=
’CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host varchar,

v_domain varchar,
v_url varchar)

RETURNS varchar AS ’
|| quote_literal(func_body)
|| ’ LANGUAGE plpgsql;’ ;

EXECUTE func_cmd;
RETURN;

END;
$func$ LANGUAGE plpgsql;

Notice how the body of the function is built separately and passed throughquote_literal to
double any quote marks in it. This technique is needed because we cannot safely use dollar quoting
for defining the new function: we do not know for sure what strings will be interpolated from the
referrer_key.key_string field. (We are assuming here thatreferrer_key.kind can be
trusted to always behost , domain , or url , but referrer_key.key_string might be anything,
in particular it might contain dollar signs.) This function is actually an improvement on the

563

Chapter 35. PL/pgSQL - SQL Procedural Language

Oracle original, because it will not generate broken code whenreferrer_key.key_string or
referrer_key.referrer_type contain quote marks.

Example 35-6shows how to port a function withOUTparameters and string manipulation. PostgreSQL
does not have aninstr function, but you can work around it using a combination of other functions.
In Section 35.11.3there is a PL/pgSQL implementation ofinstr that you can use to make your
porting easier.

Example 35-6. Porting a Procedure With String Manipulation and OUT Parameters from
PL/SQL to PL/pgSQL

The following Oracle PL/SQL procedure is used to parse a URL and return several elements (host,
path, and query). In PostgreSQL, functions can return only one value. One way to work around this
is to make the return value a composite type (row type).

This is the Oracle version:

CREATE OR REPLACE PROCEDURE cs_parse_url(
v_url IN VARCHAR,
v_host OUT VARCHAR, -- This will be passed back
v_path OUT VARCHAR, -- This one too
v_query OUT VARCHAR) -- And this one

IS
a_pos1 INTEGER;
a_pos2 INTEGER;

BEGIN
v_host := NULL;
v_path := NULL;
v_query := NULL;
a_pos1 := instr(v_url, ’//’);

IF a_pos1 = 0 THEN
RETURN;

END IF;
a_pos2 := instr(v_url, ’/’, a_pos1 + 2);
IF a_pos2 = 0 THEN

v_host := substr(v_url, a_pos1 + 2);
v_path := ’/’;
RETURN;

END IF;

v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
a_pos1 := instr(v_url, ’?’, a_pos2 + 1);

IF a_pos1 = 0 THEN
v_path := substr(v_url, a_pos2);
RETURN;

END IF;

v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
v_query := substr(v_url, a_pos1 + 1);

END;
/
show errors;

Here is a possible translation into PL/pgSQL:

564

Chapter 35. PL/pgSQL - SQL Procedural Language

CREATE TYPE cs_parse_url_result AS (
v_host VARCHAR,
v_path VARCHAR,
v_query VARCHAR

);

CREATE OR REPLACE FUNCTION cs_parse_url(v_url VARCHAR)
RETURNS cs_parse_url_result AS $$
DECLARE

res cs_parse_url_result;
a_pos1 INTEGER;
a_pos2 INTEGER;

BEGIN
res.v_host := NULL;
res.v_path := NULL;
res.v_query := NULL;
a_pos1 := instr(v_url, ’//’);

IF a_pos1 = 0 THEN
RETURN res;

END IF;
a_pos2 := instr(v_url, ’/’, a_pos1 + 2);
IF a_pos2 = 0 THEN

res.v_host := substr(v_url, a_pos1 + 2);
res.v_path := ’/’;
RETURN res;

END IF;

res.v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
a_pos1 := instr(v_url, ’?’, a_pos2 + 1);

IF a_pos1 = 0 THEN
res.v_path := substr(v_url, a_pos2);
RETURN res;

END IF;

res.v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
res.v_query := substr(v_url, a_pos1 + 1);
RETURN res;

END;
$$ LANGUAGE plpgsql;

This function could be used like this:
SELECT * FROM cs_parse_url(’http://foobar.com/query.cgi?baz’);

Example 35-7shows how to port a procedure that uses numerous features that are specific to Oracle.

Example 35-7. Porting a Procedure from PL/SQL to PL/pgSQL

The Oracle version:

CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id IN INTEGER) IS
a_running_job_count INTEGER;
PRAGMA AUTONOMOUS_TRANSACTION;➊

BEGIN
LOCK TABLE cs_jobs IN EXCLUSIVE MODE;➋

565

Chapter 35. PL/pgSQL - SQL Procedural Language

SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

IF a_running_job_count > 0 THEN
COMMIT; -- free lock ➌

raise_application_error(-20000, ’Unable to create a new job: a job is currently running.’);
END IF;

DELETE FROM cs_active_job;
INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

BEGIN
INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, sysdate);

EXCEPTION
WHEN dup_val_on_index THEN NULL; -- don’t worry if it already exists

END;
COMMIT;

END;
/
show errors

Procedures like this can easily be converted into PostgreSQL functions returningvoid . This proce-
dure in particular is interesting because it can teach us some things:

➊ There is noPRAGMAstatement in PostgreSQL.

➋ If you do aLOCK TABLEin PL/pgSQL, the lock will not be released until the calling transaction
is finished.

➌ You cannot issueCOMMITin a PL/pgSQL function. The function is running within some outer
transaction and soCOMMITwould imply terminating the function’s execution. However, in this
particular case it is not necessary anyway, because the lock obtained by theLOCK TABLEwill be
released when we raise an error.

This is how we could port this procedure to PL/pgSQL:

CREATE OR REPLACE FUNCTION cs_create_job(v_job_id integer) RETURNS void AS $$
DECLARE

a_running_job_count integer;
BEGIN

LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

IF a_running_job_count > 0 THEN
RAISE EXCEPTION ’Unable to create a new job: a job is currently running’; ➊

END IF;

DELETE FROM cs_active_job;
INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

BEGIN
INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, now());

EXCEPTION
WHEN unique_violation THEN ➋

-- don’t worry if it already exists
END;

RETURN;

566

Chapter 35. PL/pgSQL - SQL Procedural Language

END;
$$ LANGUAGE plpgsql;

➊ The syntax ofRAISE is considerably different from Oracle’s similar statement.

➋ The exception names supported by PL/pgSQL are different from Oracle’s. The set of built-in
exception names is much larger (seeAppendix A). There is not currently a way to declare user-
defined exception names.

The main functional difference between this procedure and the Oracle equivalent is that the exclusive
lock on thecs_jobs table will be held until the calling transaction completes. Also, if the caller later
aborts (for example due to an error), the effects of this procedure will be rolled back.

35.11.2. Other Things to Watch For

This section explains a few other things to watch for when porting Oracle PL/SQL functions to Post-
greSQL.

35.11.2.1. Implicit Rollback after Exceptions

In PL/pgSQL, when an exception is caught by anEXCEPTIONclause, all database changes since the
block’s BEGIN are automatically rolled back. That is, the behavior is equivalent to what you’d get in
Oracle with

BEGIN
SAVEPOINT s1;
... code here ...

EXCEPTION
WHEN ... THEN

ROLLBACK TO s1;
... code here ...

WHEN ... THEN
ROLLBACK TO s1;
... code here ...

END;

If you are translating an Oracle procedure that usesSAVEPOINTand ROLLBACK TOin this style,
your task is easy: just omit theSAVEPOINTandROLLBACK TO. If you have a procedure that uses
SAVEPOINTandROLLBACK TOin a different way then some actual thought will be required.

35.11.2.2. EXECUTE

The PL/pgSQL version ofEXECUTEworks similarly to the PL/SQL version, but you have to re-
member to usequote_literal(text) andquote_string(text) as described inSection 35.6.5.
Constructs of the typeEXECUTE ’SELECT * FROM $1’; will not work unless you use these func-
tions.

35.11.2.3. Optimizing PL/pgSQL Functions

PostgreSQL gives you two function creation modifiers to optimize execution: “volatility” (whether the
function always returns the same result when given the same arguments) and “strictness” (whether the

567

Chapter 35. PL/pgSQL - SQL Procedural Language

function returns null if any argument is null). Consult theCREATE FUNCTIONreference page for
details.

When making use of these optimization attributes, yourCREATE FUNCTIONstatement might look
something like this:

CREATE FUNCTION foo(...) RETURNS integer AS $$
...
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

35.11.3. Appendix

This section contains the code for a set of Oracle-compatibleinstr functions that you can use to
simplify your porting efforts.

--
-- instr functions that mimic Oracle’s counterpart
-- Syntax: instr(string1, string2, [n], [m]) where [] denotes optional parameters.
--
-- Searches string1 beginning at the nth character for the mth occurrence
-- of string2. If n is negative, search backwards. If m is not passed,
-- assume 1 (search starts at first character).
--

CREATE FUNCTION instr(varchar, varchar) RETURNS integer AS $$
DECLARE

pos integer;
BEGIN

pos:= instr($1, $2, 1);
RETURN pos;

END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE FUNCTION instr(string varchar, string_to_search varchar, beg_index integer)
RETURNS integer AS $$
DECLARE

pos integer NOT NULL DEFAULT 0;
temp_str varchar;
beg integer;
length integer;
ss_length integer;

BEGIN
IF beg_index > 0 THEN

temp_str := substring(string FROM beg_index);
pos := position(string_to_search IN temp_str);

IF pos = 0 THEN
RETURN 0;

ELSE
RETURN pos + beg_index - 1;

END IF;
ELSE

ss_length := char_length(string_to_search);

568

Chapter 35. PL/pgSQL - SQL Procedural Language

length := char_length(string);
beg := length + beg_index - ss_length + 2;

WHILE beg > 0 LOOP
temp_str := substring(string FROM beg FOR ss_length);
pos := position(string_to_search IN temp_str);

IF pos > 0 THEN
RETURN beg;

END IF;

beg := beg - 1;
END LOOP;

RETURN 0;
END IF;

END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE FUNCTION instr(string varchar, string_to_search varchar,
beg_index integer, occur_index integer)

RETURNS integer AS $$
DECLARE

pos integer NOT NULL DEFAULT 0;
occur_number integer NOT NULL DEFAULT 0;
temp_str varchar;
beg integer;
i integer;
length integer;
ss_length integer;

BEGIN
IF beg_index > 0 THEN

beg := beg_index;
temp_str := substring(string FROM beg_index);

FOR i IN 1..occur_index LOOP
pos := position(string_to_search IN temp_str);

IF i = 1 THEN
beg := beg + pos - 1;

ELSE
beg := beg + pos;

END IF;

temp_str := substring(string FROM beg + 1);
END LOOP;

IF pos = 0 THEN
RETURN 0;

ELSE
RETURN beg;

END IF;
ELSE

ss_length := char_length(string_to_search);
length := char_length(string);
beg := length + beg_index - ss_length + 2;

569

Chapter 35. PL/pgSQL - SQL Procedural Language

WHILE beg > 0 LOOP
temp_str := substring(string FROM beg FOR ss_length);
pos := position(string_to_search IN temp_str);

IF pos > 0 THEN
occur_number := occur_number + 1;

IF occur_number = occur_index THEN
RETURN beg;

END IF;
END IF;

beg := beg - 1;
END LOOP;

RETURN 0;
END IF;

END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

570

Chapter 36. PL/Tcl - Tcl Procedural Language
PL/Tcl is a loadable procedural language for the PostgreSQL database system that enables the Tcl1

language to be used to write functions and trigger procedures.

36.1. Overview
PL/Tcl offers most of the capabilities a function writer has in the C language, except for some restric-
tions.

The good restriction is that everything is executed in a safe Tcl interpreter. In addition to the limited
command set of safe Tcl, only a few commands are available to access the database via SPI and to
raise messages viaelog() . There is no way to access internals of the database server or to gain OS-
level access under the permissions of the PostgreSQL server process, as a C function can do. Thus,
any unprivileged database user may be permitted to use this language.

The other, implementation restriction is that Tcl functions cannot be used to create input/output func-
tions for new data types.

Sometimes it is desirable to write Tcl functions that are not restricted to safe Tcl. For example, one
might want a Tcl function that sends email. To handle these cases, there is a variant of PL/Tcl called
PL/TclU (for untrusted Tcl). This is the exact same language except that a full Tcl interpreter is used.
If PL/TclU is used, it must be installed as an untrusted procedural languageso that only database
superusers can create functions in it. The writer of a PL/TclU function must take care that the function
cannot be used to do anything unwanted, since it will be able to do anything that could be done by a
user logged in as the database administrator.

The shared object for the PL/Tcl and PL/TclU call handlers is automatically built and installed in the
PostgreSQL library directory if Tcl support is specified in the configuration step of the installation
procedure. To install PL/Tcl and/or PL/TclU in a particular database, use thecreatelang program,
for examplecreatelang pltcl dbname or createlang pltclu dbname.

36.2. PL/Tcl Functions and Arguments
To create a function in the PL/Tcl language, use the standard syntax:

CREATE FUNCTIONfuncname (argument-types) RETURNS return-type AS $$
PL/Tcl function body

$$ LANGUAGE pltcl;

PL/TclU is the same, except that the language has to be specified aspltclu .

The body of the function is simply a piece of Tcl script. When the function is called, the argument
values are passed as variables$1 ... $n to the Tcl script. The result is returned from the Tcl code in
the usual way, with areturn statement.

For example, a function returning the greater of two integer values could be defined as:

CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
if {$1 > $2} {return $1}
return $2

$$ LANGUAGE pltcl STRICT;

1. http://www.tcl.tk/

571

Chapter 36. PL/Tcl - Tcl Procedural Language

Note the clauseSTRICT, which saves us from having to think about null input values: if a null value
is passed, the function will not be called at all, but will just return a null result automatically.

In a nonstrict function, if the actual value of an argument is null, the corresponding$n variable will be
set to an empty string. To detect whether a particular argument is null, use the functionargisnull .
For example, suppose that we wantedtcl_max with one null and one nonnull argument to return the
nonnull argument, rather than null:

CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
if {[argisnull 1]} {

if {[argisnull 2]} { return_null }
return $2

}
if {[argisnull 2]} { return $1 }
if {$1 > $2} {return $1}
return $2

$$ LANGUAGE pltcl;

As shown above, to return a null value from a PL/Tcl function, executereturn_null . This can be
done whether the function is strict or not.

Composite-type arguments are passed to the function as Tcl arrays. The element names of the array
are the attribute names of the composite type. If an attribute in the passed row has the null value, it
will not appear in the array. Here is an example:

CREATE TABLE employee (
name text,
salary integer,
age integer

);

CREATE FUNCTION overpaid(employee) RETURNS boolean AS $$
if {200000.0 < $1(salary)} {

return "t"
}
if {$1(age) < 30 && 100000.0 < $1(salary)} {

return "t"
}
return "f"

$$ LANGUAGE pltcl;

There is currently no support for returning a composite-type result value, nor for returning sets.

PL/Tcl does not currently have full support for domain types: it treats a domain the same as the
underlying scalar type. This means that constraints associated with the domain will not be enforced.
This is not an issue for function arguments, but it is a hazard if you declare a PL/Tcl function as
returning a domain type.

36.3. Data Values in PL/Tcl
The argument values supplied to a PL/Tcl function’s code are simply the input arguments converted
to text form (just as if they had been displayed by aSELECTstatement). Conversely, thereturn

572

Chapter 36. PL/Tcl - Tcl Procedural Language

command will accept any string that is acceptable input format for the function’s declared return type.
So, within the PL/Tcl function, all values are just text strings.

36.4. Global Data in PL/Tcl
Sometimes it is useful to have some global data that is held between two calls to a function or is
shared between different functions. This is easily done since all PL/Tcl functions executed in one
session share the same safe Tcl interpreter. So, any global Tcl variable is accessible to all PL/Tcl
function calls and will persist for the duration of the SQL session. (Note that PL/TclU functions
likewise share global data, but they are in a different Tcl interpreter and cannot communicate with
PL/Tcl functions.)

To help protect PL/Tcl functions from unintentionally interfering with each other, a global array is
made available to each function via theupvar command. The global name of this variable is the
function’s internal name, and the local name isGD. It is recommended thatGDbe used for persistent
private data of a function. Use regular Tcl global variables only for values that you specifically intend
to be shared among multiple functions.

An example of usingGDappears in thespi_execp example below.

36.5. Database Access from PL/Tcl
The following commands are available to access the database from the body of a PL/Tcl function:

spi_exec ?-count n? ?-array name? command ?loop-body ?

Executes an SQL command given as a string. An error in the command causes an error to be
raised. Otherwise, the return value ofspi_exec is the number of rows processed (selected,
inserted, updated, or deleted) by the command, or zero if the command is a utility statement. In
addition, if the command is aSELECTstatement, the values of the selected columns are placed
in Tcl variables as described below.

The optional-count value tellsspi_exec the maximum number of rows to process in the
command. The effect of this is comparable to setting up a query as a cursor and then saying
FETCH n.

If the command is aSELECTstatement, the values of the result columns are placed into Tcl
variables named after the columns. If the-array option is given, the column values are instead
stored into the named associative array, with the column names used as array indexes.

If the command is aSELECTstatement and noloop-body script is given, then only the first
row of results are stored into Tcl variables; remaining rows, if any, are ignored. No storing occurs
if the query returns no rows. (This case can be detected by checking the result ofspi_exec .)
For example,

spi_exec "SELECT count(*) AS cnt FROM pg_proc"

will set the Tcl variable$cnt to the number of rows in thepg_proc system catalog.

If the optionalloop-body argument is given, it is a piece of Tcl script that is executed once for
each row in the query result. (loop-body is ignored if the given command is not aSELECT.)
The values of the current row’s columns are stored into Tcl variables before each iteration. For
example,

spi_exec -array C "SELECT * FROM pg_class" {
elog DEBUG "have table $C(relname)"

573

Chapter 36. PL/Tcl - Tcl Procedural Language

}

will print a log message for every row ofpg_class . This feature works similarly to other Tcl
looping constructs; in particularcontinue andbreak work in the usual way inside the loop
body.

If a column of a query result is null, the target variable for it is “unset” rather than being set.

spi_prepare query typelist

Prepares and saves a query plan for later execution. The saved plan will be retained for the life
of the current session.

The query may use parameters, that is, placeholders for values to be supplied whenever the plan
is actually executed. In the query string, refer to parameters by the symbols$1 ... $n. If the query
uses parameters, the names of the parameter types must be given as a Tcl list. (Write an empty
list for typelist if no parameters are used.) Presently, the parameter types must be identified
by the internal type names shown in the system tablepg_type ; for exampleint4 not integer .

The return value fromspi_prepare is a query ID to be used in subsequent calls tospi_execp .
Seespi_execp for an example.

spi_execp ?-count n? ?-array name? ?-nulls string ? queryid ?value-list ?

?loop-body ?

Executes a query previously prepared withspi_prepare . queryid is the ID returned by
spi_prepare . If the query references parameters, avalue-list must be supplied. This is
a Tcl list of actual values for the parameters. The list must be the same length as the parameter
type list previously given tospi_prepare . Omit value-list if the query has no parameters.

The optional value for-nulls is a string of spaces and’n’ characters tellingspi_execp

which of the parameters are null values. If given, it must have exactly the same length as the
value-list . If it is not given, all the parameter values are nonnull.

Except for the way in which the query and its parameters are specified,spi_execp works just
like spi_exec . The -count , -array , and loop-body options are the same, and so is the
result value.

Here’s an example of a PL/Tcl function using a prepared plan:

CREATE FUNCTION t1_count(integer, integer) RETURNS integer AS $$
if {![info exists GD(plan)]} {

prepare the saved plan on the first call
set GD(plan) [spi_prepare \

"SELECT count(*) AS cnt FROM t1 WHERE num >= \$1 AND num <= \$2" \
[list int4 int4]]

}
spi_execp -count 1 $GD(plan) [list $1 $2]
return $cnt

$$ LANGUAGE pltcl;

We need backslashes inside the query string given tospi_prepare to ensure that the$n markers
will be passed through tospi_prepare as-is, and not replaced by Tcl variable substitution.

spi_lastoid

Returns the OID of the row inserted by the lastspi_exec or spi_execp , if the command was
a single-rowINSERT. (If not, you get zero.)

574

Chapter 36. PL/Tcl - Tcl Procedural Language

quote string

Doubles all occurrences of single quote and backslash characters in the given string. This may
be used to safely quote strings that are to be inserted into SQL commands given tospi_exec or
spi_prepare . For example, think about an SQL command string like

"SELECT ’$val’ AS ret"

where the Tcl variableval actually containsdoesn’t . This would result in the final command
string

SELECT ’doesn’t’ AS ret

which would cause a parse error duringspi_exec or spi_prepare . To work properly, the
submitted command should contain

SELECT ’doesn”t’ AS ret

which can be formed in PL/Tcl using

"SELECT ’[quote $val]’ AS ret"

One advantage ofspi_execp is that you don’t have to quote parameter values like this, since
the parameters are never parsed as part of an SQL command string.

elog level msg

Emits a log or error message. Possible levels areDEBUG, LOG, INFO, NOTICE, WARNING, ERROR,
andFATAL. ERRORraises an error condition; if this is not trapped by the surrounding Tcl code,
the error propagates out to the calling query, causing the current transaction or subtransaction
to be aborted. This is effectively the same as the Tclerror command.FATAL aborts the trans-
action and causes the current session to shut down. (There is probably no good reason to use
this error level in PL/Tcl functions, but it’s provided for completeness.) The other levels only
generate messages of different priority levels. Whether messages of a particular priority are re-
ported to the client, written to the server log, or both is controlled by thelog_min_messagesand
client_min_messagesconfiguration variables. SeeSection 16.4for more information.

36.6. Trigger Procedures in PL/Tcl
Trigger procedures can be written in PL/Tcl. PostgreSQL requires that a procedure that is to be called
as a trigger must be declared as a function with no arguments and a return type oftrigger .

The information from the trigger manager is passed to the procedure body in the following variables:

$TG_name

The name of the trigger from theCREATE TRIGGERstatement.

$TG_relid

The object ID of the table that caused the trigger procedure to be invoked.

$TG_relatts

A Tcl list of the table column names, prefixed with an empty list element. So looking up a column
name in the list with Tcl’slsearch command returns the element’s number starting with 1 for
the first column, the same way the columns are customarily numbered in PostgreSQL. (Empty

575

Chapter 36. PL/Tcl - Tcl Procedural Language

list elements also appear in the positions of columns that have been dropped, so that the attribute
numbering is correct for columns to their right.)

$TG_when

The stringBEFOREor AFTERdepending on the type of trigger call.

$TG_level

The stringROWor STATEMENTdepending on the type of trigger call.

$TG_op

The stringINSERT, UPDATE, or DELETEdepending on the type of trigger call.

$NEW

An associative array containing the values of the new table row forINSERT or UPDATEactions,
or empty forDELETE. The array is indexed by column name. Columns that are null will not
appear in the array.

$OLD

An associative array containing the values of the old table row forUPDATEor DELETEactions, or
empty forINSERT. The array is indexed by column name. Columns that are null will not appear
in the array.

$args

A Tcl list of the arguments to the procedure as given in theCREATE TRIGGERstatement. These
arguments are also accessible as$1 ... $n in the procedure body.

The return value from a trigger procedure can be one of the stringsOKor SKIP , or a list as returned
by thearray get Tcl command. If the return value isOK, the operation (INSERT/UPDATE/DELETE)
that fired the trigger will proceed normally.SKIP tells the trigger manager to silently suppress the
operation for this row. If a list is returned, it tells PL/Tcl to return a modified row to the trigger
manager that will be inserted instead of the one given in$NEW. (This works forINSERT andUPDATE

only.) Needless to say that all this is only meaningful when the trigger isBEFOREandFOR EACH

ROW; otherwise the return value is ignored.

Here’s a little example trigger procedure that forces an integer value in a table to keep track of the
number of updates that are performed on the row. For new rows inserted, the value is initialized to 0
and then incremented on every update operation.

CREATE FUNCTION trigfunc_modcount() RETURNS trigger AS $$
switch $TG_op {

INSERT {
set NEW($1) 0

}
UPDATE {

set NEW($1) $OLD($1)
incr NEW($1)

}
default {

return OK
}

}
return [array get NEW]

$$ LANGUAGE pltcl;

576

Chapter 36. PL/Tcl - Tcl Procedural Language

CREATE TABLE mytab (num integer, description text, modcnt integer);

CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
FOR EACH ROW EXECUTE PROCEDURE trigfunc_modcount(’modcnt’);

Notice that the trigger procedure itself does not know the column name; that’s supplied from the
trigger arguments. This lets the trigger procedure be reused with different tables.

36.7. Modules and the unknown command
PL/Tcl has support for autoloading Tcl code when used. It recognizes a special table,
pltcl_modules , which is presumed to contain modules of Tcl code. If this table exists, the module
unknown is fetched from the table and loaded into the Tcl interpreter immediately after creating the
interpreter.

While theunknown module could actually contain any initialization script you need, it normally de-
fines a Tclunknown procedure that is invoked whenever Tcl does not recognize an invoked procedure
name. PL/Tcl’s standard version of this procedure tries to find a module inpltcl_modules that will
define the required procedure. If one is found, it is loaded into the interpreter, and then execution is al-
lowed to proceed with the originally attempted procedure call. A secondary tablepltcl_modfuncs

provides an index of which functions are defined by which modules, so that the lookup is reasonably
quick.

The PostgreSQL distribution includes support scripts to maintain these tables:pltcl_loadmod ,
pltcl_listmod , pltcl_delmod , as well as source for the standardunknown module in
share/unknown.pltcl . This module must be loaded into each database initially to support the
autoloading mechanism.

The tablespltcl_modules andpltcl_modfuncs must be readable by all, but it is wise to make
them owned and writable only by the database administrator.

36.8. Tcl Procedure Names
In PostgreSQL, one and the same function name can be used for different functions as long as the
number of arguments or their types differ. Tcl, however, requires all procedure names to be distinct.
PL/Tcl deals with this by making the internal Tcl procedure names contain the object ID of the
function from the system tablepg_proc as part of their name. Thus, PostgreSQL functions with the
same name and different argument types will be different Tcl procedures, too. This is not normally a
concern for a PL/Tcl programmer, but it might be visible when debugging.

577

Chapter 37. PL/Perl - Perl Procedural
Language

PL/Perl is a loadable procedural language that enables you to write PostgreSQL functions in the Perl1

programming language.

To install PL/Perl in a particular database, usecreatelang plperl dbname.

Tip: If a language is installed into template1 , all subsequently created databases will have the
language installed automatically.

Note: Users of source packages must specially enable the build of PL/Perl during the installation
process. (Refer to Section 14.1 for more information.) Users of binary packages might find PL/Perl
in a separate subpackage.

37.1. PL/Perl Functions and Arguments
To create a function in the PL/Perl language, use the standard syntax:

CREATE FUNCTIONfuncname (argument-types) RETURNS return-type AS $$
PL/Perl function body

$$ LANGUAGE plperl;

The body of the function is ordinary Perl code.

The syntax of theCREATE FUNCTIONcommand requires the function body to be written as a string
constant. It is usually most convenient to use dollar quoting (seeSection 4.1.2.2) for the string con-
stant. If you choose to use regular single-quoted string constant syntax, you must escape single quote
marks (’) and backslashes (\) used in the body of the function, typically by doubling them (see
Section 4.1.2.1).

Arguments and results are handled as in any other Perl subroutine: arguments are passed in@_, and a
result value is returned withreturn or as the last expression evaluated in the function.

For example, a function returning the greater of two integer values could be defined as:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
if ($_[0] > $_[1]) { return $_[0]; }
return $_[1];

$$ LANGUAGE plperl;

If an SQL null value is passed to a function, the argument value will appear as “undefined” in Perl.
The above function definition will not behave very nicely with null inputs (in fact, it will act as though
they are zeroes). We could addSTRICT to the function definition to make PostgreSQL do something
more reasonable: if a null value is passed, the function will not be called at all, but will just return a
null result automatically. Alternatively, we could check for undefined inputs in the function body. For
example, suppose that we wantedperl_max with one null and one nonnull argument to return the
nonnull argument, rather than a null value:

1. http://www.perl.com

578

Chapter 37. PL/Perl - Perl Procedural Language

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
my ($a,$b) = @_;
if (! defined $a) {

if (! defined $b) { return undef; }
return $b;

}
if (! defined $b) { return $a; }
if ($a > $b) { return $a; }
return $b;

$$ LANGUAGE plperl;

As shown above, to return an SQL null value from a PL/Perl function, return an undefined value. This
can be done whether the function is strict or not.

Composite-type arguments are passed to the function as references to hashes. The keys of the hash
are the attribute names of the composite type. Here is an example:

CREATE TABLE employee (
name text,
basesalary integer,
bonus integer

);

CREATE FUNCTION empcomp(employee) RETURNS integer AS $$
my ($emp) = @_;
return $emp- >{basesalary} + $emp- >{bonus};

$$ LANGUAGE plperl;

SELECT name, empcomp(employee.*) FROM employee;

A PL/Perl function can return a composite-type result using the same approach: return a reference to
a hash that has the required attributes. For example,

CREATE TYPE testrowperl AS (f1 integer, f2 text, f3 text);

CREATE OR REPLACE FUNCTION perl_row() RETURNS testrowperl AS $$
return {f2 = > ’hello’, f1 = > 1, f3 = > ’world’};

$$ LANGUAGE plperl;

SELECT * FROM perl_row();

Any columns in the declared result data type that are not present in the hash will be returned as
NULLs.

PL/Perl functions can also return sets of either scalar or composite types. To do this, return a reference
to an array that contains either scalars or references to hashes, respectively. Here are some simple
examples:

CREATE OR REPLACE FUNCTION perl_set_int(int) RETURNS SETOF INTEGER AS $$
return [0..$_[0]];
$$ LANGUAGE plperl;

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set() RETURNS SETOF testrowperl AS $$

579

Chapter 37. PL/Perl - Perl Procedural Language

return [
{ f1 = > 1, f2 = > ’Hello’, f3 = > ’World’ },
{ f1 = > 2, f2 = > ’Hello’, f3 = > ’PostgreSQL’ },
{ f1 = > 3, f2 = > ’Hello’, f3 = > ’PL/Perl’ }

];
$$ LANGUAGE plperl;

SELECT * FROM perl_set();

Note that when you do this, Perl will have to build the entire array in memory; therefore the technique
does not scale to very large result sets.

PL/Perl does not currently have full support for domain types: it treats a domain the same as the
underlying scalar type. This means that constraints associated with the domain will not be enforced.
This is not an issue for function arguments, but it is a hazard if you declare a PL/Perl function as
returning a domain type.

37.2. Database Access from PL/Perl
Access to the database itself from your Perl function can be done via the functionspi_exec_query

described below, or via an experimental moduleDBD::PgSPI 2 (also available at CPAN mirror sites3).
This module makes available a DBI-compliant database-handle named$pg_dbh that can be used to
perform queries with normal DBI syntax.

PL/Perl itself presently provides two additional Perl commands:

spi_exec_query (query [, max-rows])

spi_exec_query (command)

Executes an SQL command. Here is an example of a query (SELECTcommand) with the optional
maximum number of rows:

$rv = spi_exec_query(’SELECT * FROM my_table’, 5);

This returns up to 5 rows from the tablemy_table . If my_table has a columnmy_column , you
can get that value from row$i of the result like this:

$foo = $rv- >{rows}[$i]- >{my_column};

The total number of rows returned from aSELECTquery can be accessed like this:

$nrows = $rv- >{processed}

Here is an example using a different command type:

$query = "INSERT INTO my_table VALUES (1, ’test’)";
$rv = spi_exec_query($query);

You can then access the command status (e.g.,SPI_OK_INSERT) like this:

$res = $rv- >{status};

To get the number of rows affected, do:

$nrows = $rv- >{processed};

Here is a complete example:

2. http://www.cpan.org/modules/by-module/DBD/APILOS/
3. http://www.cpan.org/SITES.html

580

Chapter 37. PL/Perl - Perl Procedural Language

CREATE TABLE test (
i int,
v varchar

);

INSERT INTO test (i, v) VALUES (1, ’first line’);
INSERT INTO test (i, v) VALUES (2, ’second line’);
INSERT INTO test (i, v) VALUES (3, ’third line’);
INSERT INTO test (i, v) VALUES (4, ’immortal’);

CREATE FUNCTION test_munge() RETURNS SETOF test AS $$
my $res = [];
my $rv = spi_exec_query(’select i, v from test;’);
my $status = $rv- >{status};
my $nrows = $rv- >{processed};
foreach my $rn (0 .. $nrows - 1) {

my $row = $rv- >{rows}[$rn];
$row- >{i} += 200 if defined($row- >{i});
$row- >{v} =~ tr/A-Za-z/a-zA-Z/ if (defined($row- >{v}));
push @$res, $row;

}
return $res;

$$ LANGUAGE plperl;

SELECT * FROM test_munge();

elog (level , msg)

Emit a log or error message. Possible levels areDEBUG, LOG, INFO, NOTICE, WARNING, and
ERROR. ERRORraises an error condition; if this is not trapped by the surrounding Perl code,
the error propagates out to the calling query, causing the current transaction or subtransaction
to be aborted. This is effectively the same as the Perldie command. The other levels only
generate messages of different priority levels. Whether messages of a particular priority are re-
ported to the client, written to the server log, or both is controlled by thelog_min_messagesand
client_min_messagesconfiguration variables. SeeSection 16.4for more information.

37.3. Data Values in PL/Perl
The argument values supplied to a PL/Perl function’s code are simply the input arguments converted
to text form (just as if they had been displayed by aSELECTstatement). Conversely, thereturn

command will accept any string that is acceptable input format for the function’s declared return type.
So, within the PL/Perl function, all values are just text strings.

37.4. Global Values in PL/Perl
You can use the global hash%_SHAREDto store data, including code references, between function
calls for the lifetime of the current session.

Here is a simple example for shared data:

581

Chapter 37. PL/Perl - Perl Procedural Language

CREATE OR REPLACE FUNCTION set_var(name text, val text) RETURNS text AS $$
if ($_SHARED{$_[0]} = $_[1]) {

return ’ok’;
} else {

return "can’t set shared variable $_[0] to $_[1]";
}

$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION get_var(name text) RETURNS text AS $$
return $_SHARED{$_[0]};

$$ LANGUAGE plperl;

SELECT set_var(’sample’, ’Hello, PL/Perl! How’s tricks?’);
SELECT get_var(’sample’);

Here is a slightly more complicated example using a code reference:

CREATE OR REPLACE FUNCTION myfuncs() RETURNS void AS $$
$_SHARED{myquote} = sub {

my $arg = shift;
$arg =~ s/([’\\])/\\$1/g;
return "’$arg’";

};
$$ LANGUAGE plperl;

SELECT myfuncs(); /* initializes the function */

/* Set up a function that uses the quote function */

CREATE OR REPLACE FUNCTION use_quote(TEXT) RETURNS text AS $$
my $text_to_quote = shift;
my $qfunc = $_SHARED{myquote};
return &$qfunc($text_to_quote);

$$ LANGUAGE plperl;

(You could have replaced the above with the one-linerreturn $_SHARED{myquote}- >($_[0]);

at the expense of readability.)

37.5. Trusted and Untrusted PL/Perl
Normally, PL/Perl is installed as a “trusted” programming language namedplperl . In this setup, cer-
tain Perl operations are disabled to preserve security. In general, the operations that are restricted are
those that interact with the environment. This includes file handle operations,require , anduse (for
external modules). There is no way to access internals of the database server process or to gain OS-
level access with the permissions of the server process, as a C function can do. Thus, any unprivileged
database user may be permitted to use this language.

Here is an example of a function that will not work because file system operations are not allowed for
security reasons:

CREATE FUNCTION badfunc() RETURNS integer AS $$
open(TEMP, " >/tmp/badfile");
print TEMP "Gotcha!\n";
return 1;

582

Chapter 37. PL/Perl - Perl Procedural Language

$$ LANGUAGE plperl;

The creation of the function will succeed, but executing it will not.

Sometimes it is desirable to write Perl functions that are not restricted. For example, one might want
a Perl function that sends mail. To handle these cases, PL/Perl can also be installed as an “untrusted”
language (usually called PL/PerlU). In this case the full Perl language is available. If thecreatelang

program is used to install the language, the language nameplperlu will select the untrusted PL/Perl
variant.

The writer of a PL/PerlU function must take care that the function cannot be used to do anything
unwanted, since it will be able to do anything that could be done by a user logged in as the database
administrator. Note that the database system allows only database superusers to create functions in
untrusted languages.

If the above function was created by a superuser using the languageplperlu , execution would suc-
ceed.

37.6. PL/Perl Triggers
PL/Perl can be used to write trigger functions. In a trigger function, the hash reference$_TD contains
information about the current trigger event. The fields of the$_TD hash reference are:

$_TD- >{new}{foo}

NEWvalue of columnfoo

$_TD- >{old}{foo}

OLDvalue of columnfoo

$_TD- >{name}

Name of the trigger being called

$_TD- >{event}

Trigger event:INSERT, UPDATE, DELETE, or UNKNOWN

$_TD- >{when}

When the trigger was called:BEFORE, AFTER, or UNKNOWN

$_TD- >{level}

The trigger level:ROW, STATEMENT, or UNKNOWN

$_TD- >{relid}

OID of the table on which the trigger fired

$_TD- >{relname}

Name of the table on which the trigger fired

$_TD- >{argc}

Number of arguments of the trigger function

@{$_TD->{args}}

Arguments of the trigger function. Does not exist if $_TD->{argc} is 0.

583

Chapter 37. PL/Perl - Perl Procedural Language

Triggers can return one of the following:

return;

Execute the statement

"SKIP"

Don’t execute the statement

"MODIFY"

Indicates that theNEWrow was modified by the trigger function

Here is an example of a trigger function, illustrating some of the above:

CREATE TABLE test (
i int,
v varchar

);

CREATE OR REPLACE FUNCTION valid_id() RETURNS trigger AS $$
if (($_TD- >{new}{i} >= 100) || ($_TD- >{new}{i} <= 0)) {

return "SKIP"; # skip INSERT/UPDATE command
} elsif ($_TD- >{new}{v} ne "immortal") {

$_TD- >{new}{v} .= "(modified by trigger)";
return "MODIFY"; # modify row and execute INSERT/UPDATE command

} else {
return; # execute INSERT/UPDATE command

}
$$ LANGUAGE plperl;

CREATE TRIGGER test_valid_id_trig
BEFORE INSERT OR UPDATE ON test
FOR EACH ROW EXECUTE PROCEDURE valid_id();

37.7. Limitations and Missing Features
The following features are currently missing from PL/Perl, but they would make welcome contribu-
tions.

• PL/Perl functions cannot call each other directly (because they are anonymous subroutines inside
Perl).

• SPI is not yet fully implemented.

• In the current implementation, if you are fetching or returning very large data sets, you should be
aware that these will all go into memory.

584

Chapter 38. PL/Python - Python Procedural
Language

The PL/Python procedural language allows PostgreSQL functions to be written in the Python1 lan-
guage.

To install PL/Python in a particular database, usecreatelang plpythonu dbname.

Tip: If a language is installed into template1 , all subsequently created databases will have the
language installed automatically.

As of PostgreSQL 7.4, PL/Python is only available as an “untrusted” language (meaning it does not
offer any way of restricting what users can do in it). It has therefore been renamed toplpythonu . The
trusted variantplpython may become available again in future, if a new secure execution mechanism
is developed in Python.

Note: Users of source packages must specially enable the build of PL/Python during the installa-
tion process. (Refer to the installation instructions for more information.) Users of binary packages
might find PL/Python in a separate subpackage.

38.1. PL/Python Functions
Functions in PL/Python are declared in the usual way, for example

CREATE FUNCTION myfunc(text) RETURNS text
AS ’return args[0]’
LANGUAGE plpythonu;

The Python code that is given as the body of the function definition gets transformed into a Python
function. For example, the above results in

def __plpython_procedure_myfunc_23456():
return args[0]

assuming that 23456 is the OID assigned to the function by PostgreSQL.

If you do not provide a return value, Python returns the defaultNone. PL/Python translates Python’s
None into the SQL null value.

The PostgreSQL function parameters are available in the globalargs list. In themyfunc example,
args[0] contains whatever was passed in as the text argument. Formyfunc2(text, integer) ,
args[0] would contain thetext argument andargs[1] the integer argument.

The global dictionarySD is available to store data between function calls. This variable is private
static data. The global dictionaryGDis public data, available to all Python functions within a session.
Use with care.

Each function gets its own execution environment in the Python interpreter, so that global data and
function arguments frommyfunc are not available tomyfunc2 . The exception is the data in theGD

dictionary, as mentioned above.

1. http://www.python.org

585

Chapter 38. PL/Python - Python Procedural Language

38.2. Trigger Functions
When a function is used as a trigger, the dictionaryTD contains trigger-related values. The trigger
rows are inTD["new"] and/or TD["old"] depending on the trigger event.TD["event"] con-
tains the event as a string (INSERT, UPDATE, DELETE, or UNKNOWN). TD["when"] contains one
of BEFORE, AFTER, andUNKNOWN. TD["level"] contains one ofROW, STATEMENT, andUNKNOWN.
TD["name"] contains the trigger name, andTD["relid"] contains the OID of the table on which
the trigger occurred. If theCREATE TRIGGERcommand included arguments, they are available in
TD["args"][0] to TD["args"][(n-1)] .

If TD["when"] is BEFORE, you may returnNone or "OK" from the Python function to indicate the
row is unmodified,"SKIP" to abort the event, or"MODIFY" to indicate you’ve modified the row.

38.3. Database Access
The PL/Python language module automatically imports a Python module calledplpy . The functions
and constants in this module are available to you in the Python code asplpy. foo . At present
plpy implements the functionsplpy.debug(msg) , plpy.log(msg) , plpy.info(msg) ,
plpy.notice(msg) , plpy.warning(msg) , plpy.error(msg) , and plpy.fatal(msg) .
plpy.error and plpy.fatal actually raise a Python exception which, if uncaught, propagates
out to the calling query, causing the current transaction or subtransaction to be aborted.raise

plpy.ERROR(msg) and raise plpy.FATAL(msg) are equivalent to callingplpy.error and
plpy.fatal , respectively. The other functions only generate messages of different priority levels.
Whether messages of a particular priority are reported to the client, written to the server log, or
both is controlled by thelog_min_messagesandclient_min_messagesconfiguration variables. See
Section 16.4for more information.

Additionally, the plpy module provides two functions calledexecute and prepare . Calling
plpy.execute with a query string and an optional limit argument causes that query to be run and
the result to be returned in a result object. The result object emulates a list or dictionary object.
The result object can be accessed by row number and column name. It has these additional
methods:nrows which returns the number of rows returned by the query, andstatus which is the
SPI_execute() return value. The result object can be modified.

For example,

rv = plpy.execute("SELECT * FROM my_table", 5)

returns up to 5 rows frommy_table . If my_table has a columnmy_column , it would be accessed
as

foo = rv[i]["my_column"]

The second function,plpy.prepare , prepares the execution plan for a query. It is called with a query
string and a list of parameter types, if you have parameter references in the query. For example:

plan = plpy.prepare("SELECT last_name FROM my_users WHERE first_name = $1", ["text"])

text is the type of the variable you will be passing for$1. After preparing a statement, you use the
functionplpy.execute to run it:

rv = plpy.execute(plan, ["name"], 5)

The third argument is the limit and is optional.

586

Chapter 38. PL/Python - Python Procedural Language

When you prepare a plan using the PL/Python module it is automatically saved. Read the SPI doc-
umentation (Chapter 39) for a description of what this means. In order to make effective use of this
across function calls one needs to use one of the persistent storage dictionariesSDor GD(seeSection
38.1). For example:

CREATE FUNCTION usesavedplan() RETURNS trigger AS $$
if SD.has_key("plan"):

plan = SD["plan"]
else:

plan = plpy.prepare("SELECT 1")
SD["plan"] = plan

rest of function
$$ LANGUAGE plpythonu;

587

Chapter 39. Server Programming Interface
TheServer Programming Interface(SPI) gives writers of user-defined C functions the ability to run
SQL commands inside their functions. SPI is a set of interface functions to simplify access to the
parser, planner, optimizer, and executor. SPI also does some memory management.

Note: The available procedural languages provide various means to execute SQL commands
from procedures. Most of these facilities are based on SPI, so this documentation might be of use
for users of those languages as well.

To avoid misunderstanding we’ll use the term “function” when we speak of SPI interface functions
and “procedure” for a user-defined C-function that is using SPI.

Note that if a command invoked via SPI fails, then control will not be returned to your procedure.
Rather, the transaction or subtransaction in which your procedure executes will be rolled back. (This
may seem surprising given that the SPI functions mostly have documented error-return conventions.
Those conventions only apply for errors detected within the SPI functions themselves, however.) It
is possible to recover control after an error by establishing your own subtransaction surrounding SPI
calls that might fail. This is not currently documented because the mechanisms required are still in
flux.

SPI functions return a nonnegative result on success (either via a returned integer value or in the global
variableSPI_result , as described below). On error, a negative result orNULLwill be returned.

Source code files that use SPI must include the header fileexecutor/spi.h .

39.1. Interface Functions

SPI_connect

Name
SPI_connect — connect a procedure to the SPI manager

Synopsis

int SPI_connect(void)

Description

SPI_connect opens a connection from a procedure invocation to the SPI manager. You must call
this function if you want to execute commands through SPI. Some utility SPI functions may be called
from unconnected procedures.

If your procedure is already connected,SPI_connect will return the error code
SPI_ERROR_CONNECT. This could happen if a procedure that has calledSPI_connect directly
calls another procedure that callsSPI_connect . While recursive calls to the SPI manager are

588

SPI_connect

permitted when an SQL command called through SPI invokes another function that uses SPI, directly
nested calls toSPI_connect andSPI_finish are forbidden. (But seeSPI_push andSPI_pop .)

Return Value

SPI_OK_CONNECT

on success

SPI_ERROR_CONNECT

on error

589

SPI_finish

Name
SPI_finish — disconnect a procedure from the SPI manager

Synopsis

int SPI_finish(void)

Description

SPI_finish closes an existing connection to the SPI manager. You must call this function after
completing the SPI operations needed during your procedure’s current invocation. You do not need
to worry about making this happen, however, if you abort the transaction viaelog(ERROR) . In that
case SPI will clean itself up automatically.

If SPI_finish is called without having a valid connection, it will returnSPI_ERROR_UNCONNECTED.
There is no fundamental problem with this; it means that the SPI manager has nothing to do.

Return Value

SPI_OK_FINISH

if properly disconnected

SPI_ERROR_UNCONNECTED

if called from an unconnected procedure

590

SPI_push

Name
SPI_push — push SPI stack to allow recursive SPI usage

Synopsis

void SPI_push(void)

Description

SPI_push should be called before executing another procedure that might itself wish to use SPI. After
SPI_push , SPI is no longer in a “connected” state, and SPI function calls will be rejected unless a
freshSPI_connect is done. This ensures a clean separation between your procedure’s SPI state and
that of another procedure you call. After the other procedure returns, callSPI_pop to restore access
to your own SPI state.

Note thatSPI_execute and related functions automatically do the equivalent ofSPI_push before
passing control back to the SQL execution engine, so it is not necessary for you to worry about this
when using those functions. Only when you are directly calling arbitrary code that might contain
SPI_connect calls do you need to issueSPI_push andSPI_pop .

591

SPI_pop

Name
SPI_pop — pop SPI stack to return from recursive SPI usage

Synopsis

void SPI_pop(void)

Description

SPI_pop pops the previous environment from the SPI call stack. SeeSPI_push .

592

SPI_execute

Name
SPI_execute — execute a command

Synopsis

int SPI_execute(const char * command, bool read_only , int count)

Description

SPI_execute executes the specified SQL command forcount rows. If read_only is true , the
command must be read-only, and execution overhead is somewhat reduced.

This function may only be called from a connected procedure.

If count is zero then the command is executed for all rows that it applies to. Ifcount is greater than
0, then the number of rows for which the command will be executed is restricted (much like aLIMIT

clause). For example,

SPI_execute("INSERT INTO foo SELECT * FROM bar", false, 5);

will allow at most 5 rows to be inserted into the table.

You may pass multiple commands in one string.SPI_execute returns the result for the command
executed last. Thecount limit applies to each command separately, but it is not applied to hidden
commands generated by rules.

Whenread_only is false , SPI_execute increments the command counter and computes a new
snapshotbefore executing each command in the string. The snapshot does not actually change if the
current transaction isolation level isSERIALIZABLE , but in READ COMMITTEDmode the snapshot
update allows each command to see the results of newly committed transactions from other sessions.
This is essential for consistent behavior when the commands are modifying the database.

When read_only is true , SPI_execute does not update either the snapshot or the command
counter, and it allows only plainSELECTcommands to appear in the command string. The com-
mands are executed using the snapshot previously established for the surrounding query. This execu-
tion mode is somewhat faster than the read/write mode due to eliminating per-command overhead. It
also allows genuinelystablefunctions to be built: since successive executions will all use the same
snapshot, there will be no change in the results.

It is generally unwise to mix read-only and read-write commands within a single function using SPI;
that could result in very confusing behavior, since the read-only queries would not see the results of
any database updates done by the read-write queries.

The actual number of rows for which the (last) command was executed is returned in the global
variableSPI_processed (unless the return value of the function isSPI_OK_UTILITY). If the re-
turn value of the function isSPI_OK_SELECTthen you may use the global pointerSPITupleTable

*SPI_tuptable to access the result rows.

The structureSPITupleTable is defined thus:

typedef struct
{

MemoryContext tuptabcxt; /* memory context of result table */

593

SPI_execute

uint32 alloced; /* number of alloced vals */
uint32 free; /* number of free vals */
TupleDesc tupdesc; /* row descriptor */
HeapTuple *vals; /* rows */

} SPITupleTable;

vals is an array of pointers to rows. (The number of valid entries is given bySPI_processed .)
tupdesc is a row descriptor which you may pass to SPI functions dealing with rows.tuptabcxt ,
alloced , andfree are internal fields not intended for use by SPI callers.

SPI_finish frees allSPITupleTable s allocated during the current procedure. You can free a par-
ticular result table earlier, if you are done with it, by callingSPI_freetuptable .

Arguments

const char * command

string containing command to execute

bool read_only

true for read-only execution

int count

maximum number of rows to process or return

Return Value

If the execution of the command was successful then one of the following (nonnegative) values will
be returned:

SPI_OK_SELECT

if a SELECT(but notSELECT INTO) was executed

SPI_OK_SELINTO

if a SELECT INTOwas executed

SPI_OK_DELETE

if a DELETEwas executed

SPI_OK_INSERT

if an INSERT was executed

SPI_OK_UPDATE

if an UPDATEwas executed

SPI_OK_UTILITY

if a utility command (e.g.,CREATE TABLE) was executed

On error, one of the following negative values is returned:

594

SPI_execute

SPI_ERROR_ARGUMENT

if command is NULLor count is less than 0

SPI_ERROR_COPY

if COPY TO stdout or COPY FROM stdin was attempted

SPI_ERROR_CURSOR

if DECLARE, CLOSE, or FETCHwas attempted

SPI_ERROR_TRANSACTION

if BEGIN, COMMIT, or ROLLBACKwas attempted

SPI_ERROR_OPUNKNOWN

if the command type is unknown (shouldn’t happen)

SPI_ERROR_UNCONNECTED

if called from an unconnected procedure

Notes

The functionsSPI_execute , SPI_exec , SPI_execute_plan , and SPI_execp change both
SPI_processed and SPI_tuptable (just the pointer, not the contents of the structure). Save
these two global variables into local procedure variables if you need to access the result table of
SPI_execute or a related function across later calls.

595

SPI_exec

Name
SPI_exec — execute a read/write command

Synopsis

int SPI_exec(const char * command, int count)

Description

SPI_exec is the same asSPI_execute , with the latter’sread_only parameter always taken as
false .

Arguments

const char * command

string containing command to execute

int count

maximum number of rows to process or return

Return Value

SeeSPI_execute .

596

SPI_prepare

Name
SPI_prepare — prepare a plan for a command, without executing it yet

Synopsis

void * SPI_prepare(const char * command, int nargs , Oid * argtypes)

Description

SPI_prepare creates and returns an execution plan for the specified command but doesn’t execute
the command. This function should only be called from a connected procedure.

When the same or a similar command is to be executed repeatedly, it may be advantageous to perform
the planning only once.SPI_prepare converts a command string into an execution plan that can be
executed repeatedly usingSPI_execute_plan .

A prepared command can be generalized by writing parameters ($1, $2, etc.) in place of what would
be constants in a normal command. The actual values of the parameters are then specified when
SPI_execute_plan is called. This allows the prepared command to be used over a wider range of
situations than would be possible without parameters.

The plan returned bySPI_prepare can be used only in the current invocation of the procedure, since
SPI_finish frees memory allocated for a plan. But a plan can be saved for longer using the function
SPI_saveplan .

Arguments

const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

pointer to an array containing the OIDs of the data types of the parameters

Return Value

SPI_prepare returns a non-null pointer to an execution plan. On error,NULL will be returned, and
SPI_result will be set to one of the same error codes used bySPI_execute , except that it is set to
SPI_ERROR_ARGUMENTif command is NULL, or if nargs is less than 0, or ifnargs is greater than 0
andargtypes is NULL.

597

SPI_prepare

Notes

There is a disadvantage to using parameters: since the planner does not know the values that will be
supplied for the parameters, it may make worse planning choices than it would make for a normal
command with all constants visible.

598

SPI_getargcount

Name
SPI_getargcount — return the number of arguments needed by a plan prepared by
SPI_prepare

Synopsis

int SPI_getargcount(void * plan)

Description

SPI_getargcount returns the number of arguments needed to execute a plan prepared by
SPI_prepare .

Arguments

void * plan

execution plan (returned bySPI_prepare)

Return Value

The expected argument count for theplan , or SPI_ERROR_ARGUMENTif the plan is NULL

599

SPI_getargtypeid

Name
SPI_getargtypeid — return the data type OID for an argument of a plan prepared by
SPI_prepare

Synopsis

Oid SPI_getargtypeid(void * plan , int argIndex)

Description

SPI_getargtypeid returns the OID representing the type id for theargIndex ’th argument of a
plan prepared bySPI_prepare . First argument is at index zero.

Arguments

void * plan

execution plan (returned bySPI_prepare)

int argIndex

zero based index of the argument

Return Value

The type id of the argument at the given index, orSPI_ERROR_ARGUMENTif the plan is NULL or
argIndex is less than 0 or not less than the number of arguments declared for theplan

600

SPI_is_cursor_plan

Name
SPI_is_cursor_plan — returntrue if a plan prepared bySPI_prepare can be used with
SPI_cursor_open

Synopsis

bool SPI_is_cursor_plan(void * plan)

Description

SPI_is_cursor_plan returnstrue if a plan prepared bySPI_prepare can be passed as an ar-
gument toSPI_cursor_open and false if that is not the case. The criteria are that theplan

represents one single command and that this command is aSELECTwithout anINTO clause.

Arguments

void * plan

execution plan (returned bySPI_prepare)

Return Value

true or false to indicate if theplan can produce a cursor or not, orSPI_ERROR_ARGUMENTif the
plan is NULL

601

SPI_execute_plan

Name
SPI_execute_plan — execute a plan prepared bySPI_prepare

Synopsis

int SPI_execute_plan(void * plan , Datum * values , const char * nulls ,
bool read_only , int count)

Description

SPI_execute_plan executes a plan prepared bySPI_prepare . read_only andcount have the
same interpretation as inSPI_execute .

Arguments

void * plan

execution plan (returned bySPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the plan’s number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the plan’s number of
arguments.n indicates a null value (entry invalues will be ignored); a space indicates a nonnull
value (entry invalues is valid).

If nulls is NULL thenSPI_execute_plan assumes that no parameters are null.

bool read_only

true for read-only execution

int count

maximum number of rows to process or return

Return Value

The return value is the same as forSPI_execute , with the following additional possible error (neg-
ative) results:

SPI_ERROR_ARGUMENT

if plan is NULLor count is less than 0

602

SPI_execute_plan

SPI_ERROR_PARAM

if values is NULLandplan was prepared with some parameters

SPI_processed andSPI_tuptable are set as inSPI_execute if successful.

Notes

If one of the objects (a table, function, etc.) referenced by the prepared plan is dropped during the
session then the result ofSPI_execute_plan for this plan will be unpredictable.

603

SPI_execp

Name
SPI_execp — execute a plan in read/write mode

Synopsis

int SPI_execp(void * plan , Datum * values , const char * nulls , int count)

Description

SPI_execp is the same asSPI_execute_plan , with the latter’sread_only parameter always taken
asfalse .

Arguments

void * plan

execution plan (returned bySPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the plan’s number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the plan’s number of
arguments.n indicates a null value (entry invalues will be ignored); a space indicates a nonnull
value (entry invalues is valid).

If nulls is NULL thenSPI_execp assumes that no parameters are null.

int count

maximum number of rows to process or return

Return Value

SeeSPI_execute_plan .

SPI_processed andSPI_tuptable are set as inSPI_execute if successful.

604

SPI_cursor_open

Name
SPI_cursor_open — set up a cursor using a plan created withSPI_prepare

Synopsis

Portal SPI_cursor_open(const char * name, void * plan ,
Datum * values , const char * nulls ,
bool read_only)

Description

SPI_cursor_open sets up a cursor (internally, a portal) that will execute a plan prepared by
SPI_prepare . The parameters have the same meanings as the corresponding parameters to
SPI_execute_plan .

Using a cursor instead of executing the plan directly has two benefits. First, the result rows can be
retrieved a few at a time, avoiding memory overrun for queries that return many rows. Second, a portal
can outlive the current procedure (it can, in fact, live to the end of the current transaction). Returning
the portal name to the procedure’s caller provides a way of returning a row set as result.

Arguments

const char * name

name for portal, orNULL to let the system select a name

void * plan

execution plan (returned bySPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the plan’s number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the plan’s number of
arguments.n indicates a null value (entry invalues will be ignored); a space indicates a nonnull
value (entry invalues is valid).

If nulls is NULL thenSPI_cursor_open assumes that no parameters are null.

bool read_only

true for read-only execution

Return Value

pointer to portal containing the cursor, orNULLon error

605

SPI_cursor_find

Name
SPI_cursor_find — find an existing cursor by name

Synopsis

Portal SPI_cursor_find(const char * name)

Description

SPI_cursor_find finds an existing portal by name. This is primarily useful to resolve a cursor name
returned as text by some other function.

Arguments

const char * name

name of the portal

Return Value

pointer to the portal with the specified name, orNULL if none was found

606

SPI_cursor_fetch

Name
SPI_cursor_fetch — fetch some rows from a cursor

Synopsis

void SPI_cursor_fetch(Portal portal , bool forward , int count)

Description

SPI_cursor_fetch fetches some rows from a cursor. This is equivalent to the SQL command
FETCH.

Arguments

Portal portal

portal containing the cursor

bool forward

true for fetch forward, false for fetch backward

int count

maximum number of rows to fetch

Return Value

SPI_processed andSPI_tuptable are set as inSPI_execute if successful.

607

SPI_cursor_move

Name
SPI_cursor_move — move a cursor

Synopsis

void SPI_cursor_move(Portal portal , bool forward , int count)

Description

SPI_cursor_move skips over some number of rows in a cursor. This is equivalent to the SQL com-
mandMOVE.

Arguments

Portal portal

portal containing the cursor

bool forward

true for move forward, false for move backward

int count

maximum number of rows to move

608

SPI_cursor_close

Name
SPI_cursor_close — close a cursor

Synopsis

void SPI_cursor_close(Portal portal)

Description

SPI_cursor_close closes a previously created cursor and releases its portal storage.

All open cursors are closed automatically at the end of a transaction.SPI_cursor_close need only
be invoked if it is desirable to release resources sooner.

Arguments

Portal portal

portal containing the cursor

609

SPI_saveplan

Name
SPI_saveplan — save a plan

Synopsis

void * SPI_saveplan(void * plan)

Description

SPI_saveplan saves a passed plan (prepared bySPI_prepare) in memory protected from freeing
by SPI_finish and by the transaction manager and returns a pointer to the saved plan. This gives
you the ability to reuse prepared plans in the subsequent invocations of your procedure in the current
session. You may save the pointer returned in a local variable. Always check if this pointer isNULLor
not either when preparing a plan or using an already prepared plan inSPI_execute_plan .

Arguments

void * plan

the plan to be saved

Return Value

Pointer to the saved plan;NULL if unsuccessful. On error,SPI_result is set thus:

SPI_ERROR_ARGUMENT

if plan is NULL

SPI_ERROR_UNCONNECTED

if called from an unconnected procedure

Notes

If one of the objects (a table, function, etc.) referenced by the prepared plan is dropped during the
session then the results ofSPI_execute_plan for this plan will be unpredictable.

610

39.2. Interface Support Functions
The functions described here provide an interface for extracting information from result sets returned
by SPI_execute and other SPI functions.

All functions described in this section may be used by both connected and unconnected procedures.

SPI_fname

Name
SPI_fname — determine the column name for the specified column number

Synopsis

char * SPI_fname(TupleDesc rowdesc , int colnumber)

Description

SPI_fname returns a copy of the column name of the specified column. (You can usepfree to
release the copy of the name when you don’t need it anymore.)

Arguments

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value

The column name; NULL if colnumber is out of range. SPI_result set to
SPI_ERROR_NOATTRIBUTEon error.

611

SPI_fnumber

Name
SPI_fnumber — determine the column number for the specified column name

Synopsis

int SPI_fnumber(TupleDesc rowdesc , const char * colname)

Description

SPI_fnumber returns the column number for the column with the specified name.

If colname refers to a system column (e.g.,oid) then the appropriate negative column number
will be returned. The caller should be careful to test the return value for exact equality to
SPI_ERROR_NOATTRIBUTEto detect an error; testing the result for less than or equal to 0 is not
correct unless system columns should be rejected.

Arguments

TupleDesc rowdesc

input row description

const char * colname

column name

Return Value

Column number (count starts at 1), orSPI_ERROR_NOATTRIBUTEif the named column was not
found.

612

SPI_getvalue

Name
SPI_getvalue — return the string value of the specified column

Synopsis

char * SPI_getvalue(HeapTuple row , TupleDesc rowdesc , int colnumber)

Description

SPI_getvalue returns the string representation of the value of the specified column.

The result is returned in memory allocated usingpalloc . (You can usepfree to release the memory
when you don’t need it anymore.)

Arguments

HeapTuple row

input row to be examined

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value

Column value, orNULL if the column is null,colnumber is out of range (SPI_result is set
to SPI_ERROR_NOATTRIBUTE), or no no output function available (SPI_result is set to
SPI_ERROR_NOOUTFUNC).

613

SPI_getbinval

Name
SPI_getbinval — return the binary value of the specified column

Synopsis

Datum SPI_getbinval(HeapTuple row , TupleDesc rowdesc , int colnumber , bool * isnull)

Description

SPI_getbinval returns the value of the specified column in the internal form (as typeDatum).

This function does not allocate new space for the datum. In the case of a pass-by-reference data type,
the return value will be a pointer into the passed row.

Arguments

HeapTuple row

input row to be examined

TupleDesc rowdesc

input row description

int rownumber

column number (count starts at 1)

bool * isnull

flag for a null value in the column

Return Value

The binary value of the column is returned. The variable pointed to byisnull is set to true if the
column is null, else to false.

SPI_result is set toSPI_ERROR_NOATTRIBUTEon error.

614

SPI_gettype

Name
SPI_gettype — return the data type name of the specified column

Synopsis

char * SPI_gettype(TupleDesc rowdesc , int colnumber)

Description

SPI_gettype returns a copy of the data type name of the specified column. (You can usepfree to
release the copy of the name when you don’t need it anymore.)

Arguments

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value

The data type name of the specified column, orNULL on error. SPI_result is set to
SPI_ERROR_NOATTRIBUTEon error.

615

SPI_gettypeid

Name
SPI_gettypeid — return the data type OID of the specified column

Synopsis

Oid SPI_gettypeid(TupleDesc rowdesc , int colnumber)

Description

SPI_gettypeid returns the OID of the data type of the specified column.

Arguments

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value

The OID of the data type of the specified column orInvalidOid on error. On error,SPI_result is
set toSPI_ERROR_NOATTRIBUTE.

616

SPI_getrelname

Name
SPI_getrelname — return the name of the specified relation

Synopsis

char * SPI_getrelname(Relation rel)

Description

SPI_getrelname returns a copy of the name of the specified relation. (You can usepfree to release
the copy of the name when you don’t need it anymore.)

Arguments

Relation rel

input relation

Return Value

The name of the specified relation.

617

39.3. Memory Management
PostgreSQL allocates memory withinmemory contexts, which provide a convenient method of man-
aging allocations made in many different places that need to live for differing amounts of time. De-
stroying a context releases all the memory that was allocated in it. Thus, it is not necessary to keep
track of individual objects to avoid memory leaks; instead only a relatively small number of contexts
have to be managed.palloc and related functions allocate memory from the “current” context.

SPI_connect creates a new memory context and makes it current.SPI_finish restores the previous
current memory context and destroys the context created bySPI_connect . These actions ensure that
transient memory allocations made inside your procedure are reclaimed at procedure exit, avoiding
memory leakage.

However, if your procedure needs to return an object in allocated memory (such as a value of a pass-
by-reference data type), you cannot allocate that memory usingpalloc , at least not while you are
connected to SPI. If you try, the object will be deallocated bySPI_finish , and your procedure will
not work reliably. To solve this problem, useSPI_palloc to allocate memory for your return object.
SPI_palloc allocates memory in the “upper executor context”, that is, the memory context that was
current whenSPI_connect was called, which is precisely the right context for a value returned from
your procedure.

If SPI_palloc is called while the procedure is not connected to SPI, then it acts the same as a normal
palloc . Before a procedure connects to the SPI manager, the current memory context is the upper
executor context, so all allocations made by the procedure viapalloc or by SPI utility functions are
made in this context.

When SPI_connect is called, the private context of the procedure, which is created by
SPI_connect , is made the current context. All allocations made bypalloc , repalloc , or SPI
utility functions (except for SPI_copytuple , SPI_returntuple , SPI_modifytuple , and
SPI_palloc) are made in this context. When a procedure disconnects from the SPI manager (via
SPI_finish) the current context is restored to the upper executor context, and all allocations made
in the procedure memory context are freed and cannot be used any more.

All functions described in this section may be used by both connected and unconnected procedures.
In an unconnected procedure, they act the same as the underlying ordinary server functions (palloc ,
etc.).

SPI_palloc

Name
SPI_palloc — allocate memory in the upper executor context

Synopsis

void * SPI_palloc(Size size)

Description

SPI_palloc allocates memory in the upper executor context.

618

SPI_palloc

Arguments

Size size

size in bytes of storage to allocate

Return Value

pointer to new storage space of the specified size

619

SPI_repalloc

Name
SPI_repalloc — reallocate memory in the upper executor context

Synopsis

void * SPI_repalloc(void * pointer , Size size)

Description

SPI_repalloc changes the size of a memory segment previously allocated usingSPI_palloc .

This function is no longer different from plainrepalloc . It’s kept just for backward compatibility of
existing code.

Arguments

void * pointer

pointer to existing storage to change

Size size

size in bytes of storage to allocate

Return Value

pointer to new storage space of specified size with the contents copied from the existing area

620

SPI_pfree

Name
SPI_pfree — free memory in the upper executor context

Synopsis

void SPI_pfree(void * pointer)

Description

SPI_pfree frees memory previously allocated usingSPI_palloc or SPI_repalloc .

This function is no longer different from plainpfree . It’s kept just for backward compatibility of
existing code.

Arguments

void * pointer

pointer to existing storage to free

621

SPI_copytuple

Name
SPI_copytuple — make a copy of a row in the upper executor context

Synopsis

HeapTuple SPI_copytuple(HeapTuple row)

Description

SPI_copytuple makes a copy of a row in the upper executor context. This is normally used to
return a modified row from a trigger. In a function declared to return a composite type, use
SPI_returntuple instead.

Arguments

HeapTuple row

row to be copied

Return Value

the copied row;NULLonly if tuple is NULL

622

SPI_returntuple

Name
SPI_returntuple — prepare to return a tuple as a Datum

Synopsis

HeapTupleHeader SPI_returntuple(HeapTuple row , TupleDesc rowdesc)

Description

SPI_returntuple makes a copy of a row in the upper executor context, returning it in the form of
a row typeDatum. The returned pointer need only be converted toDatum via PointerGetDatum

before returning.

Note that this should be used for functions that are declared to return composite types. It is not used
for triggers; useSPI_copytuple for returning a modified row in a trigger.

Arguments

HeapTuple row

row to be copied

TupleDesc rowdesc

descriptor for row (pass the same descriptor each time for most effective caching)

Return Value

HeapTupleHeader pointing to copied row;NULLonly if row or rowdesc is NULL

623

SPI_modifytuple

Name
SPI_modifytuple — create a row by replacing selected fields of a given row

Synopsis

HeapTuple SPI_modifytuple(Relation rel , HeapTuple row , ncols , colnum , Datum * values , const char * nulls)

Description

SPI_modifytuple creates a new row by substituting new values for selected columns, copying the
original row’s columns at other positions. The input row is not modified.

Arguments

Relation rel

Used only as the source of the row descriptor for the row. (Passing a relation rather than a row
descriptor is a misfeature.)

HeapTuple row

row to be modified

int ncols

number of column numbers in the arraycolnum

int * colnum

array of the numbers of the columns that are to be changed (column numbers start at 1)

Datum * values

new values for the specified columns

const char * Nulls

which new values are null, if any (seeSPI_execute_plan for the format)

Return Value

new row with modifications, allocated in the upper executor context;NULLonly if row is NULL

On error,SPI_result is set as follows:

SPI_ERROR_ARGUMENT

if rel is NULL, or if row is NULL, or if ncols is less than or equal to 0, or ifcolnum is NULL, or
if values is NULL.

624

SPI_modifytuple

SPI_ERROR_NOATTRIBUTE

if colnum contains an invalid column number (less than or equal to 0 or greater than the number
of column inrow)

625

SPI_freetuple

Name
SPI_freetuple — free a row allocated in the upper executor context

Synopsis

void SPI_freetuple(HeapTuple row)

Description

SPI_freetuple frees a row previously allocated in the upper executor context.

This function is no longer different from plainheap_freetuple . It’s kept just for backward com-
patibility of existing code.

Arguments

HeapTuple row

row to free

626

SPI_freetuptable

Name
SPI_freetuptable — free a row set created bySPI_execute or a similar function

Synopsis

void SPI_freetuptable(SPITupleTable * tuptable)

Description

SPI_freetuptable frees a row set created by a prior SPI command execution function, such as
SPI_execute . Therefore, this function is usually called with the global variableSPI_tupletable

as argument.

This function is useful if a SPI procedure needs to execute multiple commands and does not want to
keep the results of earlier commands around until it ends. Note that any unfreed row sets will be freed
anyway atSPI_finish .

Arguments

SPITupleTable * tuptable

pointer to row set to free

627

SPI_freeplan

Name
SPI_freeplan — free a previously saved plan

Synopsis

int SPI_freeplan(void * plan)

Description

SPI_freeplan releases a command execution plan previously returned bySPI_prepare or saved
by SPI_saveplan .

Arguments

void * plan

pointer to plan to free

Return Value

SPI_ERROR_ARGUMENTif plan is NULL.

628

Chapter 39. Server Programming Interface

39.4. Visibility of Data Changes
The following rules govern the visibility of data changes in functions that use SPI (or any other C
function):

• During the execution of an SQL command, any data changes made by the command are invisible
to the command itself. For example, in

INSERT INTO a SELECT * FROM a;

the inserted rows are invisible to theSELECTpart.

• Changes made by a command C are visible to all commands that are started after C, no matter
whether they are started inside C (during the execution of C) or after C is done.

• Commands executed via SPI inside a function called by an SQL command (either an ordinary
function or a trigger) follow one or the other of the above rules depending on the read/write flag
passed to SPI. Commands executed in read-only mode follow the first rule: they can’t see changes
of the calling command. Commands executed in read-write mode follow the second rule: they can
see all changes made so far.

• All standard procedural languages set the SPI read-write mode depending on the volatility attribute
of the function. Commands ofSTABLE and IMMUTABLEfunctions are done in read-only mode,
while commands ofVOLATILE functions are done in read-write mode. While authors of C functions
are able to violate this convention, it’s unlikely to be a good idea to do so.

The next section contains an example that illustrates the application of these rules.

39.5. Examples
This section contains a very simple example of SPI usage. The procedureexecq takes an SQL com-
mand as its first argument and a row count as its second, executes the command usingSPI_exec

and returns the number of rows that were processed by the command. You can find more complex
examples for SPI in the source tree insrc/test/regress/regress.c and incontrib/spi .

#include "executor/spi.h"

int execq(text *sql, int cnt);

int
execq(text *sql, int cnt)
{

char *command;
int ret;
int proc;

/* Convert given text object to a C string */
command = DatumGetCString(DirectFunctionCall1(textout,

PointerGetDatum(sql)));

SPI_connect();

ret = SPI_exec(command, cnt);

proc = SPI_processed;

629

Chapter 39. Server Programming Interface

/*
* If this is a SELECT and some rows were fetched,
* then the rows are printed via elog(INFO).
*/

if (ret == SPI_OK_SELECT && SPI_processed > 0)
{

TupleDesc tupdesc = SPI_tuptable->tupdesc;
SPITupleTable *tuptable = SPI_tuptable;
char buf[8192];
int i, j;

for (j = 0; j < proc; j++)
{

HeapTuple tuple = tuptable->vals[j];

for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++)
snprintf(buf + strlen (buf), sizeof(buf) - strlen(buf), " %s%s",

SPI_getvalue(tuple, tupdesc, i),
(i == tupdesc->natts) ? " " : " |");

elog (INFO, "EXECQ: %s", buf);
}

}

SPI_finish();
pfree(command);

return (proc);
}

(This function uses call convention version 0, to make the example easier to understand. In real appli-
cations you should use the new version 1 interface.)

This is how you declare the function after having compiled it into a shared library:

CREATE FUNCTION execq(text, integer) RETURNS integer
AS ’ filename ’
LANGUAGE C;

Here is a sample session:

=> SELECT execq(’CREATE TABLE a (x integer)’, 0);
execq

0

(1 row)

=> INSERT INTO a VALUES (execq(’INSERT INTO a VALUES (0)’, 0));
INSERT 167631 1
=> SELECT execq(’SELECT * FROM a’, 0);
INFO: EXECQ: 0 -- inserted by execq
INFO: EXECQ: 1 -- returned by execq and inserted by upper INSERT

execq

2
(1 row)

630

Chapter 39. Server Programming Interface

=> SELECT execq(’INSERT INTO a SELECT x + 2 FROM a’, 1);
execq

1

(1 row)

=> SELECT execq(’SELECT * FROM a’, 10);
INFO: EXECQ: 0
INFO: EXECQ: 1
INFO: EXECQ: 2 -- 0 + 2, only one row inserted - as specified

execq

3 -- 10 is the max value only, 3 is the real number of rows
(1 row)

=> DELETE FROM a;
DELETE 3
=> INSERT INTO a VALUES (execq(’SELECT * FROM a’, 0) + 1);
INSERT 167712 1
=> SELECT * FROM a;

x

1 -- no rows in a (0) + 1
(1 row)

=> INSERT INTO a VALUES (execq(’SELECT * FROM a’, 0) + 1);
INFO: EXECQ: 0
INSERT 167713 1
=> SELECT * FROM a;

x

1
2 -- there was one row in a + 1

(2 rows)

-- This demonstrates the data changes visibility rule:

=> INSERT INTO a SELECT execq(’SELECT * FROM a’, 0) * x FROM a;
INFO: EXECQ: 1
INFO: EXECQ: 2
INFO: EXECQ: 1
INFO: EXECQ: 2
INFO: EXECQ: 2
INSERT 0 2
=> SELECT * FROM a;

x

1
2
2 -- 2 rows * 1 (x in first row)
6 -- 3 rows (2 + 1 just inserted) * 2 (x in second row)

(4 rows) ^^^^^^
rows visible to execq() in different invocations

631

VI. Reference
The entries in this Reference are meant to provide in reasonable length an authoritative, complete, and
formal summary about their respective subjects. More information about the use of PostgreSQL, in
narrative, tutorial, or example form, may be found in other parts of this book. See the cross-references
listed on each reference page.

The reference entries are also available as traditional “man” pages.

I. SQL Commands
This part contains reference information for the SQL commands supported by PostgreSQL. By “SQL”
the language in general is meant; information about the standards conformance and compatibility of
each command can be found on the respective reference page.

ABORT

Name
ABORT— abort the current transaction

Synopsis

ABORT [WORK | TRANSACTION]

Description

ABORTrolls back the current transaction and causes all the updates made by the transaction to be
discarded. This command is identical in behavior to the standard SQL commandROLLBACK, and is
present only for historical reasons.

Parameters

WORK

TRANSACTION

Optional key words. They have no effect.

Notes

UseCOMMIT to successfully terminate a transaction.

IssuingABORTwhen not inside a transaction does no harm, but it will provoke a warning message.

Examples

To abort all changes:

ABORT;

Compatibility

This command is a PostgreSQL extension present for historical reasons.ROLLBACKis the equivalent
standard SQL command.

635

ABORT

See Also

BEGIN, COMMIT, ROLLBACK

636

ALTER AGGREGATE

Name
ALTER AGGREGATE— change the definition of an aggregate function

Synopsis

ALTER AGGREGATEname (type) RENAME TOnewname
ALTER AGGREGATEname (type) OWNER TOnewowner

Description

ALTER AGGREGATEchanges the definition of an aggregate function.

Parameters

name

The name (optionally schema-qualified) of an existing aggregate function.

type

The argument data type of the aggregate function, or* if the function accepts any data type.

newname

The new name of the aggregate function.

newowner

The new owner of the aggregate function. You must be a superuser to change an aggregate’s
owner.

Examples

To rename the aggregate functionmyavg for type integer to my_average :

ALTER AGGREGATE myavg(integer) RENAME TO my_average;

To change the owner of the aggregate functionmyavg for type integer to joe :

ALTER AGGREGATE myavg(integer) OWNER TO joe;

Compatibility

There is noALTER AGGREGATEstatement in the SQL standard.

637

ALTER AGGREGATE

See Also

CREATE AGGREGATE, DROP AGGREGATE

638

ALTER CONVERSION

Name
ALTER CONVERSION— change the definition of a conversion

Synopsis

ALTER CONVERSIONname RENAME TOnewname
ALTER CONVERSIONname OWNER TOnewowner

Description

ALTER CONVERSIONchanges the definition of a conversion.

Parameters

name

The name (optionally schema-qualified) of an existing conversion.

newname

The new name of the conversion.

newowner

The new owner of the conversion. To change the owner of a conversion, you must be a superuser.

Examples

To rename the conversioniso_8859_1_to_utf_8 to latin1_to_unicode :

ALTER CONVERSION iso_8859_1_to_utf_8 RENAME TO latin1_to_unicode;

To change the owner of the conversioniso_8859_1_to_utf_8 to joe :

ALTER CONVERSION iso_8859_1_to_utf_8 OWNER TO joe;

Compatibility

There is noALTER CONVERSIONstatement in the SQL standard.

See Also

CREATE CONVERSION, DROP CONVERSION

639

ALTER DATABASE

Name
ALTER DATABASE— change a database

Synopsis

ALTER DATABASEname SET parameter { TO | = } { value | DEFAULT }
ALTER DATABASEname RESET parameter

ALTER DATABASEname RENAME TOnewname

ALTER DATABASEname OWNER TOnew_owner

Description

ALTER DATABASEchanges the attributes of a database.

The first two forms change the session default for a run-time configuration variable for a PostgreSQL
database. Whenever a new session is subsequently started in that database, the specified value be-
comes the session default value. The database-specific default overrides whatever setting is present
in postgresql.conf or has been received from thepostmaster command line. Only the database
owner or a superuser can change the session defaults for a database. Certain variables cannot be set
this way, or can only be set by a superuser.

The third form changes the name of the database. Only the database owner or a superuser can rename a
database; non-superuser owners must also have theCREATEDBprivilege. The current database cannot
be renamed. (Connect to a different database if you need to do that.)

The fourth form changes the owner of the database. Only a superuser can change the database’s owner.

Parameters

name

The name of the database whose attributes are to be altered.

parameter
value

Set this database’s session default for the specified configuration parameter to the given value.
If value is DEFAULTor, equivalently,RESETis used, the database-specific setting is removed,
so the system-wide default setting will be inherited in new sessions. UseRESET ALLto clear all
database-specific settings.

SeeSETandSection 16.4for more information about allowed parameter names and values.

newname

The new name of the database.

640

ALTER DATABASE

new_owner

The new owner of the database.

Notes

It is also possible to tie a session default to a specific user rather than to a database; seeALTER USER.
User-specific settings override database-specific ones if there is a conflict.

Examples

To disable index scans by default in the databasetest :

ALTER DATABASE test SET enable_indexscan TO off;

Compatibility

TheALTER DATABASEstatement is a PostgreSQL extension.

See Also

CREATE DATABASE, DROP DATABASE, SET

641

ALTER DOMAIN

Name
ALTER DOMAIN — change the definition of a domain

Synopsis

ALTER DOMAINname
{ SET DEFAULT expression | DROP DEFAULT }

ALTER DOMAINname
{ SET | DROP } NOT NULL

ALTER DOMAINname
ADD domain_constraint

ALTER DOMAINname
DROP CONSTRAINTconstraint_name [RESTRICT | CASCADE]

ALTER DOMAINname
OWNER TOnew_owner

Description

ALTER DOMAINchanges the definition of an existing domain. There are several sub-forms:

SET/DROP DEFAULT

These forms set or remove the default value for a domain. Note that defaults only apply to
subsequentINSERT commands; they do not affect rows already in a table using the domain.

SET/DROP NOT NULL

These forms change whether a domain is marked to allow NULL values or to reject NULL val-
ues. You may onlySET NOT NULLwhen the columns using the domain contain no null values.

ADD domain_constraint

This form adds a new constraint to a domain using the same syntax asCREATE DOMAIN. This
will only succeed if all columns using the domain satisfy the new constraint.

DROP CONSTRAINT

This form drops constraints on a domain.

OWNER

This form changes the owner of the domain to the specified user.

You must own the domain to useALTER DOMAIN; except forALTER DOMAIN OWNER, which may
only be executed by a superuser.

Parameters

name

The name (possibly schema-qualified) of an existing domain to alter.

642

ALTER DOMAIN

domain_constraint

New domain constraint for the domain.

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the constraint.

RESTRICT

Refuse to drop the constraint if there are any dependent objects. This is the default behavior.

new_owner

The user name of the new owner of the domain.

Examples

To add aNOT NULLconstraint to a domain:

ALTER DOMAIN zipcode SET NOT NULL;

To remove aNOT NULLconstraint from a domain:

ALTER DOMAIN zipcode DROP NOT NULL;

To add a check constraint to a domain:

ALTER DOMAIN zipcode ADD CONSTRAINT zipchk CHECK (char_length(VALUE) = 5);

To remove a check constraint from a domain:

ALTER DOMAIN zipcode DROP CONSTRAINT zipchk;

Compatibility

TheALTER DOMAINstatement is compatible with SQL:1999, except for theOWNERvariant, which is
a PostgreSQL extension.

643

ALTER FUNCTION

Name
ALTER FUNCTION— change the definition of a function

Synopsis

ALTER FUNCTIONname ([type [, ...]]) RENAME TO newname
ALTER FUNCTIONname ([type [, ...]]) OWNER TO newowner

Description

ALTER FUNCTIONchanges the definition of a function.

Parameters

name

The name (optionally schema-qualified) of an existing function.

type

The data type of an argument of the function.

newname

The new name of the function.

newowner

The new owner of the function. To change the owner of a function, you must be a superuser.
Note that if the function is markedSECURITY DEFINER, it will subsequently execute as the new
owner.

Examples

To rename the functionsqrt for type integer to square_root :

ALTER FUNCTION sqrt(integer) RENAME TO square_root;

To change the owner of the functionsqrt for type integer to joe :

ALTER FUNCTION sqrt(integer) OWNER TO joe;

644

ALTER FUNCTION

Compatibility

There is anALTER FUNCTIONstatement in the SQL standard, but it does not provide the option to
rename the function or change the owner.

See Also

CREATE FUNCTION, DROP FUNCTION

645

ALTER GROUP

Name
ALTER GROUP— change a user group

Synopsis

ALTER GROUPgroupname ADD USERusername [, ...]
ALTER GROUPgroupname DROP USERusername [, ...]

ALTER GROUPgroupname RENAME TOnewname

Description

ALTER GROUPchanges the attributes of a user group.

The first two variants add users to a group or remove them from a group. Only database superusers
can use this command.

The third variant changes the name of the group. Only a database superuser can rename groups.

Parameters

groupname

The name of the group to modify.

username

Users that are to be added to or removed from the group. The users must already exist;ALTER

GROUPdoes not create or drop users.

newname

The new name of the group.

Examples

Add users to a group:

ALTER GROUP staff ADD USER karl, john;

Remove a user from a group:

ALTER GROUP workers DROP USER beth;

646

ALTER GROUP

Compatibility

There is noALTER GROUPstatement in the SQL standard. The concept of roles is similar.

See Also

CREATE GROUP, DROP GROUP

647

ALTER INDEX

Name
ALTER INDEX— change the definition of an index

Synopsis

ALTER INDEX name
action [, ...]

ALTER INDEX name
RENAME TOnew_name

where action is one of:

OWNER TOnew_owner
SET TABLESPACEindexspace_name

Description

ALTER INDEXchanges the definition of an existing index. There are several subforms:

OWNER

This form changes the owner of the index to the specified user. This can only be done by a
superuser.

SET TABLESPACE

This form changes the index’s tablespace to the specified tablespace and moves the data file(s)
associated with the index to the new tablespace. See alsoCREATE TABLESPACE.

RENAME

TheRENAMEform changes the name of the index. There is no effect on the stored data.

All the actions exceptRENAMEcan be combined into a list of multiple alterations to apply in parallel.

Parameters

name

The name (possibly schema-qualified) of an existing index to alter.

new_name

New name for the index.

new_owner

The user name of the new owner of the index.

648

ALTER INDEX

tablespace_name

The tablespace name to which the index will be moved.

Notes

These operations are also possible usingALTER TABLE. ALTER INDEXis in fact just an alias for the
forms ofALTER TABLEthat apply to indexes.

Changing any part of a system catalog index is not permitted.

Examples

To rename an existing index:

ALTER INDEX distributors RENAME TO suppliers;

To move a index to a different tablespace:

ALTER INDEX distributors SET TABLESPACE fasttablespace;

Compatibility

ALTER INDEXis a PostgreSQL extension.

649

ALTER LANGUAGE

Name
ALTER LANGUAGE— change the definition of a procedural language

Synopsis

ALTER LANGUAGEname RENAME TOnewname

Description

ALTER LANGUAGEchanges the definition of a language. The only functionality is to rename the lan-
guage. Only a superuser can rename languages.

Parameters

name

Name of a language

newname

The new name of the language

Compatibility

There is noALTER LANGUAGEstatement in the SQL standard.

See Also

CREATE LANGUAGE, DROP LANGUAGE

650

ALTER OPERATOR

Name
ALTER OPERATOR— change the definition of an operator

Synopsis

ALTER OPERATORname ({ lefttype | NONE } , { righttype | NONE }) OWNER TOnewowner

Description

ALTER OPERATORchanges the definition of an operator. The only currently available functionality is
to change the owner of the operator.

Parameters

name

The name (optionally schema-qualified) of an existing operator.

lefttype

The data type of the operator’s left operand; writeNONEif the operator has no left operand.

righttype

The data type of the operator’s right operand; writeNONEif the operator has no right operand.

newowner

The new owner of the operator. You must be a superuser to change the owner of an operator.

Examples

Change the owner of a custom operatora @@ bfor type text :

ALTER OPERATOR @@ (text, text) OWNER TO joe;

Compatibility

There is noALTER OPERATORstatement in the SQL standard.

See Also

CREATE OPERATOR, DROP OPERATOR

651

ALTER OPERATOR CLASS

Name
ALTER OPERATOR CLASS— change the definition of an operator class

Synopsis

ALTER OPERATOR CLASSname USING index_method RENAME TOnewname
ALTER OPERATOR CLASSname USING index_method OWNER TOnewowner

Description

ALTER OPERATOR CLASSchanges the definition of an operator class.

Parameters

name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index method this operator class is for.

newname

The new name of the operator class.

newowner

The new owner of the operator class. You must be a superuser to change the owner of an operator
class.

Compatibility

There is noALTER OPERATOR CLASSstatement in the SQL standard.

See Also

CREATE OPERATOR CLASS, DROP OPERATOR CLASS

652

ALTER SCHEMA

Name
ALTER SCHEMA— change the definition of a schema

Synopsis

ALTER SCHEMAname RENAME TOnewname
ALTER SCHEMAname OWNER TOnewowner

Description

ALTER SCHEMAchanges the definition of a schema. To rename a schema you must own the schema
and have the privilegeCREATEfor the database. To change the owner of a schema, you must be a
superuser.

Parameters

name

The name of an existing schema.

newname

The new name of the schema. The new name cannot begin withpg_ , as such names are reserved
for system schemas.

newowner

The new owner of the schema.

Compatibility

There is noALTER SCHEMAstatement in the SQL standard.

See Also

CREATE SCHEMA, DROP SCHEMA

653

ALTER SEQUENCE

Name
ALTER SEQUENCE— change the definition of a sequence generator

Synopsis

ALTER SEQUENCEname [INCREMENT [BY] increment]
[MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
[RESTART [WITH] start] [CACHE cache] [[NO] CYCLE]

Description

ALTER SEQUENCEchanges the parameters of an existing sequence generator. Any parameter not
specifically set in theALTER SEQUENCEcommand retains its prior setting.

Parameters

name

The name (optionally schema-qualified) of a sequence to be altered.

increment

The clauseINCREMENT BYincrement is optional. A positive value will make an ascending
sequence, a negative one a descending sequence. If unspecified, the old increment value will be
maintained.

minvalue
NO MINVALUE

The optional clauseMINVALUE minvalue determines the minimum value a sequence can gen-
erate. IfNO MINVALUEis specified, the defaults of 1 and -263-1 for ascending and descending
sequences, respectively, will be used. If neither option is specified, the current minimum value
will be maintained.

maxvalue
NO MAXVALUE

The optional clauseMAXVALUEmaxvalue determines the maximum value for the sequence. If
NO MAXVALUEis specified, the defaults are 263-1 and -1 for ascending and descending sequences,
respectively, will be used. If neither option is specified, the current maximum value will be
maintained.

start

The optional clauseRESTART WITHstart changes the current value of the sequence.

cache

The clauseCACHEcache enables sequence numbers to be preallocated and stored in memory
for faster access. The minimum value is 1 (only one value can be generated at a time, i.e., no
cache). If unspecified, the old cache value will be maintained.

654

ALTER SEQUENCE

CYCLE

The optionalCYCLEkey word may be used to enable the sequence to wrap around when the
maxvalue or minvalue has been reached by an ascending or descending sequence respec-
tively. If the limit is reached, the next number generated will be theminvalue or maxvalue ,
respectively.

NO CYCLE

If the optionalNO CYCLEkey word is specified, any calls tonextval after the sequence has
reached its maximum value will return an error. If neitherCYCLEor NO CYCLEare specified, the
old cycle behaviour will be maintained.

Examples

Restart a sequence calledserial , at 105:

ALTER SEQUENCE serial RESTART WITH 105;

Notes

To avoid blocking of concurrent transactions that obtain numbers from the same sequence,ALTER

SEQUENCEis never rolled back; the changes take effect immediately and are not reversible.

ALTER SEQUENCEwill not immediately affectnextval results in backends, other than the current
one, that have preallocated (cached) sequence values. They will use up all cached values prior to
noticing the changed sequence parameters. The current backend will be affected immediately.

Compatibility

ALTER SEQUENCEconforms with SQL:2003.

655

ALTER TABLE

Name
ALTER TABLE— change the definition of a table

Synopsis

ALTER TABLE [ONLY] name [*]
action [, ...]

ALTER TABLE [ONLY] name [*]
RENAME [COLUMN]column TO new_column

ALTER TABLE name
RENAME TOnew_name

where action is one of:

ADD [COLUMN] column type [column_constraint [...]]
DROP [COLUMN]column [RESTRICT | CASCADE]
ALTER [COLUMN] column TYPE type [USING expression]
ALTER [COLUMN] column SET DEFAULTexpression
ALTER [COLUMN] column DROP DEFAULT
ALTER [COLUMN] column { SET | DROP } NOT NULL
ALTER [COLUMN] column SET STATISTICS integer
ALTER [COLUMN] column SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
ADD table_constraint
DROP CONSTRAINTconstraint_name [RESTRICT | CASCADE]
CLUSTER ONindex_name
SET WITHOUT CLUSTER
SET WITHOUT OIDS
OWNER TOnew_owner
SET TABLESPACEtablespace_name

Description

ALTER TABLEchanges the definition of an existing table. There are several subforms:

ADD COLUMN

This form adds a new column to the table using the same syntax asCREATE TABLE.

DROP COLUMN

This form drops a column from a table. Indexes and table constraints involving the column will
be automatically dropped as well. You will need to sayCASCADEif anything outside the table
depends on the column, for example, foreign key references or views.

ALTER COLUMN TYPE

This form changes the type of a column of a table. Indexes and simple table constraints involving
the column will be automatically converted to use the new column type by reparsing the origi-
nally supplied expression. The optionalUSINGclause specifies how to compute the new column
value from the old; if omitted, the default conversion is the same as an assignment cast from old
data type to new. AUSING clause must be provided if there is no implicit or assignment cast
from old to new type.

656

ALTER TABLE

SET/DROP DEFAULT

These forms set or remove the default value for a column. The default values only apply to
subsequentINSERT commands; they do not cause rows already in the table to change. Defaults
may also be created for views, in which case they are inserted intoINSERT statements on the
view before the view’sON INSERTrule is applied.

SET/DROP NOT NULL

These forms change whether a column is marked to allow null values or to reject null values.
You can only useSET NOT NULLwhen the column contains no null values.

SET STATISTICS

This form sets the per-column statistics-gathering target for subsequentANALYZEoperations.
The target can be set in the range 0 to 1000; alternatively, set it to -1 to revert to using the system
default statistics target (default_statistics_target). For more information on the use of statistics
by the PostgreSQL query planner, refer toSection 13.2.

SET STORAGE

This form sets the storage mode for a column. This controls whether this column is held inline
or in a supplementary table, and whether the data should be compressed or not.PLAIN must be
used for fixed-length values such asinteger and is inline, uncompressed.MAIN is for inline,
compressible data.EXTERNALis for external, uncompressed data, andEXTENDEDis for external,
compressed data.EXTENDEDis the default for most data types that support non-PLAIN storage.
Use of EXTERNALwill make substring operations ontext and bytea columns faster, at the
penalty of increased storage space. Note thatSET STORAGEdoesn’t itself change anything in
the table, it just sets the strategy to be pursued during future table updates. SeeSection 49.2for
more information.

ADD table_constraint

This form adds a new constraint to a table using the same syntax asCREATE TABLE.

DROP CONSTRAINT

This form drops constraints on a table. Currently, constraints on tables are not required to have
unique names, so there may be more than one constraint matching the specified name. All match-
ing constraints will be dropped.

CLUSTER

This form selects the default index for futureCLUSTERoperations. It does not actually re-cluster
the table.

SET WITHOUT CLUSTER

This form removes the most recently usedCLUSTERindex specification from the table. This
affects future cluster operations that don’t specify an index.

SET WITHOUT OIDS

This form removes theoid system column from the table. This is exactly equivalent toDROP

COLUMN oid RESTRICT, except that it will not complain if there is already nooid column.

Note that there is no variant ofALTER TABLEthat allows OIDs to be restored to a table once
they have been removed.

OWNER

This form changes the owner of the table, index, sequence, or view to the specified user.

657

ALTER TABLE

SET TABLESPACE

This form changes the table’s tablespace to the specified tablespace and moves the data file(s)
associated with the table to the new tablespace. Indexes on the table, if any, are not moved; but
they can be moved separately with additionalSET TABLESPACEcommands. See alsoCREATE
TABLESPACE.

RENAME

TheRENAMEforms change the name of a table (or an index, sequence, or view) or the name of
an individual column in a table. There is no effect on the stored data.

All the actions exceptRENAMEcan be combined into a list of multiple alterations to apply in parallel.
For example, it is possible to add several columns and/or alter the type of several columns in a single
command. This is particularly useful with large tables, since only one pass over the table need be
made.

You must own the table to useALTER TABLE; except forALTER TABLE OWNER, which may only be
executed by a superuser.

Parameters

name

The name (possibly schema-qualified) of an existing table to alter. IfONLYis specified, only that
table is altered. IfONLYis not specified, the table and all its descendant tables (if any) are updated.
* can be appended to the table name to indicate that descendant tables are to be altered, but in
the current version, this is the default behavior. (In releases before 7.1,ONLYwas the default
behavior. The default can be altered by changing the configuration parametersql_inheritance.)

column

Name of a new or existing column.

new_column

New name for an existing column.

new_name

New name for the table.

type

Data type of the new column, or new data type for an existing column.

table_constraint

New table constraint for the table.

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the dropped column or constraint (for example, views
referencing the column).

658

ALTER TABLE

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is the default
behavior.

index_name

The index name on which the table should be marked for clustering.

new_owner

The user name of the new owner of the table.

tablespace_name

The tablespace name to which the table will be moved.

Notes

The key wordCOLUMNis noise and can be omitted.

When a column is added withADD COLUMN, all existing rows in the table are initialized with the
column’s default value (NULL if noDEFAULTclause is specified).

Adding a column with a non-null default or changing the type of an existing column will require the
entire table to be rewritten. This may take a significant amount of time for a large table; and it will
temporarily require double the disk space.

Adding aCHECKor NOT NULLconstraint requires scanning the table to verify that existing rows meet
the constraint.

The main reason for providing the option to specify multiple changes in a singleALTER TABLEis
that multiple table scans or rewrites can thereby be combined into a single pass over the table.

The DROP COLUMNform does not physically remove the column, but simply makes it invisible to
SQL operations. Subsequent insert and update operations in the table will store a null value for the
column. Thus, dropping a column is quick but it will not immediately reduce the on-disk size of your
table, as the space occupied by the dropped column is not reclaimed. The space will be reclaimed
over time as existing rows are updated.

The fact thatALTER TYPErequires rewriting the whole table is sometimes an advantage, because the
rewriting process eliminates any dead space in the table. For example, to reclaim the space occupied
by a dropped column immediately, the fastest way is

ALTER TABLE table ALTER COLUMN anycol TYPE anytype;

whereanycol is any remaining table column andanytype is the same type that column already has.
This results in no semantically-visible change in the table, but the command forces rewriting, which
gets rid of no-longer-useful data.

TheUSINGoption ofALTER TYPEcan actually specify any expression involving the old values of the
row; that is, it can refer to other columns as well as the one being converted. This allows very general
conversions to be done with theALTER TYPEsyntax. Because of this flexibility, theUSINGexpression
is not applied to the column’s default value (if any); the result might not be a constant expression as
required for a default. This means that when there is no implicit or assignment cast from old to new
type,ALTER TYPEmay fail to convert the default even though aUSING clause is supplied. In such
cases, drop the default withDROP DEFAULT, perform theALTER TYPE, and then useSET DEFAULT

to add a suitable new default. Similar considerations apply to indexes and constraints involving the
column.

659

ALTER TABLE

If a table has any descendant tables, it is not permitted to add, rename, or change the type of a column
in the parent table without doing the same to the descendants. That is,ALTER TABLE ONLYwill be
rejected. This ensures that the descendants always have columns matching the parent.

A recursiveDROP COLUMNoperation will remove a descendant table’s column only if the descendant
does not inherit that column from any other parents and never had an independent definition of the col-
umn. A nonrecursiveDROP COLUMN(i.e.,ALTER TABLE ONLY ... DROP COLUMN) never removes
any descendant columns, but instead marks them as independently defined rather than inherited.

Changing any part of a system catalog table is not permitted.

Refer toCREATE TABLEfor a further description of valid parameters.Chapter 5has further infor-
mation on inheritance.

Examples

To add a column of typevarchar to a table:

ALTER TABLE distributors ADD COLUMN address varchar(30);

To drop a column from a table:

ALTER TABLE distributors DROP COLUMN address RESTRICT;

To change the types of two existing columns in one operation:

ALTER TABLE distributors
ALTER COLUMN address TYPE varchar(80),
ALTER COLUMN name TYPE varchar(100);

To change an integer column containing UNIX timestamps totimestamp with time zone via a
USINGclause:

ALTER TABLE foo
ALTER COLUMN foo_timestamp TYPE timestamp with time zone
USING

timestamp with time zone ’epoch’ + foo_timestamp * interval ’1 second’;

To rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

To rename an existing table:

ALTER TABLE distributors RENAME TO suppliers;

To add a not-null constraint to a column:

ALTER TABLE distributors ALTER COLUMN street SET NOT NULL;

660

ALTER TABLE

To remove a not-null constraint from a column:

ALTER TABLE distributors ALTER COLUMN street DROP NOT NULL;

To add a check constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5);

To remove a check constraint from a table and all its children:

ALTER TABLE distributors DROP CONSTRAINT zipchk;

To add a foreign key constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFERENCES addresses (address) MATCH FULL;

To add a (multicolumn) unique constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT dist_id_zipcode_key UNIQUE (dist_id, zipcode);

To add an automatically named primary key constraint to a table, noting that a table can only ever
have one primary key:

ALTER TABLE distributors ADD PRIMARY KEY (dist_id);

To move a table to a different tablespace:

ALTER TABLE distributors SET TABLESPACE fasttablespace;

Compatibility

TheADD, DROP, andSET DEFAULTforms conform with the SQL standard. The other forms are Post-
greSQL extensions of the SQL standard. Also, the ability to specify more than one manipulation in a
singleALTER TABLEcommand is an extension.

ALTER TABLE DROP COLUMNcan be used to drop the only column of a table, leaving a zero-column
table. This is an extension of SQL, which disallows zero-column tables.

661

ALTER TABLESPACE

Name
ALTER TABLESPACE— change the definition of a tablespace

Synopsis

ALTER TABLESPACEname RENAME TOnewname
ALTER TABLESPACEname OWNER TOnewowner

Description

ALTER TABLESPACEchanges the definition of a tablespace.

Parameters

name

The name of an existing tablespace.

newname

The new name of the tablespace. The new name cannot begin withpg_ , as such names are
reserved for system tablespaces.

newowner

The new owner of the tablespace. You must be a superuser to change the owner of a tablespace.

Examples

Rename tablespaceindex_space to fast_raid :

ALTER TABLESPACE index_space RENAME TO fast_raid;

Change the owner of tablespaceindex_space :

ALTER TABLESPACE index_space OWNER TO mary;

Compatibility

There is noALTER TABLESPACEstatement in the SQL standard.

662

ALTER TABLESPACE

See Also

CREATE TABLESPACE, DROP TABLESPACE

663

ALTER TRIGGER

Name
ALTER TRIGGER— change the definition of a trigger

Synopsis

ALTER TRIGGERname ON table RENAME TOnewname

Description

ALTER TRIGGERchanges properties of an existing trigger. TheRENAMEclause changes the name of
the given trigger without otherwise changing the trigger definition.

You must own the table on which the trigger acts to be allowed to change its properties.

Parameters

name

The name of an existing trigger to alter.

table

The name of the table on which this trigger acts.

newname

The new name for the trigger.

Examples

To rename an existing trigger:

ALTER TRIGGER emp_stamp ON emp RENAME TO emp_track_chgs;

Compatibility

ALTER TRIGGERis a PostgreSQL extension of the SQL standard.

664

ALTER TYPE

Name
ALTER TYPE — change the definition of a type

Synopsis

ALTER TYPE name OWNER TOnew_owner

Description

ALTER TYPEchanges the definition of an existing type. The only currently available capability is
changing the owner of a type.

Parameters

name

The name (possibly schema-qualified) of an existing type to alter.

new_owner

The user name of the new owner of the type. You must be a superuser to change a type’s owner.

Examples

To change the owner of the user-defined typeemail to joe :

ALTER TYPE email OWNER TO joe;

Compatibility

There is noALTER TYPEstatement in the SQL standard.

665

ALTER USER

Name
ALTER USER— change a database user account

Synopsis

ALTER USERname [[WITH] option [...]]

where option can be:

CREATEDB | NOCREATEDB
| CREATEUSER | NOCREATEUSER
| [ENCRYPTED | UNENCRYPTED] PASSWORD ’password ’
| VALID UNTIL ’ abstime ’

ALTER USERname RENAME TOnewname

ALTER USERname SET parameter { TO | = } { value | DEFAULT }
ALTER USERname RESET parameter

Description

ALTER USERchanges the attributes of a PostgreSQL user account. Attributes not mentioned in the
command retain their previous settings.

The first variant of this command listed in the synopsis changes certain per-user privileges and au-
thentication settings. (See below for details.) Database superusers can change any of these settings for
any user. Ordinary users can only change their own password.

The second variant changes the name of the user. Only a database superuser can rename user accounts.
The current session user cannot be renamed. (Connect as a different user if you need to do that.)
BecauseMD5-encrypted passwords use the user name as cryptographic salt, renaming a user clears
their MD5password.

The third and the fourth variant change a user’s session default for a specified configuration vari-
able. Whenever the user subsequently starts a new session, the specified value becomes the session
default, overriding whatever setting is present inpostgresql.conf or has been received from the
postmaster command line. Ordinary users can change their own session defaults. Superusers can
change anyone’s session defaults. Certain variables cannot be set this way, or can only be set by a
superuser.

Parameters

name

The name of the user whose attributes are to be altered.

666

ALTER USER

CREATEDB

NOCREATEDB

These clauses define a user’s ability to create databases. IfCREATEDBis specified, the user will
be allowed to create his own databases. UsingNOCREATEDBwill deny a user the ability to create
databases. (If the user is also a superuser, then this setting has no real effect.)

CREATEUSER

NOCREATEUSER

These clauses determine whether a user will be permitted to create new users himself.
CREATEUSERwill also make the user a superuser, who can override all access restrictions.

password

The new password to be used for this account.

ENCRYPTED

UNENCRYPTED

These key words control whether the password is stored encrypted inpg_shadow . (SeeCREATE
USERfor more information about this choice.)

abstime

The date (and, optionally, the time) at which this user’s password is to expire. To set the password
never to expire, use’infinity’ .

newname

The new name of the user.

parameter
value

Set this user’s session default for the specified configuration parameter to the given value. If
value is DEFAULTor, equivalently,RESETis used, the user-specific variable setting is removed,
so the user will inherit the system-wide default setting in new sessions. UseRESET ALLto clear
all user-specific settings.

SeeSETandSection 16.4for more information about allowed parameter names and values.

Notes

UseCREATE USERto add new users, andDROP USERto remove a user.

ALTER USERcannot change a user’s group memberships. UseALTER GROUPto do that.

The VALID UNTIL clause defines an expiration time for a password only, not for the user account
per se. In particular, the expiration time is not enforced when logging in using a non-password-based
authentication method.

It is also possible to tie a session default to a specific database rather than to a user; seeALTER
DATABASE. User-specific settings override database-specific ones if there is a conflict.

Examples

Change a user’s password:

ALTER USER davide WITH PASSWORD ’hu8jmn3’;

667

ALTER USER

Change the expiration date of the user’s password:

ALTER USER manuel VALID UNTIL ’Jan 31 2030’;

Change a password expiration date, specifying that the password should expire at midday on 4th May
2005 using the time zone which is one hour ahead of UTC:

ALTER USER chris VALID UNTIL ’May 4 12:00:00 2005 +1’;

Make a password valid forever:

ALTER USER fred VALID UNTIL ’infinity’;

Give a user the ability to create other users and new databases:

ALTER USER miriam CREATEUSER CREATEDB;

Compatibility

The ALTER USERstatement is a PostgreSQL extension. The SQL standard leaves the definition of
users to the implementation.

See Also

CREATE USER, DROP USER, SET

668

ANALYZE

Name
ANALYZE— collect statistics about a database

Synopsis

ANALYZE [VERBOSE] [table [(column [, ...])]]

Description

ANALYZEcollects statistics about the contents of tables in the database, and stores the results in the
system tablepg_statistic . Subsequently, the query planner uses these statistics to help determine
the most efficient execution plans for queries.

With no parameter,ANALYZE examines every table in the current database. With a parameter,
ANALYZEexamines only that table. It is further possible to give a list of column names, in which case
only the statistics for those columns are collected.

Parameters

VERBOSE

Enables display of progress messages.

table

The name (possibly schema-qualified) of a specific table to analyze. Defaults to all tables in the
current database.

column

The name of a specific column to analyze. Defaults to all columns.

Outputs

WhenVERBOSEis specified,ANALYZEemits progress messages to indicate which table is currently
being processed. Various statistics about the tables are printed as well.

Notes

It is a good idea to runANALYZEperiodically, or just after making major changes in the contents of a
table. Accurate statistics will help the planner to choose the most appropriate query plan, and thereby
improve the speed of query processing. A common strategy is to runVACUUMandANALYZEonce a
day during a low-usage time of day.

Unlike VACUUM FULL, ANALYZErequires only a read lock on the target table, so it can run in parallel
with other activity on the table.

669

ANALYZE

The statistics collected byANALYZEusually include a list of some of the most common values in each
column and a histogram showing the approximate data distribution in each column. One or both of
these may be omitted ifANALYZEdeems them uninteresting (for example, in a unique-key column,
there are no common values) or if the column data type does not support the appropriate operators.
There is more information about the statistics inChapter 21.

For large tables,ANALYZEtakes a random sample of the table contents, rather than examining every
row. This allows even very large tables to be analyzed in a small amount of time. Note, however, that
the statistics are only approximate, and will change slightly each timeANALYZEis run, even if the
actual table contents did not change. This may result in small changes in the planner’s estimated costs
shown byEXPLAIN. In rare situations, this non-determinism will cause the query optimizer to choose
a different query plan between runs ofANALYZE. To avoid this, raise the amount of statistics collected
by ANALYZE, as described below.

The extent of analysis can be controlled by adjusting thedefault_statistics_targetconfiguration vari-
able, or on a column-by-column basis by setting the per-column statistics target withALTER TABLE

... ALTER COLUMN ... SET STATISTICS (seeALTER TABLE). The target value sets the max-
imum number of entries in the most-common-value list and the maximum number of bins in the
histogram. The default target value is 10, but this can be adjusted up or down to trade off accu-
racy of planner estimates against the time taken forANALYZEand the amount of space occupied in
pg_statistic . In particular, setting the statistics target to zero disables collection of statistics for
that column. It may be useful to do that for columns that are never used as part of theWHERE, GROUP

BY, or ORDER BYclauses of queries, since the planner will have no use for statistics on such columns.

The largest statistics target among the columns being analyzed determines the number of table rows
sampled to prepare the statistics. Increasing the target causes a proportional increase in the time and
space needed to doANALYZE.

Compatibility

There is noANALYZEstatement in the SQL standard.

670

BEGIN

Name
BEGIN— start a transaction block

Synopsis

BEGIN [WORK | TRANSACTION] [transaction_mode [, ...]]

where transaction_mode is one of:

ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
READ WRITE | READ ONLY

Description

BEGIN initiates a transaction block, that is, all statements after aBEGIN command will be executed in
a single transaction until an explicitCOMMIT or ROLLBACKis given. By default (withoutBEGIN),
PostgreSQL executes transactions in “autocommit” mode, that is, each statement is executed in its
own transaction and a commit is implicitly performed at the end of the statement (if execution was
successful, otherwise a rollback is done).

Statements are executed more quickly in a transaction block, because transaction start/commit re-
quires significant CPU and disk activity. Execution of multiple statements inside a transaction is also
useful to ensure consistency when making several related changes: other sessions will be unable to
see the intermediate states wherein not all the related updates have been done.

If the isolation level or read/write mode is specified, the new transaction has those characteristics, as
if SET TRANSACTIONwas executed.

Parameters

WORK

TRANSACTION

Optional key words. They have no effect.

Refer toSET TRANSACTIONfor information on the meaning of the other parameters to this state-
ment.

Notes

START TRANSACTIONhas the same functionality asBEGIN.

UseCOMMIT or ROLLBACKto terminate a transaction block.

IssuingBEGIN when already inside a transaction block will provoke a warning message. The state
of the transaction is not affected. To nest transactions within a transaction block, use savepoints (see
SAVEPOINT).

671

BEGIN

For reasons of backwards compatibility, the commas between successivetransaction_modes
may be omitted.

Examples

To begin a transaction block:

BEGIN;

Compatibility

BEGIN is a PostgreSQL language extension. It is equivalent to the SQL-standard commandSTART
TRANSACTION, which see for additional compatibility information.

Incidentally, theBEGIN key word is used for a different purpose in embedded SQL. You are advised
to be careful about the transaction semantics when porting database applications.

See Also

COMMIT, ROLLBACK, START TRANSACTION, SAVEPOINT

672

CHECKPOINT

Name
CHECKPOINT— force a transaction log checkpoint

Synopsis

CHECKPOINT

Description

Write-Ahead Logging (WAL) puts a checkpoint in the transaction log every so often. (To adjust the au-
tomatic checkpoint interval, see the run-time configuration optionscheckpoint_segmentsandcheck-
point_timeout.) TheCHECKPOINTcommand forces an immediate checkpoint when the command is
issued, without waiting for a scheduled checkpoint.

A checkpoint is a point in the transaction log sequence at which all data files have been updated to
reflect the information in the log. All data files will be flushed to disk. Refer toChapter 25for more
information about the WAL system.

Only superusers may callCHECKPOINT. The command is not intended for use during normal opera-
tion.

Compatibility

TheCHECKPOINTcommand is a PostgreSQL language extension.

673

CLOSE

Name
CLOSE— close a cursor

Synopsis

CLOSE name

Description

CLOSEfrees the resources associated with an open cursor. After the cursor is closed, no subsequent
operations are allowed on it. A cursor should be closed when it is no longer needed.

Every non-holdable open cursor is implicitly closed when a transaction is terminated byCOMMIT

or ROLLBACK. A holdable cursor is implicitly closed if the transaction that created it aborts via
ROLLBACK. If the creating transaction successfully commits, the holdable cursor remains open un-
til an explicit CLOSEis executed, or the client disconnects.

Parameters

name

The name of an open cursor to close.

Notes

PostgreSQL does not have an explicitOPENcursor statement; a cursor is considered open when it is
declared. Use theDECLAREstatement to declare a cursor.

Examples

Close the cursorliahona :

CLOSE liahona;

Compatibility

CLOSEis fully conforming with the SQL standard.

See Also

DECLARE, FETCH, MOVE

674

CLUSTER

Name
CLUSTER— cluster a table according to an index

Synopsis

CLUSTER indexname ON tablename
CLUSTER tablename
CLUSTER

Description

CLUSTERinstructs PostgreSQL to cluster the table specified bytablename based on the index
specified byindexname . The index must already have been defined ontablename .

When a table is clustered, it is physically reordered based on the index information. Clustering is a
one-time operation: when the table is subsequently updated, the changes are not clustered. That is, no
attempt is made to store new or updated rows according to their index order. If one wishes, one can
periodically recluster by issuing the command again.

When a table is clustered, PostgreSQL remembers on which index it was clustered. The form
CLUSTER tablename reclusters the table on the same index that it was clustered before.

CLUSTERwithout any parameter reclusters all the tables in the current database that the calling user
owns, or all tables if called by a superuser. (Never-clustered tables are not included.) This form of
CLUSTERcannot be called from inside a transaction or function.

When a table is being clustered, anACCESS EXCLUSIVElock is acquired on it. This prevents any
other database operations (both reads and writes) from operating on the table until theCLUSTERis
finished.

Parameters

indexname

The name of an index.

tablename

The name (possibly schema-qualified) of a table.

Notes

In cases where you are accessing single rows randomly within a table, the actual order of the data in
the table is unimportant. However, if you tend to access some data more than others, and there is an
index that groups them together, you will benefit from usingCLUSTER. If you are requesting a range
of indexed values from a table, or a single indexed value that has multiple rows that match,CLUSTER

will help because once the index identifies the heap page for the first row that matches, all other rows

675

CLUSTER

that match are probably already on the same heap page, and so you save disk accesses and speed up
the query.

During the cluster operation, a temporary copy of the table is created that contains the table data in
the index order. Temporary copies of each index on the table are created as well. Therefore, you need
free space on disk at least equal to the sum of the table size and the index sizes.

BecauseCLUSTERremembers the clustering information, one can cluster the tables one wants clus-
tered manually the first time, and setup a timed event similar toVACUUMso that the tables are period-
ically reclustered.

Because the planner records statistics about the ordering of tables, it is advisable to runANALYZEon
the newly clustered table. Otherwise, the planner may make poor choices of query plans.

There is another way to cluster data. TheCLUSTERcommand reorders the original table using the
ordering of the index you specify. This can be slow on large tables because the rows are fetched from
the heap in index order, and if the heap table is unordered, the entries are on random pages, so there
is one disk page retrieved for every row moved. (PostgreSQL has a cache, but the majority of a big
table will not fit in the cache.) The other way to cluster a table is to use

CREATE TABLEnewtable AS
SELECT columnlist FROMtable ORDER BYcolumnlist ;

which uses the PostgreSQL sorting code in theORDER BYclause to create the desired order; this is
usually much faster than an index scan for unordered data. You then drop the old table, useALTER

TABLE ... RENAME to renamenewtable to the old name, and recreate the table’s indexes. How-
ever, this approach does not preserve OIDs, constraints, foreign key relationships, granted privileges,
and other ancillary properties of the table — all such items must be manually recreated.

Examples

Cluster the tableemployees on the basis of its indexemp_ind :

CLUSTER emp_ind ON emp;

Cluster theemployees table using the same index that was used before:

CLUSTER emp;

Cluster all tables in the database that have previously been clustered:

CLUSTER;

Compatibility

There is noCLUSTERstatement in the SQL standard.

676

CLUSTER

See Also

clusterdb

677

COMMENT

Name
COMMENT— define or change the comment of an object

Synopsis

COMMENT ON
{

TABLE object_name |
COLUMNtable_name . column_name |
AGGREGATEagg_name (agg_type) |
CAST (sourcetype AS targettype) |
CONSTRAINTconstraint_name ON table_name |
CONVERSIONobject_name |
DATABASEobject_name |
DOMAIN object_name |
FUNCTION func_name (arg1_type , arg2_type , ...) |
INDEX object_name |
LARGE OBJECTlarge_object_oid |
OPERATORop (leftoperand_type , rightoperand_type) |
OPERATOR CLASSobject_name USING index_method |
[PROCEDURAL] LANGUAGEobject_name |
RULE rule_name ON table_name |
SCHEMAobject_name |
SEQUENCEobject_name |
TRIGGER trigger_name ON table_name |
TYPE object_name |
VIEW object_name

} IS ’text’

Description

COMMENTstores a comment about a database object.

To modify a comment, issue a newCOMMENTcommand for the same object. Only one comment string
is stored for each object. To remove a comment, writeNULL in place of the text string. Comments are
automatically dropped when the object is dropped.

Comments can be easily retrieved with the psql commands\dd , \d+ , and \l+ . Other user inter-
faces to retrieve comments can be built atop the same built-in functions that psql uses, namely
obj_description andcol_description (seeTable 9-43).

678

COMMENT

Parameters

object_name
table_name.column_name
agg_name
constraint_name
func_name
op
rule_name
trigger_name

The name of the object to be commented. Names of tables, aggregates, domains, functions,
indexes, operators, operator classes, sequences, types, and views may be schema-qualified.

agg_type

The argument data type of the aggregate function, or* if the function accepts any data type.

large_object_oid

The OID of the large object.

PROCEDURAL

This is a noise word.

sourcetype

The name of the source data type of the cast.

targettype

The name of the target data type of the cast.

text

The new comment, written as a string literal; orNULL to drop the comment.

Notes

A comment for a database can only be created in that database, and will only be visible in that
database, not in other databases.

There is presently no security mechanism for comments: any user connected to a database can see all
the comments for objects in that database (although only superusers can change comments for objects
that they don’t own). Therefore, don’t put security-critical information in comments.

Examples

Attach a comment to the tablemytable :

COMMENT ON TABLE mytable IS ’This is my table.’;

Remove it again:

COMMENT ON TABLE mytable IS NULL;

679

COMMENT

Some more examples:

COMMENT ON AGGREGATE my_aggregate (double precision) IS ’Computes sample variance’;
COMMENT ON CAST (text AS int4) IS ’Allow casts from text to int4’;
COMMENT ON COLUMN my_table.my_column IS ’Employee ID number’;
COMMENT ON CONVERSION my_conv IS ’Conversion to Unicode’;
COMMENT ON DATABASE my_database IS ’Development Database’;
COMMENT ON DOMAIN my_domain IS ’Email Address Domain’;
COMMENT ON FUNCTION my_function (timestamp) IS ’Returns Roman Numeral’;
COMMENT ON INDEX my_index IS ’Enforces uniqueness on employee ID’;
COMMENT ON LANGUAGE plpython IS ’Python support for stored procedures’;
COMMENT ON LARGE OBJECT 346344 IS ’Planning document’;
COMMENT ON OPERATOR ^ (text, text) IS ’Performs intersection of two texts’;
COMMENT ON OPERATOR ^ (NONE, text) IS ’This is a prefix operator on text’;
COMMENT ON OPERATOR CLASS int4ops USING btree IS ’4 byte integer operators for btrees’;
COMMENT ON RULE my_rule ON my_table IS ’Logs updates of employee records’;
COMMENT ON SCHEMA my_schema IS ’Departmental data’;
COMMENT ON SEQUENCE my_sequence IS ’Used to generate primary keys’;
COMMENT ON TABLE my_schema.my_table IS ’Employee Information’;
COMMENT ON TRIGGER my_trigger ON my_table IS ’Used for RI’;
COMMENT ON TYPE complex IS ’Complex number data type’;
COMMENT ON VIEW my_view IS ’View of departmental costs’;

Compatibility

There is noCOMMENTcommand in the SQL standard.

680

COMMIT

Name
COMMIT— commit the current transaction

Synopsis

COMMIT [WORK | TRANSACTION]

Description

COMMITcommits the current transaction. All changes made by the transaction become visible to
others and are guaranteed to be durable if a crash occurs.

Parameters

WORK

TRANSACTION

Optional key words. They have no effect.

Notes

UseROLLBACKto abort a transaction.

IssuingCOMMITwhen not inside a transaction does no harm, but it will provoke a warning message.

Examples

To commit the current transaction and make all changes permanent:

COMMIT;

Compatibility

The SQL standard only specifies the two formsCOMMITandCOMMIT WORK. Otherwise, this command
is fully conforming.

See Also

BEGIN, ROLLBACK

681

COPY

Name
COPY— copy data between a file and a table

Synopsis

COPY tablename [(column [, ...])]
FROM { ’ filename ’ | STDIN }
[[WITH]

[BINARY]
[OIDS]
[DELIMITER [AS] ’ delimiter ’]
[NULL [AS] ’ null string ’]
[CSV [QUOTE [AS] ’ quote ’]

[ESCAPE [AS] ’ escape ’]
[FORCE NOT NULLcolumn [, ...]]

COPY tablename [(column [, ...])]
TO { ’ filename ’ | STDOUT }
[[WITH]

[BINARY]
[OIDS]
[DELIMITER [AS] ’ delimiter ’]
[NULL [AS] ’ null string ’]
[CSV [QUOTE [AS] ’ quote ’]

[ESCAPE [AS] ’ escape ’]
[FORCE QUOTEcolumn [, ...]]

Description

COPYmoves data between PostgreSQL tables and standard file-system files.COPY TOcopies the
contents of a tableto a file, whileCOPY FROMcopies datafroma file to a table (appending the data to
whatever is in the table already).

If a list of columns is specified,COPYwill only copy the data in the specified columns to or from the
file. If there are any columns in the table that are not in the column list,COPY FROMwill insert the
default values for those columns.

COPYwith a file name instructs the PostgreSQL server to directly read from or write to a file. The
file must be accessible to the server and the name must be specified from the viewpoint of the server.
WhenSTDIN or STDOUTis specified, data is transmitted via the connection between the client and the
server.

Parameters

tablename

The name (optionally schema-qualified) of an existing table.

column

An optional list of columns to be copied. If no column list is specified, all columns will be used.

682

COPY

filename

The absolute path name of the input or output file.

STDIN

Specifies that input comes from the client application.

STDOUT

Specifies that output goes to the client application.

BINARY

Causes all data to be stored or read in binary format rather than as text. You cannot specify the
DELIMITER, NULL, or CSVoptions in binary mode.

OIDS

Specifies copying the OID for each row. (An error is raised ifOIDS is specified for a table that
does not have OIDs.)

delimiter

The single character that separates columns within each row (line) of the file. The default is a tab
character in text mode, a comma inCSVmode.

null string

The string that represents a null value. The default is\N (backslash-N) in text mode, and a empty
value with no quotes inCSVmode. You might prefer an empty string even in text mode for cases
where you don’t want to distinguish nulls from empty strings.

Note: When using COPY FROM, any data item that matches this string will be stored as a null
value, so you should make sure that you use the same string as you used with COPY TO.

CSV

Selects Comma Separated Value (CSV) mode.

quote

Specifies the quotation character inCSVmode. The default is double-quote.

escape

Specifies the character that should appear before aQUOTEdata character value inCSVmode. The
default is theQUOTEvalue (usually double-quote).

FORCE QUOTE

In CSV COPY TOmode, forces quoting to be used for all non-NULL values in each specified
column.NULLoutput is never quoted.

FORCE NOT NULL

In CSV COPY FROMmode, process each specified column as though it were quoted and hence
not aNULL value. For the default null string inCSVmode (”), this causes missing values to be
input as zero-length strings.

683

COPY

Notes

COPYcan only be used with plain tables, not with views.

The BINARY key word causes all data to be stored/read as binary format rather than as text. It is
somewhat faster than the normal text mode, but a binary-format file is less portable across machine
architectures and PostgreSQL versions.

You must have select privilege on the table whose values are read byCOPY TO, and insert privilege
on the table into which values are inserted byCOPY FROM.

Files named in aCOPYcommand are read or written directly by the server, not by the client application.
Therefore, they must reside on or be accessible to the database server machine, not the client. They
must be accessible to and readable or writable by the PostgreSQL user (the user ID the server runs
as), not the client.COPYnaming a file is only allowed to database superusers, since it allows reading
or writing any file that the server has privileges to access.

Do not confuseCOPYwith the psql instruction\copy . \copy invokesCOPY FROM STDINor COPY

TO STDOUT, and then fetches/stores the data in a file accessible to the psql client. Thus, file accessi-
bility and access rights depend on the client rather than the server when\copy is used.

It is recommended that the file name used inCOPYalways be specified as an absolute path. This is
enforced by the server in the case ofCOPY TO, but forCOPY FROMyou do have the option of reading
from a file specified by a relative path. The path will be interpreted relative to the working directory
of the server process (somewhere below the data directory), not the client’s working directory.

COPY FROMwill invoke any triggers and check constraints on the destination table. However, it will
not invoke rules.

COPYinput and output is affected byDateStyle . To ensure portability to other PostgreSQL installa-
tions that might use non-defaultDateStyle settings,DateStyle should be set toISO before using
COPY TO.

COPYstops operation at the first error. This should not lead to problems in the event of aCOPY TO,
but the target table will already have received earlier rows in aCOPY FROM. These rows will not be
visible or accessible, but they still occupy disk space. This may amount to a considerable amount of
wasted disk space if the failure happened well into a large copy operation. You may wish to invoke
VACUUMto recover the wasted space.

File Formats

Text Format

WhenCOPYis used without theBINARY or CSVoptions, the data read or written is a text file with
one line per table row. Columns in a row are separated by the delimiter character. The column values
themselves are strings generated by the output function, or acceptable to the input function, of each
attribute’s data type. The specified null string is used in place of columns that are null.COPY FROM

will raise an error if any line of the input file contains more or fewer columns than are expected. If
OIDS is specified, the OID is read or written as the first column, preceding the user data columns.

End of data can be represented by a single line containing just backslash-period (\.). An end-of-data
marker is not necessary when reading from a file, since the end of file serves perfectly well; it is
needed only when copying data to or from client applications using pre-3.0 client protocol.

Backslash characters (\) may be used in theCOPYdata to quote data characters that might otherwise
be taken as row or column delimiters. In particular, the following charactersmustbe preceded by a

684

COPY

backslash if they appear as part of a column value: backslash itself, newline, carriage return, and the
current delimiter character.

The specified null string is sent byCOPY TOwithout adding any backslashes; conversely,COPY FROM

matches the input against the null string before removing backslashes. Therefore, a null string such
as\N cannot be confused with the actual data value\N (which would be represented as\\N).

The following special backslash sequences are recognized byCOPY FROM:

Sequence Represents

\b Backspace (ASCII 8)

\f Form feed (ASCII 12)

\n Newline (ASCII 10)

\r Carriage return (ASCII 13)

\t Tab (ASCII 9)

\v Vertical tab (ASCII 11)

\ digits Backslash followed by one to three octal digits
specifies the character with that numeric code

Presently,COPY TOwill never emit an octal-digits backslash sequence, but it does use the other se-
quences listed above for those control characters.

Any other backslashed character that is not mentioned in the above table will be taken to represent
itself. However, beware of adding backslashes unnecessarily, since that might accidentally produce a
string matching the end-of-data marker (\.) or the null string (\N by default). These strings will be
recognized before any other backslash processing is done.

It is strongly recommended that applications generatingCOPYdata convert data newlines and carriage
returns to the\n and\r sequences respectively. At present it is possible to represent a data carriage
return by a backslash and carriage return, and to represent a data newline by a backslash and newline.
However, these representations might not be accepted in future releases. They are also highly vulner-
able to corruption if theCOPYfile is transferred across different machines (for example, from Unix to
Windows or vice versa).

COPY TOwill terminate each row with a Unix-style newline (“\n ”). Servers running on Microsoft
Windows instead output carriage return/newline (“\r\n ”), but only for COPYto a server file; for
consistency across platforms,COPY TO STDOUTalways sends “\n ” regardless of server platform.
COPY FROMcan handle lines ending with newlines, carriage returns, or carriage return/newlines. To
reduce the risk of error due to un-backslashed newlines or carriage returns that were meant as data,
COPY FROMwill complain if the line endings in the input are not all alike.

CSV Format

This format is used for importing and exporting the Comma Separated Value (CSV) file format used by
many other programs, such as spreadsheets. Instead of the escaping used by PostgreSQL’s standard
text mode, it produces and recognises the common CSV escaping mechanism.

The values in each record are separated by theDELIMITER character. If the value contains the de-
limiter character, theQUOTEcharacter, theNULL string, a carriage return, or line feed character, then
the whole value is prefixed and suffixed by theQUOTEcharacter, and any occurrence within the value
of a QUOTEcharacter or theESCAPEcharacter is preceded by the escape character. You can also use
FORCE QUOTEto force quotes when outputting non-NULLvalues in specific columns.

685

COPY

TheCSVformat has no standard way to distinguish aNULLvalue from an empty string. PostgreSQL’s
COPYhandles this by quoting. ANULL is output as theNULL string and is not quoted, while a data
value matching theNULL string is quoted. Therefore, using the default settings, aNULL is written as
an unquoted empty string, while an empty string is written with double quotes (""). Reading values
follows similar rules. You can useFORCE NOT NULLto preventNULL input comparisons for specific
columns.

Note: CSV mode will both recognize and produce CSV files with quoted values containing em-
bedded carriage returns and line feeds. Thus the files are not strictly one line per table row like
text-mode files. However, PostgreSQL will reject COPYinput if any fields contain embedded line
end character sequences that do not match the line ending convention used in the CSV file itself.
It is generally safer to import data containing embedded line end characters using the text or
binary formats rather than CSV.

Note: Many programs produce strange and occasionally perverse CSV files, so the file format is
more a convention than a standard. Thus you might encounter some files that cannot be imported
using this mechanism, and COPYmight produce files that other programs cannot process.

Binary Format

The file format used forCOPY BINARYchanged in PostgreSQL 7.4. The new format consists of a file
header, zero or more tuples containing the row data, and a file trailer. Headers and data are now in
network byte order.

File Header

The file header consists of 15 bytes of fixed fields, followed by a variable-length header extension
area. The fixed fields are:

Signature

11-byte sequencePGCOPY\n\377\r\n\0 — note that the zero byte is a required part of the
signature. (The signature is designed to allow easy identification of files that have been munged
by a non-8-bit-clean transfer. This signature will be changed by end-of-line-translation filters,
dropped zero bytes, dropped high bits, or parity changes.)

Flags field

32-bit integer bit mask to denote important aspects of the file format. Bits are numbered from
0 (LSB) to 31 (MSB). Note that this field is stored in network byte order (most significant byte
first), as are all the integer fields used in the file format. Bits 16-31 are reserved to denote critical
file format issues; a reader should abort if it finds an unexpected bit set in this range. Bits 0-15
are reserved to signal backwards-compatible format issues; a reader should simply ignore any
unexpected bits set in this range. Currently only one flag bit is defined, and the rest must be zero:

Bit 16

if 1, OIDs are included in the data; if 0, not

686

COPY

Header extension area length

32-bit integer, length in bytes of remainder of header, not including self. Currently, this is zero,
and the first tuple follows immediately. Future changes to the format might allow additional data
to be present in the header. A reader should silently skip over any header extension data it does
not know what to do with.

The header extension area is envisioned to contain a sequence of self-identifying chunks. The flags
field is not intended to tell readers what is in the extension area. Specific design of header extension
contents is left for a later release.

This design allows for both backwards-compatible header additions (add header extension chunks, or
set low-order flag bits) and non-backwards-compatible changes (set high-order flag bits to signal such
changes, and add supporting data to the extension area if needed).

Tuples

Each tuple begins with a 16-bit integer count of the number of fields in the tuple. (Presently, all tuples
in a table will have the same count, but that might not always be true.) Then, repeated for each field
in the tuple, there is a 32-bit length word followed by that many bytes of field data. (The length word
does not include itself, and can be zero.) As a special case, -1 indicates a NULL field value. No value
bytes follow in the NULL case.

There is no alignment padding or any other extra data between fields.

Presently, all data values in aCOPY BINARYfile are assumed to be in binary format (format code
one). It is anticipated that a future extension may add a header field that allows per-column format
codes to be specified.

To determine the appropriate binary format for the actual tuple data you should consult the Post-
greSQL source, in particular the*send and*recv functions for each column’s data type (typically
these functions are found in thesrc/backend/utils/adt/ directory of the source distribution).

If OIDs are included in the file, the OID field immediately follows the field-count word. It is a normal
field except that it’s not included in the field-count. In particular it has a length word — this will allow
handling of 4-byte vs. 8-byte OIDs without too much pain, and will allow OIDs to be shown as null
if that ever proves desirable.

File Trailer

The file trailer consists of a 16-bit integer word containing -1. This is easily distinguished from a
tuple’s field-count word.

A reader should report an error if a field-count word is neither -1 nor the expected number of columns.
This provides an extra check against somehow getting out of sync with the data.

Examples

The following example copies a table to the client using the vertical bar (|) as the field delimiter:

COPY country TO STDOUT WITH DELIMITER ’|’;

687

COPY

To copy data from a file into thecountry table:

COPY country FROM ’/usr1/proj/bray/sql/country_data’;

Here is a sample of data suitable for copying into a table fromSTDIN:

AF AFGHANISTAN
AL ALBANIA
DZ ALGERIA
ZM ZAMBIA
ZW ZIMBABWE

Note that the white space on each line is actually a tab character.

The following is the same data, output in binary format. The data is shown after filtering through the
Unix utility od -c . The table has three columns; the first has typechar(2) , the second has type
text , and the third has typeinteger . All the rows have a null value in the third column.

0000000 P G C O P Y \n 377 \r \n \0 \0 \0 \0 \0 \0
0000020 \0 \0 \0 \0 003 \0 \0 \0 002 A F \0 \0 \0 013 A
0000040 F G H A N I S T A N 377 377 377 377 \0 003
0000060 \0 \0 \0 002 A L \0 \0 \0 007 A L B A N I
0000100 A 377 377 377 377 \0 003 \0 \0 \0 002 D Z \0 \0 \0
0000120 007 A L G E R I A 377 377 377 377 \0 003 \0 \0
0000140 \0 002 Z M \0 \0 \0 006 Z A M B I A 377 377
0000160 377 377 \0 003 \0 \0 \0 002 Z W \0 \0 \0 \b Z I
0000200 M B A B W E 377 377 377 377 377 377

Compatibility

There is noCOPYstatement in the SQL standard.

The following syntax was used before PostgreSQL version 7.3 and is still supported:

COPY [BINARY] tablename [WITH OIDS]
FROM { ’ filename ’ | STDIN }
[[USING] DELIMITERS ’ delimiter ’]
[WITH NULL AS ’ null string ’]

COPY [BINARY] tablename [WITH OIDS]
TO { ’ filename ’ | STDOUT }
[[USING] DELIMITERS ’ delimiter ’]
[WITH NULL AS ’ null string ’]

688

CREATE AGGREGATE

Name
CREATE AGGREGATE— define a new aggregate function

Synopsis

CREATE AGGREGATEname (
BASETYPE = input_data_type ,
SFUNC = sfunc ,
STYPE = state_data_type
[, FINALFUNC = ffunc]
[, INITCOND = initial_condition]

)

Description

CREATE AGGREGATEdefines a new aggregate function. Some basic and commonly-used aggregate
functions are included with the distribution; they are documented inSection 9.15. If one defines new
types or needs an aggregate function not already provided, thenCREATE AGGREGATEcan be used to
provide the desired features.

If a schema name is given (for example,CREATE AGGREGATE myschema.myagg ...) then the
aggregate function is created in the specified schema. Otherwise it is created in the current schema.

An aggregate function is identified by its name and input data type. Two aggregates in the same
schema can have the same name if they operate on different input types. The name and input data
type of an aggregate must also be distinct from the name and input data type(s) of every ordinary
function in the same schema.

An aggregate function is made from one or two ordinary functions: a state transition functionsfunc ,
and an optional final calculation functionffunc . These are used as follows:

sfunc (internal-state, next-data-item) ---> next-internal-state
ffunc (internal-state) ---> aggregate-value

PostgreSQL creates a temporary variable of data typestype to hold the current internal state of the
aggregate. At each input data item, the state transition function is invoked to calculate a new internal
state value. After all the data has been processed, the final function is invoked once to calculate the
aggregate’s return value. If there is no final function then the ending state value is returned as-is.

An aggregate function may provide an initial condition, that is, an initial value for the internal state
value. This is specified and stored in the database as a column of typetext , but it must be a valid
external representation of a constant of the state value data type. If it is not supplied then the state
value starts out null.

If the state transition function is declared “strict”, then it cannot be called with null inputs. With
such a transition function, aggregate execution behaves as follows. Null input values are ignored (the
function is not called and the previous state value is retained). If the initial state value is null, then the
first nonnull input value replaces the state value, and the transition function is invoked beginning with
the second nonnull input value. This is handy for implementing aggregates likemax. Note that this
behavior is only available whenstate_data_type is the same asinput_data_type . When

689

CREATE AGGREGATE

these types are different, you must supply a nonnull initial condition or use a nonstrict transition
function.

If the state transition function is not strict, then it will be called unconditionally at each input value,
and must deal with null inputs and null transition values for itself. This allows the aggregate author to
have full control over the aggregate’s handling of null values.

If the final function is declared “strict”, then it will not be called when the ending state value is null;
instead a null result will be returned automatically. (Of course this is just the normal behavior of strict
functions.) In any case the final function has the option of returning a null value. For example, the
final function foravg returns null when it sees there were zero input rows.

Parameters

name

The name (optionally schema-qualified) of the aggregate function to create.

input_data_type

The input data type on which this aggregate function operates. This can be specified as"ANY"

for an aggregate that does not examine its input values (an example iscount(*)).

sfunc

The name of the state transition function to be called for each input data value. This is normally
a function of two arguments, the first being of typestate_data_type and the second of type
input_data_type . Alternatively, for an aggregate that does not examine its input values, the
function takes just one argument of typestate_data_type . In either case the function must
return a value of typestate_data_type . This function takes the current state value and the
current input data item, and returns the next state value.

state_data_type

The data type for the aggregate’s state value.

ffunc

The name of the final function called to compute the aggregate’s result after all input data has
been traversed. The function must take a single argument of typestate_data_type . The
return data type of the aggregate is defined as the return type of this function. Ifffunc is not
specified, then the ending state value is used as the aggregate’s result, and the return type is
state_data_type .

initial_condition

The initial setting for the state value. This must be a string constant in the form accepted for the
data typestate_data_type . If not specified, the state value starts out null.

The parameters ofCREATE AGGREGATEcan be written in any order, not just the order illustrated
above.

Examples

SeeSection 31.10.

690

CREATE AGGREGATE

Compatibility

CREATE AGGREGATEis a PostgreSQL language extension. The SQL standard does not provide for
user-defined aggregate functions.

See Also

ALTER AGGREGATE, DROP AGGREGATE

691

CREATE CAST

Name
CREATE CAST— define a new cast

Synopsis

CREATE CAST (sourcetype AS targettype)
WITH FUNCTIONfuncname (argtypes)
[AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (sourcetype AS targettype)
WITHOUT FUNCTION
[AS ASSIGNMENT | AS IMPLICIT]

Description

CREATE CASTdefines a new cast. A cast specifies how to perform a conversion between two data
types. For example,

SELECT CAST(42 AS text);

converts the integer constant 42 to typetext by invoking a previously specified function, in this case
text(int4) . (If no suitable cast has been defined, the conversion fails.)

Two types may bebinary compatible, which means that they can be converted into one another “for
free” without invoking any function. This requires that corresponding values use the same internal
representation. For instance, the typestext andvarchar are binary compatible.

By default, a cast can be invoked only by an explicit cast request, that is an explicitCAST(x AS

typename) or x :: typename construct.

If the cast is markedAS ASSIGNMENTthen it can be invoked implicitly when assigning a value to a
column of the target data type. For example, supposing thatfoo.f1 is a column of typetext , then

INSERT INTO foo (f1) VALUES (42);

will be allowed if the cast from typeinteger to typetext is markedAS ASSIGNMENT, otherwise
not. (We generally use the termassignment castto describe this kind of cast.)

If the cast is markedAS IMPLICIT then it can be invoked implicitly in any context, whether assign-
ment or internally in an expression. For example, since|| takestext operands,

SELECT ’The time is ’ || now();

will be allowed only if the cast from typetimestamp to text is markedAS IMPLICIT . Otherwise
it will be necessary to write the cast explicitly, for example

SELECT ’The time is ’ || CAST(now() AS text);

(We generally use the termimplicit castto describe this kind of cast.)

It is wise to be conservative about marking casts as implicit. An overabundance of implicit casting
paths can cause PostgreSQL to choose surprising interpretations of commands, or to be unable to
resolve commands at all because there are multiple possible interpretations. A good rule of thumb is

692

CREATE CAST

to make a cast implicitly invokable only for information-preserving transformations between types in
the same general type category. For example, the cast fromint2 to int4 can reasonably be implicit,
but the cast fromfloat8 to int4 should probably be assignment-only. Cross-type-category casts,
such astext to int4 , are best made explicit-only.

To be able to create a cast, you must own the source or the target data type. To create a
binary-compatible cast, you must be superuser. (This restriction is made because an erroneous
binary-compatible cast conversion can easily crash the server.)

Parameters

sourcetype

The name of the source data type of the cast.

targettype

The name of the target data type of the cast.

funcname (argtypes)

The function used to perform the cast. The function name may be schema-qualified. If it is not,
the function will be looked up in the schema search path. The function’s result data type must
match the target type of the cast. Its arguments are discussed below.

WITHOUT FUNCTION

Indicates that the source type and the target type are binary compatible, so no function is required
to perform the cast.

AS ASSIGNMENT

Indicates that the cast may be invoked implicitly in assignment contexts.

AS IMPLICIT

Indicates that the cast may be invoked implicitly in any context.

Cast implementation functions may have one to three arguments. The first argument type must be
identical to the cast’s source type. The second argument, if present, must be typeinteger ; it receives
the type modifier associated with the destination type, or-1 if there is none. The third argument,
if present, must be typeboolean ; it receivestrue if the cast is an explicit cast,false otherwise.
(Bizarrely, the SQL spec demands different behaviors for explicit and implicit casts in some cases.
This argument is supplied for functions that must implement such casts. It is not recommended that
you design your own data types so that this matters.)

Ordinarily a cast must have different source and target data types. However, it is allowed to declare a
cast with identical source and target types if it has a cast implementation function with more than one
argument. This is used to represent type-specific length coercion functions in the system catalogs.
The named function is used to coerce a value of the type to the type modifier value given by its
second argument. (Since the grammar presently permits only certain built-in data types to have type
modifiers, this feature is of no use for user-defined target types, but we mention it for completeness.)

When a cast has different source and target types and a function that takes more than one argument, it
represents converting from one type to another and applying a length coercion in a single step. When
no such entry is available, coercion to a type that uses a type modifier involves two steps, one to
convert between data types and a second to apply the modifier.

693

CREATE CAST

Notes

UseDROP CASTto remove user-defined casts.

Remember that if you want to be able to convert types both ways you need to declare casts both ways
explicitly.

Prior to PostgreSQL 7.3, every function that had the same name as a data type, returned that data type,
and took one argument of a different type was automatically a cast function. This convention has been
abandoned in face of the introduction of schemas and to be able to represent binary compatible casts
in the system catalogs. The built-in cast functions still follow this naming scheme, but they have to be
shown as casts in the system catalogpg_cast as well.

While not required, it is recommended that you continue to follow this old convention of naming cast
implementation functions after the target data type. Many users are used to being able to cast data
types using a function-style notation, that istypename (x). This notation is in fact nothing more
nor less than a call of the cast implementation function; it is not specially treated as a cast. If your
conversion functions are not named to support this convention then you will have surprised users.
Since PostgreSQL allows overloading of the same function name with different argument types, there
is no difficulty in having multiple conversion functions from different types that all use the target
type’s name.

Note: There is one small lie in the preceding paragraph: there is still one case in which pg_cast

will be used to resolve the meaning of an apparent function call. If a function call name(x) matches
no actual function, but name is the name of a data type and pg_cast shows a binary-compatible
cast to this type from the type of x , then the call will be construed as an explicit cast. This excep-
tion is made so that binary-compatible casts can be invoked using functional syntax, even though
they lack any function.

Examples

To create a cast from typetext to typeint4 using the functionint4(text) :

CREATE CAST (text AS int4) WITH FUNCTION int4(text);

(This cast is already predefined in the system.)

Compatibility

The CREATE CASTcommand conforms to SQL:1999, except that SQL:1999 does not make provi-
sions for binary-compatible types or extra arguments to implementation functions.AS IMPLICIT is
a PostgreSQL extension, too.

See Also

CREATE FUNCTION, CREATE TYPE, DROP CAST

694

CREATE CONSTRAINT TRIGGER

Name
CREATE CONSTRAINT TRIGGER— define a new constraint trigger

Synopsis

CREATE CONSTRAINT TRIGGERname
AFTER events ON
tablename constraint attributes
FOR EACH ROW EXECUTE PROCEDUREfuncname (args)

Description

CREATE CONSTRAINT TRIGGERis used withinCREATE TABLE/ALTER TABLEand by pg_dump to
create the special triggers for referential integrity. It is not intended for general use.

Parameters

name

The name of the constraint trigger.

events

The event categories for which this trigger should be fired.

tablename

The name (possibly schema-qualified) of the table in which the triggering events occur.

constraint

Actual constraint specification.

attributes

The constraint attributes.

funcname (args)

The function to call as part of the trigger processing.

695

CREATE CONVERSION

Name
CREATE CONVERSION— define a new conversion

Synopsis

CREATE [DEFAULT] CONVERSIONname
FOR source_encoding TO dest_encoding FROMfuncname

Description

CREATE CONVERSIONdefines a new encoding conversion. Conversion names may be used in the
convert function to specify a particular encoding conversion. Also, conversions that are marked
DEFAULTcan be used for automatic encoding conversion between client and server. For this purpose,
two conversions, from encoding A to Band from encoding B to A, must be defined.

To be able to create a conversion, you must haveEXECUTEprivilege on the function andCREATE

privilege on the destination schema.

Parameters

DEFAULT

The DEFAULTclause indicates that this conversion is the default for this particular source to
destination encoding. There should be only one default encoding in a schema for the encoding
pair.

name

The name of the conversion. The conversion name may be schema-qualified. If it is not, the con-
version is defined in the current schema. The conversion name must be unique within a schema.

source_encoding

The source encoding name.

dest_encoding

The destination encoding name.

funcname

The function used to perform the conversion. The function name may be schema-qualified. If it
is not, the function will be looked up in the path.

The function must have the following signature:

conv_proc(
integer, -- source encoding ID
integer, -- destination encoding ID
cstring, -- source string (null terminated C string)
cstring, -- destination string (null terminated C string)
integer -- source string length

) RETURNS void;

696

CREATE CONVERSION

Notes

UseDROP CONVERSIONto remove user-defined conversions.

The privileges required to create a conversion may be changed in a future release.

Examples

To create a conversion from encodingUNICODEto LATIN1 usingmyfunc :

CREATE CONVERSION myconv FOR ’UNICODE’ TO ’LATIN1’ FROM myfunc;

Compatibility

CREATE CONVERSIONis a PostgreSQL extension. There is noCREATE CONVERSIONstatement in
the SQL standard.

See Also

ALTER CONVERSION, CREATE FUNCTION, DROP CONVERSION

697

CREATE DATABASE

Name
CREATE DATABASE— create a new database

Synopsis

CREATE DATABASEname
[[WITH] [OWNER [=] dbowner]

[TEMPLATE [=] template]
[ENCODING [=] encoding]
[TABLESPACE [=] tablespace]]

Description

CREATE DATABASEcreates a new PostgreSQL database.

To create a database, you must be a superuser or have the specialCREATEDBprivilege. SeeCREATE
USER.

Normally, the creator becomes the owner of the new database. Superusers can create databases owned
by other users using theOWNERclause. They can even create databases owned by users with no special
privileges. Non-superusers withCREATEDBprivilege can only create databases owned by themselves.

By default, the new database will be created by cloning the standard system databasetemplate1 . A
different template can be specified by writingTEMPLATEname. In particular, by writingTEMPLATE

template0 , you can create a virgin database containing only the standard objects predefined by your
version of PostgreSQL. This is useful if you wish to avoid copying any installation-local objects that
may have been added totemplate1 .

Parameters

name

The name of a database to create.

dbowner

The name of the database user who will own the new database, orDEFAULTto use the default
(namely, the user executing the command).

template

The name of the template from which to create the new database, orDEFAULTto use the default
template (template1).

encoding

Character set encoding to use in the new database. Specify a string constant (e.g.,
’SQL_ASCII’), or an integer encoding number, orDEFAULTto use the default encoding. The
character sets supported by the PostgreSQL server are described inSection 20.2.1.

698

CREATE DATABASE

tablespace

The name of the tablespace that will be associated with the new database, orDEFAULTto use the
template database’s tablespace. This tablespace will be the default tablespace used for objects
created in this database. SeeCREATE TABLESPACEfor more information.

Optional parameters can be written in any order, not only the order illustrated above.

Notes

CREATE DATABASEcannot be executed inside a transaction block.

Errors along the line of “could not initialize database directory” are most likely related to insufficient
permissions on the data directory, a full disk, or other file system problems.

UseDROP DATABASEto remove a database.

The programcreatedbis a wrapper program around this command, provided for convenience.

Although it is possible to copy a database other thantemplate1 by specifying its name as the tem-
plate, this is not (yet) intended as a general-purpose “COPY DATABASE” facility. We recommend that
databases used as templates be treated as read-only. SeeSection 18.3for more information.

Examples

To create a new database:

CREATE DATABASE lusiadas;

To create a databasesales owned by usersalesapp with a default tablespace ofsalesspace :

CREATE DATABASE sales OWNER salesapp TABLESPACE salesspace;

To create a databasemusic which supports the ISO-8859-1 character set:

CREATE DATABASE music ENCODING ’LATIN1’;

Compatibility

There is noCREATE DATABASEstatement in the SQL standard. Databases are equivalent to catalogs,
whose creation is implementation-defined.

699

CREATE DOMAIN

Name
CREATE DOMAIN— define a new domain

Synopsis

CREATE DOMAINname [AS] data_type
[DEFAULT expression]
[constraint [...]]

where constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL | NULL | CHECK (expression) }

Description

CREATE DOMAINcreates a new data domain. The user who defines a domain becomes its owner.

If a schema name is given (for example,CREATE DOMAIN myschema.mydomain ...) then the
domain is created in the specified schema. Otherwise it is created in the current schema. The domain
name must be unique among the types and domains existing in its schema.

Domains are useful for abstracting common fields between tables into a single location for main-
tenance. For example, an email address column may be used in several tables, all with the same
properties. Define a domain and use that rather than setting up each table’s constraints individually.

Parameters

name

The name (optionally schema-qualified) of a domain to be created.

data_type

The underlying data type of the domain. This may include array specifiers.

DEFAULT expression

The DEFAULTclause specifies a default value for columns of the domain data type. The value
is any variable-free expression (but subqueries are not allowed). The data type of the default
expression must match the data type of the domain. If no default value is specified, then the
default value is the null value.

The default expression will be used in any insert operation that does not specify a value for the
column. If a default value is defined for a particular column, it overrides any default associated
with the domain. In turn, the domain default overrides any default value associated with the
underlying data type.

CONSTRAINTconstraint_name

An optional name for a constraint. If not specified, the system generates a name.

700

CREATE DOMAIN

NOT NULL

Values of this domain are not allowed to be null.

NULL

Values of this domain are allowed to be null. This is the default.

This clause is only intended for compatibility with nonstandard SQL databases. Its use is dis-
couraged in new applications.

CHECK (expression)

CHECKclauses specify integrity constraints or tests which values of the domain must satisfy. Each
constraint must be an expression producing a Boolean result. It should use the nameVALUEto
refer to the value being tested.

Currently,CHECKexpressions cannot contain subqueries nor refer to variables other thanVALUE.

Examples

This example creates theus_postal_code data type and then uses the type in a table definition. A
regular expression test is used to verify that the value looks like a valid US postal code.

CREATE DOMAIN us_postal_code AS TEXT
CHECK(

VALUE ~ ’^\d{5}$’
OR VALUE ~ ’^\d{5}-\d{4}$’
);

CREATE TABLE us_snail_addy (
address_id SERIAL NOT NULL PRIMARY KEY

, street1 TEXT NOT NULL
, street2 TEXT
, street3 TEXT
, city TEXT NOT NULL
, postal us_postal_code NOT NULL
);

Compatibility

The commandCREATE DOMAINconforms to the SQL standard.

See Also

ALTER DOMAIN, DROP DOMAIN

701

CREATE FUNCTION

Name
CREATE FUNCTION— define a new function

Synopsis

CREATE [OR REPLACE] FUNCTIONname ([[argname] argtype [, ...]])
RETURNSrettype

{ LANGUAGE langname
| IMMUTABLE | STABLE | VOLATILE
| CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
| [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
| AS ’ definition ’
| AS ’ obj_file ’, ’ link_symbol ’

} ...
[WITH (attribute [, ...])]

Description

CREATE FUNCTIONdefines a new function.CREATE OR REPLACE FUNCTIONwill either create a
new function, or replace an existing definition.

If a schema name is included, then the function is created in the specified schema. Otherwise it is
created in the current schema. The name of the new function must not match any existing function
with the same argument types in the same schema. However, functions of different argument types
may share a name (this is calledoverloading).

To update the definition of an existing function, useCREATE OR REPLACE FUNCTION. It is not pos-
sible to change the name or argument types of a function this way (if you tried, you would actually
be creating a new, distinct function). Also,CREATE OR REPLACE FUNCTIONwill not let you change
the return type of an existing function. To do that, you must drop and recreate the function.

If you drop and then recreate a function, the new function is not the same entity as the old; you
will have to drop existing rules, views, triggers, etc. that refer to the old function. UseCREATE OR

REPLACE FUNCTIONto change a function definition without breaking objects that refer to the func-
tion.

The user that creates the function becomes the owner of the function.

Parameters

name

The name (optionally schema-qualified) of the function to create.

argname

The name of an argument. Some languages (currently only PL/pgSQL) let you use the name in
the function body. For other languages the argument name is just extra documentation.

702

CREATE FUNCTION

argtype

The data type(s) of the function’s arguments (optionally schema-qualified), if any. The argument
types may be base, composite, or domain types, or may reference the type of a table column.

Depending on the implementation language it may also be allowed to specify “pseudotypes” such
ascstring . Pseudotypes indicate that the actual argument type is either incompletely specified,
or outside the set of ordinary SQL data types.

The type of a column is referenced by writingtablename . columnname %TYPE. Using this fea-
ture can sometimes help make a function independent of changes to the definition of a table.

rettype

The return data type (optionally schema-qualified). The return type may be a base, composite,
or domain type, or may reference the type of a table column. Depending on the implementation
language it may also be allowed to specify “pseudotypes” such ascstring .

The SETOFmodifier indicates that the function will return a set of items, rather than a single
item.

The type of a column is referenced by writingtablename . columnname %TYPE.

langname

The name of the language that the function is implemented in. May beSQL, C, internal , or
the name of a user-defined procedural language. For backward compatibility, the name may be
enclosed by single quotes.

IMMUTABLE

STABLE

VOLATILE

These attributes inform the system whether it is safe to replace multiple evaluations of the func-
tion with a single evaluation, for run-time optimization. At most one choice may be specified. If
none of these appear,VOLATILE is the default assumption.

IMMUTABLEindicates that the function always returns the same result when given the same
argument values; that is, it does not do database lookups or otherwise use information not directly
present in its argument list. If this option is given, any call of the function with all-constant
arguments can be immediately replaced with the function value.

STABLE indicates that within a single table scan the function will consistently return the same
result for the same argument values, but that its result could change across SQL statements. This
is the appropriate selection for functions whose results depend on database lookups, parameter
variables (such as the current time zone), etc. Also note that thecurrent_timestamp family
of functions qualify as stable, since their values do not change within a transaction.

VOLATILE indicates that the function value can change even within a single table scan, so no
optimizations can be made. Relatively few database functions are volatile in this sense; some ex-
amples arerandom() , currval() , timeofday() . Note that any function that has side-effects
must be classified volatile, even if its result is quite predictable, to prevent calls from being
optimized away; an example issetval() .

For additional details seeSection 31.6.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT(the default) indicates that the function will be called normally when
some of its arguments are null. It is then the function author’s responsibility to check for null

703

CREATE FUNCTION

values if necessary and respond appropriately.

RETURNS NULL ON NULL INPUTor STRICT indicates that the function always returns null
whenever any of its arguments are null. If this parameter is specified, the function is not executed
when there are null arguments; instead a null result is assumed automatically.

[EXTERNAL] SECURITY INVOKER

[EXTERNAL] SECURITY DEFINER

SECURITY INVOKERindicates that the function is to be executed with the privileges of the user
that calls it. That is the default.SECURITY DEFINERspecifies that the function is to be executed
with the privileges of the user that created it.

The key wordEXTERNALis present for SQL conformance but is optional since, unlike in SQL,
this feature does not only apply to external functions.

definition

A string constant defining the function; the meaning depends on the language. It may be an
internal function name, the path to an object file, an SQL command, or text in a procedural
language.

obj_file , link_symbol

This form of theAS clause is used for dynamically loadable C language functions when the
function name in the C language source code is not the same as the name of the SQL function.
The stringobj_file is the name of the file containing the dynamically loadable object, and
link_symbol is the function’s link symbol, that is, the name of the function in the C language
source code. If the link symbol is omitted, it is assumed to be the same as the name of the SQL
function being defined.

attribute

The historical way to specify optional pieces of information about the function. The following
attributes may appear here:

isStrict

Equivalent toSTRICT or RETURNS NULL ON NULL INPUT.

isCachable

isCachable is an obsolete equivalent ofIMMUTABLE; it’s still accepted for backwards-
compatibility reasons.

Attribute names are not case-sensitive.

Notes

Refer toSection 31.3for further information on writing functions.

The full SQL type syntax is allowed for input arguments and return value. However, some details
of the type specification (e.g., the precision field for typenumeric) are the responsibility of the
underlying function implementation and are silently swallowed (i.e., not recognized or enforced) by
theCREATE FUNCTIONcommand.

PostgreSQL allows functionoverloading; that is, the same name can be used for several different
functions so long as they have distinct argument types. However, the C names of all functions must be

704

CREATE FUNCTION

different, so you must give overloaded C functions different C names (for example, use the argument
types as part of the C names).

When repeatedCREATE FUNCTIONcalls refer to the same object file, the file is only loaded once. To
unload and reload the file (perhaps during development), use theLOADcommand.

UseDROP FUNCTIONto remove user-defined functions.

It is often helpful to use dollar quoting (seeSection 4.1.2.2) to write the function definition string,
rather than the normal single quote syntax. Without dollar quoting, any single quotes or backslashes
in the function definition must be escaped by doubling them.

To be able to define a function, the user must have theUSAGEprivilege on the language.

Examples

Here is a trivial example to help you get started. For more information and examples, seeSection
31.3.

CREATE FUNCTION add(integer, integer) RETURNS integer
AS ’select $1 + $2;’
LANGUAGE SQL
IMMUTABLE
RETURNS NULL ON NULL INPUT;

Increment an integer, making use of an argument name, in PL/pgSQL:

CREATE OR REPLACE FUNCTION increment(i integer) RETURNS integer AS $$
BEGIN

RETURN i + 1;
END;

$$ LANGUAGE plpgsql;

Compatibility

A CREATE FUNCTIONcommand is defined in SQL:1999 and later. The PostgreSQL version is similar
but not fully compatible. The attributes are not portable, neither are the different available languages.

See Also

ALTER FUNCTION, DROP FUNCTION, GRANT, LOAD, REVOKE, createlang

705

CREATE GROUP

Name
CREATE GROUP— define a new user group

Synopsis

CREATE GROUPname [[WITH] option [...]]

where option can be:

SYSID gid
| USER username [, ...]

Description

CREATE GROUPwill create a new group of users. You must be a database superuser to use this com-
mand.

Note that both users and groups are defined at the database cluster level, and so are valid in all
databases in the cluster.

UseALTER GROUPto change a group’s membership, andDROP GROUPto remove a group.

Parameters

name

The name of the group.

gid

The SYSID clause can be used to choose the PostgreSQL group ID of the new group. This is
normally not necessary, but may be useful if you need to recreate a group referenced in the
permissions of some object.

If this is not specified, the highest assigned group ID plus one (with a minimum of 100) will be
used as default.

username

A list of users to include in the group. The users must already exist.

Examples

Create an empty group:

CREATE GROUP staff;

Create a group with members:

706

CREATE GROUP

CREATE GROUP marketing WITH USER jonathan, david;

Compatibility

There is noCREATE GROUPstatement in the SQL standard. Roles are similar in concept to groups.

See Also

ALTER GROUP, DROP GROUP

707

CREATE INDEX

Name
CREATE INDEX— define a new index

Synopsis

CREATE [UNIQUE] INDEX name ON table [USING method]
({ column | (expression) } [opclass] [, ...])
[TABLESPACE tablespace]
[WHERE predicate]

Description

CREATE INDEXconstructs an indexindex_name on the specified table. Indexes are primarily used
to enhance database performance (though inappropriate use will result in slower performance).

The key field(s) for the index are specified as column names, or alternatively as expressions written
in parentheses. Multiple fields can be specified if the index method supports multicolumn indexes.

An index field can be an expression computed from the values of one or more columns of the table
row. This feature can be used to obtain fast access to data based on some transformation of the basic
data. For example, an index computed onupper(col) would allow the clauseWHERE upper(col)

= ’JIM’ to use an index.

PostgreSQL provides the index methods B-tree, R-tree, hash, and GiST. The B-tree index method is
an implementation of Lehman-Yao high-concurrency B-trees. The R-tree index method implements
standard R-trees using Guttman’s quadratic split algorithm. The hash index method is an implemen-
tation of Litwin’s linear hashing. Users can also define their own index methods, but that is fairly
complicated.

When theWHEREclause is present, apartial indexis created. A partial index is an index that contains
entries for only a portion of a table, usually a portion that is more useful for indexing than the rest
of the table. For example, if you have a table that contains both billed and unbilled orders where the
unbilled orders take up a small fraction of the total table and yet that is an often used section, you
can improve performance by creating an index on just that portion. Another possible application is
to useWHEREwith UNIQUEto enforce uniqueness over a subset of a table. SeeSection 11.7for more
discussion.

The expression used in theWHEREclause may refer only to columns of the underlying table, but it can
use all columns, not just the ones being indexed. Presently, subqueries and aggregate expressions are
also forbidden inWHERE. The same restrictions apply to index fields that are expressions.

All functions and operators used in an index definition must be “immutable”, that is, their results must
depend only on their arguments and never on any outside influence (such as the contents of another
table or the current time). This restriction ensures that the behavior of the index is well-defined. To
use a user-defined function in an index expression orWHEREclause, remember to mark the function
immutable when you create it.

708

CREATE INDEX

Parameters

UNIQUE

Causes the system to check for duplicate values in the table when the index is created (if data
already exist) and each time data is added. Attempts to insert or update data which would result
in duplicate entries will generate an error.

name

The name of the index to be created. No schema name can be included here; the index is always
created in the same schema as its parent table.

table

The name (possibly schema-qualified) of the table to be indexed.

method

The name of the method to be used for the index. Choices arebtree , hash , rtree , andgist .
The default method isbtree .

column

The name of a column of the table.

expression

An expression based on one or more columns of the table. The expression usually must be written
with surrounding parentheses, as shown in the syntax. However, the parentheses may be omitted
if the expression has the form of a function call.

opclass

The name of an operator class. See below for details.

tablespace

The tablespace in which to create the index. If not specified,default_tablespaceis used, or the
database’s default tablespace ifdefault_tablespace is an empty string.

predicate

The constraint expression for a partial index.

Notes

SeeChapter 11for information about when indexes can be used, when they are not used, and in which
particular situations they can be useful.

Currently, only the B-tree and GiST index methods support multicolumn indexes. Up to 32 fields may
be specified by default. (This limit can be altered when building PostgreSQL.) Only B-tree currently
supports unique indexes.

An operator classcan be specified for each column of an index. The operator class identifies the
operators to be used by the index for that column. For example, a B-tree index on four-byte integers
would use theint4_ops class; this operator class includes comparison functions for four-byte inte-
gers. In practice the default operator class for the column’s data type is usually sufficient. The main
point of having operator classes is that for some data types, there could be more than one meaningful
ordering. For example, we might want to sort a complex-number data type either by absolute value or
by real part. We could do this by defining two operator classes for the data type and then selecting the

709

CREATE INDEX

proper class when making an index. More information about operator classes is inSection 11.6and
in Section 31.14.

UseDROP INDEXto remove an index.

Indexes are not used forIS NULL clauses by default. The best way to use indexes in such cases is to
create a partial index using anIS NULL predicate.

Examples

To create a B-tree index on the columntitle in the tablefilms :

CREATE UNIQUE INDEX title_idx ON films (title);

To create an index on the columncode in the tablefilms and have the index reside in the tablespace
indexspace :

CREATE INDEX code_idx ON films(code) TABLESPACE indexspace;

Compatibility

CREATE INDEXis a PostgreSQL language extension. There are no provisions for indexes in the SQL
standard.

See Also

ALTER INDEX, DROP INDEX

710

CREATE LANGUAGE

Name
CREATE LANGUAGE— define a new procedural language

Synopsis

CREATE [TRUSTED] [PROCEDURAL] LANGUAGEname
HANDLERcall_handler [VALIDATOR valfunction]

Description

Using CREATE LANGUAGE, a PostgreSQL user can register a new procedural language with a Post-
greSQL database. Subsequently, functions and trigger procedures can be defined in this new language.
The user must have the PostgreSQL superuser privilege to register a new language.

CREATE LANGUAGEeffectively associates the language name with a call handler that is responsible
for executing functions written in the language. Refer toChapter 34for more information about
language call handlers.

Note that procedural languages are local to individual databases. To make a language available in all
databases by default, it should be installed into thetemplate1 database.

Parameters

TRUSTED

TRUSTEDspecifies that the call handler for the language is safe, that is, it does not offer an
unprivileged user any functionality to bypass access restrictions. If this key word is omitted
when registering the language, only users with the PostgreSQL superuser privilege can use this
language to create new functions.

PROCEDURAL

This is a noise word.

name

The name of the new procedural language. The language name is case insensitive. The name
must be unique among the languages in the database.

For backward compatibility, the name may be enclosed by single quotes.

HANDLERcall_handler

call_handler is the name of a previously registered function that will be called to execute
the procedural language functions. The call handler for a procedural language must be written in
a compiled language such as C with version 1 call convention and registered with PostgreSQL as
a function taking no arguments and returning thelanguage_handler type, a placeholder type
that is simply used to identify the function as a call handler.

VALIDATORvalfunction

valfunction is the name of a previously registered function that will be called when a new
function in the language is created, to validate the new function. If no validator function is spec-

711

CREATE LANGUAGE

ified, then a new function will not be checked when it is created. The validator function must
take one argument of typeoid , which will be the OID of the to-be-created function, and will
typically returnvoid .

A validator function would typically inspect the function body for syntactical correctness, but
it can also look at other properties of the function, for example if the language cannot handle
certain argument types. To signal an error, the validator function should use theereport()

function. The return value of the function is ignored.

Notes

This command normally should not be executed directly by users. For the procedural languages sup-
plied in the PostgreSQL distribution, thecreatelangprogram should be used, which will also install
the correct call handler. (createlang will call CREATE LANGUAGEinternally.)

In PostgreSQL versions before 7.3, it was necessary to declare handler functions as returning the
placeholder typeopaque , rather thanlanguage_handler . To support loading of old dump files,
CREATE LANGUAGEwill accept a function declared as returningopaque , but it will issue a notice
and change the function’s declared return type tolanguage_handler .

Use theCREATE FUNCTIONcommand to create a new function.

UseDROP LANGUAGE, or better yet thedroplangprogram, to drop procedural languages.

The system catalogpg_language (seeSection 41.18) records information about the currently in-
stalled languages. Alsocreatelang has an option to list the installed languages.

To be able to use a procedural language, a user must be granted theUSAGEprivilege. Thecreatelang

program automatically grants permissions to everyone if the language is known to be trusted.

Examples

The following two commands executed in sequence will register a new procedural language and the
associated call handler.

CREATE FUNCTION plsample_call_handler() RETURNS language_handler
AS ’$libdir/plsample’
LANGUAGE C;

CREATE LANGUAGE plsample
HANDLER plsample_call_handler;

Compatibility

CREATE LANGUAGEis a PostgreSQL extension.

See Also

ALTER LANGUAGE, CREATE FUNCTION, DROP LANGUAGE, GRANT, REVOKE, createlang,
droplang

712

CREATE OPERATOR

Name
CREATE OPERATOR— define a new operator

Synopsis

CREATE OPERATORname (
PROCEDURE =funcname
[, LEFTARG = lefttype] [, RIGHTARG = righttype]
[, COMMUTATOR =com_op] [, NEGATOR = neg_op]
[, RESTRICT = res_proc] [, JOIN = join_proc]
[, HASHES] [, MERGES]
[, SORT1 = left_sort_op] [, SORT2 = right_sort_op]
[, LTCMP = less_than_op] [, GTCMP = greater_than_op]

)

Description

CREATE OPERATORdefines a new operator,name. The user who defines an operator becomes its
owner. If a schema name is given then the operator is created in the specified schema. Otherwise it is
created in the current schema.

The operator name is a sequence of up toNAMEDATALEN-1 (63 by default) characters from the fol-
lowing list:

+ - * / < > = ~ ! @ # % ^ & | ‘ ?

There are a few restrictions on your choice of name:

• -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multicharacter operator name cannot end in+ or - , unless the name also contains at least one of
these characters:

~ ! @ # % ^ & | ‘ ?

For example,@- is an allowed operator name, but*- is not. This restriction allows PostgreSQL to
parse SQL-compliant commands without requiring spaces between tokens.

The operator!= is mapped to<> on input, so these two names are always equivalent.

At least one ofLEFTARGand RIGHTARGmust be defined. For binary operators, both must be de-
fined. For right unary operators, onlyLEFTARGshould be defined, while for left unary operators only
RIGHTARGshould be defined.

The funcname procedure must have been previously defined usingCREATE FUNCTIONand must
be defined to accept the correct number of arguments (either one or two) of the indicated types.

The other clauses specify optional operator optimization clauses. Their meaning is detailed inSection
31.13.

713

CREATE OPERATOR

Parameters

name

The name of the operator to be defined. See above for allowable characters. The name may
be schema-qualified, for exampleCREATE OPERATOR myschema.+ (...) . If not, then the
operator is created in the current schema. Two operators in the same schema can have the same
name if they operate on different data types. This is calledoverloading.

funcname

The function used to implement this operator.

lefttype

The data type of the operator’s left operand, if any. This option would be omitted for a left-unary
operator.

righttype

The data type of the operator’s right operand, if any. This option would be omitted for a right-
unary operator.

com_op

The commutator of this operator.

neg_op

The negator of this operator.

res_proc

The restriction selectivity estimator function for this operator.

join_proc

The join selectivity estimator function for this operator.

HASHES

Indicates this operator can support a hash join.

MERGES

Indicates this operator can support a merge join.

left_sort_op

If this operator can support a merge join, the less-than operator that sorts the left-hand data type
of this operator.

right_sort_op

If this operator can support a merge join, the less-than operator that sorts the right-hand data type
of this operator.

less_than_op

If this operator can support a merge join, the less-than operator that compares the input data
types of this operator.

greater_than_op

If this operator can support a merge join, the greater-than operator that compares the input data
types of this operator.

714

CREATE OPERATOR

To give a schema-qualified operator name incom_op or the other optional arguments, use the
OPERATOR()syntax, for example

COMMUTATOR = OPERATOR(myschema.===) ,

Notes

Refer toSection 31.12for further information.

UseDROP OPERATORto delete user-defined operators from a database. UseALTER OPERATORto
modify operators in a database.

Examples

The following command defines a new operator, area-equality, for the data typebox :

CREATE OPERATOR === (
LEFTARG = box,
RIGHTARG = box,
PROCEDURE = area_equal_procedure,
COMMUTATOR = ===,
NEGATOR = !==,
RESTRICT = area_restriction_procedure,
JOIN = area_join_procedure,
HASHES,
SORT1 = <<<,
SORT2 = <<<

-- Since sort operators were given, MERGES is implied.
-- LTCMP and GTCMP are assumed to be < and > respectively

);

Compatibility

CREATE OPERATORis a PostgreSQL extension. There are no provisions for user-defined operators in
the SQL standard.

See Also

ALTER OPERATOR, CREATE OPERATOR CLASS, DROP OPERATOR

715

CREATE OPERATOR CLASS

Name
CREATE OPERATOR CLASS— define a new operator class

Synopsis

CREATE OPERATOR CLASSname [DEFAULT] FOR TYPE data_type USING index_method AS
{ OPERATORstrategy_number operator_name [(op_type , op_type)] [RECHECK]

| FUNCTION support_number funcname (argument_type [, ...])
| STORAGE storage_type

} [, ...]

Description

CREATE OPERATOR CLASScreates a new operator class. An operator class defines how a particular
data type can be used with an index. The operator class specifies that certain operators will fill partic-
ular roles or “strategies” for this data type and this index method. The operator class also specifies the
support procedures to be used by the index method when the operator class is selected for an index
column. All the operators and functions used by an operator class must be defined before the operator
class is created.

If a schema name is given then the operator class is created in the specified schema. Otherwise it is
created in the current schema. Two operator classes in the same schema can have the same name only
if they are for different index methods.

The user who defines an operator class becomes its owner. Presently, the creating user must be a
superuser. (This restriction is made because an erroneous operator class definition could confuse or
even crash the server.)

CREATE OPERATOR CLASSdoes not presently check whether the operator class definition includes
all the operators and functions required by the index method. It is the user’s responsibility to define a
valid operator class.

Refer toSection 31.14for further information.

Parameters

name

The name of the operator class to be created. The name may be schema-qualified.

DEFAULT

If present, the operator class will become the default operator class for its data type. At most one
operator class can be the default for a specific data type and index method.

data_type

The column data type that this operator class is for.

index_method

The name of the index method this operator class is for.

716

CREATE OPERATOR CLASS

strategy_number

The index method’s strategy number for an operator associated with the operator class.

operator_name

The name (optionally schema-qualified) of an operator associated with the operator class.

op_type

The operand data type(s) of an operator, orNONEto signify a left-unary or right-unary operator.
The operand data types may be omitted in the normal case where they are the same as the operator
class’s data type.

RECHECK

If present, the index is “lossy” for this operator, and so the rows retrieved using the index must
be rechecked to verify that they actually satisfy the qualification clause involving this operator.

support_number

The index method’s support procedure number for a function associated with the operator class.

funcname

The name (optionally schema-qualified) of a function that is an index method support procedure
for the operator class.

argument_types

The parameter data type(s) of the function.

storage_type

The data type actually stored in the index. Normally this is the same as the column data type,
but some index methods (only GiST at this writing) allow it to be different. TheSTORAGEclause
must be omitted unless the index method allows a different type to be used.

TheOPERATOR, FUNCTION, andSTORAGEclauses may appear in any order.

Notes

The operators should not be defined by SQL functions. A SQL function is likely to be inlined into the
calling query, which will prevent the optimizer from recognizing that the query matches an index.

Examples

The following example command defines a GiST index operator class for the data type_int4 (array
of int4). Seecontrib/intarray/ for the complete example.

CREATE OPERATOR CLASS gist__int_ops
DEFAULT FOR TYPE _int4 USING gist AS

OPERATOR 3 &&,
OPERATOR 6 = RECHECK,
OPERATOR 7 @,
OPERATOR 8 ~,
OPERATOR 20 @@ (_int4, query_int),
FUNCTION 1 g_int_consistent (internal, _int4, int4),
FUNCTION 2 g_int_union (bytea, internal),
FUNCTION 3 g_int_compress (internal),

717

CREATE OPERATOR CLASS

FUNCTION 4 g_int_decompress (internal),
FUNCTION 5 g_int_penalty (internal, internal, internal),
FUNCTION 6 g_int_picksplit (internal, internal),
FUNCTION 7 g_int_same (_int4, _int4, internal);

Compatibility

CREATE OPERATOR CLASSis a PostgreSQL extension. There is noCREATE OPERATOR CLASS

statement in the SQL standard.

See Also

ALTER OPERATOR CLASS, DROP OPERATOR CLASS

718

CREATE RULE

Name
CREATE RULE— define a new rewrite rule

Synopsis

CREATE [OR REPLACE] RULEname AS ON event
TO table [WHERE condition]
DO [ALSO | INSTEAD] { NOTHING | command | (command ; command ...) }

Description

CREATE RULEdefines a new rule applying to a specified table or view.CREATE OR REPLACE RULE

will either create a new rule, or replace an existing rule of the same name for the same table.

The PostgreSQL rule system allows one to define an alternate action to be performed on insertions,
updates, or deletions in database tables. Roughly speaking, a rule causes additional commands to be
executed when a given command on a given table is executed. Alternatively, anINSTEAD rule can
replace a given command by another, or cause a command not to be executed at all. Rules are used to
implement table views as well. It is important to realize that a rule is really a command transformation
mechanism, or command macro. The transformation happens before the execution of the commands
starts. If you actually want an operation that fires independently for each physical row, you probably
want to use a trigger, not a rule. More information about the rules system is inChapter 33.

Presently,ON SELECTrules must be unconditionalINSTEAD rules and must have actions that consist
of a singleSELECTcommand. Thus, anON SELECTrule effectively turns the table into a view, whose
visible contents are the rows returned by the rule’sSELECTcommand rather than whatever had been
stored in the table (if anything). It is considered better style to write aCREATE VIEWcommand than
to create a real table and define anON SELECTrule for it.

You can create the illusion of an updatable view by definingON INSERT, ON UPDATE, and ON

DELETErules (or any subset of those that’s sufficient for your purposes) to replace update actions
on the view with appropriate updates on other tables.

There is a catch if you try to use conditional rules for view updates: theremustbe an unconditional
INSTEAD rule for each action you wish to allow on the view. If the rule is conditional, or is not
INSTEAD, then the system will still reject attempts to perform the update action, because it thinks
it might end up trying to perform the action on the dummy table of the view in some cases. If you
want to handle all the useful cases in conditional rules, add an unconditionalDO INSTEAD NOTHING

rule to ensure that the system understands it will never be called on to update the dummy table. Then
make the conditional rules non-INSTEAD; in the cases where they are applied, they add to the default
INSTEAD NOTHINGaction.

Parameters

name

The name of a rule to create. This must be distinct from the name of any other rule for the same
table. Multiple rules on the same table and same event type are applied in alphabetical name
order.

719

CREATE RULE

event

The event is one ofSELECT, INSERT, UPDATE, or DELETE.

table

The name (optionally schema-qualified) of the table or view the rule applies to.

condition

Any SQL conditional expression (returningboolean). The condition expression may not refer
to any tables exceptNEWandOLD, and may not contain aggregate functions.

INSTEAD

INSTEAD indicates that the commands should be executedinstead ofthe original command.

ALSO

ALSOindicates that the commands should be executedin addition tothe original command.

If neitherALSOnor INSTEAD is specified,ALSOis the default.

command

The command or commands that make up the rule action. Valid commands areSELECT, INSERT,
UPDATE, DELETE, or NOTIFY.

Within condition and command, the special table namesNEWand OLD may be used to refer
to values in the referenced table.NEWis valid in ON INSERTandON UPDATErules to refer to the
new row being inserted or updated.OLDis valid in ON UPDATEandON DELETErules to refer to the
existing row being updated or deleted.

Notes

You must have the privilegeRULEon a table to be allowed to define a rule on it.

It is very important to take care to avoid circular rules. For example, though each of the following
two rule definitions are accepted by PostgreSQL, theSELECTcommand would cause PostgreSQL to
report an error because the query cycled too many times:

CREATE RULE "_RETURN" AS
ON SELECT TO t1
DO INSTEAD

SELECT * FROM t2;

CREATE RULE "_RETURN" AS
ON SELECT TO t2
DO INSTEAD

SELECT * FROM t1;

SELECT * FROM t1;

Presently, if a rule action contains aNOTIFY command, theNOTIFY command will be executed un-
conditionally, that is, theNOTIFY will be issued even if there are not any rows that the rule should
apply to. For example, in

CREATE RULE notify_me AS ON UPDATE TO mytable DO ALSO NOTIFY mytable;

720

CREATE RULE

UPDATE mytable SET name = ’foo’ WHERE id = 42;

oneNOTIFY event will be sent during theUPDATE, whether or not there are any rows that match the
conditionid = 42 . This is an implementation restriction that may be fixed in future releases.

Compatibility

CREATE RULEis a PostgreSQL language extension, as is the entire query rewrite system.

721

CREATE SCHEMA

Name
CREATE SCHEMA— define a new schema

Synopsis

CREATE SCHEMAschemaname [AUTHORIZATION username] [schema_element [...]]
CREATE SCHEMA AUTHORIZATIONusername [schema_element [...]]

Description

CREATE SCHEMAenters a new schema into the current database. The schema name must be distinct
from the name of any existing schema in the current database.

A schema is essentially a namespace: it contains named objects (tables, data types, functions, and
operators) whose names may duplicate those of other objects existing in other schemas. Named ob-
jects are accessed either by “qualifying” their names with the schema name as a prefix, or by setting a
search path that includes the desired schema(s). ACREATEcommand specifying an unqualified object
name creates the object in the current schema (the one at the front of the search path, which can be
determined with the functioncurrent_schema).

Optionally,CREATE SCHEMAcan include subcommands to create objects within the new schema. The
subcommands are treated essentially the same as separate commands issued after creating the schema,
except that if theAUTHORIZATIONclause is used, all the created objects will be owned by that user.

Parameters

schemaname

The name of a schema to be created. If this is omitted, the user name is used as the schema name.
The name cannot begin withpg_ , as such names are reserved for system schemas.

username

The name of the user who will own the schema. If omitted, defaults to the user executing the
command. Only superusers may create schemas owned by users other than themselves.

schema_element

An SQL statement defining an object to be created within the schema. Currently, onlyCREATE

TABLE, CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, CREATE TRIGGERand GRANT

are accepted as clauses withinCREATE SCHEMA. Other kinds of objects may be created in sepa-
rate commands after the schema is created.

Notes

To create a schema, the invoking user must have theCREATEprivilege for the current database. (Of
course, superusers bypass this check.)

722

CREATE SCHEMA

Examples

Create a schema:

CREATE SCHEMA myschema;

Create a schema for userjoe ; the schema will also be namedjoe :

CREATE SCHEMA AUTHORIZATION joe;

Create a schema and create a table and view within it:

CREATE SCHEMA hollywood
CREATE TABLE films (title text, release date, awards text[])
CREATE VIEW winners AS

SELECT title, release FROM films WHERE awards IS NOT NULL;

Notice that the individual subcommands do not end with semicolons.

The following is an equivalent way of accomplishing the same result:

CREATE SCHEMA hollywood;
CREATE TABLE hollywood.films (title text, release date, awards text[]);
CREATE VIEW hollywood.winners AS

SELECT title, release FROM hollywood.films WHERE awards IS NOT NULL;

Compatibility

The SQL standard allows aDEFAULT CHARACTER SETclause inCREATE SCHEMA, as well as more
subcommand types than are presently accepted by PostgreSQL.

The SQL standard specifies that the subcommands inCREATE SCHEMAmay appear in any order. The
present PostgreSQL implementation does not handle all cases of forward references in subcommands;
it may sometimes be necessary to reorder the subcommands in order to avoid forward references.

According to the SQL standard, the owner of a schema always owns all objects within it. PostgreSQL
allows schemas to contain objects owned by users other than the schema owner. This can happen only
if the schema owner grants theCREATEprivilege on his schema to someone else.

See Also

ALTER SCHEMA, DROP SCHEMA

723

CREATE SEQUENCE

Name
CREATE SEQUENCE— define a new sequence generator

Synopsis

CREATE [TEMPORARY | TEMP] SEQUENCEname [INCREMENT [BY] increment]
[MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
[START [WITH] start] [CACHE cache] [[NO] CYCLE]

Description

CREATE SEQUENCEcreates a new sequence number generator. This involves creating and initializing
a new special single-row table with the namename. The generator will be owned by the user issuing
the command.

If a schema name is given then the sequence is created in the specified schema. Otherwise it is created
in the current schema. Temporary sequences exist in a special schema, so a schema name may not
be given when creating a temporary sequence. The sequence name must be distinct from the name of
any other sequence, table, index, or view in the same schema.

After a sequence is created, you use the functionsnextval , currval , andsetval to operate on the
sequence. These functions are documented inSection 9.12.

Although you cannot update a sequence directly, you can use a query like

SELECT * FROMname;

to examine the parameters and current state of a sequence. In particular, thelast_value field of the
sequence shows the last value allocated by any session. (Of course, this value may be obsolete by the
time it’s printed, if other sessions are actively doingnextval calls.)

Parameters

TEMPORARYor TEMP

If specified, the sequence object is created only for this session, and is automatically dropped on
session exit. Existing permanent sequences with the same name are not visible (in this session)
while the temporary sequence exists, unless they are referenced with schema-qualified names.

name

The name (optionally schema-qualified) of the sequence to be created.

increment

The optional clauseINCREMENT BYincrement specifies which value is added to the current
sequence value to create a new value. A positive value will make an ascending sequence, a
negative one a descending sequence. The default value is 1.

724

CREATE SEQUENCE

minvalue
NO MINVALUE

The optional clauseMINVALUE minvalue determines the minimum value a sequence can gen-
erate. If this clause is not supplied orNO MINVALUEis specified, then defaults will be used. The
defaults are 1 and -263-1 for ascending and descending sequences, respectively.

maxvalue
NO MAXVALUE

The optional clauseMAXVALUEmaxvalue determines the maximum value for the sequence. If
this clause is not supplied orNO MAXVALUEis specified, then default values will be used. The
defaults are 263-1 and -1 for ascending and descending sequences, respectively.

start

The optional clauseSTART WITH start allows the sequence to begin anywhere. The default
starting value isminvalue for ascending sequences andmaxvalue for descending ones.

cache

The optional clauseCACHEcache specifies how many sequence numbers are to be preallocated
and stored in memory for faster access. The minimum value is 1 (only one value can be generated
at a time, i.e., no cache), and this is also the default.

CYCLE

NO CYCLE

TheCYCLEoption allows the sequence to wrap around when themaxvalue or minvalue has
been reached by an ascending or descending sequence respectively. If the limit is reached, the
next number generated will be theminvalue or maxvalue , respectively.

If NO CYCLEis specified, any calls tonextval after the sequence has reached its maximum
value will return an error. If neitherCYCLEor NO CYCLEare specified,NO CYCLEis the default.

Notes

UseDROP SEQUENCEto remove a sequence.

Sequences are based onbigint arithmetic, so the range cannot exceed the range of an eight-byte
integer (-9223372036854775808 to 9223372036854775807). On some older platforms, there may be
no compiler support for eight-byte integers, in which case sequences use regularinteger arithmetic
(range -2147483648 to +2147483647).

Unexpected results may be obtained if acache setting greater than one is used for a sequence object
that will be used concurrently by multiple sessions. Each session will allocate and cache succes-
sive sequence values during one access to the sequence object and increase the sequence object’s
last_value accordingly. Then, the nextcache -1 uses ofnextval within that session simply re-
turn the preallocated values without touching the sequence object. So, any numbers allocated but not
used within a session will be lost when that session ends, resulting in “holes” in the sequence.

Furthermore, although multiple sessions are guaranteed to allocate distinct sequence values, the values
may be generated out of sequence when all the sessions are considered. For example, with acache
setting of 10, session A might reserve values 1..10 and returnnextval =1, then session B might
reserve values 11..20 and returnnextval =11 before session A has generatednextval =2. Thus,
with acache setting of one it is safe to assume thatnextval values are generated sequentially; with
acache setting greater than one you should only assume that thenextval values are all distinct, not

725

CREATE SEQUENCE

that they are generated purely sequentially. Also,last_value will reflect the latest value reserved
by any session, whether or not it has yet been returned bynextval .

Another consideration is that asetval executed on such a sequence will not be noticed by other
sessions until they have used up any preallocated values they have cached.

Examples

Create an ascending sequence calledserial , starting at 101:

CREATE SEQUENCE serial START 101;

Select the next number from this sequence:

SELECT nextval(’serial’);

nextval

114

Use this sequence in anINSERT command:

INSERT INTO distributors VALUES (nextval(’serial’), ’nothing’);

Update the sequence value after aCOPY FROM:

BEGIN;
COPY distributors FROM ’input_file’;
SELECT setval(’serial’, max(id)) FROM distributors;
END;

Compatibility

CREATE SEQUENCEis is specified in SQL:2003. PostgreSQL conforms with the standard, with the
following exceptions:

• The standard’sAS <data type > expression is not supported.

• Obtaining the next value is done using thenextval() function instead of the standard’sNEXT

VALUE FORexpression.

726

CREATE TABLE

Name
CREATE TABLE— define a new table

Synopsis

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP }] TABLE table_name (
{ column_name data_type [DEFAULT default_expr] [column_constraint [...]]

| table_constraint
| LIKE parent_table [{ INCLUDING | EXCLUDING } DEFAULTS] } [, ...]

)
[INHERITS (parent_table [, ...])]
[WITH OIDS | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |

NULL |
UNIQUE [USING INDEX TABLESPACEtablespace] |
PRIMARY KEY [USING INDEX TABLESPACEtablespace] |
CHECK (expression) |
REFERENCESreftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]

[ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ UNIQUE (column_name [, ...]) [USING INDEX TABLESPACE tablespace] |

PRIMARY KEY (column_name [, ...]) [USING INDEX TABLESPACE tablespace] |
CHECK (expression) |
FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]

[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETEaction] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

Description

CREATE TABLEwill create a new, initially empty table in the current database. The table will be
owned by the user issuing the command.

If a schema name is given (for example,CREATE TABLE myschema.mytable ...) then the table
is created in the specified schema. Otherwise it is created in the current schema. Temporary tables
exist in a special schema, so a schema name may not be given when creating a temporary table. The
table name must be distinct from the name of any other table, sequence, index, or view in the same
schema.

CREATE TABLEalso automatically creates a data type that represents the composite type correspond-
ing to one row of the table. Therefore, tables cannot have the same name as any existing data type in
the same schema.

727

CREATE TABLE

The optional constraint clauses specify constraints (tests) that new or updated rows must satisfy for an
insert or update operation to succeed. A constraint is an SQL object that helps define the set of valid
values in the table in various ways.

There are two ways to define constraints: table constraints and column constraints. A column con-
straint is defined as part of a column definition. A table constraint definition is not tied to a particular
column, and it can encompass more than one column. Every column constraint can also be written as
a table constraint; a column constraint is only a notational convenience for use when the constraint
only affects one column.

Parameters

TEMPORARYor TEMP

If specified, the table is created as a temporary table. Temporary tables are automatically dropped
at the end of a session, or optionally at the end of the current transaction (seeON COMMITbelow).
Existing permanent tables with the same name are not visible to the current session while the
temporary table exists, unless they are referenced with schema-qualified names. Any indexes
created on a temporary table are automatically temporary as well.

Optionally,GLOBALor LOCALcan be written beforeTEMPORARYor TEMP. This makes no differ-
ence in PostgreSQL, but seeCompatibility.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This may include array specifiers. For more information on the data
types supported by PostgreSQL, refer toChapter 8.

DEFAULT default_expr

The DEFAULTclause assigns a default data value for the column whose column definition it
appears within. The value is any variable-free expression (subqueries and cross-references to
other columns in the current table are not allowed). The data type of the default expression must
match the data type of the column.

The default expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a column, then the default is null.

INHERITS (parent_table [, ...])

The optionalINHERITS clause specifies a list of tables from which the new table automatically
inherits all columns.

Use of INHERITS creates a persistent relationship between the new child table and its parent
table(s). Schema modifications to the parent(s) normally propagate to children as well, and by
default the data of the child table is included in scans of the parent(s).

If the same column name exists in more than one parent table, an error is reported unless the
data types of the columns match in each of the parent tables. If there is no conflict, then the
duplicate columns are merged to form a single column in the new table. If the column name list
of the new table contains a column name that is also inherited, the data type must likewise match
the inherited column(s), and the column definitions are merged into one. However, inherited and

728

CREATE TABLE

new column declarations of the same name need not specify identical constraints: all constraints
provided from any declaration are merged together and all are applied to the new table. If the
new table explicitly specifies a default value for the column, this default overrides any defaults
from inherited declarations of the column. Otherwise, any parents that specify default values for
the column must all specify the same default, or an error will be reported.

LIKE parent_table [{ INCLUDING | EXCLUDING } DEFAULTS]

The LIKE clause specifies a table from which the new table automatically copies all column
names, their data types, and their not-null constraints.

Unlike INHERITS , the new table and original table are completely decoupled after creation is
complete. Changes to the original table will not be applied to the new table, and it is not possible
to include data of the new table in scans of the original table.

Default expressions for the copied column definitions will only be copied ifINCLUDING

DEFAULTSis specified. The default behavior is to exclude default expressions, resulting in all
columns of the new table having null defaults.

WITH OIDS

WITHOUT OIDS

This optional clause specifies whether rows of the new table should have OIDs (object identi-
fiers) assigned to them. If neitherWITH OIDSnorWITHOUT OIDSis specified, the default value
depends upon thedefault_with_oidsconfiguration parameter. (If the new table inherits from any
tables that have OIDs, thenWITH OIDS is forced even if the command saysWITHOUT OIDS.)

If WITHOUT OIDSis specified or implied, the new table does not store OIDs and no OID will
be assigned for a row inserted into it. This is generally considered worthwhile, since it will
reduce OID consumption and thereby postpone the wraparound of the 32-bit OID counter. Once
the counter wraps around, OIDs can no longer be assumed to be unique, which makes them
considerably less useful. In addition, excluding OIDs from a table reduces the space required to
store the table on disk by 4 bytes per row (on most machines), slightly improving performance.

To remove OIDs from a table after it has been created, useALTER TABLE.

CONSTRAINTconstraint_name

An optional name for a column or table constraint. If not specified, the system generates a name.

NOT NULL

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is only provided for compatibility with non-standard SQL databases. Its use is dis-
couraged in new applications.

UNIQUE(column constraint)
UNIQUE (column_name [, ...]) (table constraint)

The UNIQUEconstraint specifies that a group of one or more columns of a table may contain
only unique values. The behavior of the unique table constraint is the same as that for column
constraints, with the additional capability to span multiple columns.

For the purpose of a unique constraint, null values are not considered equal.

Each unique table constraint must name a set of columns that is different from the set of columns
named by any other unique or primary key constraint defined for the table. (Otherwise it would
just be the same constraint listed twice.)

729

CREATE TABLE

PRIMARY KEY(column constraint)
PRIMARY KEY (column_name [, ...]) (table constraint)

The primary key constraint specifies that a column or columns of a table may contain only unique
(non-duplicate), nonnull values. Technically,PRIMARY KEYis merely a combination ofUNIQUE

andNOT NULL, but identifying a set of columns as primary key also provides metadata about the
design of the schema, as a primary key implies that other tables may rely on this set of columns
as a unique identifier for rows.

Only one primary key can be specified for a table, whether as a column constraint or a table
constraint.

The primary key constraint should name a set of columns that is different from other sets of
columns named by any unique constraint defined for the same table.

CHECK (expression)

The CHECKclause specifies an expression producing a Boolean result which new or updated
rows must satisfy for an insert or update operation to succeed. Expressions evaluating to TRUE
or UNKNOWN succeed. Should any row of an insert or update operation produce a FALSE
result an error exception is raised and the insert or update does not alter the database. A check
constraint specified as a column constraint should reference that column’s value only, while an
expression appearing in a table constraint may reference multiple columns.

Currently,CHECKexpressions cannot contain subqueries nor refer to variables other than columns
of the current row.

REFERENCESreftable [(refcolumn)] [MATCH matchtype] [ON DELETE

action] [ON UPDATE action] (column constraint)
FOREIGN KEY (column [, ...]) REFERENCES reftable [(refcolumn [, ...

])] [MATCH matchtype] [ON DELETE action] [ON UPDATE action] (table
constraint)

These clauses specify a foreign key constraint, which requires that a group of one or more
columns of the new table must only contain values that match values in the referenced col-
umn(s) of some row of the referenced table. Ifrefcolumn is omitted, the primary key of the
reftable is used. The referenced columns must be the columns of a unique or primary key
constraint in the referenced table.

A value inserted into the referencing column(s) is matched against the values of the referenced
table and referenced columns using the given match type. There are three match types:MATCH

FULL, MATCH PARTIAL, andMATCH SIMPLE, which is also the default.MATCH FULLwill not
allow one column of a multicolumn foreign key to be null unless all foreign key columns are null.
MATCH SIMPLEallows some foreign key columns to be null while other parts of the foreign key
are not null.MATCH PARTIALis not yet implemented.

In addition, when the data in the referenced columns is changed, certain actions are performed
on the data in this table’s columns. TheON DELETEclause specifies the action to perform when a
referenced row in the referenced table is being deleted. Likewise, theON UPDATEclause specifies
the action to perform when a referenced column in the referenced table is being updated to a new
value. If the row is updated, but the referenced column is not actually changed, no action is done.
Referential actions other than theNO ACTIONcheck cannot be deferred, even if the constraint is
declared deferrable. There are the following possible actions for each clause:

NO ACTION

Produce an error indicating that the deletion or update would create a foreign key constraint
violation. If the constraint is deferred, this error will be produced at constraint check time
if there still exist any referencing rows. This is the default action.

730

CREATE TABLE

RESTRICT

Produce an error indicating that the deletion or update would create a foreign key constraint
violation. This is the same asNO ACTIONexcept that the check is not deferrable.

CASCADE

Delete any rows referencing the deleted row, or update the value of the referencing column
to the new value of the referenced column, respectively.

SET NULL

Set the referencing column(s) to null.

SET DEFAULT

Set the referencing column(s) to their default values.

If the referenced column(s) are changed frequently, it may be wise to add an index to the foreign
key column so that referential actions associated with the foreign key column can be performed
more efficiently.

DEFERRABLE

NOT DEFERRABLE

This controls whether the constraint can be deferred. A constraint that is not deferrable will
be checked immediately after every command. Checking of constraints that are deferrable may
be postponed until the end of the transaction (using theSET CONSTRAINTScommand).NOT

DEFERRABLEis the default. Only foreign key constraints currently accept this clause. All other
constraint types are not deferrable.

INITIALLY IMMEDIATE

INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the constraint. If the
constraint isINITIALLY IMMEDIATE , it is checked after each statement. This is the default. If
the constraint isINITIALLY DEFERRED, it is checked only at the end of the transaction. The
constraint check time can be altered with theSET CONSTRAINTScommand.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled usingON

COMMIT. The three options are:

PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block. Essen-
tially, an automaticTRUNCATE is done at each commit.

DROP

The temporary table will be dropped at the end of the current transaction block.

731

CREATE TABLE

TABLESPACEtablespace

The tablespace is the name of the tablespace in which the new table is to be
created. If not specified,default_tablespaceis used, or the database’s default tablespace if
default_tablespace is an empty string.

USING INDEX TABLESPACEtablespace

This clause allows selection of the tablespace in which the index associated with aUNIQUE

or PRIMARY KEYconstraint will be created. If not specified,default_tablespaceis used, or the
database’s default tablespace ifdefault_tablespace is an empty string.

Notes

Using OIDs in new applications is not recommended: where possible, using aSERIAL or other se-
quence generator as the table’s primary key is preferred. However, if your application does make use
of OIDs to identify specific rows of a table, it is recommended to create a unique constraint on theoid

column of that table, to ensure that OIDs in the table will indeed uniquely identify rows even after
counter wraparound. Avoid assuming that OIDs are unique across tables; if you need a database-wide
unique identifier, use the combination oftableoid and row OID for the purpose.

Tip: The use of WITHOUT OIDSis not recommended for tables with no primary key, since without
either an OID or a unique data key, it is difficult to identify specific rows.

PostgreSQL automatically creates an index for each unique constraint and primary key constraint to
enforce uniqueness. Thus, it is not necessary to create an index explicitly for primary key columns.
(SeeCREATE INDEXfor more information.)

Unique constraints and primary keys are not inherited in the current implementation. This makes the
combination of inheritance and unique constraints rather dysfunctional.

A table cannot have more than 1600 columns. (In practice, the effective limit is lower because of
tuple-length constraints.)

Examples

Create tablefilms and tabledistributors :

CREATE TABLE films (
code char(5) CONSTRAINT firstkey PRIMARY KEY,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute

);

CREATE TABLE distributors (
did integer PRIMARY KEY DEFAULT nextval(’serial’),
name varchar(40) NOT NULL CHECK (name <> ”)

);

732

CREATE TABLE

Create a table with a 2-dimensional array:

CREATE TABLE array_int (
vector int[][]

);

Define a unique table constraint for the tablefilms . Unique table constraints can be defined on one
or more columns of the table.

CREATE TABLE films (
code char(5),
title varchar(40),
did integer,
date_prod date,
kind varchar(10),
len interval hour to minute,
CONSTRAINT production UNIQUE(date_prod)

);

Define a check column constraint:

CREATE TABLE distributors (
did integer CHECK (did > 100),
name varchar(40)

);

Define a check table constraint:

CREATE TABLE distributors (
did integer,
name varchar(40)
CONSTRAINT con1 CHECK (did > 100 AND name <> ”)

);

Define a primary key table constraint for the tablefilms . Primary key table constraints can be defined
on one or more columns of the table.

CREATE TABLE films (
code char(5),
title varchar(40),
did integer,
date_prod date,
kind varchar(10),
len interval hour to minute,
CONSTRAINT code_title PRIMARY KEY(code,title)

);

Define a primary key constraint for tabledistributors . The following two examples are equivalent,
the first using the table constraint syntax, the second the column constraint syntax.

733

CREATE TABLE

CREATE TABLE distributors (
did integer,
name varchar(40),
PRIMARY KEY(did)

);

CREATE TABLE distributors (
did integer PRIMARY KEY,
name varchar(40)

);

This assigns a literal constant default value for the columnname, arranges for the default value of
columndid to be generated by selecting the next value of a sequence object, and makes the default
value ofmodtime be the time at which the row is inserted.

CREATE TABLE distributors (
name varchar(40) DEFAULT ’Luso Films’,
did integer DEFAULT nextval(’distributors_serial’),
modtime timestamp DEFAULT current_timestamp

);

Define twoNOT NULLcolumn constraints on the tabledistributors , one of which is explicitly
given a name:

CREATE TABLE distributors (
did integer CONSTRAINT no_null NOT NULL,
name varchar(40) NOT NULL

);

Define a unique constraint for thename column:

CREATE TABLE distributors (
did integer,
name varchar(40) UNIQUE

);

The above is equivalent to the following specified as a table constraint:

CREATE TABLE distributors (
did integer,
name varchar(40),
UNIQUE(name)

);

Create tablecinemas in tablespacediskvol1 :

CREATE TABLE cinemas (
id serial,
name text,
location text

) TABLESPACE diskvol1;

734

CREATE TABLE

Compatibility

The CREATE TABLEcommand conforms to SQL-92 and to a subset of SQL:1999, with exceptions
listed below.

Temporary Tables

Although the syntax ofCREATE TEMPORARY TABLEresembles that of the SQL standard, the effect is
not the same. In the standard, temporary tables are defined just once and automatically exist (starting
with empty contents) in every session that needs them. PostgreSQL instead requires each session to
issue its ownCREATE TEMPORARY TABLEcommand for each temporary table to be used. This allows
different sessions to use the same temporary table name for different purposes, whereas the standard’s
approach constrains all instances of a given temporary table name to have the same table structure.

The standard’s definition of the behavior of temporary tables is widely ignored. PostgreSQL’s behav-
ior on this point is similar to that of several other SQL databases.

The standard’s distinction between global and local temporary tables is not in PostgreSQL, since that
distinction depends on the concept of modules, which PostgreSQL does not have. For compatibility’s
sake, PostgreSQL will accept theGLOBALandLOCALkeywords in a temporary table declaration, but
they have no effect.

The ON COMMITclause for temporary tables also resembles the SQL standard, but has some differ-
ences. If theON COMMITclause is omitted, SQL specifies that the default behavior isON COMMIT

DELETE ROWS. However, the default behavior in PostgreSQL isON COMMIT PRESERVE ROWS. The
ON COMMIT DROPoption does not exist in SQL.

Column Check Constraints

The SQL standard says thatCHECKcolumn constraints may only refer to the column they apply
to; only CHECKtable constraints may refer to multiple columns. PostgreSQL does not enforce this
restriction; it treats column and table check constraints alike.

NULL “Constraint”

The NULL “constraint” (actually a non-constraint) is a PostgreSQL extension to the SQL standard
that is included for compatibility with some other database systems (and for symmetry with theNOT

NULLconstraint). Since it is the default for any column, its presence is simply noise.

Inheritance

Multiple inheritance via theINHERITS clause is a PostgreSQL language extension. SQL:1999 (but
not SQL-92) defines single inheritance using a different syntax and different semantics. SQL:1999-
style inheritance is not yet supported by PostgreSQL.

Object IDs

The PostgreSQL concept of OIDs is not standard.

735

CREATE TABLE

Zero-column tables

PostgreSQL allows a table of no columns to be created (for example,CREATE TABLE foo();). This
is an extension from the SQL standard, which does not allow zero-column tables. Zero-column tables
are not in themselves very useful, but disallowing them creates odd special cases forALTER TABLE

DROP COLUMN, so it seems cleaner to ignore this spec restriction.

Tablespaces

The PostgreSQL concept of tablespaces is not part of the standard. Hence, the clausesTABLESPACE

andUSING INDEX TABLESPACEare extensions.

See Also

ALTER TABLE, DROP TABLE, CREATE TABLESPACE

736

CREATE TABLE AS

Name
CREATE TABLE AS— define a new table from the results of a query

Synopsis

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP }] TABLE table_name [(column_name [, ...])] [[WITH | WITHOUT] OIDS]
AS query

Description

CREATE TABLE AScreates a table and fills it with data computed by aSELECTcommand or an
EXECUTEthat runs a preparedSELECTcommand. The table columns have the names and data types
associated with the output columns of theSELECT(except that you can override the column names
by giving an explicit list of new column names).

CREATE TABLE ASbears some resemblance to creating a view, but it is really quite different: it
creates a new table and evaluates the query just once to fill the new table initially. The new table will
not track subsequent changes to the source tables of the query. In contrast, a view re-evaluates its
definingSELECTstatement whenever it is queried.

Parameters

GLOBALor LOCAL

Ignored for compatibility. Refer toCREATE TABLEfor details.

TEMPORARYor TEMP

If specified, the table is created as a temporary table. Refer toCREATE TABLEfor details.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column in the new table. If column names are not provided, they are taken from
the output column names of the query. If the table is created from anEXECUTEcommand, a
column name list cannot be specified.

WITH OIDS

WITHOUT OIDS

This optional clause specifies whether the table created byCREATE TABLE ASshould include
OIDs. If neither form of this clause is specified, the value of thedefault_with_oidsconfiguration
parameter is used.

737

CREATE TABLE AS

query

A query statement (that is, aSELECTcommand or anEXECUTEcommand that runs a prepared
SELECTcommand). Refer toSELECTor EXECUTE, respectively, for a description of the al-
lowed syntax.

Notes

This command is functionally similar toSELECT INTO, but it is preferred since it is less likely to
be confused with other uses of theSELECT INTOsyntax. Furthermore,CREATE TABLE ASoffers a
superset of the functionality offered bySELECT INTO.

Prior to PostgreSQL 8.0,CREATE TABLE ASalways included OIDs in the table it produced. As of
PostgresSQL 8.0, theCREATE TABLE AScommand allows the user to explicitly specify whether
OIDs should be included. If the presence of OIDs is not explicitly specified, thedefault_with_oids
configuration variable is used. While this variable currently defaults to true, the default value may
be changed in the future. Therefore, applications that require OIDs in the table created byCREATE

TABLE ASshould explicitly specifyWITH OIDSto ensure compatibility with future versions of Post-
greSQL.

Examples

Create a new tablefilms_recent consisting of only recent entries from the tablefilms :

CREATE TABLE films_recent AS
SELECT * FROM films WHERE date_prod >= ’2002-01-01’;

Compatibility

CREATE TABLE ASis specified by the SQL:2003 standard. There are some small differences between
the definition of the command in SQL:2003 and its implementation in PostgreSQL:

• The standard requires parentheses around the subquery clause; in PostgreSQL, these parentheses
are optional.

• The standard defines anON COMMITclause; this is not currently implemented by PostgreSQL.
• The standard defines aWITH DATAclause; this is not currently implemented by PostgreSQL.

See Also

CREATE TABLE, EXECUTE, SELECT, SELECT INTO

738

CREATE TABLESPACE

Name
CREATE TABLESPACE— define a new tablespace

Synopsis

CREATE TABLESPACEtablespacename [OWNERusername] LOCATION ’ directory ’

Description

CREATE TABLESPACEregisters a new cluster-wide tablespace. The tablespace name must be distinct
from the name of any existing tablespace in the database cluster.

A tablespace allows superusers to define an alternative location on the file system where the data files
containing database objects (such as tables and indexes) may reside.

A user with appropriate privileges can passtablespacename to CREATE DATABASE, CREATE

TABLE, CREATE INDEXor ADD CONSTRAINTto have the data files for these objects stored within
the specified tablespace.

Parameters

tablespacename

The name of a tablespace to be created. The name cannot begin withpg_ , as such names are
reserved for system tablespaces.

username

The name of the user who will own the tablespace. If omitted, defaults to the user executing the
command. Only superusers may create tablespaces, but they can assign ownership of tablespaces
to non-superusers.

directory

The directory that will be used for the tablespace. The directory must be empty and must be
owned by the PostgreSQL system user. The directory must be specified by an absolute path
name.

Notes

Tablespaces are only supported on systems that support symbolic links.

Examples

Create a tablespacedbspace at /data/dbs :

CREATE TABLESPACE dbspace LOCATION ’/data/dbs’;

739

CREATE TABLESPACE

Create a tablespaceindexspace at /data/indexes owned by usergenevieve :

CREATE TABLESPACE indexspace OWNER genevieve LOCATION ’/data/indexes’;

Compatibility

CREATE TABLESPACEis a PostgreSQL extension.

See Also

CREATE DATABASE, CREATE TABLE, CREATE INDEX, DROP TABLESPACE, ALTER
TABLESPACE

740

CREATE TRIGGER

Name
CREATE TRIGGER— define a new trigger

Synopsis

CREATE TRIGGERname { BEFORE | AFTER } { event [OR ...] }
ON table [FOR [EACH] { ROW | STATEMENT }]
EXECUTE PROCEDUREfuncname (arguments)

Description

CREATE TRIGGERcreates a new trigger. The trigger will be associated with the specified table and
will execute the specified functionfuncname when certain events occur.

The trigger can be specified to fire either before the operation is attempted on a row (before constraints
are checked and theINSERT, UPDATE, or DELETEis attempted) or after the operation has completed
(after constraints are checked and theINSERT, UPDATE, or DELETEhas completed). If the trigger
fires before the event, the trigger may skip the operation for the current row, or change the row being
inserted (forINSERT andUPDATEoperations only). If the trigger fires after the event, all changes,
including the last insertion, update, or deletion, are “visible” to the trigger.

A trigger that is markedFOR EACH ROWis called once for every row that the operation modifies. For
example, aDELETEthat affects 10 rows will cause anyON DELETEtriggers on the target relation to
be called 10 separate times, once for each deleted row. In contrast, a trigger that is markedFOR EACH

STATEMENTonly executes once for any given operation, regardless of how many rows it modifies (in
particular, an operation that modifies zero rows will still result in the execution of any applicableFOR

EACH STATEMENTtriggers).

If multiple triggers of the same kind are defined for the same event, they will be fired in alphabetical
order by name.

SELECTdoes not modify any rows so you can not createSELECTtriggers. Rules and views are more
appropriate in such cases.

Refer toChapter 32for more information about triggers.

Parameters

name

The name to give the new trigger. This must be distinct from the name of any other trigger for
the same table.

BEFORE

AFTER

Determines whether the function is called before or after the event.

event

One ofINSERT, UPDATE, or DELETE; this specifies the event that will fire the trigger. Multiple
events can be specified usingOR.

741

CREATE TRIGGER

table

The name (optionally schema-qualified) of the table the trigger is for.

FOR EACH ROW

FOR EACH STATEMENT

This specifies whether the trigger procedure should be fired once for every row affected by the
trigger event, or just once per SQL statement. If neither is specified,FOR EACH STATEMENTis
the default.

funcname

A user-supplied function that is declared as taking no arguments and returning typetrigger ,
which is executed when the trigger fires.

arguments

An optional comma-separated list of arguments to be provided to the function when the trigger
is executed. The arguments are literal string constants. Simple names and numeric constants may
be written here, too, but they will all be converted to strings. Please check the description of the
implementation language of the trigger function about how the trigger arguments are accessible
within the function; it may be different from normal function arguments.

Notes

To create a trigger on a table, the user must have theTRIGGERprivilege on the table.

In PostgreSQL versions before 7.3, it was necessary to declare trigger functions as returning the place-
holder typeopaque , rather thantrigger . To support loading of old dump files,CREATE TRIGGER

will accept a function declared as returningopaque , but it will issue a notice and change the func-
tion’s declared return type totrigger .

UseDROP TRIGGERto remove a trigger.

Examples

Section 32.4contains a complete example.

Compatibility

The CREATE TRIGGERstatement in PostgreSQL implements a subset of the SQL:1999 standard.
(There are no provisions for triggers in SQL-92.) The following functionality is missing:

• SQL:1999 allows triggers to fire on updates to specific columns (e.g.,AFTER UPDATE OF col1,

col2).

• SQL:1999 allows you to define aliases for the “old” and “new” rows or tables for use in the
definition of the triggered action (e.g.,CREATE TRIGGER ... ON tablename REFERENCING

OLD ROW AS somename NEW ROW AS othername ...). Since PostgreSQL allows trigger pro-
cedures to be written in any number of user-defined languages, access to the data is handled in a
language-specific way.

• PostgreSQL only allows the execution of a user-defined function for the triggered action. SQL:1999
allows the execution of a number of other SQL commands, such asCREATE TABLEas triggered

742

CREATE TRIGGER

action. This limitation is not hard to work around by creating a user-defined function that executes
the desired commands.

SQL:1999 specifies that multiple triggers should be fired in time-of-creation order. PostgreSQL uses
name order, which was judged more convenient to work with.

The ability to specify multiple actions for a single trigger usingORis a PostgreSQL extension of the
SQL standard.

See Also

CREATE FUNCTION, ALTER TRIGGER, DROP TRIGGER

743

CREATE TYPE

Name
CREATE TYPE— define a new data type

Synopsis

CREATE TYPEname AS
(attribute_name data_type [, ...])

CREATE TYPEname (
INPUT = input_function ,
OUTPUT =output_function
[, RECEIVE = receive_function]
[, SEND = send_function]
[, ANALYZE = analyze_function]
[, INTERNALLENGTH = { internallength | VARIABLE }]
[, PASSEDBYVALUE]
[, ALIGNMENT = alignment]
[, STORAGE = storage]
[, DEFAULT = default]
[, ELEMENT = element]
[, DELIMITER = delimiter]

)

Description

CREATE TYPEregisters a new data type for use in the current database. The user who defines a type
becomes its owner.

If a schema name is given then the type is created in the specified schema. Otherwise it is created in
the current schema. The type name must be distinct from the name of any existing type or domain
in the same schema. (Because tables have associated data types, the type name must also be distinct
from the name of any existing table in the same schema.)

Composite Types

The first form ofCREATE TYPEcreates a composite type. The composite type is specified by a list
of attribute names and data types. This is essentially the same as the row type of a table, but using
CREATE TYPEavoids the need to create an actual table when all that is wanted is to define a type. A
stand-alone composite type is useful as the argument or return type of a function.

Base Types

The second form ofCREATE TYPEcreates a new base type (scalar type). The parameters
may appear in any order, not only that illustrated above, and most are optional. You must
register two or more functions (usingCREATE FUNCTION) before defining the type. The support
functions input_function and output_function are required, while the functions
receive_function , send_function and analyze_function are optional. Generally
these functions have to be coded in C or another low-level language.

744

CREATE TYPE

The input_function converts the type’s external textual representation to the internal represen-
tation used by the operators and functions defined for the type.output_function performs the
reverse transformation. The input function may be declared as taking one argument of typecstring ,
or as taking three arguments of typescstring , oid , integer . The first argument is the input text as
a C string, the second argument is the element type’s OID in case this is an array type (or the type’s
own OID for a composite type), and the third is thetypmod of the destination column, if known (-1
will be passed if not). The input function should return a value of the data type itself. The output
function may be declared as taking one argument of the new data type, or as taking two arguments
of which the second is typeoid . The second argument is again the array element type OID for array
types or the type OID for composite types. The output function should return typecstring .

The optionalreceive_function converts the type’s external binary representation to the internal
representation. If this function is not supplied, the type cannot participate in binary input. The bi-
nary representation should be chosen to be cheap to convert to internal form, while being reasonably
portable. (For example, the standard integer data types use network byte order as the external binary
representation, while the internal representation is in the machine’s native byte order.) The receive
function should perform adequate checking to ensure that the value is valid. The receive function may
be declared as taking one argument of typeinternal , or two arguments of typesinternal andoid .
It must return a value of the data type itself. (The first argument is a pointer to aStringInfo buffer
holding the received byte string; the optional second argument is the element type OID in case this is
an array type, or the type’s own OID for a composite type.) Similarly, the optionalsend_function
converts from the internal representation to the external binary representation. If this function is not
supplied, the type cannot participate in binary output. The send function may be declared as taking
one argument of the new data type, or as taking two arguments of which the second is typeoid . The
second argument is again the array element type OID for array types or the type OID for composite
types. The send function must return typebytea .

You should at this point be wondering how the input and output functions can be declared to have
results or arguments of the new type, when they have to be created before the new type can be created.
The answer is that the input function must be created first, then the output function (and the binary
I/O functions if wanted), and finally the data type. PostgreSQL will first see the name of the new data
type as the return type of the input function. It will create a “shell” type, which is simply a placeholder
entry in the system catalog, and link the input function definition to the shell type. Similarly the other
functions will be linked to the (now already existing) shell type. Finally,CREATE TYPEreplaces the
shell entry with a complete type definition, and the new type can be used.

The optionalanalyze_function performs type-specific statistics collection for columns of the
data type. By default,ANALYZEwill attempt to gather statistics using the type’s “equals” and “less-
than” operators, if there is a default b-tree operator class for the type. For non-scalar types this behav-
ior is likely to be unsuitable, so it can be overridden by specifying a custom analysis function. The
analysis function must be declared to take a single argument of typeinternal , and return aboolean

result. The detailed API for analysis functions appears insrc/include/commands/vacuum.h .

While the details of the new type’s internal representation are only known to the I/O functions and
other functions you create to work with the type, there are several properties of the internal representa-
tion that must be declared to PostgreSQL. Foremost of these isinternallength . Base data types
can be fixed-length, in which caseinternallength is a positive integer, or variable length, indi-
cated by settinginternallength to VARIABLE. (Internally, this is represented by settingtyplen

to -1.) The internal representation of all variable-length types must start with a 4-byte integer giving
the total length of this value of the type.

The optional flagPASSEDBYVALUEindicates that values of this data type are passed by value, rather
than by reference. You may not pass by value types whose internal representation is larger than the
size of theDatum type (4 bytes on most machines, 8 bytes on a few).

745

CREATE TYPE

Thealignment parameter specifies the storage alignment required for the data type. The allowed
values equate to alignment on 1, 2, 4, or 8 byte boundaries. Note that variable-length types must have
an alignment of at least 4, since they necessarily contain anint4 as their first component.

Thestorage parameter allows selection of storage strategies for variable-length data types. (Only
plain is allowed for fixed-length types.)plain specifies that data of the type will always be stored
in-line and not compressed.extended specifies that the system will first try to compress a long data
value, and will move the value out of the main table row if it’s still too long.external allows the
value to be moved out of the main table, but the system will not try to compress it.main allows
compression, but discourages moving the value out of the main table. (Data items with this storage
strategy may still be moved out of the main table if there is no other way to make a row fit, but they
will be kept in the main table preferentially overextended andexternal items.)

A default value may be specified, in case a user wants columns of the data type to default to something
other than the null value. Specify the default with theDEFAULTkey word. (Such a default may be
overridden by an explicitDEFAULTclause attached to a particular column.)

To indicate that a type is an array, specify the type of the array elements using theELEMENTkey word.
For example, to define an array of 4-byte integers (int4), specifyELEMENT = int4 . More details
about array types appear below.

To indicate the delimiter to be used between values in the external representation of arrays of this
type,delimiter can be set to a specific character. The default delimiter is the comma (,). Note
that the delimiter is associated with the array element type, not the array type itself.

Array Types

Whenever a user-defined base data type is created, PostgreSQL automatically creates an associated
array type, whose name consists of the base type’s name prepended with an underscore. The parser
understands this naming convention, and translates requests for columns of typefoo[] into requests
for type _foo . The implicitly-created array type is variable length and uses the built-in input and
output functionsarray_in andarray_out .

You might reasonably ask why there is anELEMENToption, if the system makes the correct array type
automatically. The only case where it’s useful to useELEMENTis when you are making a fixed-length
type that happens to be internally an array of a number of identical things, and you want to allow these
things to be accessed directly by subscripting, in addition to whatever operations you plan to provide
for the type as a whole. For example, typename allows its constituentchar elements to be accessed
this way. A 2-Dpoint type could allow its two component numbers to be accessed likepoint[0]

andpoint[1] . Note that this facility only works for fixed-length types whose internal form is ex-
actly a sequence of identical fixed-length fields. A subscriptable variable-length type must have the
generalized internal representation used byarray_in andarray_out . For historical reasons (i.e.,
this is clearly wrong but it’s far too late to change it), subscripting of fixed-length array types starts
from zero, rather than from one as for variable-length arrays.

Parameters

name

The name (optionally schema-qualified) of a type to be created.

attribute_name

The name of an attribute (column) for the composite type.

746

CREATE TYPE

data_type

The name of an existing data type to become a column of the composite type.

input_function

The name of a function that converts data from the type’s external textual form to its internal
form.

output_function

The name of a function that converts data from the type’s internal form to its external textual
form.

receive_function

The name of a function that converts data from the type’s external binary form to its internal
form.

send_function

The name of a function that converts data from the type’s internal form to its external binary
form.

analyze_function

The name of a function that performs statistical analysis for the data type.

internallength

A numeric constant that specifies the length in bytes of the new type’s internal representation.
The default assumption is that it is variable-length.

alignment

The storage alignment requirement of the data type. If specified, it must bechar , int2 , int4 ,
or double ; the default isint4 .

storage

The storage strategy for the data type. If specified, must beplain , external , extended , or
main ; the default isplain .

default

The default value for the data type. If this is omitted, the default is null.

element

The type being created is an array; this specifies the type of the array elements.

delimiter

The delimiter character to be used between values in arrays made of this type.

Notes

User-defined type names cannot begin with the underscore character (_) and can only be 62 characters
long (or in generalNAMEDATALEN- 2, rather than theNAMEDATALEN- 1 characters allowed for other
names). Type names beginning with underscore are reserved for internally-created array type names.

In PostgreSQL versions before 7.3, it was customary to avoid creating a shell type by replacing
the functions’ forward references to the type name with the placeholder pseudotypeopaque . The
cstring arguments and results also had to be declared asopaque before 7.3. To support loading of

747

CREATE TYPE

old dump files,CREATE TYPEwill accept functions declared usingopaque , but it will issue a notice
and change the function’s declaration to use the correct types.

Examples

This example creates a composite type and uses it in a function definition:

CREATE TYPE compfoo AS (f1 int, f2 text);

CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS $$
SELECT fooid, fooname FROM foo

$$ LANGUAGE SQL;

This example creates the base data typebox and then uses the type in a table definition:

CREATE TYPE box (
INTERNALLENGTH = 16,
INPUT = my_box_in_function,
OUTPUT = my_box_out_function

);

CREATE TABLE myboxes (
id integer,
description box

);

If the internal structure ofbox were an array of fourfloat4 elements, we might instead use

CREATE TYPE box (
INTERNALLENGTH = 16,
INPUT = my_box_in_function,
OUTPUT = my_box_out_function,
ELEMENT = float4

);

which would allow a box value’s component numbers to be accessed by subscripting. Otherwise the
type behaves the same as before.

This example creates a large object type and uses it in a table definition:

CREATE TYPE bigobj (
INPUT = lo_filein, OUTPUT = lo_fileout,
INTERNALLENGTH = VARIABLE

);
CREATE TABLE big_objs (

id integer,
obj bigobj

);

More examples, including suitable input and output functions, are inSection 31.11.

748

CREATE TYPE

Compatibility

This CREATE TYPEcommand is a PostgreSQL extension. There is aCREATE TYPEstatement in
SQL:1999 and later that is rather different in detail.

See Also

CREATE FUNCTION, DROP TYPE, ALTER TYPE

749

CREATE USER

Name
CREATE USER— define a new database user account

Synopsis

CREATE USERname [[WITH] option [...]]

where option can be:

SYSID uid
| CREATEDB | NOCREATEDB
| CREATEUSER | NOCREATEUSER
| IN GROUP groupname [, ...]
| [ENCRYPTED | UNENCRYPTED] PASSWORD ’password ’
| VALID UNTIL ’ abstime ’

Description

CREATE USERadds a new user to a PostgreSQL database cluster. Refer toChapter 17andChapter
19 for information about managing users and authentication. You must be a database superuser to use
this command.

Parameters

name

The name of the new user.

uid

TheSYSID clause can be used to choose the PostgreSQL user ID of the new user. This is nor-
mally not necessary, but may be useful if you need to recreate the owner of an orphaned object.

If this is not specified, the highest assigned user ID plus one (with a minimum of 100) will be
used as default.

CREATEDB

NOCREATEDB

These clauses define a user’s ability to create databases. IfCREATEDBis specified, the user being
defined will be allowed to create his own databases. UsingNOCREATEDBwill deny a user the
ability to create databases. If not specified,NOCREATEDBis the default.

CREATEUSER

NOCREATEUSER

These clauses determine whether a user will be permitted to create new users himself.
CREATEUSERwill also make the user a superuser, who can override all access restrictions. If not
specified,NOCREATEUSERis the default.

750

CREATE USER

groupname

A name of an existing group into which to insert the user as a new member. Multiple group
names may be listed.

password

Sets the user’s password. If you do not plan to use password authentication you can omit this
option, but then the user won’t be able to connect if you decide to switch to password authenti-
cation. The password can be set or changed later, usingALTER USER.

ENCRYPTED

UNENCRYPTED

These key words control whether the password is stored encrypted in the system catalogs. (If
neither is specified, the default behavior is determined by the configuration parameterpass-
word_encryption.) If the presented password string is already in MD5-encrypted format, then
it is stored encrypted as-is, regardless of whetherENCRYPTEDor UNENCRYPTEDis specified
(since the system cannot decrypt the specified encrypted password string). This allows reloading
of encrypted passwords during dump/restore.

Note that older clients may lack support for the MD5 authentication mechanism that is needed
to work with passwords that are stored encrypted.

abstime

The VALID UNTIL clause sets an absolute time after which the user’s password is no longer
valid. If this clause is omitted the password will be valid for all time.

Notes

UseALTER USERto change the attributes of a user, andDROP USERto remove a user. UseALTER
GROUPto add the user to groups or remove the user from groups.

PostgreSQL includes a programcreateuserthat has the same functionality asCREATE USER(in fact,
it calls this command) but can be run from the command shell.

The VALID UNTIL clause defines an expiration time for a password only, not for the user account
per se. In particular, the expiration time is not enforced when logging in using a non-password-based
authentication method.

Examples

Create a user with no password:

CREATE USER jonathan;

Create a user with a password:

CREATE USER davide WITH PASSWORD ’jw8s0F4’;

Create a user with a password that is valid until the end of 2004. After one second has ticked in 2005,
the password is no longer valid.

751

CREATE USER

CREATE USER miriam WITH PASSWORD ’jw8s0F4’ VALID UNTIL ’2005-01-01’;

Create an account where the user can create databases:

CREATE USER manuel WITH PASSWORD ’jw8s0F4’ CREATEDB;

Compatibility

TheCREATE USERstatement is a PostgreSQL extension. The SQL standard leaves the definition of
users to the implementation.

See Also

ALTER USER, DROP USER, createuser

752

CREATE VIEW

Name
CREATE VIEW— define a new view

Synopsis

CREATE [OR REPLACE] VIEWname [(column_name [, ...])] AS query

Description

CREATE VIEWdefines a view of a query. The view is not physically materialized. Instead, the query
is run every time the view is referenced in a query.

CREATE OR REPLACE VIEWis similar, but if a view of the same name already exists, it is replaced.
You can only replace a view with a new query that generates the identical set of columns (i.e., same
column names and data types).

If a schema name is given (for example,CREATE VIEW myschema.myview ...) then the view is
created in the specified schema. Otherwise it is created in the current schema. The view name must
be distinct from the name of any other view, table, sequence, or index in the same schema.

Parameters

name

The name (optionally schema-qualified) of a view to be created.

column_name

An optional list of names to be used for columns of the view. If not given, the column names are
deduced from the query.

query

A query (that is, aSELECTstatement) which will provide the columns and rows of the view.

Refer toSELECTfor more information about valid queries.

Notes

Currently, views are read only: the system will not allow an insert, update, or delete on a view. You
can get the effect of an updatable view by creating rules that rewrite inserts, etc. on the view into
appropriate actions on other tables. For more information seeCREATE RULE.

Use theDROP VIEWstatement to drop views.

Be careful that the names and types of the view’s columns will be assigned the way you want. For
example,

CREATE VIEW vista AS SELECT ’Hello World’;

753

CREATE VIEW

is bad form in two ways: the column name defaults to?column? , and the column data type defaults
to unknown . If you want a string literal in a view’s result, use something like

CREATE VIEW vista AS SELECT text ’Hello World’ AS hello;

Access to tables referenced in the view is determined by permissions of the view owner. However,
functions called in the view are treated the same as if they had been called directly from the query
using the view. Therefore the user of a view must have permissions to call all functions used by the
view.

Examples

Create a view consisting of all comedy films:

CREATE VIEW comedies AS
SELECT *
FROM films
WHERE kind = ’Comedy’;

Compatibility

The SQL standard specifies some additional capabilities for theCREATE VIEWstatement:

CREATE VIEWname [(column [, ...])]
AS query
[WITH [CASCADE | LOCAL] CHECK OPTION]

The optional clauses for the full SQL command are:

CHECK OPTION

This option has to do with updatable views. AllINSERT andUPDATEcommands on the view
will be checked to ensure data satisfy the view-defining condition (that is, the new data would be
visible through the view). If they do not, the update will be rejected.

LOCAL

Check for integrity on this view.

CASCADE

Check for integrity on this view and on any dependent view.CASCADEis assumed if neither
CASCADEnor LOCALis specified.

CREATE OR REPLACE VIEWis a PostgreSQL language extension.

754

CREATE VIEW

See Also

DROP VIEW

755

DEALLOCATE

Name
DEALLOCATE— deallocate a prepared statement

Synopsis

DEALLOCATE [PREPARE]plan_name

Description

DEALLOCATEis used to deallocate a previously prepared SQL statement. If you do not explicitly
deallocate a prepared statement, it is deallocated when the session ends.

For more information on prepared statements, seePREPARE.

Parameters

PREPARE

This key word is ignored.

plan_name

The name of the prepared statement to deallocate.

Compatibility

The SQL standard includes aDEALLOCATEstatement, but it is only for use in embedded SQL.

See Also

EXECUTE, PREPARE

756

DECLARE

Name
DECLARE— define a cursor

Synopsis

DECLAREname [BINARY] [INSENSITIVE] [[NO] SCROLL]
CURSOR [{ WITH | WITHOUT } HOLD] FORquery
[FOR { READ ONLY | UPDATE [OF column [, ...]] }]

Description

DECLAREallows a user to create cursors, which can be used to retrieve a small number of rows at a
time out of a larger query. Cursors can return data either in text or in binary format usingFETCH.

Normal cursors return data in text format, the same as aSELECTwould produce. Since data is stored
natively in binary format, the system must do a conversion to produce the text format. Once the
information comes back in text form, the client application may need to convert it to a binary format to
manipulate it. In addition, data in the text format is often larger in size than in the binary format. Binary
cursors return the data in a binary representation that may be more easily manipulated. Nevertheless,
if you intend to display the data as text anyway, retrieving it in text form will save you some effort on
the client side.

As an example, if a query returns a value of one from an integer column, you would get a string of1

with a default cursor whereas with a binary cursor you would get a 4-byte field containing the internal
representation of the value (in big-endian byte order).

Binary cursors should be used carefully. Many applications, including psql, are not prepared to handle
binary cursors and expect data to come back in the text format.

Note: When the client application uses the “extended query” protocol to issue a FETCHcommand,
the Bind protocol message specifies whether data is to be retrieved in text or binary format. This
choice overrides the way that the cursor is defined. The concept of a binary cursor as such is
thus obsolete when using extended query protocol — any cursor can be treated as either text or
binary.

Parameters

name

The name of the cursor to be created.

BINARY

Causes the cursor to return data in binary rather than in text format.

757

DECLARE

INSENSITIVE

Indicates that data retrieved from the cursor should be unaffected by updates to the tables under-
lying the cursor while the cursor exists. In PostgreSQL, all cursors are insensitive; this key word
currently has no effect and is present for compatibility with the SQL standard.

SCROLL

NO SCROLL

SCROLLspecifies that the cursor may be used to retrieve rows in a nonsequential fashion (e.g.,
backward). Depending upon the complexity of the query’s execution plan, specifyingSCROLL

may impose a performance penalty on the query’s execution time.NO SCROLLspecifies that the
cursor cannot be used to retrieve rows in a nonsequential fashion.

WITH HOLD

WITHOUT HOLD

WITH HOLDspecifies that the cursor may continue to be used after the transaction that created
it successfully commits.WITHOUT HOLDspecifies that the cursor cannot be used outside of the
transaction that created it. If neitherWITHOUT HOLDnor WITH HOLDis specified,WITHOUT

HOLDis the default.

query

A SELECTcommand that will provide the rows to be returned by the cursor. Refer toSELECT
for further information about valid queries.

FOR READ ONLY

FOR UPDATE

FOR READ ONLYindicates that the cursor will be used in a read-only mode.FOR UPDATEin-
dicates that the cursor will be used to update tables. Since cursor updates are not currently sup-
ported in PostgreSQL, specifyingFOR UPDATEwill cause an error message and specifyingFOR

READ ONLYhas no effect.

column

Column(s) to be updated by the cursor. Since cursor updates are not currently supported in Post-
greSQL, theFOR UPDATEclause provokes an error message.

The key wordsBINARY, INSENSITIVE , andSCROLLmay appear in any order.

Notes

UnlessWITH HOLDis specified, the cursor created by this command can only be used within the
current transaction. Thus,DECLAREwithout WITH HOLDis useless outside a transaction block: the
cursor would survive only to the completion of the statement. Therefore PostgreSQL reports an error
if this command is used outside a transaction block. UseBEGIN, COMMIT andROLLBACKto define
a transaction block.

If WITH HOLDis specified and the transaction that created the cursor successfully commits, the cur-
sor can continue to be accessed by subsequent transactions in the same session. (But if the creating
transaction is aborted, the cursor is removed.) A cursor created withWITH HOLDis closed when an
explicit CLOSEcommand is issued on it, or the session ends. In the current implementation, the rows
represented by a held cursor are copied into a temporary file or memory area so that they remain
available for subsequent transactions.

758

DECLARE

TheSCROLLoption should be specified when defining a cursor that will be used to fetch backwards.
This is required by the SQL standard. However, for compatibility with earlier versions, PostgreSQL
will allow backward fetches withoutSCROLL, if the cursor’s query plan is simple enough that no extra
overhead is needed to support it. However, application developers are advised not to rely on using
backward fetches from a cursor that has not been created withSCROLL. If NO SCROLLis specified,
then backward fetches are disallowed in any case.

The SQL standard only makes provisions for cursors in embedded SQL. The PostgreSQL server does
not implement anOPENstatement for cursors; a cursor is considered to be open when it is declared.
However, ECPG, the embedded SQL preprocessor for PostgreSQL, supports the standard SQL cursor
conventions, including those involvingDECLAREandOPENstatements.

Examples

To declare a cursor:

DECLARE liahona CURSOR FOR SELECT * FROM films;

SeeFETCH for more examples of cursor usage.

Compatibility

The SQL standard allows cursors only in embedded SQL and in modules. PostgreSQL permits cursors
to be used interactively.

The SQL standard allows cursors to update table data. All PostgreSQL cursors are read only.

Binary cursors are a PostgreSQL extension.

See Also

CLOSE, FETCH, MOVE

759

DELETE

Name
DELETE— delete rows of a table

Synopsis

DELETE FROM [ONLY] table [WHERE condition]

Description

DELETEdeletes rows that satisfy theWHEREclause from the specified table. If theWHEREclause is
absent, the effect is to delete all rows in the table. The result is a valid, but empty table.

Tip: TRUNCATE is a PostgreSQL extension that provides a faster mechanism to remove all rows
from a table.

By default,DELETEwill delete rows in the specified table and all its subtables. If you wish to delete
only from the specific table mentioned, you must use theONLYclause.

You must have theDELETEprivilege on the table to delete from it, as well as theSELECTprivilege for
any table whose values are read in thecondition .

Parameters

table

The name (optionally schema-qualified) of an existing table.

condition

A value expression that returns a value of typeboolean that determines the rows which are to
be deleted.

Outputs

On successful completion, aDELETEcommand returns a command tag of the form

DELETE count

Thecount is the number of rows deleted. Ifcount is 0, no rows matched thecondition (this is
not considered an error).

760

DELETE

Notes

PostgreSQL lets you reference columns of other tables in theWHEREcondition. For example, to delete
all films produced by a given producer, one might do

DELETE FROM films
WHERE producer_id = producers.id AND producers.name = ’foo’;

What is essentially happening here is a join betweenfilms andproducers , with all successfully
joined films rows being marked for deletion. This syntax is not standard. A more standard way to
do it is

DELETE FROM films
WHERE producer_id IN (SELECT id FROM producers WHERE name = ’foo’);

In some cases the join style is easier to write or faster to execute than the sub-select style. One
objection to the join style is that there is no explicit list of what tables are being used, which makes
the style somewhat error-prone; also it cannot handle self-joins.

Examples

Delete all films but musicals:

DELETE FROM films WHERE kind <> ’Musical’;

Clear the tablefilms :

DELETE FROM films;

Compatibility

This command conforms to the SQL standard, except that the ability to reference other tables in the
WHEREclause is a PostgreSQL extension.

761

DROP AGGREGATE

Name
DROP AGGREGATE— remove an aggregate function

Synopsis

DROP AGGREGATEname (type) [CASCADE | RESTRICT]

Description

DROP AGGREGATEwill delete an existing aggregate function. To execute this command the current
user must be the owner of the aggregate function.

Parameters

name

The name (optionally schema-qualified) of an existing aggregate function.

type

The argument data type of the aggregate function, or* if the function accepts any data type.

CASCADE

Automatically drop objects that depend on the aggregate function.

RESTRICT

Refuse to drop the aggregate function if any objects depend on it. This is the default.

Examples

To remove the aggregate functionmyavg for type integer :

DROP AGGREGATE myavg(integer);

Compatibility

There is noDROP AGGREGATEstatement in the SQL standard.

See Also

ALTER AGGREGATE, CREATE AGGREGATE

762

DROP CAST

Name
DROP CAST— remove a cast

Synopsis

DROP CAST (sourcetype AS targettype) [CASCADE | RESTRICT]

Description

DROP CASTremoves a previously defined cast.

To be able to drop a cast, you must own the source or the target data type. These are the same privileges
that are required to create a cast.

Parameters

sourcetype

The name of the source data type of the cast.

targettype

The name of the target data type of the cast.

CASCADE

RESTRICT

These key words do not have any effect, since there are no dependencies on casts.

Examples

To drop the cast from typetext to typeint :

DROP CAST (text AS int);

Compatibility

TheDROP CASTcommand conforms to the SQL standard.

See Also

CREATE CAST

763

DROP CONVERSION

Name
DROP CONVERSION— remove a conversion

Synopsis

DROP CONVERSIONname [CASCADE | RESTRICT]

Description

DROP CONVERSIONremoves a previously defined conversion. To be able to drop a conversion, you
must own the conversion.

Parameters

name

The name of the conversion. The conversion name may be schema-qualified.

CASCADE

RESTRICT

These key words do not have any effect, since there are no dependencies on conversions.

Examples

To drop the conversion namedmyname:

DROP CONVERSION myname;

Compatibility

There is noDROP CONVERSIONstatement in the SQL standard.

See Also

ALTER CONVERSION, CREATE CONVERSION

764

DROP DATABASE

Name
DROP DATABASE— remove a database

Synopsis

DROP DATABASEname

Description

DROP DATABASEdrops a database. It removes the catalog entries for the database and deletes the di-
rectory containing the data. It can only be executed by the database owner. Also, it cannot be executed
while you or anyone else are connected to the target database. (Connect totemplate1 or any other
database to issue this command.)

DROP DATABASEcannot be undone. Use it with care!

Parameters

name

The name of the database to remove.

Notes

DROP DATABASEcannot be executed inside a transaction block.

This command cannot be executed while connected to the target database. Thus, it might be more
convenient to use the programdropdbinstead, which is a wrapper around this command.

Compatibility

The is noDROP DATABASEstatement in the SQL standard.

See Also

CREATE DATABASE

765

DROP DOMAIN

Name
DROP DOMAIN— remove a domain

Synopsis

DROP DOMAINname [, ...] [CASCADE | RESTRICT]

Description

DROP DOMAINwill remove a domain. Only the owner of a domain can remove it.

Parameters

name

The name (optionally schema-qualified) of an existing domain.

CASCADE

Automatically drop objects that depend on the domain (such as table columns).

RESTRICT

Refuse to drop the domain if any objects depend on it. This is the default.

Examples

To remove the domainbox :

DROP DOMAIN box;

Compatibility

This command conforms to the SQL standard.

See Also

CREATE DOMAIN

766

DROP FUNCTION

Name
DROP FUNCTION— remove a function

Synopsis

DROP FUNCTIONname ([type [, ...]]) [CASCADE | RESTRICT]

Description

DROP FUNCTIONremoves the definition of an existing function. To execute this command the user
must be the owner of the function. The argument types to the function must be specified, since several
different functions may exist with the same name and different argument lists.

Parameters

name

The name (optionally schema-qualified) of an existing function.

type

The data type of an argument of the function.

CASCADE

Automatically drop objects that depend on the function (such as operators or triggers).

RESTRICT

Refuse to drop the function if any objects depend on it. This is the default.

Examples

This command removes the square root function:

DROP FUNCTION sqrt(integer);

Compatibility

A DROP FUNCTIONstatement is defined in the SQL standard, but it is not compatible with this com-
mand.

See Also

CREATE FUNCTION, ALTER FUNCTION

767

DROP GROUP

Name
DROP GROUP— remove a user group

Synopsis

DROP GROUPname

Description

DROP GROUPremoves the specified group. The users in the group are not removed.

Parameters

name

The name of an existing group.

Notes

It is unwise to drop a group that has any granted permissions on objects. Currently, this is not enforced,
but it is likely that future versions of PostgreSQL will check for the error.

Examples

To drop a group:

DROP GROUP staff;

Compatibility

There is noDROP GROUPstatement in the SQL standard.

See Also

ALTER GROUP, CREATE GROUP

768

DROP INDEX

Name
DROP INDEX— remove an index

Synopsis

DROP INDEXname [, ...] [CASCADE | RESTRICT]

Description

DROP INDEXdrops an existing index from the database system. To execute this command you must
be the owner of the index.

Parameters

name

The name (optionally schema-qualified) of an index to remove.

CASCADE

Automatically drop objects that depend on the index.

RESTRICT

Refuse to drop the index if any objects depend on it. This is the default.

Examples

This command will remove the indextitle_idx :

DROP INDEX title_idx;

Compatibility

DROP INDEXis a PostgreSQL language extension. There are no provisions for indexes in the SQL
standard.

See Also

CREATE INDEX

769

DROP LANGUAGE

Name
DROP LANGUAGE— remove a procedural language

Synopsis

DROP [PROCEDURAL] LANGUAGEname [CASCADE | RESTRICT]

Description

DROP LANGUAGEwill remove the definition of the previously registered procedural language called
name.

Parameters

name

The name of an existing procedural language. For backward compatibility, the name may be
enclosed by single quotes.

CASCADE

Automatically drop objects that depend on the language (such as functions in the language).

RESTRICT

Refuse to drop the language if any objects depend on it. This is the default.

Examples

This command removes the procedural languageplsample :

DROP LANGUAGE plsample;

Compatibility

There is noDROP LANGUAGEstatement in the SQL standard.

See Also

ALTER LANGUAGE, CREATE LANGUAGE, droplang

770

DROP OPERATOR

Name
DROP OPERATOR— remove an operator

Synopsis

DROP OPERATORname ({ lefttype | NONE } , { righttype | NONE }) [CASCADE | RESTRICT]

Description

DROP OPERATORdrops an existing operator from the database system. To execute this command you
must be the owner of the operator.

Parameters

name

The name (optionally schema-qualified) of an existing operator.

lefttype

The data type of the operator’s left operand; writeNONEif the operator has no left operand.

righttype

The data type of the operator’s right operand; writeNONEif the operator has no right operand.

CASCADE

Automatically drop objects that depend on the operator.

RESTRICT

Refuse to drop the operator if any objects depend on it. This is the default.

Examples

Remove the power operatora^b for type integer :

DROP OPERATOR ^ (integer, integer);

Remove the left unary bitwise complement operator~b for typebit :

DROP OPERATOR ~ (none, bit);

Remove the right unary factorial operatorx! for typebigint :

DROP OPERATOR ! (bigint, none);

771

DROP OPERATOR

Compatibility

There is noDROP OPERATORstatement in the SQL standard.

See Also

CREATE OPERATOR, ALTER OPERATOR

772

DROP OPERATOR CLASS

Name
DROP OPERATOR CLASS— remove an operator class

Synopsis

DROP OPERATOR CLASSname USING index_method [CASCADE | RESTRICT]

Description

DROP OPERATOR CLASSdrops an existing operator class. To execute this command you must be the
owner of the operator class.

Parameters

name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index access method the operator class is for.

CASCADE

Automatically drop objects that depend on the operator class.

RESTRICT

Refuse to drop the operator class if any objects depend on it. This is the default.

Examples

Remove the B-tree operator classwidget_ops :

DROP OPERATOR CLASS widget_ops USING btree;

This command will not succeed if there are any existing indexes that use the operator class. Add
CASCADEto drop such indexes along with the operator class.

Compatibility

There is noDROP OPERATOR CLASSstatement in the SQL standard.

See Also

ALTER OPERATOR CLASS, CREATE OPERATOR CLASS

773

DROP RULE

Name
DROP RULE— remove a rewrite rule

Synopsis

DROP RULEname ON relation [CASCADE | RESTRICT]

Description

DROP RULEdrops a rewrite rule.

Parameters

name

The name of the rule to drop.

relation

The name (optionally schema-qualified) of the table or view that the rule applies to.

CASCADE

Automatically drop objects that depend on the rule.

RESTRICT

Refuse to drop the rule if any objects depend on it. This is the default.

Examples

To drop the rewrite rulenewrule :

DROP RULE newrule ON mytable;

Compatibility

There is noDROP RULEstatement in the SQL standard.

See Also

CREATE RULE

774

DROP SCHEMA

Name
DROP SCHEMA— remove a schema

Synopsis

DROP SCHEMAname [, ...] [CASCADE | RESTRICT]

Description

DROP SCHEMAremoves schemas from the database.

A schema can only be dropped by its owner or a superuser. Note that the owner can drop the schema
(and thereby all contained objects) even if he does not own some of the objects within the schema.

Parameters

name

The name of a schema.

CASCADE

Automatically drop objects (tables, functions, etc.) that are contained in the schema.

RESTRICT

Refuse to drop the schema if it contains any objects. This is the default.

Examples

To remove schemamystuff from the database, along with everything it contains:

DROP SCHEMA mystuff CASCADE;

Compatibility

DROP SCHEMAis fully conforming with the SQL standard, except that the standard only allows one
schema to be dropped per command.

See Also

ALTER SCHEMA, CREATE SCHEMA

775

DROP SEQUENCE

Name
DROP SEQUENCE— remove a sequence

Synopsis

DROP SEQUENCEname [, ...] [CASCADE | RESTRICT]

Description

DROP SEQUENCEremoves sequence number generators.

Parameters

name

The name (optionally schema-qualified) of a sequence.

CASCADE

Automatically drop objects that depend on the sequence.

RESTRICT

Refuse to drop the sequence if any objects depend on it. This is the default.

Examples

To remove the sequenceserial :

DROP SEQUENCE serial;

Compatibility

DROP SEQUENCEconforms with SQL:2003, except that the standard only allows one sequence to be
dropped per command.

See Also

CREATE SEQUENCE

776

DROP TABLE

Name
DROP TABLE— remove a table

Synopsis

DROP TABLEname [, ...] [CASCADE | RESTRICT]

Description

DROP TABLEremoves tables from the database. Only its owner may destroy a table. To empty a table
of rows, without destroying the table, useDELETE.

DROP TABLEalways removes any indexes, rules, triggers, and constraints that exist for the target
table. However, to drop a table that is referenced by a view or a foreign-key constraint of another table,
CASCADEmust be specified. (CASCADEwill remove a dependent view entirely, but in the foreign-key
case it will only remove the foreign-key constraint, not the other table entirely.)

Parameters

name

The name (optionally schema-qualified) of the table to drop.

CASCADE

Automatically drop objects that depend on the table (such as views).

RESTRICT

Refuse to drop the table if any objects depend on it. This is the default.

Examples

To destroy two tables,films anddistributors :

DROP TABLE films, distributors;

Compatibility

This command conforms to the SQL standard, except that the standard only allows one table to be
dropped per command.

777

DROP TABLE

See Also

ALTER TABLE, CREATE TABLE

778

DROP TABLESPACE

Name
DROP TABLESPACE— remove a tablespace

Synopsis

DROP TABLESPACEtablespacename

Description

DROP TABLESPACEremoves a tablespace from the system.

A tablespace can only be dropped by its owner or a superuser. The tablespace must be empty of all
database objects before it can be dropped. It is possible that objects in other databases may still reside
in the tablespace even if no objects in the current database are using the tablespace.

Parameters

tablespacename

The name of a tablespace.

Examples

To remove tablespacemystuff from the system:

DROP TABLESPACE mystuff;

Compatibility

DROP TABLESPACEis a PostgreSQL extension.

See Also

CREATE TABLESPACE, ALTER TABLESPACE

779

DROP TRIGGER

Name
DROP TRIGGER— remove a trigger

Synopsis

DROP TRIGGERname ON table [CASCADE | RESTRICT]

Description

DROP TRIGGERwill remove an existing trigger definition. To execute this command, the current user
must be the owner of the table for which the trigger is defined.

Parameters

name

The name of the trigger to remove.

table

The name (optionally schema-qualified) of the table for which the trigger is defined.

CASCADE

Automatically drop objects that depend on the trigger.

RESTRICT

Refuse to drop the trigger if any objects depend on it. This is the default.

Examples

Destroy the triggerif_dist_exists on the tablefilms :

DROP TRIGGER if_dist_exists ON films;

Compatibility

The DROP TRIGGERstatement in PostgreSQL is incompatible with the SQL standard. In the SQL
standard, trigger names are not local to tables, so the command is simplyDROP TRIGGERname.

See Also

CREATE TRIGGER

780

DROP TYPE

Name
DROP TYPE— remove a data type

Synopsis

DROP TYPEname [, ...] [CASCADE | RESTRICT]

Description

DROP TYPEwill remove a user-defined data type. Only the owner of a type can remove it.

Parameters

name

The name (optionally schema-qualified) of the data type to remove.

CASCADE

Automatically drop objects that depend on the type (such as table columns, functions, operators).

RESTRICT

Refuse to drop the type if any objects depend on it. This is the default.

Examples

To remove the data typebox :

DROP TYPE box;

Compatibility

This command is similar to the corresponding command in the SQL standard, but note that the
CREATE TYPEcommand and the data type extension mechanisms in PostgreSQL differ from the
SQL standard.

See Also

CREATE TYPE, ALTER TYPE

781

DROP USER

Name
DROP USER— remove a database user account

Synopsis

DROP USERname

Description

DROP USERremoves the specified user. It does not remove tables, views, or other objects owned by
the user. If the user owns any database, an error is raised.

Parameters

name

The name of the user to remove.

Notes

PostgreSQL includes a programdropuserthat has the same functionality as this command (in fact, it
calls this command) but can be run from the command shell.

To drop a user who owns a database, first drop the database or change its ownership.

It is unwise to drop a user who either owns any database objects or has any granted permissions on
objects. Currently, this is only enforced for the case of owners of databases, but it is likely that future
versions of PostgreSQL will check other cases.

Examples

To drop a user account:

DROP USER jonathan;

Compatibility

The DROP USERstatement is a PostgreSQL extension. The SQL standard leaves the definition of
users to the implementation.

782

DROP USER

See Also

ALTER USER, CREATE USER

783

DROP VIEW

Name
DROP VIEW— remove a view

Synopsis

DROP VIEWname [, ...] [CASCADE | RESTRICT]

Description

DROP VIEWdrops an existing view. To execute this command you must be the owner of the view.

Parameters

name

The name (optionally schema-qualified) of the view to remove.

CASCADE

Automatically drop objects that depend on the view (such as other views).

RESTRICT

Refuse to drop the view if any objects depend on it. This is the default.

Examples

This command will remove the view calledkinds :

DROP VIEW kinds;

Compatibility

This command conforms to the SQL standard, except that the standard only allows one view to be
dropped per command.

See Also

CREATE VIEW

784

END

Name
END— commit the current transaction

Synopsis

END [WORK | TRANSACTION]

Description

ENDcommits the current transaction. All changes made by the transaction become visible to others
and are guaranteed to be durable if a crash occurs. This command is a PostgreSQL extension that is
equivalent toCOMMIT.

Parameters

WORK

TRANSACTION

Optional key words. They have no effect.

Notes

UseROLLBACKto abort a transaction.

IssuingENDwhen not inside a transaction does no harm, but it will provoke a warning message.

Examples

To commit the current transaction and make all changes permanent:

END;

Compatibility

ENDis a PostgreSQL extension that provides functionality equivalent toCOMMIT, which is specified
in the SQL standard.

See Also

BEGIN, COMMIT, ROLLBACK

785

EXECUTE

Name
EXECUTE— execute a prepared statement

Synopsis

EXECUTEplan_name [(parameter [, ...])]

Description

EXECUTEis used to execute a previously prepared statement. Since prepared statements only exist
for the duration of a session, the prepared statement must have been created by aPREPAREstatement
executed earlier in the current session.

If the PREPAREstatement that created the statement specified some parameters, a compatible set of
parameters must be passed to theEXECUTEstatement, or else an error is raised. Note that (unlike
functions) prepared statements are not overloaded based on the type or number of their parameters;
the name of a prepared statement must be unique within a database session.

For more information on the creation and usage of prepared statements, seePREPARE.

Parameters

plan_name

The name of the prepared statement to execute.

parameter

The actual value of a parameter to the prepared statement. This must be an expression yielding a
value of a type compatible with the data type specified for this parameter position in thePREPARE

command that created the prepared statement.

Outputs

The command tag returned byEXECUTEis that of the prepared statement, and notEXECUTE.

Examples

Examples are given in theExamplessection of thePREPAREdocumentation.

Compatibility

The SQL standard includes anEXECUTEstatement, but it is only for use in embedded SQL. This
version of theEXECUTEstatement also uses a somewhat different syntax.

786

EXECUTE

See Also

DEALLOCATE, PREPARE

787

EXPLAIN

Name
EXPLAIN — show the execution plan of a statement

Synopsis

EXPLAIN [ANALYZE] [VERBOSE] statement

Description

This command displays the execution plan that the PostgreSQL planner generates for the supplied
statement. The execution plan shows how the table(s) referenced by the statement will be scanned —
by plain sequential scan, index scan, etc. — and if multiple tables are referenced, what join algorithms
will be used to bring together the required rows from each input table.

The most critical part of the display is the estimated statement execution cost, which is the planner’s
guess at how long it will take to run the statement (measured in units of disk page fetches). Actually
two numbers are shown: the start-up time before the first row can be returned, and the total time to
return all the rows. For most queries the total time is what matters, but in contexts such as a subquery
in EXISTS, the planner will choose the smallest start-up time instead of the smallest total time (since
the executor will stop after getting one row, anyway). Also, if you limit the number of rows to return
with a LIMIT clause, the planner makes an appropriate interpolation between the endpoint costs to
estimate which plan is really the cheapest.

TheANALYZEoption causes the statement to be actually executed, not only planned. The total elapsed
time expended within each plan node (in milliseconds) and total number of rows it actually returned
are added to the display. This is useful for seeing whether the planner’s estimates are close to reality.

Important: Keep in mind that the statement is actually executed when ANALYZEis used. Although
EXPLAIN will discard any output that a SELECTwould return, other side effects of the statement
will happen as usual. If you wish to use EXPLAIN ANALYZEon an INSERT, UPDATE, DELETE, or
EXECUTEstatement without letting the command affect your data, use this approach:

BEGIN;
EXPLAIN ANALYZE ...;
ROLLBACK;

Parameters

ANALYZE

Carry out the command and show the actual run times.

788

EXPLAIN

VERBOSE

Show the full internal representation of the plan tree, rather than just a summary. Usually this
option is only useful for specialized debugging purposes. TheVERBOSEoutput is either pretty-
printed or not, depending on the setting of theexplain_pretty_printconfiguration parameter.

statement

Any SELECT, INSERT, UPDATE, DELETE, EXECUTE, or DECLAREstatement, whose execution
plan you wish to see.

Notes

There is only sparse documentation on the optimizer’s use of cost information in PostgreSQL. Refer
to Section 13.1for more information.

In order to allow the PostgreSQL query planner to make reasonably informed decisions when op-
timizing queries, theANALYZEstatement should be run to record statistics about the distribution of
data within the table. If you have not done this (or if the statistical distribution of the data in the table
has changed significantly since the last timeANALYZEwas run), the estimated costs are unlikely to
conform to the real properties of the query, and consequently an inferior query plan may be chosen.

Prior to PostgreSQL 7.3, the plan was emitted in the form of aNOTICEmessage. Now it appears as a
query result (formatted like a table with a single text column).

Examples

To show the plan for a simple query on a table with a singleinteger column and 10000 rows:

EXPLAIN SELECT * FROM foo;

QUERY PLAN

Seq Scan on foo (cost=0.00..155.00 rows=10000 width=4)
(1 row)

If there is an index and we use a query with an indexableWHEREcondition,EXPLAIN might show a
different plan:

EXPLAIN SELECT * FROM foo WHERE i = 4;

QUERY PLAN
--

Index Scan using fi on foo (cost=0.00..5.98 rows=1 width=4)
Index Cond: (i = 4)

(2 rows)

And here is an example of a query plan for a query using an aggregate function:

EXPLAIN SELECT sum(i) FROM foo WHERE i < 10;

QUERY PLAN

789

EXPLAIN

Aggregate (cost=23.93..23.93 rows=1 width=4)

- > Index Scan using fi on foo (cost=0.00..23.92 rows=6 width=4)
Index Cond: (i < 10)

(3 rows)

Here is an example of usingEXPLAIN EXECUTEto display the execution plan for a prepared query:

PREPARE query(int, int) AS SELECT sum(bar) FROM test
WHERE id > $1 AND id < $2
GROUP BY foo;

EXPLAIN ANALYZE EXECUTE query(100, 200);

QUERY PLAN

HashAggregate (cost=39.53..39.53 rows=1 width=8) (actual time=0.661..0.672 rows=7 loops=1)
- > Index Scan using test_pkey on test (cost=0.00..32.97 rows=1311 width=8) (actual time=0.050..0.395 rows=99 loops=1)

Index Cond: ((id > $1) AND (id < $2))
Total runtime: 0.851 ms

(4 rows)

Of course, the specific numbers shown here depend on the actual contents of the tables involved. Also
note that the numbers, and even the selected query strategy, may vary between PostgreSQL releases
due to planner improvements. In addition, theANALYZEcommand uses random sampling to estimate
data statistics; therefore, it is possible for cost estimates to change after a fresh run ofANALYZE, even
if the actual distribution of data in the table has not changed.

Compatibility

There is noEXPLAIN statement defined in the SQL standard.

See Also

ANALYZE

790

FETCH

Name
FETCH— retrieve rows from a query using a cursor

Synopsis

FETCH [direction { FROM | IN }] cursorname

where direction can be empty or one of:

NEXT
PRIOR
FIRST
LAST
ABSOLUTEcount
RELATIVE count
count
ALL
FORWARD
FORWARDcount
FORWARD ALL
BACKWARD
BACKWARDcount
BACKWARD ALL

Description

FETCHretrieves rows using a previously-created cursor.

A cursor has an associated position, which is used byFETCH. The cursor position can be before the
first row of the query result, on any particular row of the result, or after the last row of the result. When
created, a cursor is positioned before the first row. After fetching some rows, the cursor is positioned
on the row most recently retrieved. IfFETCHruns off the end of the available rows then the cursor is
left positioned after the last row, or before the first row if fetching backward.FETCH ALLor FETCH

BACKWARD ALLwill always leave the cursor positioned after the last row or before the first row.

The formsNEXT, PRIOR, FIRST , LAST, ABSOLUTE, RELATIVE fetch a single row after moving the
cursor appropriately. If there is no such row, an empty result is returned, and the cursor is left posi-
tioned before the first row or after the last row as appropriate.

The forms usingFORWARDandBACKWARDretrieve the indicated number of rows moving in the for-
ward or backward direction, leaving the cursor positioned on the last-returned row (or after/before all
rows, if thecount exceeds the number of rows available).

RELATIVE 0, FORWARD 0, andBACKWARD 0all request fetching the current row without moving
the cursor, that is, re-fetching the most recently fetched row. This will succeed unless the cursor is
positioned before the first row or after the last row; in which case, no row is returned.

791

FETCH

Parameters

direction

direction defines the fetch direction and number of rows to fetch. It can be one of the fol-
lowing:

NEXT

Fetch the next row. This is the default ifdirection is omitted.

PRIOR

Fetch the prior row.

FIRST

Fetch the first row of the query (same asABSOLUTE 1).

LAST

Fetch the last row of the query (same asABSOLUTE -1).

ABSOLUTEcount

Fetch thecount ’th row of the query, or theabs(count) ’th row from the end ifcount is
negative. Position before first row or after last row ifcount is out of range; in particular,
ABSOLUTE 0positions before the first row.

RELATIVE count

Fetch thecount ’th succeeding row, or theabs(count) ’th prior row if count is negative.
RELATIVE 0 re-fetches the current row, if any.

count

Fetch the nextcount rows (same asFORWARDcount).

ALL

Fetch all remaining rows (same asFORWARD ALL).

FORWARD

Fetch the next row (same asNEXT).

FORWARDcount

Fetch the nextcount rows.FORWARD 0re-fetches the current row.

FORWARD ALL

Fetch all remaining rows.

BACKWARD

Fetch the prior row (same asPRIOR).

BACKWARDcount

Fetch the priorcount rows (scanning backwards).BACKWARD 0re-fetches the current row.

BACKWARD ALL

Fetch all prior rows (scanning backwards).

792

FETCH

count

count is a possibly-signed integer constant, determining the location or number of rows to
fetch. ForFORWARDandBACKWARDcases, specifying a negativecount is equivalent to changing
the sense ofFORWARDandBACKWARD.

cursorname

An open cursor’s name.

Outputs

On successful completion, aFETCHcommand returns a command tag of the form

FETCH count

Thecount is the number of rows fetched (possibly zero). Note that in psql, the command tag will
not actually be displayed, since psql displays the fetched rows instead.

Notes

The cursor should be declared with theSCROLLoption if one intends to use any variants ofFETCH

other thanFETCH NEXTor FETCH FORWARDwith a positive count. For simple queries PostgreSQL
will allow backwards fetch from cursors not declared withSCROLL, but this behavior is best not relied
on. If the cursor is declared withNO SCROLL, no backward fetches are allowed.

ABSOLUTEfetches are not any faster than navigating to the desired row with a relative move: the
underlying implementation must traverse all the intermediate rows anyway. Negative absolute fetches
are even worse: the query must be read to the end to find the last row, and then traversed backward
from there. However, rewinding to the start of the query (as withFETCH ABSOLUTE 0) is fast.

Updating data via a cursor is currently not supported by PostgreSQL.

DECLAREis used to define a cursor. UseMOVE to change cursor position without retrieving data.

Examples

The following example traverses a table using a cursor.

BEGIN WORK;

-- Set up a cursor:
DECLARE liahona SCROLL CURSOR FOR SELECT * FROM films;

-- Fetch the first 5 rows in the cursor liahona:
FETCH FORWARD 5 FROM liahona;

code | title | did | date_prod | kind | len
-------+-------------------------+-----+------------+----------+-------

BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44
BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43
JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25
P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08
P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

793

FETCH

-- Fetch the previous row:
FETCH PRIOR FROM liahona;

code | title | did | date_prod | kind | len
-------+---------+-----+------------+--------+-------

P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

-- Close the cursor and end the transaction:
CLOSE liahona;
COMMIT WORK;

Compatibility

The SQL standard definesFETCHfor use in embedded SQL only. The variant ofFETCHdescribed
here returns the data as if it were aSELECTresult rather than placing it in host variables. Other than
this point,FETCHis fully upward-compatible with the SQL standard.

TheFETCHforms involvingFORWARDandBACKWARD, as well as the formsFETCH count andFETCH

ALL, in whichFORWARDis implicit, are PostgreSQL extensions.

The SQL standard allows onlyFROMpreceding the cursor name; the option to useIN is an extension.

See Also

CLOSE, DECLARE, MOVE

794

GRANT

Name
GRANT— define access privileges

Synopsis

GRANT { { SELECT | INSERT | UPDATE | DELETE | RULE | REFERENCES | TRIGGER }
[,...] | ALL [PRIVILEGES] }
ON [TABLE] tablename [, ...]
TO { username | GROUP groupname | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | TEMPORARY | TEMP } [,...] | ALL [PRIVILEGES] }
ON DATABASEdbname [, ...]
TO { username | GROUP groupname | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
ON FUNCTIONfuncname ([type , ...]) [, ...]
TO { username | GROUP groupname | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON LANGUAGElangname [, ...]
TO { username | GROUP groupname | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | USAGE } [,...] | ALL [PRIVILEGES] }
ON SCHEMAschemaname [, ...]
TO { username | GROUP groupname | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
ON TABLESPACEtablespacename [, ...]
TO { username | GROUP groupname | PUBLIC } [, ...] [WITH GRANT OPTION]

Description

TheGRANTcommand gives specific privileges on an object (table, view, sequence, database, function,
procedural language, schema, or tablespace) to one or more users or groups of users. These privileges
are added to those already granted, if any.

The key wordPUBLIC indicates that the privileges are to be granted to all users, including those that
may be created later.PUBLIC may be thought of as an implicitly defined group that always includes all
users. Any particular user will have the sum of privileges granted directly to him, privileges granted
to any group he is presently a member of, and privileges granted toPUBLIC.

If WITH GRANT OPTIONis specified, the recipient of the privilege may in turn grant it to others.
Without a grant option, the recipient cannot do that. At present, grant options can only be granted to
individual users, not to groups orPUBLIC.

There is no need to grant privileges to the owner of an object (usually the user that created it), as the
owner has all privileges by default. (The owner could, however, choose to revoke some of his own
privileges for safety.) The right to drop an object, or to alter its definition in any way is not described
by a grantable privilege; it is inherent in the owner, and cannot be granted or revoked. The owner
implicitly has all grant options for the object, too.

795

GRANT

Depending on the type of object, the initial default privileges may include granting some privileges
to PUBLIC. The default is no public access for tables, schemas, and tablespaces;TEMPtable creation
privilege for databases;EXECUTEprivilege for functions; andUSAGEprivilege for languages. The
object owner may of course revoke these privileges. (For maximum security, issue theREVOKEin the
same transaction that creates the object; then there is no window in which another user may use the
object.)

The possible privileges are:

SELECT

Allows SELECTfrom any column of the specified table, view, or sequence. Also allows the use
of COPYTO. For sequences, this privilege also allows the use of thecurrval function.

INSERT

Allows INSERTof a new row into the specified table. Also allowsCOPYFROM.

UPDATE

Allows UPDATEof any column of the specified table.SELECT ... FOR UPDATE also requires
this privilege (besides theSELECTprivilege). For sequences, this privilege allows the use of the
nextval andsetval functions.

DELETE

Allows DELETEof a row from the specified table.

RULE

Allows the creation of a rule on the table/view. (See theCREATE RULEstatement.)

REFERENCES

To create a foreign key constraint, it is necessary to have this privilege on both the referencing
and referenced tables.

TRIGGER

Allows the creation of a trigger on the specified table. (See theCREATE TRIGGERstatement.)

CREATE

For databases, allows new schemas to be created within the database.

For schemas, allows new objects to be created within the schema. To rename an existing object,
you must own the objectandhave this privilege for the containing schema.

For tablespaces, allows tables and indexes to be created within the tablespace, and allows
databases to be created that have the tablespace as their default tablespace. (Note that revoking
this privilege will not alter the placement of existing objects.)

TEMPORARY
TEMP

Allows temporary tables to be created while using the database.

EXECUTE

Allows the use of the specified function and the use of any operators that are implemented on
top of the function. This is the only type of privilege that is applicable to functions. (This syntax
works for aggregate functions, as well.)

USAGE

For procedural languages, allows the use of the specified language for the creation of functions
in that language. This is the only type of privilege that is applicable to procedural languages.

796

GRANT

For schemas, allows access to objects contained in the specified schema (assuming that the ob-
jects’ own privilege requirements are also met). Essentially this allows the grantee to “look up”
objects within the schema.

ALL PRIVILEGES

Grant all of the available privileges at once. ThePRIVILEGES key word is optional in Post-
greSQL, though it is required by strict SQL.

The privileges required by other commands are listed on the reference page of the respective com-
mand.

Notes

TheREVOKEcommand is used to revoke access privileges.

When a non-owner of an object attempts toGRANTprivileges on the object, the command will fail
outright if the user has no privileges whatsoever on the object. As long as some privilege is available,
the command will proceed, but it will grant only those privileges for which the user has grant options.
TheGRANT ALL PRIVILEGESforms will issue a warning message if no grant options are held, while
the other forms will issue a warning if grant options for any of the privileges specifically named in the
command are not held. (In principle these statements apply to the object owner as well, but since the
owner is always treated as holding all grant options, the cases can never occur.)

It should be noted that database superusers can access all objects regardless of object privilege set-
tings. This is comparable to the rights ofroot in a Unix system. As withroot , it’s unwise to operate
as a superuser except when absolutely necessary.

If a superuser chooses to issue aGRANTor REVOKEcommand, the command is performed as though it
were issued by the owner of the affected object. In particular, privileges granted via such a command
will appear to have been granted by the object owner.

Currently, PostgreSQL does not support granting or revoking privileges for individual columns of a
table. One possible workaround is to create a view having just the desired columns and then grant
privileges to that view.

Usepsql’s \z command to obtain information about existing privileges, for example:

=> \z mytable

Access privileges for database "lusitania"
Schema | Name | Type | Access privileges

--------+---------+-------+--
public | mytable | table | {miriam=arwdRxt/miriam,=r/miriam,"group todos=arw/miriam"}

(1 row)

The entries shown by\z are interpreted thus:

=xxxx -- privileges granted to PUBLIC
uname=xxxx -- privileges granted to a user

group gname=xxxx -- privileges granted to a group

r -- SELECT ("read")
w -- UPDATE ("write")
a -- INSERT ("append")
d -- DELETE
R -- RULE

797

GRANT

x -- REFERENCES
t -- TRIGGER
X -- EXECUTE
U -- USAGE
C -- CREATE
T -- TEMPORARY

arwdRxt -- ALL PRIVILEGES (for tables)
* -- grant option for preceding privilege

/yyyy -- user who granted this privilege

The above example display would be seen by usermiriam after creating tablemytable and doing

GRANT SELECT ON mytable TO PUBLIC;
GRANT SELECT, UPDATE, INSERT ON mytable TO GROUP todos;

If the “Access privileges” column is empty for a given object, it means the object has default privileges
(that is, its privileges column is null). Default privileges always include all privileges for the owner,
and may include some privileges forPUBLIC depending on the object type, as explained above. The
first GRANTor REVOKEon an object will instantiate the default privileges (producing, for example,
{miriam=arwdRxt/miriam}) and then modify them per the specified request.

Notice that the owner’s implicit grant options are not marked in the access privileges display. A* will
appear only when grant options have been explicitly granted to someone.

Examples

Grant insert privilege to all users on tablefilms :

GRANT INSERT ON films TO PUBLIC;

Grant all available privileges to usermanuel on viewkinds :

GRANT ALL PRIVILEGES ON kinds TO manuel;

Note that while the above will indeed grant all privileges if executed by a superuser or the owner of
kinds , when executed by someone else it will only grant those permissions for which the someone
else has grant options.

Compatibility

According to the SQL standard, thePRIVILEGES key word inALL PRIVILEGES is required. The
SQL standard does not support setting the privileges on more than one object per command.

PostgreSQL allows an object owner to revoke his own ordinary privileges: for example, a table owner
can make the table read-only to himself by revoking his own INSERT, UPDATE, and DELETE priv-
ileges. This is not possible according to the SQL standard. The reason is that PostgreSQL treats the
owner’s privileges as having been granted by the owner to himself; therefore he can revoke them too.
In the SQL standard, the owner’s privileges are granted by an assumed entity “_SYSTEM”. Not being
“_SYSTEM”, the owner cannot revoke these rights.

The SQL standard allows setting privileges for individual columns within a table:

798

GRANT

GRANTprivileges
ON table [(column [, ...])] [, ...]
TO { PUBLIC | username [, ...] } [WITH GRANT OPTION]

The SQL standard provides for aUSAGEprivilege on other kinds of objects: character sets, collations,
translations, domains.

TheRULEprivilege, and privileges on databases, tablespaces, schemas, languages, and sequences are
PostgreSQL extensions.

See Also

REVOKE

799

INSERT

Name
INSERT — create new rows in a table

Synopsis

INSERT INTO table [(column [, ...])]
{ DEFAULT VALUES | VALUES ({ expression | DEFAULT } [, ...]) | query }

Description

INSERT inserts new rows into a table. One can insert a single row specified by value expressions, or
several rows as a result of a query.

The target column names may be listed in any order. If no list of column names is given at all, the
default is all the columns of the table in their declared order; or the firstN column names, if there
are onlyN columns supplied by theVALUESclause orquery . The values supplied by theVALUES

clause orquery are associated with the explicit or implicit column list left-to-right.

Each column not present in the explicit or implicit column list will be filled with a default value, either
its declared default value or null if there is none.

If the expression for any column is not of the correct data type, automatic type conversion will be
attempted.

You must haveINSERT privilege to a table in order to insert into it. If you use thequery clause to
insert rows from a query, you also need to haveSELECTprivilege on any table used in the query.

Parameters

table

The name (optionally schema-qualified) of an existing table.

column

The name of a column intable . The column name can be qualified with a subfield name or
array subscript, if needed. (Inserting into only some fields of a composite column leaves the other
fields null.)

DEFAULT VALUES

All columns will be filled with their default values.

expression

An expression or value to assign to the correspondingcolumn .

DEFAULT

The correspondingcolumn will be filled with its default value.

query

A query (SELECTstatement) that supplies the rows to be inserted. Refer to theSELECTstatement
for a description of the syntax.

800

INSERT

Outputs

On successful completion, anINSERT command returns a command tag of the form

INSERT oid count

Thecount is the number of rows inserted. Ifcount is exactly one, and the target table has OIDs,
thenoid is the OID assigned to the inserted row. Otherwiseoid is zero.

Examples

Insert a single row into tablefilms :

INSERT INTO films VALUES
(’UA502’, ’Bananas’, 105, ’1971-07-13’, ’Comedy’, ’82 minutes’);

In this example, thelen column is omitted and therefore it will have the default value:

INSERT INTO films (code, title, did, date_prod, kind)
VALUES (’T_601’, ’Yojimbo’, 106, ’1961-06-16’, ’Drama’);

This example uses theDEFAULTclause for the date columns rather than specifying a value:

INSERT INTO films VALUES
(’UA502’, ’Bananas’, 105, DEFAULT, ’Comedy’, ’82 minutes’);

INSERT INTO films (code, title, did, date_prod, kind)
VALUES (’T_601’, ’Yojimbo’, 106, DEFAULT, ’Drama’);

To insert a row consisting entirely of default values:

INSERT INTO films DEFAULT VALUES;

This example inserts some rows into tablefilms from a tabletmp_films with the same column
layout asfilms :

INSERT INTO films SELECT * FROM tmp_films WHERE date_prod < ’2004-05-07’;

This example inserts into array columns:

-- Create an empty 3x3 gameboard for noughts-and-crosses
-- (these commands create the same board)
INSERT INTO tictactoe (game, board[1:3][1:3])

VALUES (1,’{{"","",""},{"","",""},{"","",""}}’);
INSERT INTO tictactoe (game, board)

VALUES (2,’{{„},{„},{„}}’);

801

INSERT

Compatibility

INSERT conforms to the SQL standard. The case in which a column name list is omitted, but not all
the columns are filled from theVALUESclause orquery , is disallowed by the standard.

Possible limitations of thequery clause are documented underSELECT.

802

LISTEN

Name
LISTEN — listen for a notification

Synopsis

LISTEN name

Description

LISTEN registers the current session as a listener on the notification conditionname. If the current
session is already registered as a listener for this notification condition, nothing is done.

Whenever the commandNOTIFY name is invoked, either by this session or another one connected
to the same database, all the sessions currently listening on that notification condition are notified,
and each will in turn notify its connected client application. See the discussion ofNOTIFY for more
information.

A session can be unregistered for a given notify condition with theUNLISTENcommand. A session’s
listen registrations are automatically cleared when the session ends.

The method a client application must use to detect notification events depends on which PostgreSQL
application programming interface it uses. With the libpq library, the application issuesLISTEN as
an ordinary SQL command, and then must periodically call the functionPQnotifies to find out
whether any notification events have been received. Other interfaces such as libpgtcl provide higher-
level methods for handling notify events; indeed, with libpgtcl the application programmer should not
even issueLISTEN or UNLISTEN directly. See the documentation for the interface you are using for
more details.

NOTIFYcontains a more extensive discussion of the use ofLISTEN andNOTIFY.

Parameters

name

Name of a notify condition (any identifier).

Examples

Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.

803

LISTEN

Compatibility

There is noLISTEN statement in the SQL standard.

See Also

NOTIFY, UNLISTEN

804

LOAD

Name
LOAD— load or reload a shared library file

Synopsis

LOAD ’filename ’

Description

This command loads a shared library file into the PostgreSQL server’s address space. If the file had
been loaded previously, it is first unloaded. This command is primarily useful to unload and reload
a shared library file that has been changed since the server first loaded it. To make use of the shared
library, function(s) in it need to be declared using theCREATE FUNCTIONcommand.

The file name is specified in the same way as for shared library names inCREATE FUNCTION;
in particular, one may rely on a search path and automatic addition of the system’s standard shared
library file name extension. SeeSection 31.9for more information on this topic.

Compatibility

LOADis a PostgreSQL extension.

See Also

CREATE FUNCTION

805

LOCK

Name
LOCK— lock a table

Synopsis

LOCK [TABLE] name [, ...] [IN lockmode MODE] [NOWAIT]

where lockmode is one of:

ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
| SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

Description

LOCK TABLEobtains a table-level lock, waiting if necessary for any conflicting locks to be released. If
NOWAITis specified,LOCK TABLEdoes not wait to acquire the desired lock: if it cannot be acquired
immediately, the command is aborted and an error is emitted. Once obtained, the lock is held for
the remainder of the current transaction. (There is noUNLOCK TABLEcommand; locks are always
released at transaction end.)

When acquiring locks automatically for commands that reference tables, PostgreSQL always uses
the least restrictive lock mode possible.LOCK TABLEprovides for cases when you might need more
restrictive locking. For example, suppose an application runs a transaction at the Read Committed
isolation level and needs to ensure that data in a table remains stable for the duration of the trans-
action. To achieve this you could obtainSHARElock mode over the table before querying. This will
prevent concurrent data changes and ensure subsequent reads of the table see a stable view of com-
mitted data, becauseSHARElock mode conflicts with theROW EXCLUSIVElock acquired by writers,
and yourLOCK TABLEname IN SHARE MODEstatement will wait until any concurrent holders of
ROW EXCLUSIVEmode locks commit or roll back. Thus, once you obtain the lock, there are no un-
committed writes outstanding; furthermore none can begin until you release the lock.

To achieve a similar effect when running a transaction at the Serializable isolation level, you have
to execute theLOCK TABLEstatement before executing anySELECTor data modification statement.
A serializable transaction’s view of data will be frozen when its firstSELECTor data modification
statement begins. ALOCK TABLElater in the transaction will still prevent concurrent writes — but it
won’t ensure that what the transaction reads corresponds to the latest committed values.

If a transaction of this sort is going to change the data in the table, then it should useSHARE ROW

EXCLUSIVE lock mode instead ofSHAREmode. This ensures that only one transaction of this type
runs at a time. Without this, a deadlock is possible: two transactions might both acquireSHAREmode,
and then be unable to also acquireROW EXCLUSIVEmode to actually perform their updates. (Note
that a transaction’s own locks never conflict, so a transaction can acquireROW EXCLUSIVEmode
when it holdsSHAREmode — but not if anyone else holdsSHAREmode.) To avoid deadlocks, make
sure all transactions acquire locks on the same objects in the same order, and if multiple lock modes
are involved for a single object, then transactions should always acquire the most restrictive mode
first.

More information about the lock modes and locking strategies can be found inSection 12.3.

806

LOCK

Parameters

name

The name (optionally schema-qualified) of an existing table to lock.

The commandLOCK TABLE a, b; is equivalent toLOCK TABLE a; LOCK TABLE b;. The
tables are locked one-by-one in the order specified in theLOCK TABLEcommand.

lockmode

The lock mode specifies which locks this lock conflicts with. Lock modes are described inSec-
tion 12.3.

If no lock mode is specified, thenACCESS EXCLUSIVE, the most restrictive mode, is used.

NOWAIT

Specifies thatLOCK TABLEshould not wait for any conflicting locks to be released: if the speci-
fied lock(s) cannot be acquired immediately without waiting, the transaction is aborted.

Notes

LOCK TABLE ... IN ACCESS SHARE MODErequiresSELECTprivileges on the target table. All
other forms ofLOCKrequireUPDATEand/orDELETEprivileges.

LOCK TABLEis useful only inside a transaction block (BEGIN/COMMITpair), since the lock is dropped
as soon as the transaction ends. ALOCK TABLEcommand appearing outside any transaction block
forms a self-contained transaction, so the lock will be dropped as soon as it is obtained.

LOCK TABLEonly deals with table-level locks, and so the mode names involvingROWare all mis-
nomers. These mode names should generally be read as indicating the intention of the user to acquire
row-level locks within the locked table. Also,ROW EXCLUSIVEmode is a sharable table lock. Keep
in mind that all the lock modes have identical semantics so far asLOCK TABLEis concerned, dif-
fering only in the rules about which modes conflict with which. For information on how to acquire
an actual row-level lock, seeSection 12.3.2and theFOR UPDATE Clausein theSELECTreference
documentation.

Examples

Obtain aSHARElock on a primary key table when going to perform inserts into a foreign key table:

BEGIN WORK;
LOCK TABLE films IN SHARE MODE;
SELECT id FROM films

WHERE name = ’Star Wars: Episode I - The Phantom Menace’;
-- Do ROLLBACK if record was not returned
INSERT INTO films_user_comments VALUES

(_id_, ’GREAT! I was waiting for it for so long!’);
COMMIT WORK;

Take aSHARE ROW EXCLUSIVElock on a primary key table when going to perform a delete opera-
tion:

BEGIN WORK;

807

LOCK

LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;
DELETE FROM films_user_comments WHERE id IN

(SELECT id FROM films WHERE rating < 5);
DELETE FROM films WHERE rating < 5;
COMMIT WORK;

Compatibility

There is noLOCK TABLEin the SQL standard, which instead usesSET TRANSACTIONto specify
concurrency levels on transactions. PostgreSQL supports that too; seeSET TRANSACTIONfor de-
tails.

Except forACCESS SHARE, ACCESS EXCLUSIVE, andSHARE UPDATE EXCLUSIVElock modes, the
PostgreSQL lock modes and theLOCK TABLEsyntax are compatible with those present in Oracle.

808

MOVE

Name
MOVE— position a cursor

Synopsis

MOVE [direction { FROM | IN }] cursorname

Description

MOVErepositions a cursor without retrieving any data.MOVEworks exactly like theFETCHcommand,
except it only positions the cursor and does not return rows.

Refer toFETCH for details on syntax and usage.

Outputs

On successful completion, aMOVEcommand returns a command tag of the form

MOVEcount

The count is the number of rows that aFETCHcommand with the same parameters would have
returned (possibly zero).

Examples

BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;

-- Skip the first 5 rows:
MOVE FORWARD 5 IN liahona;
MOVE 5

-- Fetch the 6th row from the cursor liahona:
FETCH 1 FROM liahona;

code | title | did | date_prod | kind | len
-------+--------+-----+------------+--------+-------

P_303 | 48 Hrs | 103 | 1982-10-22 | Action | 01:37
(1 row)

-- Close the cursor liahona and end the transaction:
CLOSE liahona;
COMMIT WORK;

Compatibility

There is noMOVEstatement in the SQL standard.

809

MOVE

See Also

CLOSE, DECLARE, FETCH

810

NOTIFY

Name
NOTIFY — generate a notification

Synopsis

NOTIFY name

Description

The NOTIFY command sends a notification event to each client application that has previously exe-
cutedLISTEN name for the specified notification name in the current database.

NOTIFY provides a simple form of signal or interprocess communication mechanism for a collection
of processes accessing the same PostgreSQL database. Higher-level mechanisms can be built by us-
ing tables in the database to pass additional data (beyond a mere notification name) from notifier to
listener(s).

The information passed to the client for a notification event includes the notification name and the
notifying session’s server process PID. It is up to the database designer to define the notification
names that will be used in a given database and what each one means.

Commonly, the notification name is the same as the name of some table in the database, and the
notify event essentially means, “I changed this table, take a look at it to see what’s new”. But no such
association is enforced by theNOTIFY and LISTEN commands. For example, a database designer
could use several different notification names to signal different sorts of changes to a single table.

WhenNOTIFY is used to signal the occurrence of changes to a particular table, a useful programming
technique is to put theNOTIFY in a rule that is triggered by table updates. In this way, notification
happens automatically when the table is changed, and the application programmer can’t accidentally
forget to do it.

NOTIFY interacts with SQL transactions in some important ways. Firstly, if aNOTIFY is executed
inside a transaction, the notify events are not delivered until and unless the transaction is committed.
This is appropriate, since if the transaction is aborted, all the commands within it have had no ef-
fect, includingNOTIFY. But it can be disconcerting if one is expecting the notification events to be
delivered immediately. Secondly, if a listening session receives a notification signal while it is within
a transaction, the notification event will not be delivered to its connected client until just after the
transaction is completed (either committed or aborted). Again, the reasoning is that if a notification
were delivered within a transaction that was later aborted, one would want the notification to be un-
done somehow — but the server cannot “take back” a notification once it has sent it to the client.
So notification events are only delivered between transactions. The upshot of this is that applications
usingNOTIFY for real-time signaling should try to keep their transactions short.

NOTIFY behaves like Unix signals in one important respect: if the same notification name is signaled
multiple times in quick succession, recipients may get only one notification event for several execu-
tions of NOTIFY. So it is a bad idea to depend on the number of notifications received. Instead, use
NOTIFY to wake up applications that need to pay attention to something, and use a database object
(such as a sequence) to keep track of what happened or how many times it happened.

It is common for a client that executesNOTIFY to be listening on the same notification name itself.
In that case it will get back a notification event, just like all the other listening sessions. Depending

811

NOTIFY

on the application logic, this could result in useless work, for example, reading a database table
to find the same updates that that session just wrote out. It is possible to avoid such extra work
by noticing whether the notifying session’s server process PID (supplied in the notification event
message) is the same as one’s own session’s PID (available from libpq). When they are the same, the
notification event is one’s own work bouncing back, and can be ignored. (Despite what was said in
the preceding paragraph, this is a safe technique. PostgreSQL keeps self-notifications separate from
notifications arriving from other sessions, so you cannot miss an outside notification by ignoring your
own notifications.)

Parameters

name

Name of the notification to be signaled (any identifier).

Examples

Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.

Compatibility

There is noNOTIFY statement in the SQL standard.

See Also

LISTEN, UNLISTEN

812

PREPARE

Name
PREPARE— prepare a statement for execution

Synopsis

PREPAREplan_name [(datatype [, ...])] AS statement

Description

PREPAREcreates a prepared statement. A prepared statement is a server-side object that can be used
to optimize performance. When thePREPAREstatement is executed, the specified statement is parsed,
rewritten, and planned. When anEXECUTEcommand is subsequently issued, the prepared statement
need only be executed. Thus, the parsing, rewriting, and planning stages are only performed once,
instead of every time the statement is executed.

Prepared statements can take parameters: values that are substituted into the statement when it is
executed. To include parameters in a prepared statement, supply a list of data types in thePREPARE

statement, and, in the statement to be prepared itself, refer to the parameters by position using$1,
$2, etc. When executing the statement, specify the actual values for these parameters in theEXECUTE

statement. Refer toEXECUTEfor more information about that.

Prepared statements only last for the duration of the current database session. When the session ends,
the prepared statement is forgotten, so it must be recreated before being used again. This also means
that a single prepared statement cannot be used by multiple simultaneous database clients; however,
each client can create their own prepared statement to use. The prepared statement can be manually
cleaned up using theDEALLOCATEcommand.

Prepared statements have the largest performance advantage when a single session is being used to
execute a large number of similar statements. The performance difference will be particularly signifi-
cant if the statements are complex to plan or rewrite, for example, if the query involves a join of many
tables or requires the application of several rules. If the statement is relatively simple to plan and
rewrite but relatively expensive to execute, the performance advantage of prepared statements will be
less noticeable.

Parameters

plan_name

An arbitrary name given to this particular prepared statement. It must be unique within a single
session and is subsequently used to execute or deallocate a previously prepared statement.

datatype

The data type of a parameter to the prepared statement. To refer to the parameters in the prepared
statement itself, use$1, $2, etc.

statement

Any SELECT, INSERT, UPDATE, or DELETEstatement.

813

PREPARE

Notes

In some situations, the query plan produced for a prepared statement will be inferior to the query
plan that would have been chosen if the statement had been submitted and executed normally. This is
because when the statement is planned and the planner attempts to determine the optimal query plan,
the actual values of any parameters specified in the statement are unavailable. PostgreSQL collects
statistics on the distribution of data in the table, and can use constant values in a statement to make
guesses about the likely result of executing the statement. Since this data is unavailable when planning
prepared statements with parameters, the chosen plan may be suboptimal. To examine the query plan
PostgreSQL has chosen for a prepared statement, useEXPLAIN.

For more information on query planning and the statistics collected by PostgreSQL for that purpose,
see theANALYZEdocumentation.

Examples

Create a prepared query for anINSERT statement, and then execute it:

PREPARE fooplan (int, text, bool, numeric) AS
INSERT INTO foo VALUES($1, $2, $3, $4);

EXECUTE fooplan(1, ’Hunter Valley’, ’t’, 200.00);

Create a prepared query for aSELECTstatement, and then execute it:

PREPARE usrrptplan (int, date) AS
SELECT * FROM users u, logs l WHERE u.usrid=$1 AND u.usrid=l.usrid
AND l.date = $2;

EXECUTE usrrptplan(1, current_date);

Compatibility

The SQL standard includes aPREPAREstatement, but it is only for use in embedded SQL. This version
of thePREPAREstatement also uses a somewhat different syntax.

See Also

DEALLOCATE, EXECUTE

814

REINDEX

Name
REINDEX— rebuild indexes

Synopsis

REINDEX { DATABASE | TABLE | INDEX } name [FORCE]

Description

REINDEXrebuilds an index based on the data stored in the index’s table, replacing the old copy of the
index. There are two main reasons to useREINDEX:

• An index has become corrupted, and no longer contains valid data. Although in theory this should
never happen, in practice indexes may become corrupted due to software bugs or hardware failures.
REINDEXprovides a recovery method.

• The index in question contains a lot of dead index pages that are not being reclaimed. This can
occur with B-tree indexes in PostgreSQL under certain access patterns.REINDEXprovides a way to
reduce the space consumption of the index by writing a new version of the index without the dead
pages. SeeSection 21.2for more information.

Parameters

DATABASE

Recreate all system indexes of a specified database. Indexes on user tables are not processed.
Also, indexes on shared system catalogs are skipped except in stand-alone mode (see below).

TABLE

Recreate all indexes of a specified table. If the table has a secondary “TOAST” table, that is
reindexed as well.

INDEX

Recreate a specified index.

name

The name of the specific database, table, or index to be reindexed. Table and index names may
be schema-qualified. Presently,REINDEX DATABASEcan only reindex the current database, so
its parameter must match the current database’s name.

FORCE

This is an obsolete option; it is ignored if specified.

815

REINDEX

Notes

If you suspect corruption of an index on a user table, you can simply rebuild that index, or all indexes
on the table, usingREINDEX INDEXor REINDEX TABLE.

Things are more difficult if you need to recover from corruption of an index on a system table. In
this case it’s important for the system to not have used any of the suspect indexes itself. (Indeed, in
this sort of scenario you may find that server processes are crashing immediately at start-up, due to
reliance on the corrupted indexes.) To recover safely, the server must be started with the-P option,
which prevents it from using indexes for system catalog lookups.

One way to do this is to shut down the postmaster and start a stand-alone PostgreSQL server with the
-P option included on its command line. Then,REINDEX DATABASE, REINDEX TABLE, or REINDEX

INDEX can be issued, depending on how much you want to reconstruct. If in doubt, useREINDEX

DATABASEto select reconstruction of all system indexes in the database. Then quit the standalone
server session and restart the regular server. See thepostgresreference page for more information
about how to interact with the stand-alone server interface.

Alternatively, a regular server session can be started with-P included in its command line options.
The method for doing this varies across clients, but in all libpq-based clients, it is possible to set the
PGOPTIONSenvironment variable to-P before starting the client. Note that while this method does
not require locking out other clients, it may still be wise to prevent other users from connecting to the
damaged database until repairs have been completed.

If corruption is suspected in the indexes of any of the shared system catalogs (pg_database ,
pg_group , pg_shadow , or pg_tablespace), then a standalone server must be used to repair it.
REINDEXwill not process shared catalogs in multiuser mode.

For all indexes except the shared system catalogs,REINDEX is crash-safe and transaction-safe.
REINDEX is not crash-safe for shared indexes, which is why this case is disallowed during normal
operation. If a failure occurs while reindexing one of these catalogs in standalone mode, it will not
be possible to restart the regular server until the problem is rectified. (The typical symptom of a
partially rebuilt shared index is “index is not a btree” errors.)

REINDEX is similar to a drop and recreate of the index in that the index contents are rebuilt from
scratch. However, the locking considerations are rather different.REINDEX locks out writes but not
reads of the index’s parent table. It also takes an exclusive lock on the specific index being processed,
which will block reads that attempt to use that index. In contrast,DROP INDEXmomentarily takes
exclusive lock on the parent table, blocking both writes and reads. The subsequentCREATE INDEX

locks out writes but not reads; since the index is not there, no read will attempt to use it, meaning that
there will be no blocking but reads may be forced into expensive sequential scans. Another important
point is that the drop/create approach invalidates any cached query plans that use the index, while
REINDEXdoes not.

Prior to PostgreSQL 7.4,REINDEX TABLEdid not automatically process TOAST tables, and so those
had to be reindexed by separate commands. This is still possible, but redundant.

Examples

Recreate the indexes on the tablemy_table :

REINDEX TABLE my_table;

Rebuild a single index:

816

REINDEX

REINDEX INDEX my_index;

Rebuild all system indexes in a particular database, without trusting them to be valid already:

$ export PGOPTIONS="-P"
$ psql broken_db
...
broken_db=> REINDEX DATABASE broken_db;
broken_db=> \q

Compatibility

There is noREINDEXcommand in the SQL standard.

817

RELEASE SAVEPOINT

Name
RELEASE SAVEPOINT— destroy a previously defined savepoint

Synopsis

RELEASE [SAVEPOINT] savepoint_name

Description

RELEASE SAVEPOINTdestroys a savepoint previously defined in the current transaction.

Destroying a savepoint makes it unavailable as a rollback point, but it has no other user visible be-
havior. It does not undo the effects of commands executed after the savepoint was established. (To
do that, seeROLLBACK TO SAVEPOINT.) Destroying a savepoint when it is no longer needed may
allow the system to reclaim some resources earlier than transaction end.

RELEASE SAVEPOINTalso destroys all savepoints that were established after the named savepoint
was established.

Parameters

savepoint_name

The name of the savepoint to destroy.

Notes

Specifying a savepoint name that was not previously defined is an error.

It is not possible to release a savepoint when the transaction is in an aborted state.

If multiple savepoints have the same name, only the one that was most recently defined is released.

Examples

To establish and later destroy a savepoint:

BEGIN;
INSERT INTO table1 VALUES (3);
SAVEPOINT my_savepoint;
INSERT INTO table1 VALUES (4);
RELEASE SAVEPOINT my_savepoint;

COMMIT;

The above transaction will insert both 3 and 4.

818

RELEASE SAVEPOINT

Compatibility

This command conforms to the SQL:2003 standard. The standard specifies that the key word
SAVEPOINTis mandatory, but PostgreSQL allows it to be omitted.

See Also

BEGIN, COMMIT, ROLLBACK, ROLLBACK TO SAVEPOINT, SAVEPOINT

819

RESET

Name
RESET— restore the value of a run-time parameter to the default value

Synopsis

RESET name
RESET ALL

Description

RESETrestores run-time parameters to their default values.RESETis an alternative spelling for

SET parameter TO DEFAULT

Refer toSETfor details.

The default value is defined as the value that the parameter would have had, had noSET ever been
issued for it in the current session. The actual source of this value might be a compiled-in default,
the configuration file, command-line options, or per-database or per-user default settings. SeeSection
16.4for details.

See theSET reference page for details on the transaction behavior ofRESET.

Parameters

name

The name of a run-time parameter. SeeSETfor a list.

ALL

Resets all settable run-time parameters to default values.

Examples

Set thegeqo configuration variable to its default value:

RESET geqo;

Compatibility

RESETis a PostgreSQL extension.

820

REVOKE

Name
REVOKE— remove access privileges

Synopsis

REVOKE [GRANT OPTION FOR]
{ { SELECT | INSERT | UPDATE | DELETE | RULE | REFERENCES | TRIGGER }
[,...] | ALL [PRIVILEGES] }
ON [TABLE] tablename [, ...]
FROM { username | GROUP groupname | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { CREATE | TEMPORARY | TEMP } [,...] | ALL [PRIVILEGES] }
ON DATABASEdbname [, ...]
FROM { username | GROUP groupname | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ EXECUTE | ALL [PRIVILEGES] }
ON FUNCTIONfuncname ([type , ...]) [, ...]
FROM { username | GROUP groupname | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ USAGE | ALL [PRIVILEGES] }
ON LANGUAGElangname [, ...]
FROM { username | GROUP groupname | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { CREATE | USAGE } [,...] | ALL [PRIVILEGES] }
ON SCHEMAschemaname [, ...]
FROM { username | GROUP groupname | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ CREATE | ALL [PRIVILEGES] }
ON TABLESPACEtablespacename [, ...]
FROM { username | GROUP groupname | PUBLIC } [, ...]
[CASCADE | RESTRICT]

Description

The REVOKEcommand revokes previously granted privileges from one or more users or groups of
users. The key wordPUBLIC refers to the implicitly defined group of all users.

See the description of theGRANTcommand for the meaning of the privilege types.

Note that any particular user will have the sum of privileges granted directly to him, privileges granted
to any group he is presently a member of, and privileges granted toPUBLIC. Thus, for example,

821

REVOKE

revokingSELECTprivilege fromPUBLIC does not necessarily mean that all users have lostSELECT

privilege on the object: those who have it granted directly or via a group will still have it.

If GRANT OPTION FORis specified, only the grant option for the privilege is revoked, not the privilege
itself. Otherwise, both the privilege and the grant option are revoked.

If a user holds a privilege with grant option and has granted it to other users then the privileges held by
those other users are called dependent privileges. If the privilege or the grant option held by the first
user is being revoked and dependent privileges exist, those dependent privileges are also revoked if
CASCADEis specified, else the revoke action will fail. This recursive revocation only affects privileges
that were granted through a chain of users that is traceable to the user that is the subject of thisREVOKE

command. Thus, the affected users may effectively keep the privilege if it was also granted through
other users.

Notes

Usepsql’s \z command to display the privileges granted on existing objects. SeeGRANTfor infor-
mation about the format.

A user can only revoke privileges that were granted directly by that user. If, for example, user A has
granted a privilege with grant option to user B, and user B has in turned granted it to user C, then
user A cannot revoke the privilege directly from C. Instead, user A could revoke the grant option from
user B and use theCASCADEoption so that the privilege is in turn revoked from user C. For another
example, if both A and B have granted the same privilege to C, A can revoke his own grant but not
B’s grant, so C will still effectively have the privilege.

When a non-owner of an object attempts toREVOKEprivileges on the object, the command will fail
outright if the user has no privileges whatsoever on the object. As long as some privilege is available,
the command will proceed, but it will revoke only those privileges for which the user has grant options.
The REVOKE ALL PRIVILEGESforms will issue a warning message if no grant options are held,
while the other forms will issue a warning if grant options for any of the privileges specifically named
in the command are not held. (In principle these statements apply to the object owner as well, but
since the owner is always treated as holding all grant options, the cases can never occur.)

If a superuser chooses to issue aGRANTor REVOKEcommand, the command is performed as though it
were issued by the owner of the affected object. Since all privileges ultimately come from the object
owner (possibly indirectly via chains of grant options), it is possible for a superuser to revoke all
privileges, but this may require use ofCASCADEas stated above.

Examples

Revoke insert privilege for the public on tablefilms :

REVOKE INSERT ON films FROM PUBLIC;

Revoke all privileges from usermanuel on viewkinds :

REVOKE ALL PRIVILEGES ON kinds FROM manuel;

Note that this actually means “revoke all privileges that I granted”.

822

REVOKE

Compatibility

The compatibility notes of theGRANTcommand apply analogously toREVOKE. The syntax summary
is:

REVOKE [GRANT OPTION FOR]privileges
ON object [(column [, ...])]
FROM { PUBLIC | username [, ...] }
{ RESTRICT | CASCADE }

One of RESTRICT or CASCADEis required according to the standard, but PostgreSQL assumes
RESTRICTby default.

See Also

GRANT

823

ROLLBACK

Name
ROLLBACK— abort the current transaction

Synopsis

ROLLBACK [WORK | TRANSACTION]

Description

ROLLBACKrolls back the current transaction and causes all the updates made by the transaction to be
discarded.

Parameters

WORK

TRANSACTION

Optional key words. They have no effect.

Notes

UseCOMMIT to successfully terminate a transaction.

IssuingROLLBACKwhen not inside a transaction does no harm, but it will provoke a warning message.

Examples

To abort all changes:

ROLLBACK;

Compatibility

The SQL standard only specifies the two formsROLLBACKand ROLLBACK WORK. Otherwise, this
command is fully conforming.

See Also

BEGIN, COMMIT, ROLLBACK TO SAVEPOINT

824

ROLLBACK TO SAVEPOINT

Name
ROLLBACK TO SAVEPOINT— roll back to a savepoint

Synopsis

ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT]savepoint_name

Description

Roll back all commands that were executed after the savepoint was established. The savepoint remains
valid and can be rolled back to again later, if needed.

ROLLBACK TO SAVEPOINTimplicitly destroys all savepoints that were established after the named
savepoint.

Parameters

savepoint_name

The savepoint to roll back to.

Notes

UseRELEASE SAVEPOINTto destroy a savepoint without discarding the effects of commands exe-
cuted after it was established.

Specifying a savepoint name that has not been established is an error.

Cursors have somewhat non-transactional behavior with respect to savepoints. Any cursor that is
opened inside the savepoint is not closed when the savepoint is rolled back. If a cursor is affected
by a FETCHcommand inside a savepoint that is later rolled back, the cursor position remains at the
position thatFETCHleft it pointing to (that is,FETCHis not rolled back). A cursor whose execution
causes a transaction to abort is put in a can’t-execute state, so while the transaction can be restored
usingROLLBACK TO SAVEPOINT, the cursor can no longer be used.

Examples

To undo the effects of the commands executed aftermy_savepoint was established:

ROLLBACK TO SAVEPOINT my_savepoint;

Cursor positions are not affected by savepoint rollback:

BEGIN;

825

ROLLBACK TO SAVEPOINT

DECLARE foo CURSOR FOR SELECT 1 UNION SELECT 2;

SAVEPOINT foo;

FETCH 1 FROM foo;
?column?

1

ROLLBACK TO SAVEPOINT foo;

FETCH 1 FROM foo;
?column?

2

COMMIT;

Compatibility

The SQL:2003 standard specifies that the key wordSAVEPOINTis mandatory, but PostgreSQL and
Oracle allow it to be omitted. SQL:2003 allows onlyWORK, not TRANSACTION, as a noise word af-
ter ROLLBACK. Also, SQL:2003 has an optional clauseAND [NO] CHAIN which is not currently
supported by PostgreSQL. Otherwise, this command conforms to the SQL standard.

See Also

BEGIN, COMMIT, RELEASE SAVEPOINT, ROLLBACK, SAVEPOINT

826

SAVEPOINT

Name
SAVEPOINT— define a new savepoint within the current transaction

Synopsis

SAVEPOINT savepoint_name

Description

SAVEPOINTestablishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are executed after
it was established to be rolled back, restoring the transaction state to what it was at the time of the
savepoint.

Parameters

savepoint_name

The name to give to the new savepoint.

Notes

UseROLLBACK TO SAVEPOINTto rollback to a savepoint. UseRELEASE SAVEPOINTto destroy
a savepoint, keeping the effects of commands executed after it was established.

Savepoints can only be established when inside a transaction block. There can be multiple savepoints
defined within a transaction.

Examples

To establish a savepoint and later undo the effects of all commands executed after it was established:

BEGIN;
INSERT INTO table1 VALUES (1);
SAVEPOINT my_savepoint;
INSERT INTO table1 VALUES (2);
ROLLBACK TO SAVEPOINT my_savepoint;
INSERT INTO table1 VALUES (3);

COMMIT;

The above transaction will insert the values 1 and 3, but not 2.

To establish and later destroy a savepoint:

BEGIN;
INSERT INTO table1 VALUES (3);

827

SAVEPOINT

SAVEPOINT my_savepoint;
INSERT INTO table1 VALUES (4);
RELEASE SAVEPOINT my_savepoint;

COMMIT;

The above transaction will insert both 3 and 4.

Compatibility

SQL requires a savepoint to be destroyed automatically when another savepoint with the same name
is established. In PostgreSQL, the old savepoint is kept, though only the more recent one will be used
when rolling back or releasing. (Releasing the newer savepoint will cause the older one to again be-
come accessible toROLLBACK TO SAVEPOINTandRELEASE SAVEPOINT.) Otherwise,SAVEPOINT

is fully SQL conforming.

See Also

BEGIN, COMMIT, RELEASE SAVEPOINT, ROLLBACK, ROLLBACK TO SAVEPOINT

828

SELECT

Name
SELECT— retrieve rows from a table or view

Synopsis

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
* | expression [AS output_name] [, ...]
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BYexpression [, ...]]
[HAVING condition [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL] select]
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start]
[FOR UPDATE [OF table_name [, ...]]]

where from_item can be one of:

[ONLY] table_name [*] [[AS] alias [(column_alias [, ...])]]
(select) [AS] alias [(column_alias [, ...])]
function_name ([argument [, ...]]) [AS] alias [(column_alias [, ...] | column_definition [, ...])]
function_name ([argument [, ...]]) AS (column_definition [, ...])
from_item [NATURAL] join_type from_item [ON join_condition | USING (join_column [, ...])]

Description

SELECTretrieves rows from one or more tables. The general processing ofSELECTis as follows:

1. All elements in theFROMlist are computed. (Each element in theFROMlist is a real or virtual
table.) If more than one element is specified in theFROMlist, they are cross-joined together. (See
FROM Clausebelow.)

2. If the WHEREclause is specified, all rows that do not satisfy the condition are eliminated from the
output. (SeeWHERE Clausebelow.)

3. If the GROUP BYclause is specified, the output is divided into groups of rows that match on one
or more values. If theHAVINGclause is present, it eliminates groups that do not satisfy the given
condition. (SeeGROUP BY ClauseandHAVING Clausebelow.)

4. The actual output rows are computed using theSELECToutput expressions for each selected row.
(SeeSELECT Listbelow.)

5. Using the operatorsUNION, INTERSECT, and EXCEPT, the output of more than oneSELECT

statement can be combined to form a single result set. TheUNIONoperator returns all rows that
are in one or both of the result sets. TheINTERSECToperator returns all rows that are strictly in
both result sets. TheEXCEPToperator returns the rows that are in the first result set but not in
the second. In all three cases, duplicate rows are eliminated unlessALL is specified. (SeeUNION
Clause, INTERSECT Clause, andEXCEPT Clausebelow.)

829

SELECT

6. If the ORDER BYclause is specified, the returned rows are sorted in the specified order. IfORDER

BY is not given, the rows are returned in whatever order the system finds fastest to produce. (See
ORDER BY Clausebelow.)

7. DISTINCT eliminates duplicate rows from the result.DISTINCT ON eliminates rows that match
on all the specified expressions.ALL (the default) will return all candidate rows, including dupli-
cates. (SeeDISTINCT Clausebelow.)

8. If the LIMIT or OFFSETclause is specified, theSELECTstatement only returns a subset of the
result rows. (SeeLIMIT Clausebelow.)

9. TheFOR UPDATEclause causes theSELECTstatement to lock the selected rows against concur-
rent updates. (SeeFOR UPDATE Clausebelow.)

You must haveSELECTprivilege on a table to read its values. The use ofFOR UPDATErequires
UPDATEprivilege as well.

Parameters

FROMClause

TheFROMclause specifies one or more source tables for theSELECT. If multiple sources are specified,
the result is the Cartesian product (cross join) of all the sources. But usually qualification conditions
are added to restrict the returned rows to a small subset of the Cartesian product.

TheFROMclause can contain the following elements:

table_name

The name (optionally schema-qualified) of an existing table or view. IfONLYis specified, only
that table is scanned. IfONLY is not specified, the table and all its descendant tables (if any)
are scanned.* can be appended to the table name to indicate that descendant tables are to be
scanned, but in the current version, this is the default behavior. (In releases before 7.1,ONLY

was the default behavior.) The default behavior can be modified by changing thesql_inheritance
configuration option.

alias

A substitute name for theFROMitem containing the alias. An alias is used for brevity or to
eliminate ambiguity for self-joins (where the same table is scanned multiple times). When an
alias is provided, it completely hides the actual name of the table or function; for example given
FROM foo AS f, the remainder of theSELECTmust refer to thisFROMitem asf not foo . If
an alias is written, a column alias list can also be written to provide substitute names for one or
more columns of the table.

select

A sub-SELECTcan appear in theFROMclause. This acts as though its output were created as
a temporary table for the duration of this singleSELECTcommand. Note that the sub-SELECT

must be surrounded by parentheses, and an aliasmustbe provided for it.

function_name

Function calls can appear in theFROMclause. (This is especially useful for functions that return
result sets, but any function can be used.) This acts as though its output were created as a tempo-
rary table for the duration of this singleSELECTcommand. An alias may also be used. If an alias
is written, a column alias list can also be written to provide substitute names for one or more

830

SELECT

attributes of the function’s composite return type. If the function has been defined as returning
the record data type, then an alias or the key wordAS must be present, followed by a column
definition list in the form(column_name data_type [, ...]) . The column definition
list must match the actual number and types of columns returned by the function.

join_type

One of

• [INNER] JOIN

• LEFT [OUTER] JOIN

• RIGHT [OUTER] JOIN

• FULL [OUTER] JOIN

• CROSS JOIN

For theINNER andOUTERjoin types, a join condition must be specified, namely exactly one
of NATURAL, ON join_condition , or USING (join_column [, ...]) . See below for the
meaning. ForCROSS JOIN, none of these clauses may appear.

A JOIN clause combines twoFROMitems. Use parentheses if necessary to determine the order
of nesting. In the absence of parentheses,JOINs nest left-to-right. In any caseJOIN binds more
tightly than the commas separatingFROMitems.

CROSS JOINandINNER JOIN produce a simple Cartesian product, the same result as you get
from listing the two items at the top level ofFROM, but restricted by the join condition (if any).
CROSS JOINis equivalent toINNER JOIN ON (TRUE), that is, no rows are removed by qual-
ification. These join types are just a notational convenience, since they do nothing you couldn’t
do with plainFROMandWHERE.

LEFT OUTER JOINreturns all rows in the qualified Cartesian product (i.e., all combined rows
that pass its join condition), plus one copy of each row in the left-hand table for which there was
no right-hand row that passed the join condition. This left-hand row is extended to the full width
of the joined table by inserting null values for the right-hand columns. Note that only theJOIN

clause’s own condition is considered while deciding which rows have matches. Outer conditions
are applied afterwards.

Conversely,RIGHT OUTER JOINreturns all the joined rows, plus one row for each unmatched
right-hand row (extended with nulls on the left). This is just a notational convenience, since you
could convert it to aLEFT OUTER JOINby switching the left and right inputs.

FULL OUTER JOINreturns all the joined rows, plus one row for each unmatched left-hand row
(extended with nulls on the right), plus one row for each unmatched right-hand row (extended
with nulls on the left).

ON join_condition

join_condition is an expression resulting in a value of typeboolean (similar to aWHERE

clause) that specifies which rows in a join are considered to match.

USING (join_column [, ...])

A clause of the formUSING (a, b, ...) is shorthand forON left_table.a =

right_table.a AND left_table.b = right_table.b Also, USING implies that
only one of each pair of equivalent columns will be included in the join output, not both.

NATURAL

NATURALis shorthand for aUSING list that mentions all columns in the two tables that have the
same names.

831

SELECT

WHEREClause

The optionalWHEREclause has the general form

WHEREcondition

wherecondition is any expression that evaluates to a result of typeboolean . Any row that does
not satisfy this condition will be eliminated from the output. A row satisfies the condition if it returns
true when the actual row values are substituted for any variable references.

GROUP BYClause

The optionalGROUP BYclause has the general form

GROUP BYexpression [, ...]

GROUP BYwill condense into a single row all selected rows that share the same values for the grouped
expressions.expression can be an input column name, or the name or ordinal number of an output
column (SELECTlist item), or an arbitrary expression formed from input-column values. In case of
ambiguity, aGROUP BYname will be interpreted as an input-column name rather than an output
column name.

Aggregate functions, if any are used, are computed across all rows making up each group, producing
a separate value for each group (whereas withoutGROUP BY, an aggregate produces a single value
computed across all the selected rows). WhenGROUP BYis present, it is not valid for theSELECTlist
expressions to refer to ungrouped columns except within aggregate functions, since there would be
more than one possible value to return for an ungrouped column.

HAVINGClause

The optionalHAVINGclause has the general form

HAVING condition

wherecondition is the same as specified for theWHEREclause.

HAVING eliminates group rows that do not satisfy the condition.HAVING is different fromWHERE:
WHEREfilters individual rows before the application ofGROUP BY, while HAVINGfilters group rows
created byGROUP BY. Each column referenced incondition must unambiguously reference a
grouping column, unless the reference appears within an aggregate function.

SELECTList

TheSELECTlist (between the key wordsSELECTandFROM) specifies expressions that form the output
rows of theSELECTstatement. The expressions can (and usually do) refer to columns computed in
the FROMclause. Using the clauseAS output_name , another name can be specified for an output
column. This name is primarily used to label the column for display. It can also be used to refer to the

832

SELECT

column’s value inORDER BYandGROUP BYclauses, but not in theWHEREor HAVINGclauses; there
you must write out the expression instead.

Instead of an expression,* can be written in the output list as a shorthand for all the columns of the
selected rows. Also, one can writetable_name .* as a shorthand for the columns coming from just
that table.

UNIONClause

TheUNIONclause has this general form:

select_statement UNION [ALL] select_statement

select_statement is any SELECTstatement without anORDER BY, LIMIT , or FOR UPDATE

clause. (ORDER BYandLIMIT can be attached to a subexpression if it is enclosed in parentheses.
Without parentheses, these clauses will be taken to apply to the result of theUNION, not to its right-
hand input expression.)

TheUNIONoperator computes the set union of the rows returned by the involvedSELECTstatements.
A row is in the set union of two result sets if it appears in at least one of the result sets. The two
SELECTstatements that represent the direct operands of theUNIONmust produce the same number of
columns, and corresponding columns must be of compatible data types.

The result ofUNIONdoes not contain any duplicate rows unless theALL option is specified.ALL pre-
vents elimination of duplicates. (Therefore,UNION ALL is usually significantly quicker thanUNION;
useALL when you can.)

Multiple UNIONoperators in the sameSELECTstatement are evaluated left to right, unless otherwise
indicated by parentheses.

Currently,FOR UPDATEmay not be specified either for aUNIONresult or for any input of aUNION.

INTERSECTClause

The INTERSECTclause has this general form:

select_statement INTERSECT [ALL] select_statement

select_statement is any SELECTstatement without anORDER BY, LIMIT , or FOR UPDATE

clause.

The INTERSECToperator computes the set intersection of the rows returned by the involvedSELECT

statements. A row is in the intersection of two result sets if it appears in both result sets.

The result ofINTERSECTdoes not contain any duplicate rows unless theALL option is specified.
With ALL, a row that hasmduplicates in the left table andn duplicates in the right table will appear
min(m,n) times in the result set.

Multiple INTERSECT operators in the sameSELECT statement are evaluated left to right, unless
parentheses dictate otherwise.INTERSECT binds more tightly thanUNION. That is, A UNION B

INTERSECT Cwill be read asA UNION (B INTERSECT C).

Currently,FOR UPDATEmay not be specified either for anINTERSECTresult or for any input of an
INTERSECT.

833

SELECT

EXCEPTClause

TheEXCEPTclause has this general form:

select_statement EXCEPT [ALL] select_statement

select_statement is any SELECTstatement without anORDER BY, LIMIT , or FOR UPDATE

clause.

TheEXCEPToperator computes the set of rows that are in the result of the leftSELECTstatement but
not in the result of the right one.

The result ofEXCEPTdoes not contain any duplicate rows unless theALL option is specified. With
ALL, a row that hasmduplicates in the left table andn duplicates in the right table will appear max(m-
n,0) times in the result set.

Multiple EXCEPToperators in the sameSELECTstatement are evaluated left to right, unless parenthe-
ses dictate otherwise.EXCEPTbinds at the same level asUNION.

Currently, FOR UPDATEmay not be specified either for anEXCEPTresult or for any input of an
EXCEPT.

ORDER BYClause

The optionalORDER BYclause has this general form:

ORDER BYexpression [ASC | DESC | USING operator] [, ...]

expression can be the name or ordinal number of an output column (SELECTlist item), or it can
be an arbitrary expression formed from input-column values.

The ORDER BYclause causes the result rows to be sorted according to the specified expressions. If
two rows are equal according to the leftmost expression, the are compared according to the next
expression and so on. If they are equal according to all specified expressions, they are returned in an
implementation-dependent order.

The ordinal number refers to the ordinal (left-to-right) position of the result column. This feature
makes it possible to define an ordering on the basis of a column that does not have a unique name.
This is never absolutely necessary because it is always possible to assign a name to a result column
using theASclause.

It is also possible to use arbitrary expressions in theORDER BYclause, including columns that do not
appear in theSELECTresult list. Thus the following statement is valid:

SELECT name FROM distributors ORDER BY code;

A limitation of this feature is that anORDER BYclause applying to the result of aUNION, INTERSECT,
or EXCEPTclause may only specify an output column name or number, not an expression.

If an ORDER BYexpression is a simple name that matches both a result column name and an input
column name,ORDER BYwill interpret it as the result column name. This is the opposite of the choice
thatGROUP BYwill make in the same situation. This inconsistency is made to be compatible with the
SQL standard.

Optionally one may add the key wordASC(ascending) orDESC(descending) after any expression in
the ORDER BYclause. If not specified,ASC is assumed by default. Alternatively, a specific ordering
operator name may be specified in theUSINGclause.ASCis usually equivalent toUSING < andDESC

is usually equivalent toUSING >. (But the creator of a user-defined data type can define exactly what
the default sort ordering is, and it might correspond to operators with other names.)

834

SELECT

The null value sorts higher than any other value. In other words, with ascending sort order, null values
sort at the end, and with descending sort order, null values sort at the beginning.

Character-string data is sorted according to the locale-specific collation order that was established
when the database cluster was initialized.

DISTINCT Clause

If DISTINCT is specified, all duplicate rows are removed from the result set (one row is kept from
each group of duplicates).ALL specifies the opposite: all rows are kept; that is the default.

DISTINCT ON (expression [, ...]) keeps only the first row of each set of rows where the
given expressions evaluate to equal. TheDISTINCT ON expressions are interpreted using the same
rules as forORDER BY(see above). Note that the “first row” of each set is unpredictable unlessORDER

BY is used to ensure that the desired row appears first. For example,

SELECT DISTINCT ON (location) location, time, report
FROM weather_reports
ORDER BY location, time DESC;

retrieves the most recent weather report for each location. But if we had not usedORDER BYto force
descending order of time values for each location, we’d have gotten a report from an unpredictable
time for each location.

TheDISTINCT ON expression(s) must match the leftmostORDER BYexpression(s). TheORDER BY

clause will normally contain additional expression(s) that determine the desired precedence of rows
within eachDISTINCT ON group.

LIMIT Clause

TheLIMIT clause consists of two independent sub-clauses:

LIMIT { count | ALL }
OFFSET start

count specifies the maximum number of rows to return, whilestart specifies the number of rows
to skip before starting to return rows. When both are specified,start rows are skipped before
starting to count thecount rows to be returned.

When usingLIMIT , it is a good idea to use anORDER BYclause that constrains the result rows into
a unique order. Otherwise you will get an unpredictable subset of the query’s rows — you may be
asking for the tenth through twentieth rows, but tenth through twentieth in what ordering? You don’t
know what ordering unless you specifyORDER BY.

The query planner takesLIMIT into account when generating a query plan, so you are very likely to
get different plans (yielding different row orders) depending on what you use forLIMIT andOFFSET.
Thus, using differentLIMIT /OFFSETvalues to select different subsets of a query resultwill give
inconsistent resultsunless you enforce a predictable result ordering withORDER BY. This is not a
bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unlessORDER BYis used to constrain the order.

835

SELECT

FOR UPDATEClause

TheFOR UPDATEclause has this form:

FOR UPDATE [OFtable_name [, ...]]

FOR UPDATEcauses the rows retrieved by theSELECTstatement to be locked as though for update.
This prevents them from being modified or deleted by other transactions until the current transaction
ends. That is, other transactions that attemptUPDATE, DELETE, or SELECT FOR UPDATEof these
rows will be blocked until the current transaction ends. Also, if anUPDATE, DELETE, or SELECT FOR

UPDATEfrom another transaction has already locked a selected row or rows,SELECT FOR UPDATE

will wait for the other transaction to complete, and will then lock and return the updated row (or no
row, if the row was deleted). For further discussion seeChapter 12.

If specific tables are named inFOR UPDATE, then only rows coming from those tables are locked; any
other tables used in theSELECTare simply read as usual.

FOR UPDATEcannot be used in contexts where returned rows can’t be clearly identified with individ-
ual table rows; for example it can’t be used with aggregation.

FOR UPDATEmay appear beforeLIMIT for compatibility with PostgreSQL versions before 7.3. It
effectively executes afterLIMIT , however, and so that is the recommended place to write it.

Examples

To join the tablefilms with the tabledistributors :

SELECT f.title, f.did, d.name, f.date_prod, f.kind
FROM distributors d, films f
WHERE f.did = d.did

title | did | name | date_prod | kind
-------------------+-----+--------------+------------+----------

The Third Man | 101 | British Lion | 1949-12-23 | Drama
The African Queen | 101 | British Lion | 1951-08-11 | Romantic
...

To sum the columnlen of all films and group the results bykind :

SELECT kind, sum(len) AS total FROM films GROUP BY kind;

kind | total
----------+-------

Action | 07:34
Comedy | 02:58
Drama | 14:28
Musical | 06:42
Romantic | 04:38

To sum the columnlen of all films, group the results bykind and show those group totals that are
less than 5 hours:

836

SELECT

SELECT kind, sum(len) AS total
FROM films
GROUP BY kind
HAVING sum(len) < interval ’5 hours’;

kind | total
----------+-------

Comedy | 02:58
Romantic | 04:38

The following two examples are identical ways of sorting the individual results according to the
contents of the second column (name):

SELECT * FROM distributors ORDER BY name;
SELECT * FROM distributors ORDER BY 2;

did | name
-----+------------------

109 | 20th Century Fox
110 | Bavaria Atelier
101 | British Lion
107 | Columbia
102 | Jean Luc Godard
113 | Luso films
104 | Mosfilm
103 | Paramount
106 | Toho
105 | United Artists
111 | Walt Disney
112 | Warner Bros.
108 | Westward

The next example shows how to obtain the union of the tablesdistributors andactors , restricting
the results to those that begin with the letter W in each table. Only distinct rows are wanted, so the
key wordALL is omitted.

distributors: actors:
did | name id | name

-----+-------------- ----+----------------
108 | Westward 1 | Woody Allen
111 | Walt Disney 2 | Warren Beatty
112 | Warner Bros. 3 | Walter Matthau
... ...

SELECT distributors.name
FROM distributors
WHERE distributors.name LIKE ’W%’

UNION
SELECT actors.name

FROM actors
WHERE actors.name LIKE ’W%’;

name

837

SELECT

Walt Disney
Walter Matthau
Warner Bros.
Warren Beatty
Westward
Woody Allen

This example shows how to use a function in theFROMclause, both with and without a column
definition list:

CREATE FUNCTION distributors(int) RETURNS SETOF distributors AS $$
SELECT * FROM distributors WHERE did = $1;

$$ LANGUAGE SQL;

SELECT * FROM distributors(111);
did | name

-----+-------------
111 | Walt Disney

CREATE FUNCTION distributors_2(int) RETURNS SETOF record AS $$
SELECT * FROM distributors WHERE did = $1;

$$ LANGUAGE SQL;

SELECT * FROM distributors_2(111) AS (f1 int, f2 text);
f1 | f2

-----+-------------
111 | Walt Disney

Compatibility

Of course, theSELECTstatement is compatible with the SQL standard. But there are some extensions
and some missing features.

Omitted FROMClauses

PostgreSQL allows one to omit theFROMclause. It has a straightforward use to compute the results
of simple expressions:

SELECT 2+2;

?column?

4

Some other SQL databases cannot do this except by introducing a dummy one-row table from which
to do theSELECT.

A less obvious use is to abbreviate a normalSELECTfrom tables:

SELECT distributors.* WHERE distributors.name = ’Westward’;

did | name
-----+----------

838

SELECT

108 | Westward

This works because an implicitFROMitem is added for each table that is referenced in other parts of
theSELECTstatement but not mentioned inFROM.

While this is a convenient shorthand, it’s easy to misuse. For example, the command

SELECT distributors.* FROM distributors d;

is probably a mistake; most likely the user meant

SELECT d.* FROM distributors d;

rather than the unconstrained join

SELECT distributors.* FROM distributors d, distributors distributors;

that he will actually get. To help detect this sort of mistake, PostgreSQL will warn if the implicit-FROM

feature is used in aSELECTstatement that also contains an explicitFROMclause. Also, it is possible
to disable the implicit-FROMfeature by setting theadd_missing_fromparameter to false.

The AS Key Word

In the SQL standard, the optional key wordAS is just noise and can be omitted without affecting
the meaning. The PostgreSQL parser requires this key word when renaming output columns because
the type extensibility features lead to parsing ambiguities without it.AS is optional inFROMitems,
however.

Namespace Available to GROUP BYand ORDER BY

In the SQL-92 standard, anORDER BYclause may only use result column names or numbers, while a
GROUP BYclause may only use expressions based on input column names. PostgreSQL extends each
of these clauses to allow the other choice as well (but it uses the standard’s interpretation if there is
ambiguity). PostgreSQL also allows both clauses to specify arbitrary expressions. Note that names
appearing in an expression will always be taken as input-column names, not as result-column names.

SQL:1999 uses a slightly different definition which is not entirely upward compatible with SQL-92.
In most cases, however, PostgreSQL will interpret anORDER BYor GROUP BYexpression the same
way SQL:1999 does.

Nonstandard Clauses

The clausesDISTINCT ON, LIMIT , andOFFSETare not defined in the SQL standard.

839

SELECT INTO

Name
SELECT INTO— define a new table from the results of a query

Synopsis

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
* | expression [AS output_name] [, ...]
INTO [TEMPORARY | TEMP] [TABLE] new_table
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BYexpression [, ...]]
[HAVING condition [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL] select]
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start]
[FOR UPDATE [OF tablename [, ...]]]

Description

SELECT INTOcreates a new table and fills it with data computed by a query. The data is not returned
to the client, as it is with a normalSELECT. The new table’s columns have the names and data types
associated with the output columns of theSELECT.

Parameters

TEMPORARYor TEMP

If specified, the table is created as a temporary table. Refer toCREATE TABLEfor details.

new_table

The name (optionally schema-qualified) of the table to be created.

All other parameters are described in detail underSELECT.

Notes

CREATE TABLE ASis functionally similar toSELECT INTO. CREATE TABLE ASis the recom-
mended syntax, since this form ofSELECT INTO is not available in ECPG or PL/pgSQL, because
they interpret theINTO clause differently. Furthermore,CREATE TABLE ASoffers a superset of the
functionality provided bySELECT INTO.

Prior to PostgreSQL 8.0, the table created bySELECT INTOalways included OIDs. As of PostgreSQL
8.0, the inclusion of OIDs in the table created bySELECT INTOis controlled by thedefault_with_oids
configuration variable. This variable currently defaults to true, but will likely default to false in a future
release of PostgreSQL.

840

SELECT INTO

Examples

Create a new tablefilms_recent consisting of only recent entries from the tablefilms :

SELECT * INTO films_recent FROM films WHERE date_prod >= ’2002-01-01’;

Compatibility

The SQL standard usesSELECT INTO to represent selecting values into scalar variables of a host
program, rather than creating a new table. This indeed is the usage found in ECPG (seeChapter 29)
and PL/pgSQL (seeChapter 35). The PostgreSQL usage ofSELECT INTOto represent table creation
is historical. It is best to useCREATE TABLE ASfor this purpose in new code.

See Also

CREATE TABLE AS

841

SET

Name
SET— change a run-time parameter

Synopsis

SET [SESSION | LOCAL] name { TO | = } { value | ’ value ’ | DEFAULT }
SET [SESSION | LOCAL] TIME ZONE { timezone | LOCAL | DEFAULT }

Description

The SET command changes run-time configuration parameters. Many of the run-time parameters
listed inSection 16.4can be changed on-the-fly withSET. (But some require superuser privileges to
change, and others cannot be changed after server or session start.)SETonly affects the value used by
the current session.

If SET or SET SESSIONis issued within a transaction that is later aborted, the effects of theSET

command disappear when the transaction is rolled back. (This behavior represents a change from
PostgreSQL versions prior to 7.3, where the effects ofSET would not roll back after a later error.)
Once the surrounding transaction is committed, the effects will persist until the end of the session,
unless overridden by anotherSET.

The effects ofSET LOCALlast only till the end of the current transaction, whether committed or not.
A special case isSET followed bySET LOCALwithin a single transaction: theSET LOCALvalue will
be seen until the end of the transaction, but afterwards (if the transaction is committed) theSETvalue
will take effect.

Parameters

SESSION

Specifies that the command takes effect for the current session. (This is the default if neither
SESSIONnor LOCALappears.)

LOCAL

Specifies that the command takes effect for only the current transaction. AfterCOMMITor
ROLLBACK, the session-level setting takes effect again. Note thatSET LOCALwill appear
to have no effect if it is executed outside aBEGIN block, since the transaction will end
immediately.

name

Name of a settable run-time parameter. Available parameters are documented inSection 16.4
and below.

value

New value of parameter. Values can be specified as string constants, identifiers, numbers, or
comma-separated lists of these.DEFAULTcan be used to specify resetting the parameter to its
default value.

842

SET

Besides the configuration parameters documented inSection 16.4, there are a few that can only be
adjusted using theSETcommand or that have a special syntax:

NAMES

SET NAMESvalue is an alias forSET client_encoding TO value .

SEED

Sets the internal seed for the random number generator (the functionrandom). Allowed values
are floating-point numbers between 0 and 1, which are then multiplied by 231-1.

The seed can also be set by invoking the functionsetseed :

SELECT setseed(value);

TIME ZONE

SET TIME ZONEvalue is an alias forSET timezone TO value . The syntaxSET TIME

ZONEallows special syntax for the time zone specification. Here are examples of valid values:

’PST8PDT’

The time zone for Berkeley, California.

’Europe/Rome’

The time zone for Italy.

-7

The time zone 7 hours west from UTC (equivalent to PDT). Positive values are east from
UTC.

INTERVAL ’-08:00’ HOUR TO MINUTE

The time zone 8 hours west from UTC (equivalent to PST).

LOCAL

DEFAULT

Set the time zone to your local time zone (the one that the server’s operating system defaults
to).

SeeSection 8.5for more information about time zones. Also,Appendix Bhas a list of the
recognized names for time zones.

Notes

The functionset_config provides equivalent functionality. SeeSection 9.20.

Examples

Set the schema search path:

SET search_path TO my_schema, public;

843

SET

Set the style of date to traditional POSTGRES with “day before month” input convention:

SET datestyle TO postgres, dmy;

Set the time zone for Berkeley, California:

SET TIME ZONE ’PST8PDT’;

Set the time zone for Italy:

SET TIME ZONE ’Europe/Rome’;

Compatibility

SET TIME ZONEextends syntax defined in the SQL standard. The standard allows only numeric time
zone offsets while PostgreSQL allows more flexible time-zone specifications. All otherSET features
are PostgreSQL extensions.

See Also

RESET, SHOW

844

SET CONSTRAINTS

Name
SET CONSTRAINTS— set constraint checking modes for the current transaction

Synopsis

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

Description

SET CONSTRAINTSsets the behavior of constraint checking within the current transaction.
IMMEDIATE constraints are checked at the end of each statement.DEFERREDconstraints are not
checked until transaction commit. Each constraint has its ownIMMEDIATEor DEFERREDmode.

Upon creation, a constraint is given one of three characteristics:DEFERRABLE INITIALLY

DEFERRED, DEFERRABLE INITIALLY IMMEDIATE, or NOT DEFERRABLE. The third class is
alwaysIMMEDIATE and is not affected by theSET CONSTRAINTScommand. The first two classes
start every transaction in the indicated mode, but their behavior can be changed within a transaction
by SET CONSTRAINTS.

SET CONSTRAINTSwith a list of constraint names changes the mode of just those constraints (which
must all be deferrable). If there are multiple constraints matching any given name, all are affected.
SET CONSTRAINTS ALLchanges the mode of all deferrable constraints.

WhenSET CONSTRAINTSchanges the mode of a constraint fromDEFERREDto IMMEDIATE, the new
mode takes effect retroactively: any outstanding data modifications that would have been checked
at the end of the transaction are instead checked during the execution of theSET CONSTRAINTS

command. If any such constraint is violated, theSET CONSTRAINTSfails (and does not change the
constraint mode). Thus,SET CONSTRAINTScan be used to force checking of constraints to occur at
a specific point in a transaction.

Currently, only foreign key constraints are affected by this setting. Check and unique constraints are
always effectively not deferrable.

Notes

This command only alters the behavior of constraints within the current transaction. Thus, if you
execute this command outside of a transaction block (BEGIN/COMMITpair), it will not appear to have
any effect.

Compatibility

This command complies with the behavior defined in the SQL standard, except for the limitation that,
in PostgreSQL, it only applies to foreign-key constraints.

The SQL standard says that constraint names appearing inSET CONSTRAINTS can be
schema-qualified. This is not yet supported by PostgreSQL: the names must be unqualified, and all
constraints matching the command will be affected no matter which schema they are in.

845

SET SESSION AUTHORIZATION

Name
SET SESSION AUTHORIZATION— set the session user identifier and the current user identifier
of the current session

Synopsis

SET [SESSION | LOCAL] SESSION AUTHORIZATION username
SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT
RESET SESSION AUTHORIZATION

Description

This command sets the session user identifier and the current user identifier of the current SQL-
session context to beusername . The user name may be written as either an identifier or a string
literal. Using this command, it is possible, for example, to temporarily become an unprivileged user
and later switch back to become a superuser.

The session user identifier is initially set to be the (possibly authenticated) user name provided by
the client. The current user identifier is normally equal to the session user identifier, but may change
temporarily in the context of “setuid” functions and similar mechanisms. The current user identifier
is relevant for permission checking.

The session user identifier may be changed only if the initial session user (theauthenticated user) had
the superuser privilege. Otherwise, the command is accepted only if it specifies the authenticated user
name.

TheSESSIONandLOCALmodifiers act the same as for the regularSETcommand.

The DEFAULTand RESETforms reset the session and current user identifiers to be the originally
authenticated user name. These forms may be executed by any user.

Examples

SELECT SESSION_USER, CURRENT_USER;

session_user | current_user
--------------+--------------

peter | peter

SET SESSION AUTHORIZATION ’paul’;

SELECT SESSION_USER, CURRENT_USER;

session_user | current_user
--------------+--------------

paul | paul

846

SET SESSION AUTHORIZATION

Compatibility

The SQL standard allows some other expressions to appear in place of the literalusername which
are not important in practice. PostgreSQL allows identifier syntax ("username"), which SQL does
not. SQL does not allow this command during a transaction; PostgreSQL does not make this re-
striction because there is no reason to. The privileges necessary to execute this command are left
implementation-defined by the standard.

847

SET TRANSACTION

Name
SET TRANSACTION— set the characteristics of the current transaction

Synopsis

SET TRANSACTIONtransaction_mode [, ...]
SET SESSION CHARACTERISTICS AS TRANSACTIONtransaction_mode [, ...]

where transaction_mode is one of:

ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
READ WRITE | READ ONLY

Description

The SET TRANSACTIONcommand sets the characteristics of the current transaction. It has no ef-
fect on any subsequent transactions.SET SESSION CHARACTERISTICSsets the default transaction
characteristics for subsequent transactions of a session. These defaults can be overridden bySET

TRANSACTIONfor an individual transaction.

The available transaction characteristics are the transaction isolation level and the transaction access
mode (read/write or read-only).

The isolation level of a transaction determines what data the transaction can see when other transac-
tions are running concurrently:

READ COMMITTED

A statement can only see rows committed before it began. This is the default.

SERIALIZABLE

All statements of the current transaction can only see rows committed before the first query or
data-modification statement was executed in this transaction.

The SQL standard defines two additional levels,READ UNCOMMITTEDand REPEATABLE READ.
In PostgreSQLREAD UNCOMMITTEDis treated asREAD COMMITTED, while REPEATABLE READis
treated asSERIALIZABLE .

The transaction isolation level cannot be changed after the first query or data-modification statement
(SELECT, INSERT, DELETE, UPDATE, FETCH, or COPY) of a transaction has been executed. SeeChap-
ter 12for more information about transaction isolation and concurrency control.

The transaction access mode determines whether the transaction is read/write or read-only. Read/write
is the default. When a transaction is read-only, the following SQL commands are disallowed:INSERT,
UPDATE, DELETE, andCOPY TOif the table they would write to is not a temporary table; allCREATE,
ALTER, andDROPcommands;COMMENT, GRANT, REVOKE, TRUNCATE; andEXPLAIN ANALYZEand
EXECUTEif the command they would execute is among those listed. This is a high-level notion of
read-only that does not prevent all writes to disk.

848

SET TRANSACTION

Notes

If SET TRANSACTIONis executed without a priorSTART TRANSACTIONor BEGIN, it will appear to
have no effect, since the transaction will immediately end.

It is possible to dispense withSET TRANSACTION by instead specifying the desired
transaction_modes in BEGIN or START TRANSACTION.

The session default transaction modes can also be set by setting the configuration parameters
default_transaction_isolation and default_transaction_read_only. (In fact SET SESSION

CHARACTERISTICSis just a verbose equivalent for setting these variables withSET.) This means the
defaults can be set in the configuration file, viaALTER DATABASE, etc. ConsultSection 16.4for
more information.

Compatibility

Both commands are defined in the SQL standard.SERIALIZABLE is the default transaction isolation
level in the standard. In PostgreSQL the default is ordinarilyREAD COMMITTED, but you can change
it as mentioned above. Because of lack of predicate locking, theSERIALIZABLE level is not truly
serializable. SeeChapter 12for details.

In the SQL standard, there is one other transaction characteristic that can be set with these com-
mands: the size of the diagnostics area. This concept is specific to embedded SQL, and therefore is
not implemented in the PostgreSQL server.

The SQL standard requires commas between successivetransaction_modes , but for historical
reasons PostgreSQL allows the commas to be omitted.

849

SHOW

Name
SHOW— show the value of a run-time parameter

Synopsis

SHOWname
SHOW ALL

Description

SHOWwill display the current setting of run-time parameters. These variables can be set using the
SET statement, by editing thepostgresql.conf configuration file, through thePGOPTIONSenvi-
ronmental variable (when using libpq or a libpq-based application), or through command-line flags
when starting thepostmaster . SeeSection 16.4for details.

Parameters

name

The name of a run-time parameter. Available parameters are documented inSection 16.4and on
theSETreference page. In addition, there are a few parameters that can be shown but not set:

SERVER_VERSION

Shows the server’s version number.

SERVER_ENCODING

Shows the server-side character set encoding. At present, this parameter can be shown but
not set, because the encoding is determined at database creation time.

LC_COLLATE

Shows the database’s locale setting for collation (text ordering). At present, this parameter
can be shown but not set, because the setting is determined atinitdb time.

LC_CTYPE

Shows the database’s locale setting for character classification. At present, this parameter
can be shown but not set, because the setting is determined atinitdb time.

IS_SUPERUSER

True if the current session authorization identifier has superuser privileges.

ALL

Show the values of all configuration parameters.

850

SHOW

Notes

The functioncurrent_setting produces equivalent output. SeeSection 9.20.

Examples

Show the current setting of the parameterDateStyle :

SHOW DateStyle;
DateStyle

ISO, MDY

(1 row)

Show the current setting of the parametergeqo :

SHOW geqo;
geqo

on

(1 row)

Show all settings:

SHOW ALL;
name | setting

--------------------------------+--
add_missing_from | on
archive_command | unset
australian_timezones | off

.

.

.
work_mem | 1024
zero_damaged_pages | off

(140 rows)

Compatibility

TheSHOWcommand is a PostgreSQL extension.

See Also

SET, RESET

851

START TRANSACTION

Name
START TRANSACTION— start a transaction block

Synopsis

START TRANSACTION [transaction_mode [, ...]]

where transaction_mode is one of:

ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
READ WRITE | READ ONLY

Description

This command begins a new transaction block. If the isolation level or read/write mode is specified,
the new transaction has those characteristics, as ifSET TRANSACTIONwas executed. This is the
same as theBEGIN command.

Parameters

Refer toSET TRANSACTIONfor information on the meaning of the parameters to this statement.

Compatibility

In the standard, it is not necessary to issueSTART TRANSACTIONto start a transaction block: any
SQL command implicitly begins a block. PostgreSQL’s behavior can be seen as implicitly issuing
a COMMITafter each command that does not followSTART TRANSACTION(or BEGIN), and it is
therefore often called “autocommit”. Other relational database systems may offer an autocommit
feature as a convenience.

The SQL standard requires commas between successivetransaction_modes , but for historical
reasons PostgreSQL allows the commas to be omitted.

See also the compatibility section ofSET TRANSACTION.

See Also

BEGIN, COMMIT, ROLLBACK, SAVEPOINT, SET TRANSACTION

852

TRUNCATE

Name
TRUNCATE— empty a table

Synopsis

TRUNCATE [TABLE] name

Description

TRUNCATEquickly removes all rows from a table. It has the same effect as an unqualifiedDELETEbut
since it does not actually scan the table it is faster. This is most useful on large tables.

Parameters

name

The name (optionally schema-qualified) of the table to be truncated.

Notes

TRUNCATEcannot be used if there are foreign-key references to the table from other tables. Checking
validity in such cases would require table scans, and the whole point is not to do one.

TRUNCATEwill not run any user-definedON DELETEtriggers that might exist for the table.

Examples

Truncate the tablebigtable :

TRUNCATE TABLE bigtable;

Compatibility

There is noTRUNCATEcommand in the SQL standard.

853

UNLISTEN

Name
UNLISTEN— stop listening for a notification

Synopsis

UNLISTEN { name | * }

Description

UNLISTEN is used to remove an existing registration forNOTIFY events.UNLISTENcancels any exist-
ing registration of the current PostgreSQL session as a listener on the notificationname. The special
wildcard* cancels all listener registrations for the current session.

NOTIFYcontains a more extensive discussion of the use ofLISTEN andNOTIFY.

Parameters

name

Name of a notification (any identifier).

*

All current listen registrations for this session are cleared.

Notes

You may unlisten something you were not listening for; no warning or error will appear.

At the end of each session,UNLISTEN * is automatically executed.

Examples

To make a registration:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.

OnceUNLISTENhas been executed, furtherNOTIFY commands will be ignored:

UNLISTEN virtual;
NOTIFY virtual;
-- no NOTIFY event is received

854

UNLISTEN

Compatibility

There is noUNLISTENcommand in the SQL standard.

See Also

LISTEN, NOTIFY

855

UPDATE

Name
UPDATE— update rows of a table

Synopsis

UPDATE [ONLY] table SET column = { expression | DEFAULT } [, ...]
[FROM fromlist]
[WHERE condition]

Description

UPDATEchanges the values of the specified columns in all rows that satisfy the condition. Only the
columns to be modified need be mentioned in theSET clause; columns not explicitly modified retain
their previous values.

By default,UPDATEwill update rows in the specified table and all its subtables. If you wish to only
update the specific table mentioned, you must use theONLYclause.

There are two ways to modify a table using information contained in other tables in the database: using
sub-selects, or specifying additional tables in theFROMclause. Which technique is more appropriate
depends on the specific circumstances.

You must have theUPDATEprivilege on the table to update it, as well as theSELECTprivilege to any
table whose values are read in theexpression s orcondition .

Parameters

table

The name (optionally schema-qualified) of the table to update.

column

The name of a column intable . The column name can be qualified with a subfield name or
array subscript, if needed.

expression

An expression to assign to the column. The expression may use the old values of this and other
columns in the table.

DEFAULT

Set the column to its default value (which will be NULL if no specific default expression has
been assigned to it).

fromlist

A list of table expressions, allowing columns from other tables to appear in theWHEREcondition
and the update expressions. This is similar to the list of tables that can be specified in theFROM
Clauseof a SELECTstatement. Note that the target table must not appear in thefromlist ,
unless you intend a self-join (in which case it must appear with an alias in thefromlist).

856

UPDATE

condition

An expression that returns a value of typeboolean . Only rows for which this expression returns
true will be updated.

Outputs

On successful completion, anUPDATEcommand returns a command tag of the form

UPDATE count

Thecount is the number of rows updated. Ifcount is 0, no rows matched thecondition (this
is not considered an error).

Notes

When aFROMclause is present, what essentially happens is that the target table is joined to the tables
mentioned in thefromlist , and each output row of the join represents an update operation for the
target table. When usingFROMyou should ensure that the join produces at most one output row for
each row to be modified. In other words, a target row shouldn’t join to more than one row from the
other table(s). If it does, then only one of the join rows will be used to update the target row, but which
one will be used is not readily predictable.

Because of this indeterminancy, referencing other tables only within sub-selects is safer, though often
harder to read and slower than using a join.

Examples

Change the wordDrama to Dramatic in the columnkind of the tablefilms :

UPDATE films SET kind = ’Dramatic’ WHERE kind = ’Drama’;

Adjust temperature entries and reset precipitation to its default value in one row of the tableweather :

UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp = DEFAULT
WHERE city = ’San Francisco’ AND date = ’2003-07-03’;

Increment the sales count of the salesperson who manages the account for Acme Corporation, using
theFROMclause syntax:

UPDATE employees SET sales_count = sales_count + 1 FROM accounts
WHERE accounts.name = ’Acme Corporation’
AND employees.id = accounts.sales_person;

Perform the same operation, using a sub-select in theWHEREclause:

UPDATE employees SET sales_count = sales_count + 1 WHERE id =
(SELECT sales_person FROM accounts WHERE name = ’Acme Corporation’);

857

UPDATE

Attempt to insert a new stock item along with the quantity of stock. If the item already exists, instead
update the stock count of the existing item. To do this without failing the entire transaction, use
savepoints.

BEGIN;
-- other operations
SAVEPOINT sp1;
INSERT INTO wines VALUES(’Chateau Lafite 2003’, ’24’);
-- Assume the above fails because of a unique key violation,
-- so now we issue these commands:
ROLLBACK TO sp1;
UPDATE wines SET stock = stock + 24 WHERE winename = ’Chateau Lafite 2003’;
-- continue with other operations, and eventually
COMMIT;

Compatibility

This command conforms to the SQL standard, except that theFROMclause is a PostgreSQL extension.

Some other database systems offer aFROMoption in which the target table is supposed to be listed
again withinFROM. That is not how PostgreSQL interpretsFROM. Be careful when porting applications
that use this extension.

858

VACUUM

Name
VACUUM— garbage-collect and optionally analyze a database

Synopsis

VACUUM [FULL | FREEZE] [VERBOSE] [table]
VACUUM [FULL | FREEZE] [VERBOSE] ANALYZE [table [(column [, ...])]]

Description

VACUUMreclaims storage occupied by deleted tuples. In normal PostgreSQL operation, tuples that are
deleted or obsoleted by an update are not physically removed from their table; they remain present
until a VACUUMis done. Therefore it’s necessary to doVACUUMperiodically, especially on frequently-
updated tables.

With no parameter,VACUUMprocesses every table in the current database. With a parameter,VACUUM

processes only that table.

VACUUM ANALYZEperforms aVACUUMand then anANALYZEfor each selected table. This is a handy
combination form for routine maintenance scripts. SeeANALYZEfor more details about its process-
ing.

PlainVACUUM(withoutFULL) simply reclaims space and makes it available for re-use. This form of the
command can operate in parallel with normal reading and writing of the table, as an exclusive lock
is not obtained.VACUUM FULLdoes more extensive processing, including moving of tuples across
blocks to try to compact the table to the minimum number of disk blocks. This form is much slower
and requires an exclusive lock on each table while it is being processed.

FREEZEis a special-purpose option that causes tuples to be marked “frozen” as soon as possible, rather
than waiting until they are quite old. If this is done when there are no other open transactions in the
same database, then it is guaranteed that all tuples in the database are “frozen” and will not be subject
to transaction ID wraparound problems, no matter how long the database is left unvacuumed.FREEZE

is not recommended for routine use. Its only intended usage is in connection with preparation of
user-defined template databases, or other databases that are completely read-only and will not receive
routine maintenanceVACUUMoperations. SeeChapter 21for details.

Parameters

FULL

Selects “full” vacuum, which may reclaim more space, but takes much longer and exclusively
locks the table.

FREEZE

Selects aggressive “freezing” of tuples.

VERBOSE

Prints a detailed vacuum activity report for each table.

859

VACUUM

ANALYZE

Updates statistics used by the planner to determine the most efficient way to execute a query.

table

The name (optionally schema-qualified) of a specific table to vacuum. Defaults to all tables in
the current database.

column

The name of a specific column to analyze. Defaults to all columns.

Outputs

WhenVERBOSEis specified,VACUUMemits progress messages to indicate which table is currently
being processed. Various statistics about the tables are printed as well.

Notes

We recommend that active production databases be vacuumed frequently (at least nightly), in order
to remove expired rows. After adding or deleting a large number of rows, it may be a good idea to
issue aVACUUM ANALYZEcommand for the affected table. This will update the system catalogs with
the results of all recent changes, and allow the PostgreSQL query planner to make better choices in
planning queries.

TheFULL option is not recommended for routine use, but may be useful in special cases. An example
is when you have deleted most of the rows in a table and would like the table to physically shrink to
occupy less disk space.VACUUM FULLwill usually shrink the table more than a plainVACUUMwould.

Examples

The following is an example from runningVACUUMon a table in the regression database:

regression=# VACUUM VERBOSE ANALYZE onek;
INFO: vacuuming "public.onek"
INFO: index "onek_unique1" now contains 1000 tuples in 14 pages
DETAIL: 3000 index tuples were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU 0.01s/0.08u sec elapsed 0.18 sec.
INFO: index "onek_unique2" now contains 1000 tuples in 16 pages
DETAIL: 3000 index tuples were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU 0.00s/0.07u sec elapsed 0.23 sec.
INFO: index "onek_hundred" now contains 1000 tuples in 13 pages
DETAIL: 3000 index tuples were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU 0.01s/0.08u sec elapsed 0.17 sec.
INFO: index "onek_stringu1" now contains 1000 tuples in 48 pages
DETAIL: 3000 index tuples were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU 0.01s/0.09u sec elapsed 0.59 sec.
INFO: "onek": removed 3000 tuples in 108 pages
DETAIL: CPU 0.01s/0.06u sec elapsed 0.07 sec.

860

VACUUM

INFO: "onek": found 3000 removable, 1000 nonremovable tuples in 143 pages
DETAIL: 0 dead tuples cannot be removed yet.
There were 0 unused item pointers.
0 pages are entirely empty.
CPU 0.07s/0.39u sec elapsed 1.56 sec.
INFO: analyzing "public.onek"
INFO: "onek": 36 pages, 1000 rows sampled, 1000 estimated total rows
VACUUM

Compatibility

There is noVACUUMstatement in the SQL standard.

See Also

vacuumdb

861

II. PostgreSQL Client Applications
This part contains reference information for PostgreSQL client applications and utilities. Not all of
these commands are of general utility, some may require special privileges. The common feature
of these applications is that they can be run on any host, independent of where the database server
resides.

862

clusterdb

Name
clusterdb — cluster a PostgreSQL database

Synopsis

clusterdb [connection-option ...] [--table | -ttable] [dbname]
clusterdb [connection-option ...] [--all | -a]

Description

clusterdb is a utility for reclustering tables in a PostgreSQL database. It finds tables that have previ-
ously been clustered, and clusters them again on the same index that was last used. Tables that have
never been clustered are not affected.

clusterdb is a wrapper around the SQL commandCLUSTER. There is no effective difference between
clustering databases via this utility and via other methods for accessing the server.

Options

clusterdb accepts the following command-line arguments:

-a

--all

Cluster all databases.

[-d] dbname

[--dbname] dbname

Specifies the name of the database to be clustered. If this is not specified and-a (or --all) is
not used, the database name is read from the environment variablePGDATABASE. If that is not
set, the user name specified for the connection is used.

-e

--echo

Echo the commands that clusterdb generates and sends to the server.

-q

--quiet

Do not display a response.

-t table

--table table

Clustertable only.

863

clusterdb

clusterdb also accepts the following command-line arguments for connection parameters:

-h host

--host host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username

--username username

User name to connect as.

-W

--password

Force password prompt.

Environment

PGDATABASE

PGHOST

PGPORT

PGUSER

Default connection parameters

Diagnostics

In case of difficulty, seeCLUSTERandpsqlfor discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Examples

To cluster the databasetest :

$ clusterdb test

To cluster a single tablefoo in a database namedxyzzy :

$ clusterdb --table foo xyzzy

864

clusterdb

See Also

CLUSTER

865

createdb

Name
createdb — create a new PostgreSQL database

Synopsis

createdb [option ...] [dbname] [description]

Description

createdb creates a new PostgreSQL database.

Normally, the database user who executes this command becomes the owner of the new database.
However a different owner can be specified via the-O option, if the executing user has appropriate
privileges.

createdb is a wrapper around the SQL commandCREATE DATABASE. There is no effective difference
between creating databases via this utility and via other methods for accessing the server.

Options

createdb accepts the following command-line arguments:

dbname

Specifies the name of the database to be created. The name must be unique among all Post-
greSQL databases in this cluster. The default is to create a database with the same name as the
current system user.

description

Specifies a comment to be associated with the newly created database.

-D tablespace

--tablespace tablespace

Specifies the default tablespace for the database.

-e

--echo

Echo the commands that createdb generates and sends to the server.

-E encoding

--encoding encoding

Specifies the character encoding scheme to be used in this database. The character sets supported
by the PostgreSQL server are described inSection 20.2.1.

-O owner

--owner owner

Specifies the database user who will own the new database.

866

createdb

-q

--quiet

Do not display a response.

-T template

--template template

Specifies the template database from which to build this database.

The options-D , -E , -O, and -T correspond to options of the underlying SQL commandCREATE
DATABASE; see there for more information about them.

createdb also accepts the following command-line arguments for connection parameters:

-h host

--host host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port port

Specifies the TCP port or the local Unix domain socket file extension on which the server is
listening for connections.

-U username

--username username

User name to connect as

-W

--password

Force password prompt.

Environment

PGDATABASE

If set, the name of the database to create, unless overridden on the command line.

PGHOST

PGPORT

PGUSER

Default connection parameters.PGUSERalso determines the name of the database to create, if it
is not specified on the command line or byPGDATABASE.

867

createdb

Diagnostics

In case of difficulty, seeCREATE DATABASEandpsqlfor discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection
settings and environment variables used by the libpq front-end library will apply.

Examples

To create the databasedemo using the default database server:

$ createdb demo
CREATE DATABASE

The response is the same as you would have gotten from running theCREATE DATABASESQL com-
mand.

To create the databasedemo using the server on hosteden , port 5000, using theLATIN1 encoding
scheme with a look at the underlying command:

$ createdb -p 5000 -h eden -E LATIN1 -e demo
CREATE DATABASE "demo" WITH ENCODING = ’LATIN1’

CREATE DATABASE

See Also

dropdb, CREATE DATABASE

868

createlang

Name
createlang — define a new PostgreSQL procedural language

Synopsis

createlang [connection-option ...] langname [dbname]
createlang [connection-option ...] --list | -l dbname

Description

createlang is a utility for adding a new programming language to a PostgreSQL database. create-
lang can handle all the languages supplied in the default PostgreSQL distribution, but not languages
provided by other parties.

Although backend programming languages can be added directly using several SQL commands, it is
recommended to use createlang because it performs a number of checks and is much easier to use.
SeeCREATE LANGUAGEfor additional information.

Options

createlang accepts the following command-line arguments:

langname

Specifies the name of the procedural programming language to be defined.

[-d] dbname

[--dbname] dbname

Specifies to which database the language should be added. The default is to use the database with
the same name as the current system user.

-e

--echo

Display SQL commands as they are executed.

-l

--list

Show a list of already installed languages in the target database.

-L directory

Specifies the directory in which the language interpreter is to be found. The directory is normally
found automatically; this option is primarily for debugging purposes.

createlang also accepts the following command-line arguments for connection parameters:

869

createlang

-h host

--host host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username

--username username

User name to connect as.

-W

--password

Force password prompt.

Environment

PGDATABASE

PGHOST

PGPORT

PGUSER

Default connection parameters

Diagnostics

Most error messages are self-explanatory. If not, run createlang with the--echo option and see under
the respective SQL command for details.

Notes

Usedroplangto remove a language.

Examples

To install the languagepltcl into the databasetemplate1 :

$ createlang pltcl template1

870

createlang

See Also

droplang, CREATE LANGUAGE

871

createuser

Name
createuser — define a new PostgreSQL user account

Synopsis

createuser [option ...] [username]

Description

createuser creates a new PostgreSQL user. Only superusers (users withusesuper set in the
pg_shadow table) can create new PostgreSQL users, so createuser must be invoked by someone
who can connect as a PostgreSQL superuser.

Being a superuser also implies the ability to bypass access permission checks within the database, so
superuserdom should not be granted lightly.

createuser is a wrapper around the SQL commandCREATE USER. There is no effective difference
between creating users via this utility and via other methods for accessing the server.

Options

createuser accepts the following command-line arguments:

username

Specifies the name of the PostgreSQL user to be created. This name must be unique among all
PostgreSQL users.

-a

--adduser

The new user is allowed to create other users. (Note: Actually, this makes the new user asupe-
ruser. The option is poorly named.)

-A

--no-adduser

The new user is not allowed to create other users (i.e., the new user is a regular user, not a
superuser). This is the default.

-d

--createdb

The new user is allowed to create databases.

-D

--no-createdb

The new user is not allowed to create databases. This is the default.

-e

--echo

Echo the commands that createuser generates and sends to the server.

872

createuser

-E

--encrypted

Encrypts the user’s password stored in the database. If not specified, the default password behav-
ior is used.

-i number

--sysid number

Allows you to pick a non-default user ID for the new user. This is not necessary, but some people
like it.

-N

--unencrypted

Does not encrypt the user’s password stored in the database. If not specified, the default password
behavior is used.

-P

--pwprompt

If given, createuser will issue a prompt for the password of the new user. This is not necessary if
you do not plan on using password authentication.

-q

--quiet

Do not display a response.

You will be prompted for a name and other missing information if it is not specified on the command
line.

createuser also accepts the following command-line arguments for connection parameters:

-h host

--host host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username

--username username

User name to connect as (not the user name to create).

-W

--password

Force password prompt (to connect to the server, not for the password of the new user).

873

createuser

Environment

PGHOST

PGPORT

PGUSER

Default connection parameters

Diagnostics

In case of difficulty, seeCREATE USERand psql for discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection
settings and environment variables used by the libpq front-end library will apply.

Examples

To create a userjoe on the default database server:

$ createuser joe
Is the new user allowed to create databases? (y/n) n
Shall the new user be allowed to create more new users? (y/n) n
CREATE USER

To create the same userjoe using the server on hosteden , port 5000, avoiding the prompts and taking
a look at the underlying command:

$ createuser -p 5000 -h eden -D -A -e joe
CREATE USER "joe" NOCREATEDB NOCREATEUSER

CREATE USER

See Also

dropuser, CREATE USER

874

dropdb

Name
dropdb — remove a PostgreSQL database

Synopsis

dropdb [option ...] dbname

Description

dropdb destroys an existing PostgreSQL database. The user who executes this command must be a
database superuser or the owner of the database.

dropdb is a wrapper around the SQL commandDROP DATABASE. There is no effective difference
between dropping databases via this utility and via other methods for accessing the server.

Options

dropdb accepts the following command-line arguments:

dbname

Specifies the name of the database to be removed.

-e

--echo

Echo the commands that dropdb generates and sends to the server.

-i

--interactive

Issues a verification prompt before doing anything destructive.

-q

--quiet

Do not display a response.

dropdb also accepts the following command-line arguments for connection parameters:

-h host

--host host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

875

dropdb

-p port

--port port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username

--username username

User name to connect as

-W

--password

Force password prompt.

Environment

PGHOST

PGPORT

PGUSER

Default connection parameters

Diagnostics

In case of difficulty, seeDROP DATABASEandpsql for discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection
settings and environment variables used by the libpq front-end library will apply.

Examples

To destroy the databasedemo on the default database server:

$ dropdb demo
DROP DATABASE

To destroy the databasedemo using the server on hosteden , port 5000, with verification and a peek
at the underlying command:

$ dropdb -p 5000 -h eden -i -e demo
Database "demo" will be permanently deleted.

Are you sure? (y/n) y
DROP DATABASE "demo"

DROP DATABASE

876

dropdb

See Also

createdb, DROP DATABASE

877

droplang

Name
droplang — remove a PostgreSQL procedural language

Synopsis

droplang [connection-option ...] langname [dbname]
droplang [connection-option ...] --list | -l dbname

Description

droplang is a utility for removing an existing programming language from a PostgreSQL database.
droplang can drop any procedural language, even those not supplied by the PostgreSQL distribution.

Although backend programming languages can be removed directly using several SQL commands, it
is recommended to use droplang because it performs a number of checks and is much easier to use.
SeeDROP LANGUAGEfor more.

Options

droplang accepts the following command line arguments:

langname

Specifies the name of the backend programming language to be removed.

[-d] dbname

[--dbname] dbname

Specifies from which database the language should be removed. The default is to use the database
with the same name as the current system user.

-e

--echo

Display SQL commands as they are executed.

-l

--list

Show a list of already installed languages in the target database.

droplang also accepts the following command line arguments for connection parameters:

-h host

--host host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

878

droplang

-p port

--port port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-U username

--username username

User name to connect as

-W

--password

Force password prompt.

Environment

PGDATABASE

PGHOST

PGPORT

PGUSER

Default connection parameters

Diagnostics

Most error messages are self-explanatory. If not, run droplang with the--echo option and see under
the respective SQL command for details.

Notes

Usecreatelangto add a language.

Examples

To remove the languagepltcl :

$ droplang pltcl dbname

See Also

createlang, DROP LANGUAGE

879

dropuser

Name
dropuser — remove a PostgreSQL user account

Synopsis

dropuser [option ...] [username]

Description

dropuser removes an existing PostgreSQL userand the databases which that user owned. Only supe-
rusers (users withusesuper set in thepg_shadow table) can destroy PostgreSQL users.

dropuser is a wrapper around the SQL commandDROP USER. There is no effective difference be-
tween dropping users via this utility and via other methods for accessing the server.

Options

dropuser accepts the following command-line arguments:

username

Specifies the name of the PostgreSQL user to be removed. You will be prompted for a name if
none is specified on the command line.

-e

--echo

Echo the commands that dropuser generates and sends to the server.

-i

--interactive

Prompt for confirmation before actually removing the user.

-q

--quiet

Do not display a response.

dropuser also accepts the following command-line arguments for connection parameters:

-h host

--host host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

880

dropuser

-p port

--port port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username

--username username

User name to connect as (not the user name to drop)

-W

--password

Force password prompt (to connect to the server, not for the password of the user to be dropped).

Environment

PGHOST

PGPORT

PGUSER

Default connection parameters

Diagnostics

In case of difficulty, seeDROP USERandpsql for discussions of potential problems and error mes-
sages. The database server must be running at the targeted host. Also, any default connection settings
and environment variables used by the libpq front-end library will apply.

Examples

To remove userjoe from the default database server:

$ dropuser joe
DROP USER

To remove userjoe using the server on hosteden , port 5000, with verification and a peek at the
underlying command:

$ dropuser -p 5000 -h eden -i -e joe
User "joe" and any owned databases will be permanently deleted.

Are you sure? (y/n) y
DROP USER "joe"

DROP USER

881

dropuser

See Also

createuser, DROP USER

882

ecpg

Name
ecpg — embedded SQL C preprocessor

Synopsis

ecpg [option ...] file ...

Description

ecpg is the embedded SQL preprocessor for C programs. It converts C programs with embedded SQL
statements to normal C code by replacing the SQL invocations with special function calls. The output
files can then be processed with any C compiler tool chain.

ecpg will convert each input file given on the command line to the corresponding C output file.
Input files preferably have the extension.pgc , in which case the extension will be replaced by.c to
determine the output file name. If the extension of the input file is not.pgc , then the output file name
is computed by appending.c to the full file name. The output file name can also be overridden using
the-o option.

This reference page does not describe the embedded SQL language. SeeChapter 29for more infor-
mation on that topic.

Options

ecpg accepts the following command-line arguments:

-c

Automatically generate certain C code from SQL code. Currently, this works forEXEC SQL

TYPE.

-C mode

Set a compatibility mode.mode may beINFORMIX or INFORMIX_SE.

-D symbol

Define a C preprocessor symbol.

-i

Parse system include files as well.

-I directory

Specify an additional include path, used to find files included viaEXEC SQL INCLUDE. Defaults
are . (current directory),/usr/local/include , the PostgreSQL include directory which is
defined at compile time (default:/usr/local/pgsql/include), and/usr/include , in that
order.

-o filename

Specifies thatecpg should write all its output to the givenfilename .

883

ecpg

-r option

Selects a run-time behavior. Currently,option can only beno_indicator .

-t

Turn on autocommit of transactions. In this mode, each SQL command is automatically commit-
ted unless it is inside an explicit transaction block. In the default mode, commands are committed
only whenEXEC SQL COMMITis issued.

-v

Print additional information including the version and the include path.

--help

Show a brief summary of the command usage, then exit.

--version

Output version information, then exit.

Notes

When compiling the preprocessed C code files, the compiler needs to be able to find the ECPG header
files in the PostgreSQL include directory. Therefore, one might have to use the-I option when in-
voking the compiler (e.g.,-I/usr/local/pgsql/include).

Programs using C code with embedded SQL have to be linked against thelibecpg library, for ex-
ample using the linker options-L/usr/local/pgsql/lib -lecpg .

The value of either of these directories that is appropriate for the installation can be found out using
pg_config.

Examples

If you have an embedded SQL C source file namedprog1.pgc , you can create an executable program
using the following sequence of commands:

ecpg prog1.pgc
cc -I/usr/local/pgsql/include -c prog1.c
cc -o prog1 prog1.o -L/usr/local/pgsql/lib -lecpg

884

pg_config

Name
pg_config — retrieve information about the installed version of PostgreSQL

Synopsis

pg_config {--bindir | --includedir | --includedir-server | --libdir | --pkglibdir | --pgxs | --configure |
--version...}

Description

The pg_config utility prints configuration parameters of the currently installed version of PostgreSQL.
It is intended, for example, to be used by software packages that want to interface to PostgreSQL to
facilitate finding the required header files and libraries.

Options

To use pg_config, supply one or more of the following options:

--bindir

Print the location of user executables. Use this, for example, to find thepsql program. This is
normally also the location where thepg_config program resides.

--includedir

Print the location of C header files of the client interfaces.

--includedir-server

Print the location of C header files for server programming.

--libdir

Print the location of object code libraries.

--pkglibdir

Print the location of dynamically loadable modules, or where the server would search for them.
(Other architecture-dependent data files may also be installed in this directory.)

--pgxs

Print the location of extension makefiles.

--configure

Print the options that were given to theconfigure script when PostgreSQL was configured
for building. This can be used to reproduce the identical configuration, or to find out with what
options a binary package was built. (Note however that binary packages often contain vendor-
specific custom patches.)

885

pg_config

--version

Print the version of PostgreSQL and exit.

If more than one option (except for--version) is given, the information is printed in that order,
one item per line.

Notes

The option--includedir-server was new in PostgreSQL 7.2. In prior releases, the server include
files were installed in the same location as the client headers, which could be queried with the option
--includedir . To make your package handle both cases, try the newer option first and test the exit
status to see whether it succeeded.

In releases prior to PostgreSQL 7.1, beforepg_config came to be, a method for finding the equiva-
lent configuration information did not exist.

History

Thepg_config utility first appeared in PostgreSQL 7.1.

886

pg_dump

Name
pg_dump — extract a PostgreSQL database into a script file or other archive file

Synopsis

pg_dump [option ...] [dbname]

Description

pg_dump is a utility for backing up a PostgreSQL database. It makes consistent backups even if
the database is being used concurrently. pg_dump does not block other users accessing the database
(readers or writers).

Dumps can be output in script or archive file formats. Script dumps are plain-text files containing the
SQL commands required to reconstruct the database to the state it was in at the time it was saved.
To restore from such a script, feed it topsql. Script files can be used to reconstruct the database
even on other machines and other architectures; with some modifications even on other SQL database
products.

The alternative archive file formats must be used withpg_restoreto rebuild the database. They allow
pg_restore to be selective about what is restored, or even to reorder the items prior to being restored.
The archive formats also allow saving and restoring “large objects”, which is not possible in a script
dump. The archive files are also designed to be portable across architectures.

When used with one of the archive file formats and combined with pg_restore, pg_dump provides a
flexible archival and transfer mechanism. pg_dump can be used to backup an entire database, then
pg_restore can be used to examine the archive and/or select which parts of the database are to be
restored. The most flexible output file format is the “custom” format (-Fc). It allows for selection and
reordering of all archived items, and is compressed by default. The tar format (-Ft) is not compressed
and it is not possible to reorder data when loading, but it is otherwise quite flexible; moreover, it can
be manipulated with standard Unix tools such astar .

While running pg_dump, one should examine the output for any warnings (printed on standard error),
especially in light of the limitations listed below.

Options

The following command-line options control the content and format of the output.

dbname

Specifies the name of the database to be dumped. If this is not specified, the environment variable
PGDATABASEis used. If that is not set, the user name specified for the connection is used.

-a

--data-only

Dump only the data, not the schema (data definitions).

887

pg_dump

This option is only meaningful for the plain-text format. For the archive formats, you may specify
the option when you callpg_restore .

-b

--blobs

Include large objects in the dump. A non-text output format must be selected.

-c

--clean

Output commands to clean (drop) database objects prior to (the commands for) creating them.

This option is only meaningful for the plain-text format. For the archive formats, you may specify
the option when you callpg_restore .

-C

--create

Begin the output with a command to create the database itself and reconnect to the created
database. (With a script of this form, it doesn’t matter which database you connect to before
running the script.)

This option is only meaningful for the plain-text format. For the archive formats, you may specify
the option when you callpg_restore .

-d

--inserts

Dump data asINSERT commands (rather thanCOPY). This will make restoration very slow; it
is mainly useful for making dumps that can be loaded into non-PostgreSQL databases. Note
that the restore may fail altogether if you have rearranged column order. The-D option is safer,
though even slower.

-D

--column-inserts

--attribute-inserts

Dump data asINSERT commands with explicit column names (INSERT INTO table

(column , ...) VALUES ...). This will make restoration very slow; it is mainly useful for
making dumps that can be loaded into non-PostgreSQL databases.

-f file

--file= file

Send output to the specified file. If this is omitted, the standard output is used.

-F format

--format= format

Selects the format of the output.format can be one of the following:

p

Output a plain-text SQL script file (default)

t

Output atar archive suitable for input into pg_restore. Using this archive format allows
reordering and/or exclusion of database objects at the time the database is restored. It is
also possible to limit which data is reloaded at restore time.

888

pg_dump

c

Output a custom archive suitable for input into pg_restore. This is the most flexible format
in that it allows reordering of loading data as well as object definitions. This format is also
compressed by default.

-i

--ignore-version

Ignore version mismatch between pg_dump and the database server.

pg_dump can handle databases from previous releases of PostgreSQL, but very old versions are
not supported anymore (currently prior to 7.0). Use this option if you need to override the version
check (and if pg_dump then fails, don’t say you weren’t warned).

-n schema

--schema= schema

Dump the contents ofschema only. If this option is not specified, all non-system schemas in
the target database will be dumped.

Note: In this mode, pg_dump makes no attempt to dump any other database objects that
objects in the selected schema may depend upon. Therefore, there is no guarantee that the
results of a single-schema dump can be successfully restored by themselves into a clean
database.

-o

--oids

Dump object identifiers (OIDs) as part of the data for every table. Use this option if your appli-
cation references the OID columns in some way (e.g., in a foreign key constraint). Otherwise,
this option should not be used.

-O

--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_dump issuesALTER OWNERor SET SESSION AUTHORIZATIONstatements to set ownership
of created database objects. These statements will fail when the script is run unless it is started
by a superuser (or the same user that owns all of the objects in the script). To make a script that
can be restored by any user, but will give that user ownership of all the objects, specify-O.

This option is only meaningful for the plain-text format. For the archive formats, you may specify
the option when you callpg_restore .

-R

--no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s

--schema-only

Dump only the object definitions (schema), not data.

889

pg_dump

-S username

--superuser= username

Specify the superuser user name to use when disabling triggers. This is only relevant if
--disable-triggers is used. (Usually, it’s better to leave this out, and instead start the
resulting script as superuser.)

-t table

--table= table

Dump data fortable only. It is possible for there to be multiple tables with the same name in
different schemas; if that is the case, all matching tables will be dumped. Specify both--schema

and--table to select just one table.

Note: In this mode, pg_dump makes no attempt to dump any other database objects that
the selected table may depend upon. Therefore, there is no guarantee that the results of a
single-table dump can be successfully restored by themselves into a clean database.

-v

--verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments and
start/stop times to the dump file, and progress messages to standard error.

-x

--no-privileges

--no-acl

Prevent dumping of access privileges (grant/revoke commands).

-X disable-dollar-quoting

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted
using SQL standard string syntax.

-X disable-triggers

--disable-triggers

This option is only relevant when creating a data-only dump. It instructs pg_dump to include
commands to temporarily disable triggers on the target tables while the data is reloaded. Use this
if you have referential integrity checks or other triggers on the tables that you do not want to
invoke during data reload.

Presently, the commands emitted for--disable-triggers must be done as superuser. So,
you should also specify a superuser name with-S , or preferably be careful to start the resulting
script as a superuser.

This option is only meaningful for the plain-text format. For the archive formats, you may specify
the option when you callpg_restore .

-X use-set-session-authorization

--use-set-session-authorization

Output SQL standard SET SESSION AUTHORIZATION commands instead of OWNER TO
commands. This makes the dump more standards compatible, but depending on the history of
the objects in the dump, may not restore properly.

890

pg_dump

-Z 0..9

--compress= 0..9

Specify the compression level to use in archive formats that support compression. (Currently
only the custom archive format supports compression.)

The following command-line options control the database connection parameters.

-h host

--host= host

Specifies the host name of the machine on which the server is running. If the value begins with
a slash, it is used as the directory for the Unix domain socket. The default is taken from the
PGHOSTenvironment variable, if set, else a Unix domain socket connection is attempted.

-p port

--port= port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections. Defaults to thePGPORTenvironment variable, if set, or a compiled-in default.

-U username

Connect as the given user

-W

Force a password prompt. This should happen automatically if the server requires password
authentication.

Environment

PGDATABASE

PGHOST

PGPORT

PGUSER

Default connection parameters.

Diagnostics

pg_dump internally executesSELECTstatements. If you have problems running pg_dump, make sure
you are able to select information from the database using, for example,psql.

Notes

If your database cluster has any local additions to thetemplate1 database, be careful to restore the
output of pg_dump into a truly empty database; otherwise you are likely to get errors due to duplicate

891

pg_dump

definitions of the added objects. To make an empty database without any local additions, copy from
template0 not template1 , for example:

CREATE DATABASE foo WITH TEMPLATE template0;

pg_dump has a few limitations:

• When dumping a single table or as plain text, pg_dump does not handle large objects. Large objects
must be dumped with the entire database using one of the non-text archive formats.

• When a data-only dump is chosen and the option--disable-triggers is used, pg_dump emits
commands to disable triggers on user tables before inserting the data and commands to re-enable
them after the data has been inserted. If the restore is stopped in the middle, the system catalogs
may be left in the wrong state.

Members of tar archives are limited to a size less than 8 GB. (This is an inherent limitation of the
tar file format.) Therefore this format cannot be used if the textual representation of any one table
exceeds that size. The total size of a tar archive and any of the other output formats is not limited,
except possibly by the operating system.

The dump file produced by pg_dump does not contain the statistics used by the optimizer to make
query planning decisions. Therefore, it is wise to runANALYZEafter restoring from a dump file to
ensure good performance.

Examples

To dump a database:

$ pg_dump mydb > db.out

To reload this database:

$ psql -d database -f db.out

To dump a database calledmydb that contains large objects to atar file:

$ pg_dump -Ft -b mydb > db.tar

To reload this database (with large objects) to an existing database callednewdb:

$ pg_restore -d newdb db.tar

History

The pg_dump utility first appeared in Postgres95 release 0.02. The non-plain-text output formats were
introduced in PostgreSQL release 7.1.

892

pg_dump

See Also

pg_dumpall, pg_restore, psql

893

pg_dumpall

Name
pg_dumpall — extract a PostgreSQL database cluster into a script file

Synopsis

pg_dumpall [option ...]

Description

pg_dumpall is a utility for writing out (“dumping”) all PostgreSQL databases of a cluster into one
script file. The script file contains SQL commands that can be used as input topsql to restore the
databases. It does this by callingpg_dumpfor each database in a cluster. pg_dumpall also dumps
global objects that are common to all databases. (pg_dump does not save these objects.) This currently
includes information about database users and groups, and access permissions that apply to databases
as a whole.

Thus, pg_dumpall is an integrated solution for backing up your databases. But note a limitation: it
cannot dump “large objects”, since pg_dump cannot dump such objects into text files. If you have
databases containing large objects, they should be dumped using one of pg_dump’s non-text output
modes.

Since pg_dumpall reads tables from all databases you will most likely have to connect as a database
superuser in order to produce a complete dump. Also you will need superuser privileges to execute
the saved script in order to be allowed to add users and groups, and to create databases.

The SQL script will be written to the standard output. Shell operators should be used to redirect it into
a file.

pg_dumpall needs to connect several times to the PostgreSQL server (once per database). If you
use password authentication it is likely to ask for a password each time. It is convenient to have a
~/.pgpass file in such cases. SeeSection 27.12for more information.

Options

The following command-line options control the content and format of the output.

-a

--data-only

Dump only the data, not the schema (data definitions).

-c

--clean

Include SQL commands to clean (drop) the databases before recreating them.

-d

--inserts

Dump data asINSERT commands (rather thanCOPY). This will make restoration very slow; it
is mainly useful for making dumps that can be loaded into non-PostgreSQL databases. Note

894

pg_dumpall

that the restore may fail altogether if you have rearranged column order. The-D option is safer,
though even slower.

-D

--column-inserts

--attribute-inserts

Dump data asINSERT commands with explicit column names (INSERT INTO table

(column , ...) VALUES ...). This will make restoration very slow; it is mainly useful for
making dumps that can be loaded into non-PostgreSQL databases.

-g

--globals-only

Dump only global objects (users and groups), no databases.

-i

--ignore-version

Ignore version mismatch between pg_dumpall and the database server.

pg_dumpall can handle databases from previous releases of PostgreSQL, but very old versions
are not supported anymore (currently prior to 7.0). Use this option if you need to override the
version check (and if pg_dumpall then fails, don’t say you weren’t warned).

-o

--oids

Dump object identifiers (OIDs) as part of the data for every table. Use this option if your appli-
cation references the OID columns in some way (e.g., in a foreign key constraint). Otherwise,
this option should not be used.

-O

--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_dumpall issuesALTER OWNERor SET SESSION AUTHORIZATIONstatements to set own-
ership of created schema elements. These statements will fail when the script is run unless it
is started by a superuser (or the same user that owns all of the objects in the script). To make a
script that can be restored by any user, but will give that user ownership of all the objects, specify
-O.

-s

--schema-only

Dump only the object definitions (schema), not data.

-S username

--superuser= username

Specify the superuser user name to use when disabling triggers. This is only relevant if
--disable-triggers is used. (Usually, it’s better to leave this out, and instead start the
resulting script as superuser.)

-v

--verbose

Specifies verbose mode. This will cause pg_dumpall to output start/stop times to the dump file,
and progress messages to standard error. It will also enable verbose output in pg_dump.

895

pg_dumpall

-x

--no-privileges

--no-acl

Prevent dumping of access privileges (grant/revoke commands).

-X disable-dollar-quoting

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted
using SQL standard string syntax.

-X disable-triggers

--disable-triggers

This option is only relevant when creating a data-only dump. It instructs pg_dumpall to include
commands to temporarily disable triggers on the target tables while the data is reloaded. Use this
if you have referential integrity checks or other triggers on the tables that you do not want to
invoke during data reload.

Presently, the commands emitted for--disable-triggers must be done as superuser. So,
you should also specify a superuser name with-S , or preferably be careful to start the resulting
script as a superuser.

-X use-set-session-authorization

--use-set-session-authorization

Output SQL standard SET SESSION AUTHORIZATION commands instead of OWNER TO
commands. This makes the dump more standards compatible, but depending on the history of
the objects in the dump, may not restore properly.

The following command-line options control the database connection parameters.

-h host

Specifies the host name of the machine on which the database server is running. If the value
begins with a slash, it is used as the directory for the Unix domain socket. The default is taken
from thePGHOSTenvironment variable, if set, else a Unix domain socket connection is attempted.

-p port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections. Defaults to thePGPORTenvironment variable, if set, or a compiled-in default.

-U username

Connect as the given user.

-W

Force a password prompt. This should happen automatically if the server requires password
authentication.

896

pg_dumpall

Environment

PGHOST

PGPORT

PGUSER

Default connection parameters

Notes

Since pg_dumpall calls pg_dump internally, some diagnostic messages will refer to pg_dump.

Once restored, it is wise to runANALYZEon each database so the optimizer has useful statistics. You
can also runvacuumdb -a -z to analyze all databases.

Examples

To dump all databases:

$ pg_dumpall > db.out

To reload this database use, for example:

$ psql -f db.out template1

(It is not important to which database you connect here since the script file created by pg_dumpall
will contain the appropriate commands to create and connect to the saved databases.)

See Also

pg_dump. Check there for details on possible error conditions.

897

pg_restore

Name
pg_restore — restore a PostgreSQL database from an archive file created by pg_dump

Synopsis

pg_restore [option ...] [filename]

Description

pg_restore is a utility for restoring a PostgreSQL database from an archive created bypg_dumpin
one of the non-plain-text formats. It will issue the commands necessary to reconstruct the database to
the state it was in at the time it was saved. The archive files also allow pg_restore to be selective about
what is restored, or even to reorder the items prior to being restored. The archive files are designed to
be portable across architectures.

pg_restore can operate in two modes: If a database name is specified, the archive is restored directly
into the database. (Large objects can only be restored by using such a direct database connection.)
Otherwise, a script containing the SQL commands necessary to rebuild the database is created (and
written to a file or standard output), similar to the ones created by the pg_dump plain text format.
Some of the options controlling the script output are therefore analogous to pg_dump options.

Obviously, pg_restore cannot restore information that is not present in the archive file. For instance,
if the archive was made using the “dump data asINSERT commands” option, pg_restore will not be
able to load the data usingCOPYstatements.

Options

pg_restore accepts the following command line arguments.

filename

Specifies the location of the archive file to be restored. If not specified, the standard input is used.

-a

--data-only

Restore only the data, not the schema (data definitions).

-c

--clean

Clean (drop) database objects before recreating them.

-C

--create

Create the database before restoring into it. (When this option is used, the database named with
-d is used only to issue the initialCREATE DATABASEcommand. All data is restored into the
database name that appears in the archive.)

898

pg_restore

-d dbname

--dbname= dbname

Connect to databasedbname and restore directly into the database.

-e

--exit-on-error

Exit if an error is encountered while sending SQL commands to the database. The default is to
continue and to display a count of errors at the end of the restoration.

-f filename

--file= filename

Specify output file for generated script, or for the listing when used with-l . Default is the
standard output.

-F format

--format= format

Specify format of the archive. It is not necessary to specify the format, since pg_restore will
determine the format automatically. If specified, it can be one of the following:

t

The archive is atar archive. Using this archive format allows reordering and/or exclusion
of schema elements at the time the database is restored. It is also possible to limit which
data is reloaded at restore time.

c

The archive is in the custom format of pg_dump. This is the most flexible format in that it
allows reordering of data load as well as schema elements. This format is also compressed
by default.

-i

--ignore-version

Ignore database version checks.

-I index

--index= index

Restore definition of named index only.

-l

--list

List the contents of the archive. The output of this operation can be used with the-L option to
restrict and reorder the items that are restored.

-L list-file

--use-list= list-file

Restore elements inlist-file only, and in the order they appear in the file. Lines can be
moved and may also be commented out by placing a; at the start of the line. (See below for
examples.)

899

pg_restore

-O

--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_restore issuesALTER OWNERor SET SESSION AUTHORIZATIONstatements to set owner-
ship of created schema elements. These statements will fail unless the initial connection to the
database is made by a superuser (or the same user that owns all of the objects in the script). With
-O, any user name can be used for the initial connection, and this user will own all the created
objects.

-P function-name(argtype [, ...])

--function= function-name(argtype [, ...])

Restore the named function only. Be careful to spell the function name and arguments exactly as
they appear in the dump file’s table of contents.

-R

--no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s

--schema-only

Restore only the schema (data definitions), not the data. Sequence values will be reset.

-S username

--superuser= username

Specify the superuser user name to use when disabling triggers. This is only relevant if
--disable-triggers is used.

-t table

--table= table

Restore definition and/or data of named table only.

-T trigger

--trigger= trigger

Restore named trigger only.

-v

--verbose

Specifies verbose mode.

-x

--no-privileges

--no-acl

Prevent restoration of access privileges (grant/revoke commands).

-X use-set-session-authorization

--use-set-session-authorization

Output SQL standard SET SESSION AUTHORIZATION commands instead of OWNER TO
commands. This makes the dump more standards compatible, but depending on the history of
the objects in the dump, may not restore properly.

900

pg_restore

-X disable-triggers

--disable-triggers

This option is only relevant when performing a data-only restore. It instructs pg_restore to ex-
ecute commands to temporarily disable triggers on the target tables while the data is reloaded.
Use this if you have referential integrity checks or other triggers on the tables that you do not
want to invoke during data reload.

Presently, the commands emitted for--disable-triggers must be done as superuser. So,
you should also specify a superuser name with-S , or preferably run pg_restore as a PostgreSQL
superuser.

pg_restore also accepts the following command line arguments for connection parameters:

-h host

--host= host

Specifies the host name of the machine on which the server is running. If the value begins with
a slash, it is used as the directory for the Unix domain socket. The default is taken from the
PGHOSTenvironment variable, if set, else a Unix domain socket connection is attempted.

-p port

--port= port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections. Defaults to thePGPORTenvironment variable, if set, or a compiled-in default.

-U username

Connect as the given user

-W

Force a password prompt. This should happen automatically if the server requires password
authentication.

Environment

PGHOST

PGPORT

PGUSER

Default connection parameters

Diagnostics

When a direct database connection is specified using the-d option, pg_restore internally executes
SQL statements. If you have problems running pg_restore, make sure you are able to select informa-
tion from the database using, for example,psql.

901

pg_restore

Notes

If your installation has any local additions to thetemplate1 database, be careful to load the output
of pg_restore into a truly empty database; otherwise you are likely to get errors due to duplicate
definitions of the added objects. To make an empty database without any local additions, copy from
template0 not template1 , for example:

CREATE DATABASE foo WITH TEMPLATE template0;

The limitations of pg_restore are detailed below.

• When restoring data to a pre-existing table and the option--disable-triggers is used,
pg_restore emits commands to disable triggers on user tables before inserting the data then emits
commands to re-enable them after the data has been inserted. If the restore is stopped in the
middle, the system catalogs may be left in the wrong state.

• pg_restore will not restore large objects for a single table. If an archive contains large objects, then
all large objects will be restored.

See also thepg_dumpdocumentation for details on limitations of pg_dump.

Once restored, it is wise to runANALYZEon each restored table so the optimizer has useful statistics.

Examples

To dump a database calledmydb that contains large objects to atar file:

$ pg_dump -Ft -b mydb > db.tar

To reload this database (with large objects) to an existing database callednewdb:

$ pg_restore -d newdb db.tar

To reorder database items, it is first necessary to dump the table of contents of the archive:

$ pg_restore -l archive.file > archive.list

The listing file consists of a header and one line for each item, e.g.,

;
; Archive created at Fri Jul 28 22:28:36 2000
; dbname: birds
; TOC Entries: 74
; Compression: 0
; Dump Version: 1.4-0
; Format: CUSTOM
;
;
; Selected TOC Entries:
;
2; 145344 TABLE species postgres

902

pg_restore

3; 145344 ACL species
4; 145359 TABLE nt_header postgres
5; 145359 ACL nt_header
6; 145402 TABLE species_records postgres
7; 145402 ACL species_records
8; 145416 TABLE ss_old postgres
9; 145416 ACL ss_old
10; 145433 TABLE map_resolutions postgres
11; 145433 ACL map_resolutions
12; 145443 TABLE hs_old postgres
13; 145443 ACL hs_old

Semicolons start a comment, and the numbers at the start of lines refer to the internal archive ID
assigned to each item.

Lines in the file can be commented out, deleted, and reordered. For example,

10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres
;4; 145359 TABLE nt_header postgres
6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres

could be used as input to pg_restore and would only restore items 10 and 6, in that order:

$ pg_restore -L archive.list archive.file

History

The pg_restore utility first appeared in PostgreSQL 7.1.

See Also

pg_dump, pg_dumpall, psql

903

psql

Name
psql — PostgreSQL interactive terminal

Synopsis

psql [option ...] [dbname [username]]

Description

psql is a terminal-based front-end to PostgreSQL. It enables you to type in queries interactively, issue
them to PostgreSQL, and see the query results. Alternatively, input can be from a file. In addition, it
provides a number of meta-commands and various shell-like features to facilitate writing scripts and
automating a wide variety of tasks.

Options

-a

--echo-all

Print all input lines to standard output as they are read. This is more useful for script processing
rather than interactive mode. This is equivalent to setting the variableECHOto all .

-A

--no-align

Switches to unaligned output mode. (The default output mode is otherwise aligned.)

-c command

--command command

Specifies that psql is to execute one command string,command, and then exit. This is useful in
shell scripts.

command must be either a command string that is completely parsable by the server (i.e., it
contains no psql specific features), or a single backslash command. Thus you cannot mix SQL
and psql meta-commands. To achieve that, you could pipe the string into psql, like this:echo

"\x \\ select * from foo;" | psql .

If the command string contains multiple SQL commands, they are processed in a single transac-
tion, unless there are explicit BEGIN/COMMIT commands included in the string to divide it into
multiple transactions. This is different from the behavior when the same string is fed to psql’s
standard input.

-d dbname

--dbname dbname

Specifies the name of the database to connect to. This is equivalent to specifyingdbname as the
first non-option argument on the command line.

904

psql

-e

--echo-queries

Copy all SQL commands sent to the server to standard output as well. This is equivalent to
setting the variableECHOto queries .

-E

--echo-hidden

Echo the actual queries generated by\d and other backslash commands. You can use this to
study psql’s internal operations. This is equivalent to setting the variableECHO_HIDDENfrom
within psql.

-f filename

--file filename

Use the filefilename as the source of commands instead of reading commands interactively.
After the file is processed, psql terminates. This is in many ways equivalent to the internal com-
mand\i .

If filename is - (hyphen), then standard input is read.

Using this option is subtly different from writingpsql < filename . In general, both will
do what you expect, but using-f enables some nice features such as error messages with line
numbers. There is also a slight chance that using this option will reduce the start-up overhead.
On the other hand, the variant using the shell’s input redirection is (in theory) guaranteed to yield
exactly the same output that you would have gotten had you entered everything by hand.

-F separator

--field-separator separator

Useseparator as the field separator. This is equivalent to\pset fieldsep or \f .

-h hostname

--host hostname

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix-domain socket.

-H

--html

Turn on HTML tabular output. This is equivalent to\pset format html or the\H command.

-l

--list

List all available databases, then exit. Other non-connection options are ignored. This is similar
to the internal command\list .

-o filename

--output filename

Put all query output into filefilename . This is equivalent to the command\o .

-p port

--port port

Specifies the TCP port or the local Unix-domain socket file extension on which the server is
listening for connections. Defaults to the value of thePGPORTenvironment variable or, if not set,
to the port specified at compile time, usually 5432.

905

psql

-P assignment

--pset assignment

Allows you to specify printing options in the style of\pset on the command line. Note that here
you have to separate name and value with an equal sign instead of a space. Thus to set the output
format to LaTeX, you could write-P format=latex .

-q

--quiet

Specifies that psql should do its work quietly. By default, it prints welcome messages and various
informational output. If this option is used, none of this happens. This is useful with the-c

option. Within psql you can also set theQUIET variable to achieve the same effect.

-R separator

--record-separator separator

Useseparator as the record separator. This is equivalent to the\pset recordsep com-
mand.

-s

--single-step

Run in single-step mode. That means the user is prompted before each command is sent to the
server, with the option to cancel execution as well. Use this to debug scripts.

-S

--single-line

Runs in single-line mode where a newline terminates an SQL command, as a semicolon does.

Note: This mode is provided for those who insist on it, but you are not necessarily encour-
aged to use it. In particular, if you mix SQL and meta-commands on a line the order of
execution might not always be clear to the inexperienced user.

-t

--tuples-only

Turn off printing of column names and result row count footers, etc. This is equivalent to the\t

command.

-T table_options

--table-attr table_options

Allows you to specify options to be placed within the HTMLtable tag. See\pset for details.

-u

Makes psql prompt for the user name and password before connecting to the database.

This option is deprecated, as it is conceptually flawed. (Prompting for a non-default user name
and prompting for a password because the server requires it are really two different things.) You
are encouraged to look at the-U and-W options instead.

-U username

--username username

Connect to the database as the userusername instead of the default. (You must have permission
to do so, of course.)

906

psql

-v assignment

--set assignment

--variable assignment

Perform a variable assignment, like the\set internal command. Note that you must separate
name and value, if any, by an equal sign on the command line. To unset a variable, leave off the
equal sign. To just set a variable without a value, use the equal sign but leave off the value. These
assignments are done during a very early stage of start-up, so variables reserved for internal
purposes might get overwritten later.

-V

--version

Print the psql version and exit.

-W

--password

Cause psql to prompt for a password before connecting to a database. This will remain set for the
entire session, even if you change the database connection with the meta-command\connect .

In the current version, psql automatically issues a password prompt whenever the server requests
password authentication. Because this is currently based on a hack, the automatic recognition
might mysteriously fail, hence this option to force a prompt. If no password prompt is issued and
the server requires password authentication, the connection attempt will fail.

-x

--expanded

Turn on the extended table formatting mode. This is equivalent to the command\x .

-X,

--no-psqlrc

Do not read the start-up file (neither the system-widepsqlrc file nor the user’s~/.psqlrc

file).

-?

--help

Show help about psql command line arguments, and exit.

Exit Status

psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own (out of memory, file not
found) occurs, 2 if the connection to the server went bad and the session was not interactive, and 3 if
an error occurred in a script and the variableON_ERROR_STOPwas set.

Usage

Connecting To A Database

psql is a regular PostgreSQL client application. In order to connect to a database you need to know
the name of your target database, the host name and port number of the server and what user name
you want to connect as. psql can be told about those parameters via command line options, namely
-d , -h , -p , and-U respectively. If an argument is found that does not belong to any option it will be

907

psql

interpreted as the database name (or the user name, if the database name is already given). Not all
these options are required; there are useful defaults. If you omit the host name, psql will connect via
a Unix-domain socket to a server on the local host, or via TCP/IP tolocalhost on machines that
don’t have Unix-domain sockets. The default port number is determined at compile time. Since the
database server uses the same default, you will not have to specify the port in most cases. The default
user name is your Unix user name, as is the default database name. Note that you can’t just connect
to any database under any user name. Your database administrator should have informed you about
your access rights.

When the defaults aren’t quite right, you can save yourself some typing by setting the environment
variablesPGDATABASE, PGHOST, PGPORTand/orPGUSERto appropriate values.

If the connection could not be made for any reason (e.g., insufficient privileges, server is not running
on the targeted host, etc.), psql will return an error and terminate.

Entering SQL Commands

In normal operation, psql provides a prompt with the name of the database to which psql is currently
connected, followed by the string=>. For example,

$ psql testdb
Welcome to psql 8.0.0, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with psql commands
\g or terminate with semicolon to execute query
\q to quit

testdb=>

At the prompt, the user may type in SQL commands. Ordinarily, input lines are sent to the server
when a command-terminating semicolon is reached. An end of line does not terminate a command.
Thus commands can be spread over several lines for clarity. If the command was sent and executed
without error, the results of the command are displayed on the screen.

Whenever a command is executed, psql also polls for asynchronous notification events generated by
LISTENandNOTIFY.

Meta-Commands

Anything you enter in psql that begins with an unquoted backslash is a psql meta-command that is
processed by psql itself. These commands help make psql more useful for administration or scripting.
Meta-commands are more commonly called slash or backslash commands.

The format of a psql command is the backslash, followed immediately by a command verb, then any
arguments. The arguments are separated from the command verb and each other by any number of
whitespace characters.

To include whitespace into an argument you may quote it with a single quote. To include a single quote
into such an argument, precede it by a backslash. Anything contained in single quotes is furthermore
subject to C-like substitutions for\n (new line),\t (tab), \ digits , \0 digits , and\0x digits
(the character with the given decimal, octal, or hexadecimal code).

908

psql

If an unquoted argument begins with a colon (:), it is taken as a psql variable and the value of the
variable is used as the argument instead.

Arguments that are enclosed in backquotes (‘) are taken as a command line that is passed to the shell.
The output of the command (with any trailing newline removed) is taken as the argument value. The
above escape sequences also apply in backquotes.

Some commands take an SQL identifier (such as a table name) as argument. These arguments follow
the syntax rules of SQL: Unquoted letters are forced to lowercase, while double quotes (") protect
letters from case conversion and allow incorporation of whitespace into the identifier. Within double
quotes, paired double quotes reduce to a single double quote in the resulting name. For example,
FOO"BAR"BAZis interpreted asfooBARbaz , and"A weird"" name" becomesA weird" name .

Parsing for arguments stops when another unquoted backslash occurs. This is taken as the beginning
of a new meta-command. The special sequence\\ (two backslashes) marks the end of arguments and
continues parsing SQL commands, if any. That way SQL and psql commands can be freely mixed on
a line. But in any case, the arguments of a meta-command cannot continue beyond the end of the line.

The following meta-commands are defined:

\a

If the current table output format is unaligned, it is switched to aligned. If it is not unaligned, it
is set to unaligned. This command is kept for backwards compatibility. See\pset for a more
general solution.

\cd [directory]

Changes the current working directory todirectory . Without argument, changes to the cur-
rent user’s home directory.

Tip: To print your current working directory, use \!pwd .

\C [title]

Sets the title of any tables being printed as the result of a query or unset any such title. This
command is equivalent to\pset title title . (The name of this command derives from
“caption”, as it was previously only used to set the caption in an HTML table.)

\connect (or \c) [dbname [username]]

Establishes a connection to a new database and/or under a user name. The previous connection
is closed. Ifdbname is - the current database name is assumed.

If username is omitted the current user name is assumed.

As a special rule,\connect without any arguments will connect to the default database as the
default user (as you would have gotten by starting psql without any arguments).

If the connection attempt failed (wrong user name, access denied, etc.), the previous connection
will be kept if and only if psql is in interactive mode. When executing a non-interactive script,
processing will immediately stop with an error. This distinction was chosen as a user convenience
against typos on the one hand, and a safety mechanism that scripts are not accidentally acting on
the wrong database on the other hand.

\copy table [(column_list)] { from | to } { filename | stdin | stdout |

pstdin | pstdout } [with] [oids] [delimiter [as] ’ character ’] [

909

psql

null [as] ’ string ’] [csv [quote [as] ’ character ’] [escape [as]

’ character ’] [force quote column_list] [force not null column_list]]

Performs a frontend (client) copy. This is an operation that runs an SQLCOPYcommand, but in-
stead of the server reading or writing the specified file, psql reads or writes the file and routes the
data between the server and the local file system. This means that file accessibility and privileges
are those of the local user, not the server, and no SQL superuser privileges are required.

The syntax of the command is similar to that of the SQLCOPYcommand. Note that, because of
this, special parsing rules apply to the\copy command. In particular, the variable substitution
rules and backslash escapes do not apply.

\copy table from stdin | stdout reads/writes based on the command input and output
respectively. All rows are read from the same source that issued the command, continuing until
\. is read or the stream reaches EOF. Output is sent to the same place as command output. To
read/write from psql’s standard input or output, usepstdin or pstdout . This option is useful
for populating tables in-line within a SQL script file.

Tip: This operation is not as efficient as the SQL COPYcommand because all data must pass
through the client/server connection. For large amounts of data the SQL command may be
preferable.

\copyright

Shows the copyright and distribution terms of PostgreSQL.

\d [pattern]

\d+ [pattern]

For each relation (table, view, index, or sequence) matching thepattern , show all columns,
their types, the tablespace (if not the default) and any special attributes such asNOT NULLor
defaults, if any. Associated indexes, constraints, rules, and triggers are also shown, as is the view
definition if the relation is a view. (“Matching the pattern” is defined below.)

The command form\d+ is identical, except that more information is displayed: any comments
associated with the columns of the table are shown, as is the presence of OIDs in the table.

Note: If \d is used without a pattern argument, it is equivalent to \dtvs which will show a
list of all tables, views, and sequences. This is purely a convenience measure.

\da [pattern]

Lists all available aggregate functions, together with the data type they operate on. Ifpattern
is specified, only aggregates whose names match the pattern are shown.

\db [pattern]

\db+ [pattern]

Lists all available tablespaces. Ifpattern is specified, only tablespaces whose names match
the pattern are shown. If+ is appended to the command name, each object is listed with its
associated permissions.

\dc [pattern]

Lists all available conversions between character-set encodings. Ifpattern is specified, only
conversions whose names match the pattern are listed.

910

psql

\dC

Lists all available type casts.

\dd [pattern]

Shows the descriptions of objects matching thepattern , or of all visible objects if no argument
is given. But in either case, only objects that have a description are listed. (“Object” covers ag-
gregates, functions, operators, types, relations (tables, views, indexes, sequences, large objects),
rules, and triggers.) For example:

=> \dd version
Object descriptions

Schema | Name | Object | Description
------------+---------+----------+---------------------------

pg_catalog | version | function | PostgreSQL version string
(1 row)

Descriptions for objects can be created with theCOMMENTSQL command.

\dD [pattern]

Lists all available domains. Ifpattern is specified, only matching domains are shown.

\df [pattern]

\df+ [pattern]

Lists available functions, together with their argument and return types. Ifpattern is specified,
only functions whose names match the pattern are shown. If the form\df+ is used, additional
information about each function, including language and description, is shown.

Note: To look up functions taking argument or returning values of a specific type, use your
pager’s search capability to scroll through the \df output.

To reduce clutter, \df does not show data type I/O functions. This is implemented by ignoring
functions that accept or return type cstring .

\dg [pattern]

Lists all database groups. Ifpattern is specified, only those groups whose names match the
pattern are listed.

\distvS [pattern]

This is not the actual command name: the lettersi , s , t , v , S stand for index, sequence, table,
view, and system table, respectively. You can specify any or all of these letters, in any order, to
obtain a listing of all the matching objects. The letter S restricts the listing to system objects;
without S, only non-system objects are shown. If+ is appended to the command name, each
object is listed with its associated description, if any.

If pattern is specified, only objects whose names match the pattern are listed.

\dl

This is an alias for\lo_list , which shows a list of large objects.

\dn [pattern]

\dn+ [pattern]

Lists all available schemas (namespaces). Ifpattern (a regular expression) is specified, only
schemas whose names match the pattern are listed. Non-local temporary schemas are suppressed.

911

psql

If + is appended to the command name, each object is listed with its associated permissions and
description, if any.

\do [pattern]

Lists available operators with their operand and return types. Ifpattern is specified, only
operators whose names match the pattern are listed.

\dp [pattern]

Produces a list of all available tables, views and sequences with their associated access privileges.
If pattern is specified, only tables, views and sequences whose names match the pattern are
listed.

The commandsGRANT andREVOKE are used to set access privileges. SeeGRANT for more
information.

\dT [pattern]

\dT+ [pattern]

Lists all data types or only those that matchpattern . The command form\dT+ shows extra
information.

\du [pattern]

Lists all database users or only those that matchpattern .

\edit (or \e) [filename]

If filename is specified, the file is edited; after the editor exits, its content is copied back to
the query buffer. If no argument is given, the current query buffer is copied to a temporary file
which is then edited in the same fashion.

The new query buffer is then re-parsed according to the normal rules of psql, where the whole
buffer is treated as a single line. (Thus you cannot make scripts this way. Use\i for that.)
This means also that if the query ends with (or rather contains) a semicolon, it is immediately
executed. In other cases it will merely wait in the query buffer.

Tip: psql searches the environment variables PSQL_EDITOR, EDITOR, and VISUAL (in that
order) for an editor to use. If all of them are unset, vi is used on Unix systems, notepad.exe

on Windows systems.

\echo text [...]

Prints the arguments to the standard output, separated by one space and followed by a newline.
This can be useful to intersperse information in the output of scripts. For example:

=> \echo ‘date‘
Tue Oct 26 21:40:57 CEST 1999

If the first argument is an unquoted-n the trailing newline is not written.

Tip: If you use the \o command to redirect your query output you may wish to use \qecho

instead of this command.

\encoding [encoding]

Sets the client character set encoding. Without an argument, this command shows the current
encoding.

912

psql

\f [string]

Sets the field separator for unaligned query output. The default is the vertical bar (|). See also
\pset for a generic way of setting output options.

\g [{ filename | | command}]

Sends the current query input buffer to the server and optionally stores the query’s output in
filename or pipes the output into a separate Unix shell executingcommand. A bare \g is
virtually equivalent to a semicolon. A\g with argument is a “one-shot” alternative to the\o

command.

\help (or \h) [command]

Gives syntax help on the specified SQL command. Ifcommand is not specified, then psql will
list all the commands for which syntax help is available. Ifcommand is an asterisk (*), then
syntax help on all SQL commands is shown.

Note: To simplify typing, commands that consists of several words do not have to be quoted.
Thus it is fine to type \help alter table .

\H

Turns on HTML query output format. If the HTML format is already on, it is switched back
to the default aligned text format. This command is for compatibility and convenience, but see
\pset about setting other output options.

\i filename

Reads input from the filefilename and executes it as though it had been typed on the keyboard.

Note: If you want to see the lines on the screen as they are read you must set the variable
ECHOto all .

\l (or \list)
\l+ (or \list+)

List the names, owners, and character set encodings of all the databases in the server. If+ is
appended to the command name, database descriptions are also displayed.

\lo_export loid filename

Reads the large object with OIDloid from the database and writes it tofilename . Note that
this is subtly different from the server functionlo_export , which acts with the permissions of
the user that the database server runs as and on the server’s file system.

Tip: Use \lo_list to find out the large object’s OID.

\lo_import filename [comment]

Stores the file into a PostgreSQL large object. Optionally, it associates the given comment with
the object. Example:

foo=> \lo_import ’/home/peter/pictures/photo.xcf’ ’a picture of me’
lo_import 152801

913

psql

The response indicates that the large object received object ID 152801 which one ought to re-
member if one wants to access the object ever again. For that reason it is recommended to al-
ways associate a human-readable comment with every object. Those can then be seen with the
\lo_list command.

Note that this command is subtly different from the server-sidelo_import because it acts as
the local user on the local file system, rather than the server’s user and file system.

\lo_list

Shows a list of all PostgreSQL large objects currently stored in the database, along with any
comments provided for them.

\lo_unlink loid

Deletes the large object with OIDloid from the database.

Tip: Use \lo_list to find out the large object’s OID.

\o [{ filename | | command}]

Saves future query results to the filefilename or pipes future results into a separate Unix shell
to executecommand. If no arguments are specified, the query output will be reset to the standard
output.

“Query results” includes all tables, command responses, and notices obtained from the database
server, as well as output of various backslash commands that query the database (such as\d),
but not error messages.

Tip: To intersperse text output in between query results, use \qecho .

\p

Print the current query buffer to the standard output.

\pset parameter [value]

This command sets options affecting the output of query result tables.parameter describes
which option is to be set. The semantics ofvalue depend thereon.

Adjustable printing options are:

format

Sets the output format to one ofunaligned , aligned , html , or latex . Unique abbrevia-
tions are allowed. (That would mean one letter is enough.)

“Unaligned” writes all columns of a row on a line, separated by the currently active field
separator. This is intended to create output that might be intended to be read in by other pro-
grams (tab-separated, comma-separated). “Aligned” mode is the standard, human-readable,
nicely formatted text output that is default. The “HTML” and “LaTeX” modes put out tables
that are intended to be included in documents using the respective mark-up language. They
are not complete documents! (This might not be so dramatic in HTML, but in LaTeX you
must have a complete document wrapper.)

border

The second argument must be a number. In general, the higher the number the more borders
and lines the tables will have, but this depends on the particular format. In HTML mode,

914

psql

this will translate directly into theborder=... attribute, in the others only values 0 (no
border), 1 (internal dividing lines), and 2 (table frame) make sense.

expanded (or x)

Toggles between regular and expanded format. When expanded format is enabled, all output
has two columns with the column name on the left and the data on the right. This mode is
useful if the data wouldn’t fit on the screen in the normal “horizontal” mode.

Expanded mode is supported by all four output formats.

null

The second argument is a string that should be printed whenever a column is null. The
default is not to print anything, which can easily be mistaken for, say, an empty string.
Thus, one might choose to write\pset null ’(null)’ .

fieldsep

Specifies the field separator to be used in unaligned output mode. That way one can create,
for example, tab- or comma-separated output, which other programs might prefer. To set a
tab as field separator, type\pset fieldsep ’\t’ . The default field separator is’|’ (a
vertical bar).

footer

Toggles the display of the default footer(x rows) .

recordsep

Specifies the record (line) separator to use in unaligned output mode. The default is a new-
line character.

tuples_only (or t)

Toggles between tuples only and full display. Full display may show extra information such
as column headers, titles, and various footers. In tuples only mode, only actual table data is
shown.

title [text]

Sets the table title for any subsequently printed tables. This can be used to give your output
descriptive tags. If no argument is given, the title is unset.

tableattr (or T) [text]

Allows you to specify any attributes to be placed inside the HTMLtable tag. This could
for example becellpadding or bgcolor . Note that you probably don’t want to specify
border here, as that is already taken care of by\pset border .

pager

Controls use of a pager for query and psql help output. If the environment variablePAGER

is set, the output is piped to the specified program. Otherwise a platform-dependent default
(such asmore) is used.

When the pager is off, the pager is not used. When the pager is on, the pager is used only
when appropriate, i.e. the output is to a terminal and will not fit on the screen. (psql does
not do a perfect job of estimating when to use the pager.)\pset pager turns the pager on
and off. Pager can also be set toalways , which causes the pager to be always used.

Illustrations on how these different formats look can be seen in theExamplessection.

915

psql

Tip: There are various shortcut commands for \pset . See \a , \C , \H , \t , \T , and \x .

Note: It is an error to call \pset without arguments. In the future this call might show the
current status of all printing options.

\q

Quits the psql program.

\qecho text [...]

This command is identical to\echo except that the output will be written to the query output
channel, as set by\o .

\r

Resets (clears) the query buffer.

\s [filename]

Print or save the command line history tofilename . If filename is omitted, the history is
written to the standard output. This option is only available if psql is configured to use the GNU
Readline library.

Note: In the current version, it is no longer necessary to save the command history, since that
will be done automatically on program termination. The history is also loaded automatically
every time psql starts up.

\set [name [value [...]]]

Sets the internal variablename to value or, if more than one value is given, to the concatenation
of all of them. If no second argument is given, the variable is just set with no value. To unset a
variable, use the\unset command.

Valid variable names can contain characters, digits, and underscores. See the sectionVariables
below for details. Variable names are case-sensitive.

Although you are welcome to set any variable to anything you want, psql treats several variables
as special. They are documented in the section about variables.

Note: This command is totally separate from the SQL command SET .

\t

Toggles the display of output column name headings and row count footer. This command is
equivalent to\pset tuples_only and is provided for convenience.

\T table_options

Allows you to specify attributes to be placed within thetable tag in HTML tabular output
mode. This command is equivalent to\pset tableattr table_options .

\timing

Toggles a display of how long each SQL statement takes, in milliseconds.

916

psql

\w { filename | |command }

Outputs the current query buffer to the filefilename or pipes it to the Unix command
command.

\x

Toggles extended table formatting mode. As such it is equivalent to\pset expanded .

\z [pattern]

Produces a list of all available tables, views and sequences with their associated access privileges.
If a pattern is specified, only tables,views and sequences whose names match the pattern are
listed.

The commandsGRANT andREVOKE are used to set access privileges. SeeGRANT for more
information.

This is an alias for\dp (“display privileges”).

\! [command]

Escapes to a separate Unix shell or executes the Unix commandcommand. The arguments are
not further interpreted, the shell will see them as is.

\?

Shows help information about the backslash commands.

The various\d commands accept apattern parameter to specify the object name(s) to be displayed.
* means “any sequence of characters” and? means “any single character”. (This notation is compa-
rable to Unix shell file name patterns.) Advanced users can also use regular-expression notations such
as character classes, for example[0-9] to match “any digit”. To make any of these pattern-matching
characters be interpreted literally, surround it with double quotes.

A pattern that contains an (unquoted) dot is interpreted as a schema name pattern followed by an
object name pattern. For example,\dt foo*.bar* displays all tables in schemas whose name starts
with foo and whose table name starts withbar . If no dot appears, then the pattern matches only
objects that are visible in the current schema search path.

Whenever thepattern parameter is omitted completely, the\d commands display all objects that
are visible in the current schema search path. To see all objects in the database, use the pattern*.* .

Advanced features

Variables

psql provides variable substitution features similar to common Unix command shells. Variables are
simply name/value pairs, where the value can be any string of any length. To set variables, use the
psql meta-command\set :

testdb=> \set foo bar

sets the variablefoo to the valuebar . To retrieve the content of the variable, precede the name with
a colon and use it as the argument of any slash command:

testdb=> \echo :foo
bar

917

psql

Note: The arguments of \set are subject to the same substitution rules as with other commands.
Thus you can construct interesting references such as \set :foo ’something’ and get “soft
links” or “variable variables” of Perl or PHP fame, respectively. Unfortunately (or fortunately?),
there is no way to do anything useful with these constructs. On the other hand, \set bar :foo

is a perfectly valid way to copy a variable.

If you call \set without a second argument, the variable is set, with an empty string as value. To
unset (or delete) a variable, use the command\unset .

psql’s internal variable names can consist of letters, numbers, and underscores in any order and any
number of them. A number of these variables are treated specially by psql. They indicate certain
option settings that can be changed at run time by altering the value of the variable or represent
some state of the application. Although you can use these variables for any other purpose, this is not
recommended, as the program behavior might grow really strange really quickly. By convention, all
specially treated variables consist of all upper-case letters (and possibly numbers and underscores). To
ensure maximum compatibility in the future, avoid using such variable names for your own purposes.
A list of all specially treated variables follows.

AUTOCOMMIT

Whenon (the default), each SQL command is automatically committed upon successful com-
pletion. To postpone commit in this mode, you must enter aBEGIN or START TRANSACTION

SQL command. Whenoff or unset, SQL commands are not committed until you explicitly is-
sueCOMMITor END. The autocommit-off mode works by issuing an implicitBEGIN for you, just
before any command that is not already in a transaction block and is not itself aBEGIN or other
transaction-control command, nor a command that cannot be executed inside a transaction block
(such asVACUUM).

Note: In autocommit-off mode, you must explicitly abandon any failed transaction by entering
ABORTor ROLLBACK. Also keep in mind that if you exit the session without committing, your
work will be lost.

Note: The autocommit-on mode is PostgreSQL’s traditional behavior, but autocommit-off is
closer to the SQL spec. If you prefer autocommit-off, you may wish to set it in the system-
wide psqlrc file or your ~/.psqlrc file.

DBNAME

The name of the database you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be unset.

ECHO

If set to all , all lines entered from the keyboard or from a script are written to the standard
output before they are parsed or executed. To select this behavior on program start-up, use the
switch -a . If set toqueries , psql merely prints all queries as they are sent to the server. The
switch for this is-e .

918

psql

ECHO_HIDDEN

When this variable is set and a backslash command queries the database, the query is first shown.
This way you can study the PostgreSQL internals and provide similar functionality in your own
programs. (To select this behavior on program start-up, use the switch-E .) If you set the vari-
able to the valuenoexec , the queries are just shown but are not actually sent to the server and
executed.

ENCODING

The current client character set encoding.

HISTCONTROL

If this variable is set toignorespace , lines which begin with a space are not entered into the
history list. If set to a value ofignoredups , lines matching the previous history line are not
entered. A value ofignoreboth combines the two options. If unset, or if set to any other value
than those above, all lines read in interactive mode are saved on the history list.

Note: This feature was shamelessly plagiarized from Bash.

HISTSIZE

The number of commands to store in the command history. The default value is 500.

Note: This feature was shamelessly plagiarized from Bash.

HOST

The database server host you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be unset.

IGNOREEOF

If unset, sending an EOF character (usuallyControl+D) to an interactive session of psql will
terminate the application. If set to a numeric value, that many EOF characters are ignored before
the application terminates. If the variable is set but has no numeric value, the default is 10.

Note: This feature was shamelessly plagiarized from Bash.

LASTOID

The value of the last affected OID, as returned from anINSERT or lo_insert command. This
variable is only guaranteed to be valid until after the result of the next SQL command has been
displayed.

ON_ERROR_STOP

By default, if non-interactive scripts encounter an error, such as a malformed SQL command or
internal meta-command, processing continues. This has been the traditional behavior of psql but
it is sometimes not desirable. If this variable is set, script processing will immediately terminate.
If the script was called from another script it will terminate in the same fashion. If the outermost
script was not called from an interactive psql session but rather using the-f option, psql will
return error code 3, to distinguish this case from fatal error conditions (error code 1).

919

psql

PORT

The database server port to which you are currently connected. This is set every time you connect
to a database (including program start-up), but can be unset.

PROMPT1

PROMPT2

PROMPT3

These specify what the prompts psql issues should look like. SeePromptingbelow.

QUIET

This variable is equivalent to the command line option-q . It is probably not too useful in inter-
active mode.

SINGLELINE

This variable is equivalent to the command line option-S .

SINGLESTEP

This variable is equivalent to the command line option-s .

USER

The database user you are currently connected as. This is set every time you connect to a database
(including program start-up), but can be unset.

VERBOSITY

This variable can be set to the valuesdefault , verbose , or terse to control the verbosity of
error reports.

SQL Interpolation

An additional useful feature of psql variables is that you can substitute (“interpolate”) them into
regular SQL statements. The syntax for this is again to prepend the variable name with a colon (:).

testdb=> \set foo ’my_table’
testdb=> SELECT * FROM :foo;

would then query the tablemy_table . The value of the variable is copied literally, so it can even
contain unbalanced quotes or backslash commands. You must make sure that it makes sense where
you put it. Variable interpolation will not be performed into quoted SQL entities.

A popular application of this facility is to refer to the last inserted OID in subsequent statements to
build a foreign key scenario. Another possible use of this mechanism is to copy the contents of a file
into a table column. First load the file into a variable and then proceed as above.

testdb=> \set content ’\” ‘cat my_file.txt‘ ’\”
testdb=> INSERT INTO my_table VALUES (:content);

One possible problem with this approach is thatmy_file.txt might contain single quotes. These
need to be escaped so that they don’t cause a syntax error when the second line is processed. This
could be done with the programsed :

testdb=> \set content ’\” ‘sed -e "s/’/\\\\\\’/g" < my_file.txt‘ ’\”

920

psql

Observe the correct number of backslashes (6)! It works this way: After psql has parsed this line, it
passessed -e "s/’/\\\’/g" < my_file.txt to the shell. The shell will do its own thing inside
the double quotes and executesed with the arguments-e ands/’/\\’/g . Whensed parses this it
will replace the two backslashes with a single one and then do the substitution. Perhaps at one point
you thought it was great that all Unix commands use the same escape character. And this is ignoring
the fact that you might have to escape all backslashes as well because SQL text constants are also
subject to certain interpretations. In that case you might be better off preparing the file externally.

Since colons may legally appear in SQL commands, the following rule applies: the character sequence
“:name” is not changed unless “name” is the name of a variable that is currently set. In any case you
can escape a colon with a backslash to protect it from substitution. (The colon syntax for variables is
standard SQL for embedded query languages, such as ECPG. The colon syntax for array slices and
type casts are PostgreSQL extensions, hence the conflict.)

Prompting

The prompts psql issues can be customized to your preference. The three variablesPROMPT1,
PROMPT2, andPROMPT3contain strings and special escape sequences that describe the appearance of
the prompt. Prompt 1 is the normal prompt that is issued when psql requests a new command.
Prompt 2 is issued when more input is expected during command input because the command was
not terminated with a semicolon or a quote was not closed. Prompt 3 is issued when you run an SQL
COPYcommand and you are expected to type in the row values on the terminal.

The value of the selected prompt variable is printed literally, except where a percent sign (%) is encoun-
tered. Depending on the next character, certain other text is substituted instead. Defined substitutions
are:

%M

The full host name (with domain name) of the database server, or[local] if the connection is
over a Unix domain socket, or[local: /dir/name] , if the Unix domain socket is not at the
compiled in default location.

%m

The host name of the database server, truncated at the first dot, or[local] if the connection is
over a Unix domain socket.

%>

The port number at which the database server is listening.

%n

The database session user name. (The expansion of this value might change during a database
session as the result of the commandSET SESSION AUTHORIZATION.)

%/

The name of the current database.

%~

Like %/, but the output is~ (tilde) if the database is your default database.

%#

If the session user is a database superuser, then a#, otherwise a>. (The expansion of this
value might change during a database session as the result of the commandSET SESSION

AUTHORIZATION.)

921

psql

%R

In prompt 1 normally=, but ^ if in single-line mode, and! if the session is disconnected from
the database (which can happen if\connect fails). In prompt 2 the sequence is replaced by- ,
* , a single quote, a double quote, or a dollar sign, depending on whether psql expects more input
because the command wasn’t terminated yet, because you are inside a/* ... */ comment,
or because you are inside a quoted or dollar-escaped string. In prompt 3 the sequence doesn’t
produce anything.

%x

Transaction status: an empty string when not in a transaction block, or* when in a transaction
block, or ! when in a failed transaction block, or? when the transaction state is indeterminate
(for example, because there is no connection).

%digits

The character with the indicated numeric code is substituted. Ifdigits starts with0x the rest
of the characters are interpreted as hexadecimal; otherwise if the first digit is0 the digits are
interpreted as octal; otherwise the digits are read as a decimal number.

%:name:

The value of the psql variablename. See the sectionVariablesfor details.

%‘command‘

The output ofcommand, similar to ordinary “back-tick” substitution.

%[... %]

Prompts may contain terminal control characters which, for example, change the color, back-
ground, or style of the prompt text, or change the title of the terminal window. In order for the
line editing features of Readline to work properly, these non-printing control characters must be
designated as invisible by surrounding them with%[and%]. Multiple pairs of these may occur
within the prompt. For example,

testdb=> \set PROMPT1 ’%[%033[1;33;40m%]%n@%/%R%[%033[0m%#%] ’

results in a boldfaced (1;) yellow-on-black (33;40) prompt on VT100-compatible,
color-capable terminals.

To insert a percent sign into your prompt, write%%. The default prompts are’%/%R%# ’ for prompts
1 and 2, and’ >> ’ for prompt 3.

Note: This feature was shamelessly plagiarized from tcsh.

Command-Line Editing

psql supports the Readline library for convenient line editing and retrieval. The command history
is automatically saved when psql exits and is reloaded when psql starts up. Tab-completion is also
supported, although the completion logic makes no claim to be an SQL parser. If for some reason you
do not like the tab completion, you can turn it off by putting this in a file named.inputrc in your
home directory:

$if psql
set disable-completion on

922

psql

$endif

(This is not a psql but a Readline feature. Read its documentation for further details.)

Environment

PAGER

If the query results do not fit on the screen, they are piped through this command. Typical values
aremore or less . The default is platform-dependent. The use of the pager can be disabled by
using the\pset command.

PGDATABASE

Default database to connect to

PGHOST

PGPORT

PGUSER

Default connection parameters

PSQL_EDITOR

EDITOR

VISUAL

Editor used by the\e command. The variables are examined in the order listed; the first that is
set is used.

SHELL

Command executed by the\! command.

TMPDIR

Directory for storing temporary files. The default is/tmp .

Files

• Before starting up, psql attempts to read and execute commands from the system-wide
psqlrc file and the user’s~/.psqlrc file. (On Windows, the user’s startup file is named
%APPDATA%\postgresql\psqlrc.conf .) See PREFIX/share/psqlrc.sample for
information on setting up the system-wide file. It could be used to set up the client or the server to
taste (using the\set andSETcommands).

• Both the system-widepsqlrc file and the user’s~/.psqlrc file can be made version-specific
by appending a dash and the PostgreSQL release number, for example~/.psqlrc-8.0.0 . A
matching version-specific file will be read in preference to a non-version-specific file.

• The command-line history is stored in the file~/.psql_history , or
%APPDATA%\postgresql\psql_history on Windows.

923

psql

Notes

• In an earlier life psql allowed the first argument of a single-letter backslash command to start
directly after the command, without intervening whitespace. For compatibility this is still supported
to some extent, but we are not going to explain the details here as this use is discouraged. If you get
strange messages, keep this in mind. For example

testdb=> \foo
Field separator is "oo".

which is perhaps not what one would expect.

• psql only works smoothly with servers of the same version. That does not mean other combinations
will fail outright, but subtle and not-so-subtle problems might come up. Backslash commands are
particularly likely to fail if the server is of a different version.

Notes for Windows users

psql is built as a “console application”. Since the Windows console windows use a different encoding
than the rest of the system, you must take special care when using 8-bit characters within psql. If psql
detects a problematic console code page, it will warn you at startup. To change the console code page,
two things are necessary:

• Set the code page by enteringcmd.exe /c chcp 1252 . (1252 is a code page that is appropri-
ate for German; replace it with your value.) If you are using Cygwin, you can put this command in
/etc/profile .

• Set the console font to “Lucida Console”, because the raster font does not work with the ANSI
code page.

Examples

The first example shows how to spread a command over several lines of input. Notice the changing
prompt:

testdb=> CREATE TABLE my_table (
testdb(> first integer not null default 0,
testdb(> second text)
testdb-> ;
CREATE TABLE

Now look at the table definition again:

testdb=> \d my_table
Table "my_table"

Attribute | Type | Modifier
-----------+---------+--------------------

first | integer | not null default 0
second | text |

Now we change the prompt to something more interesting:

924

psql

testdb=> \set PROMPT1 ’%n@%m %~%R%# ’
peter@localhost testdb=>

Let’s assume you have filled the table with data and want to take a look at it:

peter@localhost testdb=> SELECT * FROM my_table;
first | second

-------+--------
1 | one
2 | two
3 | three
4 | four

(4 rows)

You can display tables in different ways by using the\pset command:

peter@localhost testdb=> \pset border 2
Border style is 2.
peter@localhost testdb=> SELECT * FROM my_table;
+-------+--------+
| first | second |
+-------+--------+
1	one
2	two
3	three
4	four
+-------+--------+
(4 rows)

peter@localhost testdb=> \pset border 0
Border style is 0.
peter@localhost testdb=> SELECT * FROM my_table;
first second
----- ------

1 one
2 two
3 three
4 four

(4 rows)

peter@localhost testdb=> \pset border 1
Border style is 1.
peter@localhost testdb=> \pset format unaligned
Output format is unaligned.
peter@localhost testdb=> \pset fieldsep ","
Field separator is ",".
peter@localhost testdb=> \pset tuples_only
Showing only tuples.
peter@localhost testdb=> SELECT second, first FROM my_table;
one,1
two,2
three,3
four,4

Alternatively, use the short commands:

peter@localhost testdb=> \a \t \x

925

psql

Output format is aligned.
Tuples only is off.
Expanded display is on.
peter@localhost testdb=> SELECT * FROM my_table;
-[RECORD 1]-
first | 1
second | one
-[RECORD 2]-
first | 2
second | two
-[RECORD 3]-
first | 3
second | three
-[RECORD 4]-
first | 4
second | four

926

vacuumdb

Name
vacuumdb — garbage-collect and analyze a PostgreSQL database

Synopsis

vacuumdb [connection-option ...] [--full | -f] [--verbose | -v] [--analyze | -z] [--table | -ttable
[(column [,...])]] [dbname]
vacuumdb [connection-options ...] [--all | -a] [--full | -f] [--verbose | -v] [--analyze | -z]

Description

vacuumdb is a utility for cleaning a PostgreSQL database. vacuumdb will also generate internal statis-
tics used by the PostgreSQL query optimizer.

vacuumdb is a wrapper around the SQL commandVACUUM. There is no effective difference between
vacuuming databases via this utility and via other methods for accessing the server.

Options

vacuumdb accepts the following command-line arguments:

-a

--all

Vacuum all databases.

[-d] dbname

[--dbname] dbname

Specifies the name of the database to be cleaned or analyzed. If this is not specified and-a (or
--all) is not used, the database name is read from the environment variablePGDATABASE. If
that is not set, the user name specified for the connection is used.

-e

--echo

Echo the commands that vacuumdb generates and sends to the server.

-f

--full

Perform “full” vacuuming.

-q

--quiet

Do not display a response.

-t table [(column [,...])]

--table table [(column [,...])]

Clean or analyzetable only. Column names may be specified only in conjunction with the
--analyze option.

927

vacuumdb

Tip: If you specify columns, you probably have to escape the parentheses from the shell.
(See examples below.)

-v

--verbose

Print detailed information during processing.

-z

--analyze

Calculate statistics for use by the optimizer.

vacuumdb also accepts the following command-line arguments for connection parameters:

-h host

--host host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username

--username username

User name to connect as

-W

--password

Force password prompt.

Environment

PGDATABASE

PGHOST

PGPORT

PGUSER

Default connection parameters

928

vacuumdb

Diagnostics

In case of difficulty, seeVACUUMandpsqlfor discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Notes

vacuumdb might need to connect several times to the PostgreSQL server, asking for a password each
time. It is convenient to have a~/.pgpass file in such cases. SeeSection 27.12for more information.

Examples

To clean the databasetest :

$ vacuumdb test

To clean and analyze for the optimizer a database namedbigdb :

$ vacuumdb --analyze bigdb

To clean a single tablefoo in a database namedxyzzy , and analyze a single columnbar of the table
for the optimizer:

$ vacuumdb --analyze --verbose --table ’foo(bar)’ xyzzy

See Also

VACUUM

929

III. PostgreSQL Server
Applications

This part contains reference information for PostgreSQL server applications and support utilities.
These commands can only be run usefully on the host where the database server resides. Other utility
programs are listed inReference II,PostgreSQL Client Applications.

930

initdb

Name
initdb — create a new PostgreSQL database cluster

Synopsis

initdb [option ...] --pgdata | -Ddirectory

Description

initdb creates a new PostgreSQL database cluster. A database cluster is a collection of databases
that are managed by a single server instance.

Creating a database cluster consists of creating the directories in which the database data will live,
generating the shared catalog tables (tables that belong to the whole cluster rather than to any particu-
lar database), and creating thetemplate1 database. When you later create a new database, everything
in the template1 database is copied. It contains catalog tables filled in for things like the built-in
types.

initdb initializes the database cluster’s default locale and character set encoding. Some locale cat-
egories are fixed for the lifetime of the cluster. There is also a performance impact in using locales
other thanCor POSIX. Therefore it is important to make the right choice when runninginitdb . Other
locale categories can be changed later when the server is started.initdb will write those locale set-
tings into thepostgresql.conf configuration file so they are the default, but they can be changed
by editing that file. To set the locale thatinitdb uses, see the description of the--locale option.
The character set encoding can be set separately for each database as it is created.initdb determines
the encoding for thetemplate1 database, which will serve as the default for all other databases. To
alter the default encoding use the--encoding option.

initdb must be run as the user that will own the server process, because the server needs to have
access to the files and directories thatinitdb creates. Since the server may not be run as root, you
must not runinitdb as root either. (It will in fact refuse to do so.)

Although initdb will attempt to create the specified data directory, often it won’t have permission
to do so, since the parent of the desired data directory is often a root-owned directory. To set up an
arrangement like this, create an empty data directory as root, then usechown to hand over ownership
of that directory to the database user account, thensu to become the database user, and finally run
initdb as the database user.

Options

-A authmethod

--auth= authmethod

This option specifies the authentication method for local users used inpg_hba.conf . Do not
use trust unless you trust all local users on your system.Trust is the default for ease of

931

initdb

installation.

-D directory

--pgdata= directory

This option specifies the directory where the database cluster should be stored. This is the only
information required byinitdb , but you can avoid writing it by setting thePGDATAenvironment
variable, which can be convenient since the database server (postmaster) can find the database
directory later by the same variable.

-E encoding

--encoding= encoding

Selects the encoding of the template database. This will also be the default encoding of any
database you create later, unless you override it there. The default is derived from the locale, or
SQL_ASCII if that does not work. The character sets supported by the PostgreSQL server are
described inSection 20.2.1.

--locale= locale

Sets the default locale for the database cluster. If this option is not specified, the locale is inherited
from the environment thatinitdb runs in. Locale support is described inSection 20.1.

--lc-collate= locale

--lc-ctype= locale

--lc-messages= locale

--lc-monetary= locale

--lc-numeric= locale

--lc-time= locale

Like --locale , but only sets the locale in the specified category.

-U username

--username= username

Selects the user name of the database superuser. This defaults to the name of the effective user
running initdb . It is really not important what the superuser’s name is, but one might choose
to keep the customary name postgres, even if the operating system user’s name is different.

-W

--pwprompt

Makesinitdb prompt for a password to give the database superuser. If you don’t plan on using
password authentication, this is not important. Otherwise you won’t be able to use password
authentication until you have a password set up.

--pwfile= filename

Makesinitdb read the database superuser’s password from a file. The first line of the file is
taken as the password.

Other, less commonly used, parameters are also available:

-d

--debug

Print debugging output from the bootstrap backend and a few other messages of lesser interest
for the general public. The bootstrap backend is the programinitdb uses to create the catalog
tables. This option generates a tremendous amount of extremely boring output.

932

initdb

-L directory

Specifies whereinitdb should find its input files to initialize the database cluster. This is nor-
mally not necessary. You will be told if you need to specify their location explicitly.

-n

--noclean

By default, wheninitdb determines that an error prevented it from completely creating the
database cluster, it removes any files it may have created before discovering that it can’t finish
the job. This option inhibits tidying-up and is thus useful for debugging.

Environment

PGDATA

Specifies the directory where the database cluster is to be stored; may be overridden using the
-D option.

See Also

postgres, postmaster

933

ipcclean

Name
ipcclean — remove shared memory and semaphores from a failed PostgreSQL server

Synopsis

ipcclean

Description

ipcclean removes all shared memory segments and semaphore sets owned by the current user.
It is intended to be used for cleaning up after a crashed PostgreSQL server (postmaster). Note that
immediately restarting the server will also clean up shared memory and semaphores, so this command
is of little real utility.

Only the database administrator should execute this program as it can cause bizarre behavior (i.e.,
crashes) if run during multiuser execution. If this command is executed while a server is running,
the shared memory and semaphores allocated by that server will be deleted, which would have rather
severe consequences for that server.

Notes

This script is a hack, but in the many years since it was written, no one has come up with an equally
effective and portable solution. Since thepostmaster can now clean up by itself, it is unlikely that
ipcclean will be improved upon in the future.

The script makes assumptions about the output format of theipcs utility which may not be true
across different operating systems. Therefore, it may not work on your particular OS. It’s wise to look
at the script before trying it.

934

pg_controldata

Name
pg_controldata — display control information of a PostgreSQL database cluster

Synopsis

pg_controldata [datadir]

Description

pg_controldata prints information initialized duringinitdb , such as the catalog version and
server locale. It also shows information about write-ahead logging and checkpoint processing. This
information is cluster-wide, and not specific to any one database.

This utility may only be run by the user who initialized the cluster because it requires read access to
the data directory. You can specify the data directory on the command line, or use the environment
variablePGDATA.

Environment

PGDATA

Default data directory location

935

pg_ctl

Name
pg_ctl — start, stop, or restart a PostgreSQL server

Synopsis

pg_ctl start [-w] [-s] [-D datadir] [-l filename] [-o options] [-p path]
pg_ctl stop [-W] [-s] [-D datadir] [-m s[mart] | f[ast] | i[mmediate]]
pg_ctl restart [-w] [-s] [-Ddatadir] [-m s[mart] | f[ast] | i[mmediate]] [-ooptions]
pg_ctl reload [-s] [-Ddatadir]
pg_ctl status [-Ddatadir]
pg_ctl kill [signal_name] [process_id]

Description

pg_ctl is a utility for starting, stopping, or restarting the PostgreSQL backend server (postmaster),
or displaying the status of a running server. Although the server can be started manually, pg_ctl
encapsulates tasks such as redirecting log output and properly detaching from the terminal and process
group. It also provides convenient options for controlled shutdown.

In start mode, a new server is launched. The server is started in the background, and standard input
is attached to/dev/null . The standard output and standard error are either appended to a log file
(if the -l option is used), or redirected to pg_ctl’s standard output (not standard error). If no log file
is chosen, the standard output of pg_ctl should be redirected to a file or piped to another process
such as a log rotating program like rotatelogs; otherwise thepostmaster will write its output to the
controlling terminal (from the background) and will not leave the shell’s process group.

In stop mode, the server that is running in the specified data directory is shut down. Three differ-
ent shutdown methods can be selected with the-m option: “Smart” mode waits for all the clients to
disconnect. This is the default. “Fast” mode does not wait for clients to disconnect. All active transac-
tions are rolled back and clients are forcibly disconnected, then the server is shut down. “Immediate”
mode will abort all server processes without a clean shutdown. This will lead to a recovery run on
restart.

restart mode effectively executes a stop followed by a start. This allows changing thepostmaster

command-line options.

reload mode simply sends thepostmaster process a SIGHUP signal, causing it to reread its con-
figuration files (postgresql.conf , pg_hba.conf , etc.). This allows changing of configuration-file
options that do not require a complete restart to take effect.

status mode checks whether a server is running in the specified data directory. If it is, the PID and
the command line options that were used to invoke it are displayed.

kill mode allows you to send a signal to a specified process. This is particularly valuable for Mi-
crosoft Windows which does not have a kill command. Use--help to see a list of supported signal
names.

936

pg_ctl

Options

-D datadir

Specifies the file system location of the database files. If this is omitted, the environment variable
PGDATAis used.

-l filename

Append the server log output tofilename . If the file does not exist, it is created. The umask is
set to 077, so access to the log file from other users is disallowed by default.

-m mode

Specifies the shutdown mode.mode may besmart , fast , or immediate , or the first letter of
one of these three.

-o options

Specifies options to be passed directly to thepostmaster command.

The options are usually surrounded by single or double quotes to ensure that they are passed
through as a group.

-p path

Specifies the location of thepostmaster executable. By default thepostmaster executable is
taken from the same directory aspg_ctl , or failing that, the hard-wired installation directory. It
is not necessary to use this option unless you are doing something unusual and get errors that the
postmaster executable was not found.

-s

Only print errors, no informational messages.

-w

Wait for the start or shutdown to complete. Times out after 60 seconds. This is the default for
shutdowns. A successful shutdown is indicated by removal of the PID file. For starting up, a
successfulpsql -l indicates success.pg_ctl will attempt to use the proper port for psql. If
the environment variablePGPORTexists, that is used. Otherwise, it will see if a port has been
set in thepostgresql.conf file. If neither of those is used, it will use the default port that
PostgreSQL was compiled with (5432 by default). When waiting,pg_ctl will return an accurate
exit code based on the success of the startup or shutdown.

-W

Do not wait for start or shutdown to complete. This is the default for starts and restarts.

Environment

PGDATA

Default data directory location.

PGPORT

Default port forpsql(used by the -w option).

937

pg_ctl

For others, seepostmaster.

Files

postmaster.pid

The existence of this file in the data directory is used to help pg_ctl determine if the server is
currently running or not.

postmaster.opts.default

If this file exists in the data directory, pg_ctl (instart mode) will pass the contents of the file
as options to thepostmaster command, unless overridden by the-o option.

postmaster.opts

If this file exists in the data directory, pg_ctl (inrestart mode) will pass the contents of the
file as options to the postmaster, unless overridden by the-o option. The contents of this file are
also displayed instatus mode.

postgresql.conf

This file, located in the data directory, is parsed to find the proper port to use with psql when the
-w is given instart mode.

Notes

Waiting for complete start is not a well-defined operation and may fail if access control is set up so
that a local client cannot connect without manual interaction (e.g., password authentication).

Examples

Starting the Server

To start up a server:

$ pg_ctl start

An example of starting the server, blocking until the server has come up is:

$ pg_ctl -w start

For a server using port 5433, and running withoutfsync , use:

$ pg_ctl -o "-F -p 5433" start

938

pg_ctl

Stopping the Server

$ pg_ctl stop

stops the server. Using the-m switch allows one to controlhowthe backend shuts down.

Restarting the Server

Restarting the server is almost equivalent to stopping the server and starting it again except that
pg_ctl saves and reuses the command line options that were passed to the previously running in-
stance. To restart the server in the simplest form, use:

$ pg_ctl restart

To restart server, waiting for it to shut down and to come up:

$ pg_ctl -w restart

To restart using port 5433 and disablingfsync after restarting:

$ pg_ctl -o "-F -p 5433" restart

Showing the Server Status

Here is a sample status output from pg_ctl:

$ pg_ctl status
pg_ctl: postmaster is running (pid: 13718)

Command line was:

/usr/local/pgsql/bin/postmaster ’-D’ ’/usr/local/pgsql/data’ ’-p’ ’5433’ ’-B’ ’128’

This is the command line that would be invoked in restart mode.

See Also

postmaster

939

pg_resetxlog

Name
pg_resetxlog — reset the write-ahead log and other control information of a PostgreSQL
database cluster

Synopsis

pg_resetxlog [-f] [-n] [-o oid] [-x xid] [-l timelineid ,fileid ,seg] datadir

Description

pg_resetxlog clears the write-ahead log (WAL) and optionally resets some other control informa-
tion (stored in thepg_control file). This function is sometimes needed if these files have become
corrupted. It should be used only as a last resort, when the server will not start due to such corruption.

After running this command, it should be possible to start the server, but bear in mind that the database
may contain inconsistent data due to partially-committed transactions. You should immediately dump
your data, runinitdb , and reload. After reload, check for inconsistencies and repair as needed.

This utility can only be run by the user who installed the server, because it requires read/write access
to the data directory. For safety reasons, you must specify the data directory on the command line.
pg_resetxlog does not use the environment variablePGDATA.

If pg_resetxlog complains that it cannot determine valid data forpg_control , you can force it to
proceed anyway by specifying the-f (force) switch. In this case plausible values will be substituted
for the missing data. Most of the fields can be expected to match, but manual assistance may be needed
for the next OID, next transaction ID, WAL starting address, and database locale fields. The first three
of these can be set using the switches discussed below.pg_resetxlog ’s own environment is the
source for its guess at the locale fields; take care thatLANGand so forth match the environment that
initdb was run in. If you are not able to determine correct values for all these fields,-f can still be
used, but the recovered database must be treated with even more suspicion than usual: an immediate
dump and reload is imperative.Do notexecute any data-modifying operations in the database before
you dump; as any such action is likely to make the corruption worse.

The-o , -x , and-l switches allow the next OID, next transaction ID, and WAL starting address values
to be set manually. These are only needed whenpg_resetxlog is unable to determine appropriate
values by readingpg_control . A safe value for the next transaction ID may be determined by
looking for the numerically largest file name in the directorypg_clog under the data directory, adding
one, and then multiplying by 1048576. Note that the file names are in hexadecimal. It is usually
easiest to specify the switch value in hexadecimal too. For example, if0011 is the largest entry in
pg_clog , -x 0x1200000 will work (five trailing zeroes provide the proper multiplier). The WAL
starting address should be larger than any file name currently existing in the directorypg_xlog under
the data directory. These names are also in hexadecimal and have three parts. The first part is the
“timeline ID” and should usually be kept the same. Do not choose a value larger than 255 (0xFF)
for the third part; instead increment the second part and reset the third part to 0. For example, if
00000001000000320000004A is the largest entry inpg_xlog , -l 0x1,0x32,0x4B will work; but
if the largest entry is000000010000003A000000FF , choose-l 0x1,0x3B,0x0 or more. There is
no comparably easy way to determine a next OID that’s beyond the largest one in the database, but
fortunately it is not critical to get the next-OID setting right.

940

pg_resetxlog

The -n (no operation) switch instructspg_resetxlog to print the values reconstructed from
pg_control and then exit without modifying anything. This is mainly a debugging tool, but may be
useful as a sanity check before allowingpg_resetxlog to proceed for real.

Notes

This command must not be used when the server is running.pg_resetxlog will refuse to start up if
it finds a server lock file in the data directory. If the server crashed then a lock file may have been left
behind; in that case you can remove the lock file to allowpg_resetxlog to run. But before you do
so, make doubly certain that there is nopostmaster nor any backend server process still alive.

941

postgres

Name
postgres — run a PostgreSQL server in single-user mode

Synopsis

postgres [-A 0 | 1] [-B nbuffers] [-c name=value] [-d debug-level] [--describe-config] [-
D datadir] [-e] [-E] [-f s | i | t | n | m | h] [-F] [-N] [-o filename] [-O] [-P] [-s | -t pa | pl | ex] [-S
work-mem] [-W seconds] [--name=value] database
postgres [-A 0 | 1] [-B nbuffers] [-c name=value] [-d debug-level] [-D datadir] [-
e] [-f s | i | t | n | m | h] [-F] [-ofilename] [-O] [-p database] [-P] [-s | -t pa | pl | ex] [-S
work-mem] [-v protocol] [-W seconds] [--name=value]

Description

The postgres executable is the actual PostgreSQL server process that processes queries. It is nor-
mally not called directly; instead apostmastermultiuser server is started.

The second form above is howpostgres is invoked by thepostmaster(only conceptually, since both
postmaster andpostgres are in fact the same program); it should not be invoked directly this
way. The first form invokes the server directly in interactive single-user mode. The primary use for
this mode is during bootstrapping byinitdb. Sometimes it is used for debugging or disaster recovery.

When invoked in interactive mode from the shell, the user can enter queries and the results will be
printed to the screen, but in a form that is more useful for developers than end users. But note that
running a single-user server is not truly suitable for debugging the server since no realistic interprocess
communication and locking will happen.

When running a stand-alone server, the session user will be set to the user with ID 1. This user does
not actually have to exist, so a stand-alone server can be used to manually recover from certain kinds
of accidental damage to the system catalogs. Implicit superuser powers are granted to the user with
ID 1 in stand-alone mode.

Options

Whenpostgres is started by apostmasterthen it inherits all options set by the latter. Additionally,
postgres -specific options can be passed from thepostmaster with the-o switch.

You can avoid having to type these options by setting up a configuration file. SeeSection 16.4for
details. Some (safe) options can also be set from the connecting client in an application-dependent
way. For example, if the environment variablePGOPTIONSis set, then libpq-based clients will pass
that string to the server, which will interpret it aspostgres command-line options.

General Purpose

The options-A , -B , -c , -d , -D , -F , and-- name have the same meanings as thepostmasterexcept
that-d 0 prevents the server log level of thepostmaster from being propagated topostgres .

942

postgres

-e

Sets the default date style to “European”, that isDMYordering of input date fields. This also
causes the day to be printed before the month in certain date output formats. SeeSection 8.5for
more information.

-o filename

Send all server log output tofilename . If postgres is running under thepostmaster , this
option is ignored, and the stderr inherited from thepostmaster is used.

-P

Ignore system indexes when reading system tables (but still update the indexes when modifying
the tables). This is useful when recovering from damaged system indexes.

-s

Print time information and other statistics at the end of each command. This is useful for bench-
marking or for use in tuning the number of buffers.

-S work-mem

Specifies the amount of memory to be used by internal sorts and hashes before resorting to
temporary disk files. See the description of thework_mem configuration parameter inSection
16.4.3.1.

Options for stand-alone mode

database

Specifies the name of the database to be accessed. If it is omitted it defaults to the user name.

-E

Echo all commands.

-N

Disables use of newline as a statement delimiter.

Semi-internal Options

There are several other options that may be specified, used mainly for debugging purposes. These are
listed here only for the use by PostgreSQL system developers.Use of any of these options is highly
discouraged.Furthermore, any of these options may disappear or change in a future release without
notice.

-f { s | i | m | n | h }

Forbids the use of particular scan and join methods:s andi disable sequential and index scans
respectively, whilen, m, andh disable nested-loop, merge and hash joins respectively.

Note: Neither sequential scans nor nested-loop joins can be disabled completely; the -fs

and -fn options simply discourage the optimizer from using those plan types if it has any
other alternative.

943

postgres

-O

Allows the structure of system tables to be modified. This is used byinitdb .

-p database

Indicates that this process has been started by apostmaster and specifies the database to use.
etc.

-t pa[rser] | pl[anner] | e[xecutor]

Print timing statistics for each query relating to each of the major system modules. This option
cannot be used together with the-s option.

-v protocol

Specifies the version number of the frontend/backend protocol to be used for this particular
session.

-W seconds

As soon as this option is encountered, the process sleeps for the specified amount of seconds.
This gives developers time to attach a debugger to the server process.

--describe-config

This option dumps out the server’s internal configuration variables, descriptions, and defaults in
tab-delimitedCOPYformat. It is designed primarily for use by administration tools.

Environment

PGDATA

Default data directory location

For others, which have little influence during single-user mode, seepostmaster.

Notes

To cancel a running query, send theSIGINT signal to thepostgres process running that command.

To tell postgres to reload the configuration files, send aSIGHUPsignal. Normally it’s best toSIGHUP

thepostmaster instead; thepostmaster will in turn SIGHUPeach of its children. But in some cases
it might be desirable to have only onepostgres process reload the configuration files.

Thepostmaster usesSIGTERMto tell apostgres process to quit normally andSIGQUIT to termi-
nate without the normal cleanup. These signalsshould notbe used by users. It is also unwise to send
SIGKILL to apostgres process — thepostmaster will interpret this as a crash inpostgres , and
will force all the siblingpostgres processes to quit as part of its standard crash-recovery procedure.

Usage

Start a stand-alone server with a command like

postgres -D /usr/local/pgsql/data other-options my_database

944

postgres

Provide the correct path to the database directory with-D , or make sure that the environment variable
PGDATAis set. Also specify the name of the particular database you want to work in.

Normally, the stand-alone server treats newline as the command entry terminator; there is no intelli-
gence about semicolons, as there is in psql. To continue a command across multiple lines, you must
type backslash just before each newline except the last one.

But if you use the-N command line switch, then newline does not terminate command entry. In this
case, the server will read the standard input until the end-of-file (EOF) marker, then process the input
as a single command string. Backslash-newline is not treated specially in this case.

To quit the session, type EOF (Control+D, usually). If you’ve used-N , two consecutive EOFs are
needed to exit.

Note that the stand-alone server does not provide sophisticated line-editing features (no command
history, for example).

See Also

initdb, ipcclean, postmaster

945

postmaster

Name
postmaster — PostgreSQL multiuser database server

Synopsis

postmaster [-A 0 | 1] [-B nbuffers] [-c name=value] [-d debug-level] [-D datadir] [-
F] [-h hostname] [-i] [-k directory] [-l] [-N max-connections] [-o extra-options] [-p
port] [-S] [--name=value] [-n | -s]

Description

postmaster is the PostgreSQL multiuser database server. In order for a client application to access
a database it connects (over a network or locally) to a runningpostmaster . Thepostmaster then
starts a separate server process (“postgres”) to handle the connection. Thepostmaster also manages
the communication among server processes.

By default thepostmaster starts in the foreground and prints log messages to the standard error
stream. In practical applications thepostmaster should be started as a background process, perhaps
at boot time.

Onepostmaster always manages the data from exactly one database cluster. A database cluster is
a collection of databases that is stored at a common file system location (the “data area”). More than
onepostmaster process can run on a system at one time, so long as they use different data areas
and different communication ports (see below). A data area is created withinitdb.

When thepostmaster starts it needs to know the location of the data area. The location must be
specified by the-D option or thePGDATAenvironment variable; there is no default. Typically,-D or
PGDATApoints directly to the data area directory created by initdb. Other possible file layouts are
discussed inSection 16.4.1.

Options

postmaster accepts the following command line arguments. For a detailed discussion of the options
consultSection 16.4. You can also save typing most of these options by setting up a configuration file.

-A 0|1

Enables run-time assertion checks, which is a debugging aid to detect programming mistakes.
This option is only available if assertions were enabled when PostgreSQL was compiled. If so,
the default is on.

-B nbuffers

Sets the number of shared buffers for use by the server processes. The default value of this
parameter is chosen automatically by initdb; refer toSection 16.4.3.1for more information.

946

postmaster

-c name=value

Sets a named run-time parameter. The configuration parameters supported by PostgreSQL are
described inSection 16.4. Most of the other command line options are in fact short forms of
such a parameter assignment.-c can appear multiple times to set multiple parameters.

-d debug-level

Sets the debug level. The higher this value is set, the more debugging output is written to the
server log. Values are from 1 to 5.

-D datadir

Specifies the file system location of the data directory or configuration file(s). SeeSection 16.4.1
for details.

-F

Disablesfsync calls for improved performance, at the risk of data corruption in the event of a
system crash. Specifying this option is equivalent to disabling thefsyncconfiguration parameter.
Read the detailed documentation before using this!

--fsync=true has the opposite effect of this option.

-h hostname

Specifies the IP host name or address on which thepostmaster is to listen for TCP/IP con-
nections from client applications. The value can also be a space-separated list of addresses, or*

to specify listening on all available interfaces. An empty value specifies not listening on any IP
addresses, in which case only Unix-domain sockets can be used to connect to thepostmaster .
Defaults to listening only on localhost. Specifying this option is equivalent to setting thelis-
ten_addressesconfiguration parameter.

-i

Allows remote clients to connect via TCP/IP (Internet domain) connections. Without this option,
only local connections are accepted. This option is equivalent to settinglisten_addresses to
* in postgresql.conf or via -h .

This option is deprecated since it does not allow access to the full functionality of
listen_addresses. It’s usually better to setlisten_addresses directly.

-k directory

Specifies the directory of the Unix-domain socket on which thepostmaster is to listen for
connections from client applications. The default is normally/tmp , but can be changed at build
time.

-l

Enables secure connections using SSL. PostgreSQL must have been compiled with support for
SSL for this option to be available. For more information on using SSL, refer toSection 16.7.

-N max-connections

Sets the maximum number of client connections that thispostmaster will accept. By de-
fault, this value is 32, but it can be set as high as your system will support. (Note that-B is
required to be at least twice-N . SeeSection 16.5for a discussion of system resource require-
ments for large numbers of client connections.) Specifying this option is equivalent to setting the
max_connectionsconfiguration parameter.

947

postmaster

-o extra-options

The command line-style options specified inextra-options are passed to all server pro-
cesses started by thispostmaster . Seepostgresfor possibilities. If the option string contains
any spaces, the entire string must be quoted.

-p port

Specifies the TCP/IP port or local Unix domain socket file extension on which thepostmaster

is to listen for connections from client applications. Defaults to the value of thePGPORTenviron-
ment variable, or ifPGPORTis not set, then defaults to the value established during compilation
(normally 5432). If you specify a port other than the default port, then all client applications must
specify the same port using either command-line options orPGPORT.

-S

Specifies that thepostmaster process should start up in silent mode. That is, it will disassociate
from the user’s (controlling) terminal, start its own process group, and redirect its standard output
and standard error to/dev/null .

Using this switch discards all logging output, which is probably not what you want, since
it makes it very difficult to troubleshoot problems. See below for a better way to start the
postmaster in the background.

--silent-mode=false has the opposite effect of this option.

-- name=value

Sets a named run-time parameter; a shorter form of-c .

Two additional command line options are available for debugging problems that cause a server pro-
cess to die abnormally. The ordinary strategy in this situation is to notify all other server processes
that they must terminate and then reinitialize the shared memory and semaphores. This is because
an errant server process could have corrupted some shared state before terminating. These options
select alternative behaviors of thepostmaster in this situation.Neither option is intended for use in
ordinary operation.

These special-case options are:

-n

postmaster will not reinitialize shared data structures. A knowledgeable system programmer
can then use a debugger to examine shared memory and semaphore state.

-s

postmaster will stop all other server processes by sending the signalSIGSTOP, but will not
cause them to terminate. This permits system programmers to collect core dumps from all server
processes by hand.

948

postmaster

Environment

PGCLIENTENCODING

Default character encoding used by clients. (The clients may override this individually.) This
value can also be set in the configuration file.

PGDATA

Default data directory location

PGDATESTYLE

Default value of theDateStylerun-time parameter. (The use of this environment variable is
deprecated.)

PGPORT

Default port (preferably set in the configuration file)

TZ

Server time zone

Diagnostics

A failure message mentioningsemget or shmget probably indicates you need to configure your
kernel to provide adequate shared memory and semaphores. For more discussion seeSection 16.5.

Tip: You may be able to postpone reconfiguring your kernel by decreasing shared_buffers to
reduce the shared memory consumption of PostgreSQL, and/or by reducing max_connections to
reduce the semaphore consumption.

A failure message suggesting that another postmaster is already running should be checked carefully,
for example by using the command

$ ps ax | grep postmaster

or

$ ps -ef | grep postmaster

depending on your system. If you are certain that no conflicting postmaster is running, you may
remove the lock file mentioned in the message and try again.

A failure message indicating inability to bind to a port may indicate that that port is already in use
by some non-PostgreSQL process. You may also get this error if you terminate thepostmaster and
immediately restart it using the same port; in this case, you must simply wait a few seconds until the
operating system closes the port before trying again. Finally, you may get this error if you specify a
port number that your operating system considers to be reserved. For example, many versions of Unix
consider port numbers under 1024 to be “trusted” and only permit the Unix superuser to access them.

949

postmaster

Notes

If at all possible,do notuseSIGKILL to kill the postmaster . Doing so will preventpostmaster

from freeing the system resources (e.g., shared memory and semaphores) that it holds before termi-
nating. This may cause problems for starting a freshpostmaster run.

To terminate thepostmaster normally, the signalsSIGTERM, SIGINT , or SIGQUIT can be used.
The first will wait for all clients to terminate before quitting, the second will forcefully disconnect
all clients, and the third will quit immediately without proper shutdown, resulting in a recovery run
during restart. TheSIGHUPsignal will reload the server configuration files.

The utility commandpg_ctlcan be used to start and shut down thepostmaster safely and comfort-
ably.

The-- options will not work on FreeBSD or OpenBSD. Use-c instead. This is a bug in the affected
operating systems; a future release of PostgreSQL will provide a workaround if this is not fixed.

Examples

To startpostmaster in the background using default values, type:

$ nohup postmaster >logfile 2 >&1 </dev/null &

To startpostmaster with a specific port:

$ postmaster -p 1234

This command will start uppostmaster communicating through the port 1234. In order to connect
to thispostmaster using psql, you would need to run it as

$ psql -p 1234

or set the environment variablePGPORT:

$ export PGPORT=1234
$ psql

Named run-time parameters can be set in either of these styles:

$ postmaster -c work_mem=1234
$ postmaster --work-mem=1234

Either form overrides whatever setting might exist forwork_mem in postgresql.conf . Notice that
underscores in parameter names can be written as either underscore or dash on the command line.

Tip: Except for short-term experiments, it’s probably better practice to edit the setting in
postgresql.conf than to rely on a command-line switch to set a parameter.

See Also

initdb, pg_ctl

950

VII. Internals
This part contains assorted information that can be of use to PostgreSQL developers.

951

postmaster

952

Chapter 40. Overview of PostgreSQL Internals

Author: This chapter originated as part of Enhancement of the ANSI SQL Implementation of Post-
greSQL, Stefan Simkovics’ Master’s Thesis prepared at Vienna University of Technology under
the direction of O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag. Katrin Seyr.

This chapter gives an overview of the internal structure of the backend of PostgreSQL. After having
read the following sections you should have an idea of how a query is processed. This chapter does
not aim to provide a detailed description of the internal operation of PostgreSQL, as such a document
would be very extensive. Rather, this chapter is intended to help the reader understand the general
sequence of operations that occur within the backend from the point at which a query is received, to
the point at which the results are returned to the client.

40.1. The Path of a Query
Here we give a short overview of the stages a query has to pass in order to obtain a result.

1. A connection from an application program to the PostgreSQL server has to be established. The
application program transmits a query to the server and waits to receive the results sent back by
the server.

2. Theparser stagechecks the query transmitted by the application program for correct syntax and
creates aquery tree.

3. Therewrite systemtakes the query tree created by the parser stage and looks for anyrules(stored
in thesystem catalogs) to apply to the query tree. It performs the transformations given in therule
bodies.

One application of the rewrite system is in the realization ofviews. Whenever a query against
a view (i.e. avirtual table) is made, the rewrite system rewrites the user’s query to a query that
accesses thebase tablesgiven in theview definitioninstead.

4. Theplanner/optimizertakes the (rewritten) query tree and creates aquery planthat will be the
input to theexecutor.

It does so by first creating all possiblepathsleading to the same result. For example if there is
an index on a relation to be scanned, there are two paths for the scan. One possibility is a simple
sequential scan and the other possibility is to use the index. Next the cost for the execution of
each path is estimated and the cheapest path is chosen. The cheapest path is expanded into a
complete plan that the executor can use.

5. The executor recursively steps through theplan treeand retrieves rows in the way represented by
the plan. The executor makes use of thestorage systemwhile scanning relations, performssorts
andjoins, evaluatesqualificationsand finally hands back the rows derived.

In the following sections we will cover each of the above listed items in more detail to give a better
understanding of PostgreSQL’s internal control and data structures.

953

Chapter 40. Overview of PostgreSQL Internals

40.2. How Connections are Established
PostgreSQL is implemented using a simple “process per user” client/server model. In this model
there is oneclient processconnected to exactly oneserver process. As we do not know ahead of
time how many connections will be made, we have to use amaster processthat spawns a new server
process every time a connection is requested. This master process is calledpostmaster and lis-
tens at a specified TCP/IP port for incoming connections. Whenever a request for a connection is
detected thepostmaster process spawns a new server process calledpostgres . The server tasks
(postgres processes) communicate with each other usingsemaphoresandshared memoryto ensure
data integrity throughout concurrent data access.

The client process can be any program that understands the PostgreSQL protocol described inChapter
42. Many clients are based on the C-language library libpq, but several independent implementations
of the protocol exist, such as the Java JDBC driver.

Once a connection is established the client process can send a query to thebackend(server). The
query is transmitted using plain text, i.e. there is no parsing done in thefrontend(client). The server
parses the query, creates anexecution plan, executes the plan and returns the retrieved rows to the
client by transmitting them over the established connection.

40.3. The Parser Stage
Theparser stageconsists of two parts:

• Theparserdefined ingram.y andscan.l is built using the Unix tools yacc and lex.

• The transformation processdoes modifications and augmentations to the data structures returned
by the parser.

40.3.1. Parser

The parser has to check the query string (which arrives as plain ASCII text) for valid syntax. If the
syntax is correct aparse treeis built up and handed back; otherwise an error is returned. The parser
and lexer are implemented using the well-known Unix tools yacc and lex.

The lexer is defined in the filescan.l and is responsible for recognizingidentifiers, the SQL key
words etc. For every key word or identifier that is found, atoken is generated and handed to the
parser.

The parser is defined in the filegram.y and consists of a set ofgrammar rulesandactionsthat are
executed whenever a rule is fired. The code of the actions (which is actually C code) is used to build
up the parse tree.

The file scan.l is transformed to the C source filescan.c using the program lex andgram.y is
transformed togram.c using yacc. After these transformations have taken place a normal C compiler
can be used to create the parser. Never make any changes to the generated C files as they will be
overwritten the next time lex or yacc is called.

Note: The mentioned transformations and compilations are normally done automatically using
the makefiles shipped with the PostgreSQL source distribution.

954

Chapter 40. Overview of PostgreSQL Internals

A detailed description of yacc or the grammar rules given ingram.y would be beyond the scope of
this paper. There are many books and documents dealing with lex and yacc. You should be familiar
with yacc before you start to study the grammar given ingram.y otherwise you won’t understand
what happens there.

40.3.2. Transformation Process

The parser stage creates a parse tree using only fixed rules about the syntactic structure of SQL. It
does not make any lookups in the system catalogs, so there is no possibility to understand the detailed
semantics of the requested operations. After the parser completes, thetransformation processtakes
the tree handed back by the parser as input and does the semantic interpretation needed to understand
which tables, functions, and operators are referenced by the query. The data structure that is built to
represent this information is called thequery tree.

The reason for separating raw parsing from semantic analysis is that system catalog lookups can only
be done within a transaction, and we do not wish to start a transaction immediately upon receiving a
query string. The raw parsing stage is sufficient to identify the transaction control commands (BEGIN,
ROLLBACK, etc), and these can then be correctly executed without any further analysis. Once we know
that we are dealing with an actual query (such asSELECTor UPDATE), it is okay to start a transaction
if we’re not already in one. Only then can the transformation process be invoked.

The query tree created by the transformation process is structurally similar to the raw parse tree
in most places, but it has many differences in detail. For example, aFuncCall node in the parse
tree represents something that looks syntactically like a function call. This may be transformed to
either aFuncExpr or Aggref node depending on whether the referenced name turns out to be an
ordinary function or an aggregate function. Also, information about the actual data types of columns
and expression results is added to the query tree.

40.4. The PostgreSQL Rule System
PostgreSQL supports a powerfulrule systemfor the specification ofviewsand ambiguousview up-
dates. Originally the PostgreSQL rule system consisted of two implementations:

• The first one worked usingrow levelprocessing and was implemented deep in theexecutor. The
rule system was called whenever an individual row had been accessed. This implementation was
removed in 1995 when the last official release of the Berkeley Postgres project was transformed
into Postgres95.

• The second implementation of the rule system is a technique calledquery rewriting. The rewrite
systemis a module that exists between theparser stageand theplanner/optimizer. This technique
is still implemented.

The query rewriter is discussed in some detail inChapter 33, so there is no need to cover it here. We
will only point out that both the input and the output of the rewriter are query trees, that is, there is no
change in the representation or level of semantic detail in the trees. Rewriting can be thought of as a
form of macro expansion.

955

Chapter 40. Overview of PostgreSQL Internals

40.5. Planner/Optimizer
The task of theplanner/optimizeris to create an optimal execution plan. A given SQL query (and
hence, a query tree) can be actually executed in a wide variety of different ways, each of which will
produce the same set of results. If it is computationally feasible, the query optimizer will examine
each of these possible execution plans, ultimately selecting the execution plan that is expected to run
the fastest.

Note: In some situations, examining each possible way in which a query may be executed would
take an excessive amount of time and memory space. In particular, this occurs when executing
queries involving large numbers of join operations. In order to determine a reasonable (not opti-
mal) query plan in a reasonable amount of time, PostgreSQL uses a Genetic Query Optimizer .

The planner’s search procedure actually works with data structures calledpaths, which are simply
cut-down representations of plans containing only as much information as the planner needs to make
its decisions. After the cheapest path is determined, a full-fledgedplan tree is built to pass to the
executor. This represents the desired execution plan in sufficient detail for the executor to run it. In
the rest of this section we’ll ignore the distinction between paths and plans.

40.5.1. Generating Possible Plans

The planner/optimizer starts by generating plans for scanning each individual relation (table) used
in the query. The possible plans are determined by the available indexes on each relation. There is
always the possibility of performing a sequential scan on a relation, so a sequential scan plan is always
created. Assume an index is defined on a relation (for example a B-tree index) and a query contains the
restriction relation.attribute OPR constant . If relation.attribute happens to match
the key of the B-tree index andOPRis one of the operators listed in the index’soperator class, another
plan is created using the B-tree index to scan the relation. If there are further indexes present and the
restrictions in the query happen to match a key of an index further plans will be considered.

After all feasible plans have been found for scanning single relations, plans for joining relations are
created. The planner/optimizer preferentially considers joins between any two relations for which
there exist a corresponding join clause in theWHEREqualification (i.e. for which a restriction like
where rel1.attr1=rel2.attr2 exists). Join pairs with no join clause are considered only when
there is no other choice, that is, a particular relation has no available join clauses to any other relation.
All possible plans are generated for every join pair considered by the planner/optimizer. The three
possible join strategies are:

• nested loop join: The right relation is scanned once for every row found in the left relation. This
strategy is easy to implement but can be very time consuming. (However, if the right relation can
be scanned with an index scan, this can be a good strategy. It is possible to use values from the
current row of the left relation as keys for the index scan of the right.)

• merge sort join: Each relation is sorted on the join attributes before the join starts. Then the two
relations are scanned in parallel, and matching rows are combined to form join rows. This kind of
join is more attractive because each relation has to be scanned only once. The required sorting may
be achieved either by an explicit sort step, or by scanning the relation in the proper order using an
index on the join key.

• hash join: the right relation is first scanned and loaded into a hash table, using its join attributes as
hash keys. Next the left relation is scanned and the appropriate values of every row found are used
as hash keys to locate the matching rows in the table.

956

Chapter 40. Overview of PostgreSQL Internals

When the query involves more than two relations, the final result must be built up by a tree of join
steps, each with two inputs. The planner examines different possible join sequences to find the cheap-
est one.

The finished plan tree consists of sequential or index scans of the base relations, plus nested-loop,
merge, or hash join nodes as needed, plus any auxiliary steps needed, such as sort nodes or aggregate-
function calculation nodes. Most of these plan node types have the additional ability to doselection
(discarding rows that do not meet a specified boolean condition) andprojection (computation of a
derived column set based on given column values, that is, evaluation of scalar expressions where
needed). One of the responsibilities of the planner is to attach selection conditions from theWHERE

clause and computation of required output expressions to the most appropriate nodes of the plan tree.

40.6. Executor
The executortakes the plan handed back by the planner/optimizer and recursively processes it to
extract the required set of rows. This is essentially a demand-pull pipeline mechanism. Each time a
plan node is called, it must deliver one more row, or report that it is done delivering rows.

To provide a concrete example, assume that the top node is aMergeJoin node. Before any merge
can be done two rows have to be fetched (one from each subplan). So the executor recursively calls
itself to process the subplans (it starts with the subplan attached tolefttree). The new top node
(the top node of the left subplan) is, let’s say, aSort node and again recursion is needed to obtain
an input row. The child node of theSort might be aSeqScan node, representing actual reading of a
table. Execution of this node causes the executor to fetch a row from the table and return it up to the
calling node. TheSort node will repeatedly call its child to obtain all the rows to be sorted. When
the input is exhausted (as indicated by the child node returning a NULL instead of a row), theSort

code performs the sort, and finally is able to return its first output row, namely the first one in sorted
order. It keeps the remaining rows stored so that it can deliver them in sorted order in response to later
demands.

The MergeJoin node similarly demands the first row from its right subplan. Then it compares the
two rows to see if they can be joined; if so, it returns a join row to its caller. On the next call, or
immediately if it cannot join the current pair of inputs, it advances to the next row of one table or the
other (depending on how the comparison came out), and again checks for a match. Eventually, one
subplan or the other is exhausted, and theMergeJoin node returns NULL to indicate that no more
join rows can be formed.

Complex queries may involve many levels of plan nodes, but the general approach is the same: each
node computes and returns its next output row each time it is called. Each node is also responsible for
applying any selection or projection expressions that were assigned to it by the planner.

The executor mechanism is used to evaluate all four basic SQL query types:SELECT, INSERT,
UPDATE, and DELETE. For SELECT, the top-level executor code only needs to send each row re-
turned by the query plan tree off to the client. ForINSERT, each returned row is inserted into the
target table specified for theINSERT. (A simple INSERT ... VALUES command creates a trivial
plan tree consisting of a singleResult node, which computes just one result row. ButINSERT ...

SELECTmay demand the full power of the executor mechanism.) ForUPDATE, the planner arranges
that each computed row includes all the updated column values, plus theTID (tuple ID, or row ID) of
the original target row; the executor top level uses this information to create a new updated row and
mark the old row deleted. ForDELETE, the only column that is actually returned by the plan is the
TID, and the executor top level simply uses the TID to visit each target row and mark it deleted.

957

Chapter 41. System Catalogs
The system catalogs are the place where a relational database management system stores schema
metadata, such as information about tables and columns, and internal bookkeeping information. Post-
greSQL’s system catalogs are regular tables. You can drop and recreate the tables, add columns, insert
and update values, and severely mess up your system that way. Normally, one should not change
the system catalogs by hand, there are always SQL commands to do that. (For example,CREATE

DATABASEinserts a row into thepg_database catalog — and actually creates the database on disk.)
There are some exceptions for particularly esoteric operations, such as adding index access methods.

41.1. Overview
Table 41-1lists the system catalogs. More detailed documentation of each catalog follows below.

Most system catalogs are copied from the template database during database creation and are there-
after database-specific. A few catalogs are physically shared across all databases in a cluster; these
are noted in the descriptions of the individual catalogs.

Table 41-1. System Catalogs

Catalog Name Purpose

pg_aggregate aggregate functions

pg_am index access methods

pg_amop access method operators

pg_amproc access method support procedures

pg_attrdef column default values

pg_attribute table columns (“attributes”)

pg_cast casts (data type conversions)

pg_class tables, indexes, sequences, views (“relations”)

pg_constraint check constraints, unique constraints, primary key
constraints, foreign key constraints

pg_conversion encoding conversion information

pg_database databases within this database cluster

pg_depend dependencies between database objects

pg_description descriptions or comments on database objects

pg_group groups of database users

pg_index additional index information

pg_inherits table inheritance hierarchy

pg_language languages for writing functions

pg_largeobject large objects

pg_listener asynchronous notification support

pg_namespace schemas

pg_opclass index access method operator classes

958

Chapter 41. System Catalogs

Catalog Name Purpose

pg_operator operators

pg_proc functions and procedures

pg_rewrite query rewrite rules

pg_shadow database users

pg_statistic planner statistics

pg_tablespace tablespaces within this database cluster

pg_trigger triggers

pg_type data types

41.2. pg_aggregate

The catalogpg_aggregate stores information about aggregate functions. An aggregate function is
a function that operates on a set of values (typically one column from each row that matches a query
condition) and returns a single value computed from all these values. Typical aggregate functions are
sum, count , andmax. Each entry inpg_aggregate is an extension of an entry inpg_proc . The
pg_proc entry carries the aggregate’s name, input and output data types, and other information that
is similar to ordinary functions.

Table 41-2.pg_aggregate Columns

Name Type References Description

aggfnoid regproc pg_proc .oid pg_proc OID of the
aggregate function

aggtransfn regproc pg_proc .oid Transition function

aggfinalfn regproc pg_proc .oid Final function (zero if
none)

aggtranstype oid pg_type .oid The type of the
aggregate function’s
internal transition (state)
data

agginitval text The initial value of the
transition state. This is a
text field containing the
initial value in its
external string
representation. If the
value is null, the
transition state value
starts out null.

New aggregate functions are registered with theCREATE AGGREGATEcommand. SeeSection 31.10
for more information about writing aggregate functions and the meaning of the transition functions,
etc.

959

Chapter 41. System Catalogs

41.3. pg_am

The catalogpg_am stores information about index access methods. There is one row for each index
access method supported by the system.

Table 41-3.pg_am Columns

Name Type References Description

amname name Name of the access
method

amowner int4 pg_shadow .usesysid User ID of the owner
(currently not used)

amstrategies int2 Number of operator
strategies for this access
method

amsupport int2 Number of support
routines for this access
method

amorderstrategy int2 Zero if the index offers
no sort order, otherwise
the strategy number of
the strategy operator that
describes the sort order

amcanunique bool Does the access method
support unique indexes?

amcanmulticol bool Does the access method
support multicolumn
indexes?

amindexnulls bool Does the access method
support null index
entries?

amconcurrent bool Does the access method
support concurrent
updates?

amgettuple regproc pg_proc .oid “Next valid tuple”
function

aminsert regproc pg_proc .oid “Insert this tuple”
function

ambeginscan regproc pg_proc .oid “Start new scan”
function

amrescan regproc pg_proc .oid “Restart this scan”
function

amendscan regproc pg_proc .oid “End this scan” function

ammarkpos regproc pg_proc .oid “Mark current scan
position” function

amrestrpos regproc pg_proc .oid “Restore marked scan
position” function

960

Chapter 41. System Catalogs

Name Type References Description

ambuild regproc pg_proc .oid “Build new index”
function

ambulkdelete regproc pg_proc .oid Bulk-delete function

amvacuumcleanup regproc pg_proc .oid Post-VACUUMcleanup
function

amcostestimate regproc pg_proc .oid Function to estimate cost
of an index scan

An index access method that supports multiple columns (hasamcanmulticol true) mustsupport
indexing null values in columns after the first, because the planner will assume the index can be used
for queries on just the first column(s). For example, consider an index on (a,b) and a query withWHERE

a = 4 . The system will assume the index can be used to scan for rows witha = 4 , which is wrong if
the index omits rows whereb is null. It is, however, OK to omit rows where the first indexed column
is null. (GiST currently does so.)amindexnulls should be set true only if the index access method
indexes all rows, including arbitrary combinations of null values.

41.4. pg_amop

The catalogpg_amop stores information about operators associated with index access method opera-
tor classes. There is one row for each operator that is a member of an operator class.

Table 41-4.pg_amop Columns

Name Type References Description

amopclaid oid pg_opclass .oid The index operator class
this entry is for

amopsubtype oid pg_type .oid Subtype to distinguish
multiple entries for one
strategy; zero for default

amopstrategy int2 Operator strategy
number

amopreqcheck bool Index hit must be
rechecked

amopopr oid pg_operator .oid OID of the operator

41.5. pg_amproc

The catalogpg_amproc stores information about support procedures associated with index access
method operator classes. There is one row for each support procedure belonging to an operator class.

Table 41-5.pg_amproc Columns

Name Type References Description

amopclaid oid pg_opclass .oid The index operator class
this entry is for

961

Chapter 41. System Catalogs

Name Type References Description

amprocsubtype oid pg_type .oid Subtype, if cross-type
routine, else zero

amprocnum int2 Support procedure
number

amproc regproc pg_proc .oid OID of the procedure

41.6. pg_attrdef

The catalogpg_attrdef stores column default values. The main information about columns is stored
in pg_attribute (see below). Only columns that explicitly specify a default value (when the table
is created or the column is added) will have an entry here.

Table 41-6.pg_attrdef Columns

Name Type References Description

adrelid oid pg_class .oid The table this column
belongs to

adnum int2 pg_attribute .attnum The number of the
column

adbin text The internal
representation of the
column default value

adsrc text A human-readable
representation of the
default value

Theadsrc field is historical, and is best not used, because it does not track outside changes that might
affect the representation of the default value. Reverse-compiling theadbin field (with pg_get_expr

for example) is a better way to display the default value.

41.7. pg_attribute

The catalogpg_attribute stores information about table columns. There will be exactly one
pg_attribute row for every column in every table in the database. (There will also be attribute
entries for indexes, and indeed all objects that havepg_class entries.)

The term attribute is equivalent to column and is used for historical reasons.

Table 41-7.pg_attribute Columns

Name Type References Description

attrelid oid pg_class .oid The table this column
belongs to

attname name The column name

atttypid oid pg_type .oid The data type of this
column

962

Chapter 41. System Catalogs

Name Type References Description

attstattarget int4 attstattarget

controls the level of
detail of statistics
accumulated for this
column byANALYZE. A
zero value indicates that
no statistics should be
collected. A negative
value says to use the
system default statistics
target. The exact
meaning of positive
values is data
type-dependent. For
scalar data types,
attstattarget is both
the target number of
“most common values”
to collect, and the target
number of histogram
bins to create.

attlen int2 A copy of
pg_type.typlen of
this column’s type

attnum int2 The number of the
column. Ordinary
columns are numbered
from 1 up. System
columns, such asoid ,
have (arbitrary) negative
numbers.

attndims int4 Number of dimensions,
if the column is an array
type; otherwise 0.
(Presently, the number of
dimensions of an array is
not enforced, so any
nonzero value effectively
means “it’s an array”.)

attcacheoff int4 Always -1 in storage,
but when loaded into a
row descriptor in
memory this may be
updated to cache the
offset of the attribute
within the row.

963

Chapter 41. System Catalogs

Name Type References Description

atttypmod int4 atttypmod records
type-specific data
supplied at table creation
time (for example, the
maximum length of a
varchar column). It is
passed to type-specific
input functions and
length coercion
functions. The value will
generally be -1 for types
that do not need
atttypmod .

attbyval bool A copy of
pg_type.typbyval of
this column’s type

attstorage char Normally a copy of
pg_type.typstorage

of this column’s type.
For TOAST-able data
types, this can be altered
after column creation to
control storage policy.

attalign char A copy of
pg_type.typalign of
this column’s type

attnotnull bool This represents a
not-null constraint. It is
possible to change this
column to enable or
disable the constraint.

atthasdef bool This column has a
default value, in which
case there will be a
corresponding entry in
thepg_attrdef catalog
that actually defines the
value.

attisdropped bool This column has been
dropped and is no longer
valid. A dropped column
is still physically present
in the table, but is
ignored by the parser
and so cannot be
accessed via SQL.

964

Chapter 41. System Catalogs

Name Type References Description

attislocal bool This column is defined
locally in the relation.
Note that a column may
be locally defined and
inherited simultaneously.

attinhcount int4 The number of direct
ancestors this column
has. A column with a
nonzero number of
ancestors cannot be
dropped nor renamed.

In a dropped column’spg_attribute entry,atttypid is reset to zero, butattlen and the other
fields copied frompg_type are still valid. This arrangement is needed to cope with the situation
where the dropped column’s data type was later dropped, and so there is nopg_type row anymore.
attlen and the other fields can be used to interpret the contents of a row of the table.

41.8. pg_cast

The catalogpg_cast stores data type conversion paths, both built-in paths and those defined with
CREATE CAST.

Table 41-8.pg_cast Columns

Name Type References Description

castsource oid pg_type .oid OID of the source data
type

casttarget oid pg_type .oid OID of the target data
type

castfunc oid pg_proc .oid The OID of the function
to use to perform this
cast. Zero is stored if the
data types are binary
compatible (that is, no
run-time operation is
needed to perform the
cast).

965

Chapter 41. System Catalogs

Name Type References Description

castcontext char Indicates what contexts
the cast may be invoked
in. e means only as an
explicit cast (usingCAST

or :: syntax).a means
implicitly in assignment
to a target column, as
well as explicitly.i
means implicitly in
expressions, as well as
the other cases.

The cast functions listed inpg_cast must always take the cast source type as their first argument
type, and return the cast destination type as their result type. A cast function can have up to three
arguments. The second argument, if present, must be typeinteger ; it receives the type modifier
associated with the destination type, or-1 if there is none. The third argument, if present, must be
typeboolean ; it receivestrue if the cast is an explicit cast,false otherwise.

It is legitimate to create apg_cast entry in which the source and target types are the same, if the
associated function takes more than one argument. Such entries represent “length coercion functions”
that coerce values of the type to be legal for a particular type modifier value. Note however that at
present there is no support for associating non-default type modifiers with user-created data types,
and so this facility is only of use for the small number of built-in types that have type modifier syntax
built into the grammar.

When apg_cast entry has different source and target types and a function that takes more than one
argument, it represents converting from one type to another and applying a length coercion in a single
step. When no such entry is available, coercion to a type that uses a type modifier involves two steps,
one to convert between data types and a second to apply the modifier.

41.9. pg_class

The catalogpg_class catalogs tables and most everything else that has columns or is otherwise
similar to a table. This includes indexes (but see alsopg_index), sequences, views, composite types,
and some kinds of special relation; seerelkind . Below, when we mean all of these kinds of objects
we speak of “relations”. Not all columns are meaningful for all relation types.

Table 41-9.pg_class Columns

Name Type References Description

relname name Name of the table, index,
view, etc.

relnamespace oid pg_namespace .oid The OID of the
namespace that contains
this relation

966

Chapter 41. System Catalogs

Name Type References Description

reltype oid pg_type .oid The OID of the data
type that corresponds to
this table’s row type, if
any (zero for indexes,
which have nopg_type

entry)

relowner int4 pg_shadow .usesysid Owner of the relation

relam oid pg_am.oid If this is an index, the
access method used
(B-tree, hash, etc.)

relfilenode oid Name of the on-disk file
of this relation; 0 if none

reltablespace oid pg_tablespace .oid The tablespace in which
this relation is stored. If
zero, the database’s
default tablespace is
implied. (Not
meaningful if the
relation has no on-disk
file.)

relpages int4 Size of the on-disk
representation of this
table in pages (of size
BLCKSZ). This is only an
estimate used by the
planner. It is updated by
VACUUM, ANALYZE, and
a few DDL commands
such asCREATE INDEX.

reltuples float4 Number of rows in the
table. This is only an
estimate used by the
planner. It is updated by
VACUUM, ANALYZE, and
a few DDL commands
such asCREATE INDEX.

reltoastrelid oid pg_class .oid OID of the TOAST
table associated with this
table, 0 if none. The
TOAST table stores
large attributes “out of
line” in a secondary
table.

reltoastidxid oid pg_class .oid For a TOAST table, the
OID of its index. 0 if not
a TOAST table.

967

Chapter 41. System Catalogs

Name Type References Description

relhasindex bool True if this is a table
and it has (or recently
had) any indexes. This is
set byCREATE INDEX,
but not cleared
immediately byDROP

INDEX. VACUUMclears
relhasindex if it finds
the table has no indexes.

relisshared bool True if this table is
shared across all
databases in the cluster.
Only certain system
catalogs (such as
pg_database) are
shared.

relkind char r = ordinary table,i =
index,S = sequence,v =
view, c = composite
type,s = special,t =
TOAST table

relnatts int2 Number of user columns
in the relation (system
columns not counted).
There must be this many
corresponding entries in
pg_attribute . See
also
pg_attribute.attnum .

relchecks int2 Number of check
constraints on the table;
seepg_constraint

catalog

reltriggers int2 Number of triggers on
the table; see
pg_trigger catalog

relukeys int2 unused (not the number
of unique keys)

relfkeys int2 unused (not the number
of foreign keys on the
table)

relrefs int2 unused

relhasoids bool True if we generate an
OID for each row of the
relation.

968

Chapter 41. System Catalogs

Name Type References Description

relhaspkey bool True if the table has (or
once had) a primary key.

relhasrules bool True if table has rules;
seepg_rewrite

catalog.

relhassubclass bool True if table has (or once
had) any inheritance
children.

relacl aclitem[] Access privileges; see
GRANTandREVOKE
for details.

41.10. pg_constraint

The catalogpg_constraint stores check, primary key, unique, and foreign key constraints on tables.
(Column constraints are not treated specially. Every column constraint is equivalent to some table
constraint.) Not-null constraints are represented in thepg_attribute catalog.

Check constraints on domains are stored here, too.

Table 41-10.pg_constraint Columns

Name Type References Description

conname name Constraint name (not
necessarily unique!)

connamespace oid pg_namespace .oid The OID of the
namespace that contains
this constraint

contype char c = check constraint,f
= foreign key constraint,
p = primary key
constraint,u = unique
constraint

condeferrable bool Is the constraint
deferrable?

condeferred bool Is the constraint deferred
by default?

conrelid oid pg_class .oid The table this constraint
is on; 0 if not a table
constraint

contypid oid pg_type .oid The domain this
constraint is on; 0 if not
a domain constraint

confrelid oid pg_class .oid If a foreign key, the
referenced table; else 0

969

Chapter 41. System Catalogs

Name Type References Description

confupdtype char Foreign key update
action code

confdeltype char Foreign key deletion
action code

confmatchtype char Foreign key match type

conkey int2[] pg_attribute .attnum If a table constraint, list
of columns which the
constraint constrains

confkey int2[] pg_attribute .attnum If a foreign key, list of
the referenced columns

conbin text If a check constraint, an
internal representation of
the expression

consrc text If a check constraint, a
human-readable
representation of the
expression

Note: consrc is not updated when referenced objects change; for example, it won’t track renam-
ing of columns. Rather than relying on this field, it’s best to use pg_get_constraintdef() to
extract the definition of a check constraint.

Note: pg_class.relchecks needs to agree with the number of check-constraint entries found in
this table for the given relation.

41.11. pg_conversion

The catalogpg_conversion describes the available encoding conversion procedures. SeeCREATE
CONVERSIONfor more information.

Table 41-11.pg_conversion Columns

Name Type References Description

conname name Conversion name
(unique within a
namespace)

connamespace oid pg_namespace .oid The OID of the
namespace that contains
this conversion

conowner int4 pg_shadow .usesysid Owner of the conversion

conforencoding int4 Source encoding ID

contoencoding int4 Destination encoding ID

conproc regproc pg_proc .oid Conversion procedure

970

Chapter 41. System Catalogs

Name Type References Description

condefault bool True if this is the default
conversion

41.12. pg_database

The catalogpg_database stores information about the available databases. Databases are created
with theCREATE DATABASEcommand. ConsultChapter 18for details about the meaning of some of
the parameters.

Unlike most system catalogs,pg_database is shared across all databases of a cluster: there is only
one copy ofpg_database per cluster, not one per database.

Table 41-12.pg_database Columns

Name Type References Description

datname name Database name

datdba int4 pg_shadow .usesysid Owner of the database,
usually the user who
created it

encoding int4 Character encoding for
this database

datistemplate bool If true then this database
can be used in the
TEMPLATEclause of
CREATE DATABASEto
create a new database as
a clone of this one.

datallowconn bool If false then no one can
connect to this database.
This is used to protect
the template0 database
from being altered.

datlastsysoid oid Last system OID in the
database; useful
particularly to pg_dump

datvacuumxid xid All rows inserted or
deleted by transaction
IDs before this one have
been marked as known
committed or known
aborted in this database.
This is used to determine
when commit-log space
can be recycled.

971

Chapter 41. System Catalogs

Name Type References Description

datfrozenxid xid All rows inserted by
transaction IDs before
this one have been
relabeled with a
permanent (“frozen”)
transaction ID in this
database. This is useful
to check whether a
database must be
vacuumed soon to avoid
transaction ID
wrap-around problems.

dattablespace oid pg_tablespace .oid The default tablespace
for the database. Within
this database, all tables
for which
pg_class .reltablespace

is zero will be stored in
this tablespace; in
particular, all the
non-shared system
catalogs will be there.

datconfig text[] Session defaults for
run-time configuration
variables

datacl aclitem[] Access privileges; see
GRANTandREVOKE
for details.

41.13. pg_depend

The catalogpg_depend records the dependency relationships between database objects. This infor-
mation allowsDROPcommands to find which other objects must be dropped byDROP CASCADEor
prevent dropping in theDROP RESTRICTcase.

Table 41-13.pg_depend Columns

Name Type References Description

classid oid pg_class .oid The OID of the system
catalog the dependent
object is in

objid oid any OID column The OID of the specific
dependent object

972

Chapter 41. System Catalogs

Name Type References Description

objsubid int4 For a table column, this
is the column number
(theobjid and
classid refer to the
table itself). For all other
object types, this column
is zero.

refclassid oid pg_class .oid The OID of the system
catalog the referenced
object is in

refobjid oid any OID column The OID of the specific
referenced object

refobjsubid int4 For a table column, this
is the column number
(therefobjid and
refclassid refer to the
table itself). For all other
object types, this column
is zero.

deptype char A code defining the
specific semantics of this
dependency relationship;
see text.

In all cases, apg_depend entry indicates that the referenced object may not be dropped without also
dropping the dependent object. However, there are several subflavors identified bydeptype :

DEPENDENCY_NORMAL(n)

A normal relationship between separately-created objects. The dependent object may be dropped
without affecting the referenced object. The referenced object may only be dropped by specifying
CASCADE, in which case the dependent object is dropped, too. Example: a table column has a
normal dependency on its data type.

DEPENDENCY_AUTO(a)

The dependent object can be dropped separately from the referenced object, and should be au-
tomatically dropped (regardless ofRESTRICT or CASCADEmode) if the referenced object is
dropped. Example: a named constraint on a table is made autodependent on the table, so that it
will go away if the table is dropped.

DEPENDENCY_INTERNAL(i)

The dependent object was created as part of creation of the referenced object, and is really
just a part of its internal implementation. ADROPof the dependent object will be disallowed
outright (we’ll tell the user to issue aDROPagainst the referenced object, instead). ADROPof
the referenced object will be propagated through to drop the dependent object whetherCASCADE

is specified or not. Example: a trigger that’s created to enforce a foreign-key constraint is made
internally dependent on the constraint’spg_constraint entry.

DEPENDENCY_PIN(p)

There is no dependent object; this type of entry is a signal that the system itself depends on the

973

Chapter 41. System Catalogs

referenced object, and so that object must never be deleted. Entries of this type are created only
by initdb . The columns for the dependent object contain zeroes.

Other dependency flavors may be needed in future.

41.14. pg_description

The catalogpg_description stores optional descriptions (comments) for each database object.
Descriptions can be manipulated with theCOMMENTcommand and viewed with psql’s\d commands.
Descriptions of many built-in system objects are provided in the initial contents ofpg_description .

Table 41-14.pg_description Columns

Name Type References Description

objoid oid any OID column The OID of the object
this description pertains
to

classoid oid pg_class .oid The OID of the system
catalog this object
appears in

objsubid int4 For a comment on a
table column, this is the
column number (the
objoid andclassoid

refer to the table itself).
For all other object
types, this column is
zero.

description text Arbitrary text that serves
as the description of this
object.

41.15. pg_group

The catalogpg_group defines groups and stores what users belong to what groups. Groups are cre-
ated with theCREATE GROUPcommand. ConsultChapter 17for information about user privilege
management.

Because user and group identities are cluster-wide,pg_group is shared across all databases of a
cluster: there is only one copy ofpg_group per cluster, not one per database.

Table 41-15.pg_group Columns

Name Type References Description

groname name Name of the group

grosysid int4 An arbitrary number to
identify this group

974

Chapter 41. System Catalogs

Name Type References Description

grolist int4[] pg_shadow .usesysid An array containing the
IDs of the users in this
group

41.16. pg_index

The catalogpg_index contains part of the information about indexes. The rest is mostly in
pg_class .

Table 41-16.pg_index Columns

Name Type References Description

indexrelid oid pg_class .oid The OID of the
pg_class entry for this
index

indrelid oid pg_class .oid The OID of the
pg_class entry for the
table this index is for

indkey int2vector pg_attribute .attnum This is an array of
indnatts (up to
INDEX_MAX_KEYS)
values that indicate
which table columns this
index indexes. For
example a value of1 3

would mean that the first
and the third table
columns make up the
index key. A zero in this
array indicates that the
corresponding index
attribute is an expression
over the table columns,
rather than a simple
column reference.

indclass oidvector pg_opclass .oid For each column in the
index key this contains
the OID of the operator
class to use. See
pg_opclass for details.

indnatts int2 The number of columns
in the index (duplicates
pg_class.relnatts)

indisunique bool If true, this is a unique
index.

975

Chapter 41. System Catalogs

Name Type References Description

indisprimary bool If true, this index
represents the primary
key of the table.
(indisunique should
always be true when this
is true.)

indisclustered bool If true, the table was last
clustered on this index.

indexprs text Expression trees (in
nodeToString()

representation) for index
attributes that are not
simple column
references. This is a list
with one element for
each zero entry in
indkey . Null if all index
attributes are simple
references.

indpred text Expression tree (in
nodeToString()

representation) for
partial index predicate.
Null if not a partial
index.

41.17. pg_inherits

The catalogpg_inherits records information about table inheritance hierarchies. There is one entry
for each direct child table in the database. (Indirect inheritance can be determined by following chains
of entries.)

Table 41-17.pg_inherits Columns

Name Type References Description

inhrelid oid pg_class .oid The OID of the child
table.

inhparent oid pg_class .oid The OID of the parent
table.

inhseqno int4 If there is more than one
direct parent for a child
table (multiple
inheritance), this number
tells the order in which
the inherited columns
are to be arranged. The
count starts at 1.

976

Chapter 41. System Catalogs

41.18. pg_language

The catalogpg_language registers languages in which you can write functions or stored procedures.
SeeCREATE LANGUAGEandChapter 34for more information about language handlers.

Table 41-18.pg_language Columns

Name Type References Description

lanname name Name of the language

lanispl bool This is false for internal
languages (such as SQL)
and true for user-defined
languages. Currently,
pg_dump still uses this
to determine which
languages need to be
dumped, but this may be
replaced by a different
mechanism sometime.

lanpltrusted bool This is a trusted
language. If this is an
internal language
(lanispl is false) then
this column is
meaningless.

lanplcallfoid oid pg_proc .oid For noninternal
languages this references
the language handler,
which is a special
function that is
responsible for executing
all functions that are
written in the particular
language.

lanvalidator oid pg_proc .oid This references a
language validator
function that is
responsible for checking
the syntax and validity of
new functions when they
are created. Zero if no
validator is provided.

lanacl aclitem[] Access privileges; see
GRANTandREVOKE
for details.

41.19. pg_largeobject

The catalogpg_largeobject holds the data making up “large objects”. A large object is identified

977

Chapter 41. System Catalogs

by an OID assigned when it is created. Each large object is broken into segments or “pages” small
enough to be conveniently stored as rows inpg_largeobject . The amount of data per page is
defined to beLOBLKSIZE (which is currentlyBLCKSZ/4, or typically 2 kB).

Table 41-19.pg_largeobject Columns

Name Type References Description

loid oid Identifier of the large
object that includes this
page

pageno int4 Page number of this page
within its large object
(counting from zero)

data bytea Actual data stored in the
large object. This will
never be more than
LOBLKSIZE bytes and
may be less.

Each row ofpg_largeobject holds data for one page of a large object, beginning at byte offset
(pageno * LOBLKSIZE) within the object. The implementation allows sparse storage: pages may be
missing, and may be shorter thanLOBLKSIZE bytes even if they are not the last page of the object.
Missing regions within a large object read as zeroes.

41.20. pg_listener

The catalogpg_listener supports theLISTENandNOTIFYcommands. A listener creates an entry
in pg_listener for each notification name it is listening for. A notifier scanspg_listener and
updates each matching entry to show that a notification has occurred. The notifier also sends a signal
(using the PID recorded in the table) to awaken the listener from sleep.

Table 41-20.pg_listener Columns

Name Type References Description

relname name Notify condition name.
(The name need not
match any actual relation
in the database; the name
relname is historical.)

listenerpid int4 PID of the server process
that created this entry.

notification int4 Zero if no event is
pending for this listener.
If an event is pending,
the PID of the server
process that sent the
notification.

978

Chapter 41. System Catalogs

41.21. pg_namespace

The catalogpg_namespace stores namespaces. A namespace is the structure underlying SQL
schemas: each namespace can have a separate collection of relations, types, etc. without name
conflicts.

Table 41-21.pg_namespace Columns

Name Type References Description

nspname name Name of the namespace

nspowner int4 pg_shadow .usesysid Owner of the namespace

nspacl aclitem[] Access privileges; see
GRANTandREVOKE
for details.

41.22. pg_opclass

The catalogpg_opclass defines index access method operator classes. Each operator class defines
semantics for index columns of a particular data type and a particular index access method. Note
that there can be multiple operator classes for a given data type/access method combination, thus
supporting multiple behaviors.

Operator classes are described at length inSection 31.14.

Table 41-22.pg_opclass Columns

Name Type References Description

opcamid oid pg_am.oid Index access method
operator class is for

opcname name Name of this operator
class

opcnamespace oid pg_namespace .oid Namespace of this
operator class

opcowner int4 pg_shadow .usesysid Operator class owner

opcintype oid pg_type .oid Data type that the
operator class indexes

opcdefault bool True if this operator
class is the default for
opcintype

opckeytype oid pg_type .oid Type of data stored in
index, or zero if same as
opcintype

The majority of the information defining an operator class is actually not in itspg_opclass row,
but in the associated rows inpg_amop andpg_amproc . Those rows are considered to be part of the
operator class definition — this is not unlike the way that a relation is defined by a singlepg_class

row plus associated rows inpg_attribute and other tables.

979

Chapter 41. System Catalogs

41.23. pg_operator

The catalogpg_operator stores information about operators. SeeCREATE OPERATORandSection
31.12for more information.

Table 41-23.pg_operator Columns

Name Type References Description

oprname name Name of the operator

oprnamespace oid pg_namespace .oid The OID of the
namespace that contains
this operator

oprowner int4 pg_shadow .usesysid Owner of the operator

oprkind char b = infix (“both”), l =
prefix (“left”), r =
postfix (“right”)

oprcanhash bool This operator supports
hash joins

oprleft oid pg_type .oid Type of the left operand

oprright oid pg_type .oid Type of the right
operand

oprresult oid pg_type .oid Type of the result

oprcom oid pg_operator .oid Commutator of this
operator, if any

oprnegate oid pg_operator .oid Negator of this operator,
if any

oprlsortop oid pg_operator .oid If this operator supports
merge joins, the operator
that sorts the type of the
left-hand operand (L<L)

oprrsortop oid pg_operator .oid If this operator supports
merge joins, the operator
that sorts the type of the
right-hand operand
(R<R)

oprltcmpop oid pg_operator .oid If this operator supports
merge joins, the
less-than operator that
compares the left and
right operand types
(L<R)

oprgtcmpop oid pg_operator .oid If this operator supports
merge joins, the
greater-than operator
that compares the left
and right operand types
(L>R)

980

Chapter 41. System Catalogs

Name Type References Description

oprcode regproc pg_proc .oid Function that
implements this operator

oprrest regproc pg_proc .oid Restriction selectivity
estimation function for
this operator

oprjoin regproc pg_proc .oid Join selectivity
estimation function for
this operator

Unused column contain zeroes, for exampleoprleft is zero for a prefix operator.

41.24. pg_proc

The catalogpg_proc stores information about functions (or procedures). SeeCREATE FUNCTION
andSection 31.3for more information.

The table contains data for aggregate functions as well as plain functions. Ifproisagg is true, there
should be a matching row inpg_aggregate .

Table 41-24.pg_proc Columns

Name Type References Description

proname name Name of the function

pronamespace oid pg_namespace .oid The OID of the
namespace that contains
this function

proowner int4 pg_shadow .usesysid Owner of the function

prolang oid pg_language .oid Implementation
language or call
interface of this function

proisagg bool Function is an aggregate
function

prosecdef bool Function is a security
definer (i.e., a “setuid”
function)

proisstrict bool Function returns null if
any call argument is null.
In that case the function
won’t actually be called
at all. Functions that are
not “strict” must be
prepared to handle null
inputs.

proretset bool Function returns a set
(i.e., multiple values of
the specified data type)

981

Chapter 41. System Catalogs

Name Type References Description

provolatile char provolatile tells
whether the function’s
result depends only on
its input arguments, or is
affected by outside
factors. It isi for
“immutable” functions,
which always deliver the
same result for the same
inputs. It iss for “stable”
functions, whose results
(for fixed inputs) do not
change within a scan. It
is v for “volatile”
functions, whose results
may change at any time.
(Usev also for functions
with side-effects, so that
calls to them cannot get
optimized away.)

pronargs int2 Number of arguments

prorettype oid pg_type .oid Data type of the return
value

proargtypes oidvector pg_type .oid An array with the data
types of the function
arguments

proargnames text[] An array with the names
of the function
arguments. Arguments
without a name are set to
empty strings in the
array. If none of the
arguments have a name,
this field may be null.

prosrc text This tells the function
handler how to invoke
the function. It might be
the actual source code of
the function for
interpreted languages, a
link symbol, a file name,
or just about anything
else, depending on the
implementation
language/call
convention.

982

Chapter 41. System Catalogs

Name Type References Description

probin bytea Additional information
about how to invoke the
function. Again, the
interpretation is
language-specific.

proacl aclitem[] Access privileges; see
GRANTandREVOKE
for details.

For compiled functions, both built-in and dynamically loaded,prosrc contains the function’s C-
language name (link symbol). For all other currently-known language types,prosrc contains the
function’s source text.probin is unused except for dynamically-loaded C functions, for which it
gives the name of the shared library file containing the function.

41.25. pg_rewrite

The catalogpg_rewrite stores rewrite rules for tables and views.

Table 41-25.pg_rewrite Columns

Name Type References Description

rulename name Rule name

ev_class oid pg_class .oid The table this rule is for

ev_attr int2 The column this rule is
for (currently, always
zero to indicate the
whole table)

ev_type char Event type that the rule
is for: 1 =SELECT, 2 =
UPDATE, 3 = INSERT, 4
= DELETE

is_instead bool True if the rule is an
INSTEAD rule

ev_qual text Expression tree (in the
form of a
nodeToString()

representation) for the
rule’s qualifying
condition

ev_action text Query tree (in the form
of a nodeToString()

representation) for the
rule’s action

Note: pg_class.relhasrules must be true if a table has any rules in this catalog.

983

Chapter 41. System Catalogs

41.26. pg_shadow

The catalogpg_shadow contains information about database users. The name stems from the fact
that this table should not be readable by the public since it contains passwords.pg_user is a publicly
readable view onpg_shadow that blanks out the password field.

Chapter 17contains detailed information about user and privilege management.

Because user identities are cluster-wide,pg_shadow is shared across all databases of a cluster: there
is only one copy ofpg_shadow per cluster, not one per database.

Table 41-26.pg_shadow Columns

Name Type References Description

usename name User name

usesysid int4 User ID (arbitrary
number used to
reference this user)

usecreatedb bool User may create
databases

usesuper bool User is a superuser

usecatupd bool User may update system
catalogs. (Even a
superuser may not do
this unless this column is
true.)

passwd text Password (possibly
encrypted)

valuntil abstime Password expiry time
(only used for password
authentication)

useconfig text[] Session defaults for
run-time configuration
variables

41.27. pg_statistic

The catalogpg_statistic stores statistical data about the contents of the database. Entries are cre-
ated byANALYZEand subsequently used by the query planner. There is one entry for each table column
that has been analyzed. Note that all the statistical data is inherently approximate, even assuming that
it is up-to-date.

pg_statistic also stores statistical data about the values of index expressions. These are described
as if they were actual data columns; in particular,starelid references the index. No entry is made
for an ordinary non-expression index column, however, since it would be redundant with the entry for
the underlying table column.

Since different kinds of statistics may be appropriate for different kinds of data,pg_statistic is
designed not to assume very much about what sort of statistics it stores. Only extremely general
statistics (such as nullness) are given dedicated columns inpg_statistic . Everything else is stored
in “slots”, which are groups of associated columns whose content is identified by a code number in

984

Chapter 41. System Catalogs

one of the slot’s columns. For more information seesrc/include/catalog/pg_statistic.h .

pg_statistic should not be readable by the public, since even statistical information about a ta-
ble’s contents may be considered sensitive. (Example: minimum and maximum values of a salary
column might be quite interesting.)pg_stats is a publicly readable view onpg_statistic that
only exposes information about those tables that are readable by the current user.

Table 41-27.pg_statistic Columns

Name Type References Description

starelid oid pg_class .oid The table or index that
the described column
belongs to

staattnum int2 pg_attribute .attnum The number of the
described column

stanullfrac float4 The fraction of the
column’s entries that are
null

stawidth int4 The average stored
width, in bytes, of
nonnull entries

stadistinct float4 The number of distinct
nonnull data values in
the column. A value
greater than zero is the
actual number of distinct
values. A value less than
zero is the negative of a
fraction of the number of
rows in the table (for
example, a column in
which values appear
about twice on the
average could be
represented by
stadistinct = -0.5).
A zero value means the
number of distinct
values is unknown.

stakind N int2 A code number
indicating the kind of
statistics stored in the
Nth “slot” of the
pg_statistic row.

985

Chapter 41. System Catalogs

Name Type References Description

staop N oid pg_operator .oid An operator used to
derive the statistics
stored in theNth “slot”.
For example, a
histogram slot would
show the< operator that
defines the sort order of
the data.

stanumbers N float4[] Numerical statistics of
the appropriate kind for
theNth “slot”, or null if
the slot kind does not
involve numerical
values.

stavalues N anyarray Column data values of
the appropriate kind for
theNth “slot”, or null if
the slot kind does not
store any data values.
Each array’s element
values are actually of the
specific column’s data
type, so there is no way
to define these columns’
type more specifically
thananyarray .

41.28. pg_tablespace

The catalogpg_tablespace stores information about the available tablespaces. Tables can be placed
in particular tablespaces to aid administration of disk layout.

Unlike most system catalogs,pg_tablespace is shared across all databases of a cluster: there is
only one copy ofpg_tablespace per cluster, not one per database.

Table 41-28.pg_tablespace Columns

Name Type References Description

spcname name Tablespace name

spcowner int4 pg_shadow .usesysid Owner of the tablespace,
usually the user who
created it

spclocation text Location (directory path)
of the tablespace

spcacl aclitem[] Access privileges; see
GRANTandREVOKE
for details.

986

Chapter 41. System Catalogs

41.29. pg_trigger

The catalogpg_trigger stores triggers on tables. SeeCREATE TRIGGERfor more information.

Table 41-29.pg_trigger Columns

Name Type References Description

tgrelid oid pg_class .oid The table this trigger is
on

tgname name Trigger name (must be
unique among triggers of
same table)

tgfoid oid pg_proc .oid The function to be called

tgtype int2 Bit mask identifying
trigger conditions

tgenabled bool True if trigger is enabled
(not presently checked
everywhere it should be,
so disabling a trigger by
setting this false does not
work reliably)

tgisconstraint bool True if trigger
implements a referential
integrity constraint

tgconstrname name Referential integrity
constraint name

tgconstrrelid oid pg_class .oid The table referenced by
an referential integrity
constraint

tgdeferrable bool True if deferrable

tginitdeferred bool True if initially deferred

tgnargs int2 Number of argument
strings passed to trigger
function

tgattr int2vector Currently unused

tgargs bytea Argument strings to pass
to trigger, each
null-terminated

Note: pg_class.reltriggers needs to agree with the number of triggers found in this table for
the given relation.

41.30. pg_type

The catalogpg_type stores information about data types. Base types (scalar types) are created with

987

Chapter 41. System Catalogs

CREATE TYPE, and domains withCREATE DOMAIN. A composite type is automatically created
for each table in the database, to represent the row structure of the table. It is also possible to create
composite types withCREATE TYPE AS.

Table 41-30.pg_type Columns

Name Type References Description

typname name Data type name

typnamespace oid pg_namespace .oid The OID of the
namespace that contains
this type

typowner int4 pg_shadow .usesysid Owner of the type

typlen int2 For a fixed-size type,
typlen is the number of
bytes in the internal
representation of the
type. But for a
variable-length type,
typlen is negative. -1
indicates a “varlena”
type (one that has a
length word), -2
indicates a
null-terminated C string.

typbyval bool typbyval determines
whether internal routines
pass a value of this type
by value or by reference.
typbyval had better be
false if typlen is not 1,
2, or 4 (or 8 on machines
where Datum is 8 bytes).
Variable-length types are
always passed by
reference. Note that
typbyval can be false
even if the length would
allow pass-by-value; this
is currently true for type
float4 , for example.

typtype char typtype is b for a base
type,c for a composite
type (e.g., a table’s row
type),d for a domain, or
p for a pseudo-type. See
alsotyprelid and
typbasetype .

988

Chapter 41. System Catalogs

Name Type References Description

typisdefined bool True if the type is
defined, false if this is a
placeholder entry for a
not-yet-defined type.
Whentypisdefined is
false, nothing except the
type name, namespace,
and OID can be relied
on.

typdelim char Character that separates
two values of this type
when parsing array
input. Note that the
delimiter is associated
with the array element
data type, not the array
data type.

typrelid oid pg_class .oid If this is a composite
type (seetyptype),
then this column points
to thepg_class entry
that defines the
corresponding table.
(For a free-standing
composite type, the
pg_class entry doesn’t
really represent a table,
but it is needed anyway
for the type’s
pg_attribute entries
to link to.) Zero for
non-composite types.

989

Chapter 41. System Catalogs

Name Type References Description

typelem oid pg_type .oid If typelem is not 0 then
it identifies another row
in pg_type . The current
type can then be
subscripted like an array
yielding values of type
typelem . A “true” array
type is variable length
(typlen = -1), but some
fixed-length (typlen >

0) types also have
nonzerotypelem , for
examplename and
oidvector . If a
fixed-length type has a
typelem then its
internal representation
must be some number of
values of thetypelem

data type with no other
data. Variable-length
array types have a
header defined by the
array subroutines.

typinput regproc pg_proc .oid Input conversion
function (text format)

typoutput regproc pg_proc .oid Output conversion
function (text format)

typreceive regproc pg_proc .oid Input conversion
function (binary format),
or 0 if none

typsend regproc pg_proc .oid Output conversion
function (binary format),
or 0 if none

typanalyze regproc pg_proc .oid Custom ANALYZE
function, or 0 to use the
standard function

990

Chapter 41. System Catalogs

Name Type References Description

typalign char typalign is the
alignment required
when storing a value of
this type. It applies to
storage on disk as well
as most representations
of the value inside
PostgreSQL. When
multiple values are
stored consecutively,
such as in the
representation of a
complete row on disk,
padding is inserted
before a datum of this
type so that it begins on
the specified boundary.
The alignment
reference is the
beginning of the first
datum in the sequence.
Possible values are:
• c = char alignment,

i.e., no alignment
needed.

• s = short align-
ment (2 bytes on most
machines).

• i = int alignment
(4 bytes on most ma-
chines).

• d = double align-
ment (8 bytes on
many machines, but
by no means all).

Note: For types
used in system
tables, it is critical
that the size and
alignment defined
in pg_type agree
with the way that
the compiler will
lay out the column
in a structure
representing a
table row.

991

Chapter 41. System Catalogs

Name Type References Description

typstorage char typstorage tells for
varlena types (those
with typlen = -1) if
the type is prepared
for toasting and what
the default strategy for
attributes of this type
should be. Possible
values are• p: Value
must always be stored
plain.

• e: Value can be
stored in a “sec-
ondary” relation (if
relation has one, see
pg_class.reltoastrelid).

• m: Value can be
stored compressed in-
line.

• x : Value can be
stored compressed in-
line or stored in “sec-
ondary” storage.

Note thatmcolumns can
also be moved out to
secondary storage, but
only as a last resort
(e and x columns are
moved first).

typnotnull bool typnotnull represents
a not-null constraint on a
type. Used for domains
only.

typbasetype oid pg_type .oid If this is a domain (see
typtype), then
typbasetype identifies
the type that this one is
based on. Zero if not a
domain.

992

Chapter 41. System Catalogs

Name Type References Description

typtypmod int4 Domains use
typtypmod to record
the typmod to be
applied to their base type
(-1 if base type does not
use atypmod). -1 if this
type is not a domain.

typndims int4 typndims is the
number of array
dimensions for a domain
that is an array (that is,
typbasetype is an
array type; the domain’s
typelem will match the
base type’stypelem).
Zero for types other than
array domains.

typdefaultbin text If typdefaultbin is
not null, it is the
nodeToString()

representation of a
default expression for
the type. This is only
used for domains.

typdefault text typdefault is null if
the type has no
associated default value.
If typdefaultbin is
not null, typdefault

must contain a
human-readable version
of the default expression
represented by
typdefaultbin . If
typdefaultbin is null
andtypdefault is not,
thentypdefault is the
external representation
of the type’s default
value, which may be fed
to the type’s input
converter to produce a
constant.

41.31. System Views
In addition to the system catalogs, PostgreSQL provides a number of built-in views. Some system
views provide convenient access to some commonly used queries on the system catalogs. Other views

993

Chapter 41. System Catalogs

provide access to internal server state.

The information schema (Chapter 30) provides an alternative set of views which overlap the function-
ality of the system views. Since the information schema is SQL-standard whereas the views described
here are PostgreSQL-specific, it’s usually better to use the information schema if it provides all the
information you need.

Table 41-31lists the system views described here. More detailed documentation of each view follows
below. There are some additional views that provide access to the results of the statistics collector;
they are described inTable 23-1.

Except where noted, all the views described here are read-only.

Table 41-31. System Views

View Name Purpose

pg_indexes indexes

pg_locks currently held locks

pg_rules rules

pg_settings parameter settings

pg_stats planner statistics

pg_tables tables

pg_user database users

pg_views views

41.32. pg_indexes

The viewpg_indexes provides access to useful information about each index in the database.

Table 41-32.pg_indexes Columns

Name Type References Description

schemaname name pg_namespace .nspname name of schema
containing table and
index

tablename name pg_class .relname name of table the index
is for

indexname name pg_class .relname name of index

tablespace name pg_tablespace .spcnamename of tablespace
containing index (NULL
if default for database)

indexdef text index definition (a
reconstructed creation
command)

41.33. pg_locks

The viewpg_locks provides access to information about the locks held by open transactions within

994

Chapter 41. System Catalogs

the database server. SeeChapter 12for more discussion of locking.

pg_locks contains one row per active lockable object, requested lock mode, and relevant transaction.
Thus, the same lockable object may appear many times, if multiple transactions are holding or waiting
for locks on it. However, an object that currently has no locks on it will not appear at all. A lockable
object is either a relation (e.g., a table) or a transaction ID.

Note that this view includes only table-level locks, not row-level ones. If a transaction is waiting for
a row-level lock, it will appear in the view as waiting for the transaction ID of the current holder of
that row lock.

Table 41-33.pg_locks Columns

Name Type References Description

relation oid pg_class .oid OID of the locked
relation, or NULL if the
lockable object is a
transaction ID

database oid pg_database .oid OID of the database in
which the locked
relation exists, or zero if
the locked relation is a
globally-shared table, or
NULL if the lockable
object is a transaction ID

transaction xid ID of a transaction, or
NULL if the lockable
object is a relation

pid integer process ID of a server
process holding or
awaiting this lock

mode text name of the lock mode
held or desired by this
process (seeSection
12.3.1)

granted boolean true if lock is held, false
if lock is awaited

granted is true in a row representing a lock held by the indicated session. False indicates that this
session is currently waiting to acquire this lock, which implies that some other session is holding a
conflicting lock mode on the same lockable object. The waiting session will sleep until the other lock
is released (or a deadlock situation is detected). A single session can be waiting to acquire at most
one lock at a time.

Every transaction holds an exclusive lock on its transaction ID for its entire duration. If one transaction
finds it necessary to wait specifically for another transaction, it does so by attempting to acquire share
lock on the other transaction ID. That will succeed only when the other transaction terminates and
releases its locks.

When thepg_locks view is accessed, the internal lock manager data structures are momentarily
locked, and a copy is made for the view to display. This ensures that the view produces a consistent
set of results, while not blocking normal lock manager operations longer than necessary. Nonetheless

995

Chapter 41. System Catalogs

there could be some impact on database performance if this view is read often.

pg_locks provides a global view of all locks in the database cluster, not only those relevant to the
current database. Although itsrelation column can be joined againstpg_class .oid to identify
locked relations, this will only work correctly for relations in the current database (those for which
thedatabase column is either the current database’s OID or zero).

If you have enabled the statistics collector, thepid column can be joined to theprocpid column of
thepg_stat_activity view to get more information on the session holding or waiting to hold the
lock.

41.34. pg_rules

The viewpg_rules provides access to useful information about query rewrite rules.

Table 41-34.pg_rules Columns

Name Type References Description

schemaname name pg_namespace .nspname name of schema
containing table

tablename name pg_class .relname name of table the rule is
for

rulename name pg_rewrite .rulename name of rule

definition text rule definition (a
reconstructed creation
command)

Thepg_rules view excludes the ON SELECT rules of views; those can be seen inpg_views .

41.35. pg_settings

The view pg_settings provides access to run-time parameters of the server. It is essentially an
alternative interface to theSHOWandSETcommands. It also provides access to some facts about each
parameter that are not directly available fromSHOW, such as minimum and maximum values.

Table 41-35.pg_settings Columns

Name Type References Description

name text run-time configuration
parameter name

setting text current value of the
parameter

category text logical group of the
parameter

short_desc text a brief description of the
parameter

extra_desc text additional, more
detailed, information
about the parameter

996

Chapter 41. System Catalogs

Name Type References Description

context text context required to set
the parameter’s value

vartype text parameter type (bool ,
integer , real , or
string)

source text source of the current
parameter value

min_val text minimum allowed value
of the parameter (NULL
for nonnumeric values)

max_val text maximum allowed value
of the parameter (NULL
for nonnumeric values)

Thepg_settings view cannot be inserted into or deleted from, but it can be updated. AnUPDATE

applied to a row ofpg_settings is equivalent to executing theSETcommand on that named pa-
rameter. The change only affects the value used by the current session. If anUPDATEis issued within
a transaction that is later aborted, the effects of theUPDATEcommand disappear when the transaction
is rolled back. Once the surrounding transaction is committed, the effects will persist until the end of
the session, unless overridden by anotherUPDATEor SET.

41.36. pg_stats

The viewpg_stats provides access to the information stored in thepg_statistic catalog. This
view allows access only to rows ofpg_statistic that correspond to tables the user has permission
to read, and therefore it is safe to allow public read access to this view.

pg_stats is also designed to present the information in a more readable format than the underlying
catalog — at the cost that its schema must be extended whenever new slot types are defined for
pg_statistic .

Table 41-36.pg_stats Columns

Name Type References Description

schemaname name pg_namespace .nspname name of schema
containing table

tablename name pg_class .relname name of table

attname name pg_attribute .attname name of the column
described by this row

null_frac real fraction of column
entries that are null

avg_width integer average width in bytes of
column’s entries

997

Chapter 41. System Catalogs

Name Type References Description

n_distinct real If greater than zero, the
estimated number of
distinct values in the
column. If less than zero,
the negative of the
number of distinct values
divided by the number of
rows. (The negated form
is used whenANALYZE

believes that the number
of distinct values is
likely to increase as the
table grows; the positive
form is used when the
column seems to have a
fixed number of possible
values.) For example, -1
indicates a unique
column in which the
number of distinct
values is the same as the
number of rows.

most_common_vals anyarray A list of the most
common values in the
column. (NULL if no
values seem to be more
common than any
others.)

most_common_freqs real[] A list of the frequencies
of the most common
values, i.e., number of
occurrences of each
divided by total number
of rows. (NULL when
most_common_vals

is.)

998

Chapter 41. System Catalogs

Name Type References Description

histogram_bounds anyarray A list of values that
divide the column’s
values into groups of
approximately equal
population. The values
in most_common_vals ,
if present, are omitted
from this histogram
calculation. (This
column is NULL if the
column data type does
not have a< operator or
if the
most_common_vals

list accounts for the
entire population.)

correlation real Statistical correlation
between physical row
ordering and logical
ordering of the column
values. This ranges from
-1 to +1. When the value
is near -1 or +1, an index
scan on the column will
be estimated to be
cheaper than when it is
near zero, due to
reduction of random
access to the disk. (This
column is NULL if the
column data type does
not have a< operator.)

The maximum number of entries in themost_common_vals andhistogram_bounds arrays can be
set on a column-by-column basis using theALTER TABLE SET STATISTICScommand, or globally
by setting thedefault_statistics_targetruntime parameter.

41.37. pg_tables

The viewpg_tables provides access to useful information about each table in the database.

Table 41-37.pg_tables Columns

Name Type References Description

schemaname name pg_namespace .nspname name of schema
containing table

tablename name pg_class .relname name of table

tableowner name pg_shadow .usename name of table’s owner

999

Chapter 41. System Catalogs

Name Type References Description

tablespace name pg_tablespace .spcnamename of tablespace
containing table (NULL
if default for database)

hasindexes boolean pg_class .relhasindex true if table has (or
recently had) any
indexes

hasrules boolean pg_class .relhasrules true if table has rules

hastriggers boolean pg_class .reltriggers true if table has triggers

41.38. pg_user

The viewpg_user provides access to information about database users. This is simply a publicly
readable view ofpg_shadow that blanks out the password field.

Table 41-38.pg_user Columns

Name Type References Description

usename name User name

usesysid int4 User ID (arbitrary
number used to
reference this user)

usecreatedb bool User may create
databases

usesuper bool User is a superuser

usecatupd bool User may update system
catalogs. (Even a
superuser may not do
this unless this column is
true.)

passwd text Not the password
(always reads as
********)

valuntil abstime Password expiry time
(only used for password
authentication)

useconfig text[] Session defaults for
run-time configuration
variables

41.39. pg_views

The viewpg_views provides access to useful information about each view in the database.

1000

Chapter 41. System Catalogs

Table 41-39.pg_views Columns

Name Type References Description

schemaname name pg_namespace .nspname name of schema
containing view

viewname name pg_class .relname name of view

viewowner name pg_shadow .usename name of view’s owner

definition text view definition (a
reconstructed SELECT
query)

1001

Chapter 42. Frontend/Backend Protocol
PostgreSQL uses a message-based protocol for communication between frontends and backends
(clients and servers). The protocol is supported over TCP/IP and also over Unix-domain sockets.
Port number 5432 has been registered with IANA as the customary TCP port number for servers
supporting this protocol, but in practice any non-privileged port number may be used.

This document describes version 3.0 of the protocol, implemented in PostgreSQL 7.4 and later. For
descriptions of the earlier protocol versions, see previous releases of the PostgreSQL documentation.
A single server can support multiple protocol versions. The initial startup-request message tells the
server which protocol version the client is attempting to use, and then the server follows that protocol
if it is able.

Higher level features built on this protocol (for example, how libpq passes certain environment vari-
ables when the connection is established) are covered elsewhere.

In order to serve multiple clients efficiently, the server launches a new “backend” process for each
client. In the current implementation, a new child process is created immediately after an incoming
connection is detected. This is transparent to the protocol, however. For purposes of the protocol, the
terms “backend” and “server” are interchangeable; likewise “frontend” and “client” are interchange-
able.

42.1. Overview
The protocol has separate phases for startup and normal operation. In the startup phase, the frontend
opens a connection to the server and authenticates itself to the satisfaction of the server. (This might
involve a single message, or multiple messages depending on the authentication method being used.)
If all goes well, the server then sends status information to the frontend, and finally enters normal
operation. Except for the initial startup-request message, this part of the protocol is driven by the
server.

During normal operation, the frontend sends queries and other commands to the backend, and the
backend sends back query results and other responses. There are a few cases (such asNOTIFY)
wherein the backend will send unsolicited messages, but for the most part this portion of a session is
driven by frontend requests.

Termination of the session is normally by frontend choice, but can be forced by the backend in certain
cases. In any case, when the backend closes the connection, it will roll back any open (incomplete)
transaction before exiting.

Within normal operation, SQL commands can be executed through either of two sub-protocols. In the
“simple query” protocol, the frontend just sends a textual query string, which is parsed and immedi-
ately executed by the backend. In the “extended query” protocol, processing of queries is separated
into multiple steps: parsing, binding of parameter values, and execution. This offers flexibility and
performance benefits, at the cost of extra complexity.

Normal operation has additional sub-protocols for special operations such asCOPY.

42.1.1. Messaging Overview

All communication is through a stream of messages. The first byte of a message identifies the message
type, and the next four bytes specify the length of the rest of the message (this length count includes

1002

Chapter 42. Frontend/Backend Protocol

itself, but not the message-type byte). The remaining contents of the message are determined by the
message type. For historical reasons, the very first message sent by the client (the startup message)
has no initial message-type byte.

To avoid losing synchronization with the message stream, both servers and clients typically read an
entire message into a buffer (using the byte count) before attempting to process its contents. This
allows easy recovery if an error is detected while processing the contents. In extreme situations (such
as not having enough memory to buffer the message), the receiver may use the byte count to determine
how much input to skip before it resumes reading messages.

Conversely, both servers and clients must take care never to send an incomplete message. This is
commonly done by marshaling the entire message in a buffer before beginning to send it. If a commu-
nications failure occurs partway through sending or receiving a message, the only sensible response is
to abandon the connection, since there is little hope of recovering message-boundary synchronization.

42.1.2. Extended Query Overview

In the extended-query protocol, execution of SQL commands is divided into multiple steps. The state
retained between steps is represented by two types of objects:prepared statementsandportals. A
prepared statement represents the result of parsing, semantic analysis, and planning of a textual query
string. A prepared statement is not necessarily ready to execute, because it may lack specific values
for parameters. A portal represents a ready-to-execute or already-partially-executed statement, with
any missing parameter values filled in. (ForSELECTstatements, a portal is equivalent to an open
cursor, but we choose to use a different term since cursors don’t handle non-SELECTstatements.)

The overall execution cycle consists of aparsestep, which creates a prepared statement from a textual
query string; abind step, which creates a portal given a prepared statement and values for any needed
parameters; and anexecutestep that runs a portal’s query. In the case of a query that returns rows
(SELECT, SHOW, etc), the execute step can be told to fetch only a limited number of rows, so that
multiple execute steps may be needed to complete the operation.

The backend can keep track of multiple prepared statements and portals (but note that these exist only
within a session, and are never shared across sessions). Existing prepared statements and portals are
referenced by names assigned when they were created. In addition, an “unnamed” prepared statement
and portal exist. Although these behave largely the same as named objects, operations on them are
optimized for the case of executing a query only once and then discarding it, whereas operations on
named objects are optimized on the expectation of multiple uses.

42.1.3. Formats and Format Codes

Data of a particular data type might be transmitted in any of several differentformats. As of Post-
greSQL 7.4 the only supported formats are “text” and “binary”, but the protocol makes provision for
future extensions. The desired format for any value is specified by aformat code. Clients may spec-
ify a format code for each transmitted parameter value and for each column of a query result. Text
has format code zero, binary has format code one, and all other format codes are reserved for future
definition.

The text representation of values is whatever strings are produced and accepted by the input/output
conversion functions for the particular data type. In the transmitted representation, there is no trailing
null character; the frontend must add one to received values if it wants to process them as C strings.
(The text format does not allow embedded nulls, by the way.)

Binary representations for integers use network byte order (most significant byte first). For other data
types consult the documentation or source code to learn about the binary representation. Keep in mind

1003

Chapter 42. Frontend/Backend Protocol

that binary representations for complex data types may change across server versions; the text format
is usually the more portable choice.

42.2. Message Flow
This section describes the message flow and the semantics of each message type. (Details of the exact
representation of each message appear inSection 42.4.) There are several different sub-protocols de-
pending on the state of the connection: start-up, query, function call,COPY, and termination. There are
also special provisions for asynchronous operations (including notification responses and command
cancellation), which can occur at any time after the start-up phase.

42.2.1. Start-Up

To begin a session, a frontend opens a connection to the server and sends a startup message. This
message includes the names of the user and of the database the user wants to connect to; it also
identifies the particular protocol version to be used. (Optionally, the startup message can include
additional settings for run-time parameters.) The server then uses this information and the contents of
its configuration files (such aspg_hba.conf) to determine whether the connection is provisionally
acceptable, and what additional authentication is required (if any).

The server then sends an appropriate authentication request message, to which the frontend must reply
with an appropriate authentication response message (such as a password). In principle the authenti-
cation request/response cycle could require multiple iterations, but none of the present authentication
methods use more than one request and response. In some methods, no response at all is needed from
the frontend, and so no authentication request occurs.

The authentication cycle ends with the server either rejecting the connection attempt (ErrorResponse),
or sending AuthenticationOk.

The possible messages from the server in this phase are:

ErrorResponse

The connection attempt has been rejected. The server then immediately closes the connection.

AuthenticationOk

The authentication exchange is successfully completed.

AuthenticationKerberosV4

The frontend must now take part in a Kerberos V4 authentication dialog (not described here, part
of the Kerberos specification) with the server. If this is successful, the server responds with an
AuthenticationOk, otherwise it responds with an ErrorResponse.

AuthenticationKerberosV5

The frontend must now take part in a Kerberos V5 authentication dialog (not described here, part
of the Kerberos specification) with the server. If this is successful, the server responds with an
AuthenticationOk, otherwise it responds with an ErrorResponse.

AuthenticationCleartextPassword

The frontend must now send a PasswordMessage containing the password in clear-text form. If
this is the correct password, the server responds with an AuthenticationOk, otherwise it responds
with an ErrorResponse.

1004

Chapter 42. Frontend/Backend Protocol

AuthenticationCryptPassword

The frontend must now send a PasswordMessage containing the password encrypted via crypt(3),
using the 2-character salt specified in the AuthenticationCryptPassword message. If this is the
correct password, the server responds with an AuthenticationOk, otherwise it responds with an
ErrorResponse.

AuthenticationMD5Password

The frontend must now send a PasswordMessage containing the password encrypted via MD5,
using the 4-character salt specified in the AuthenticationMD5Password message. If this is the
correct password, the server responds with an AuthenticationOk, otherwise it responds with an
ErrorResponse.

AuthenticationSCMCredential

This response is only possible for local Unix-domain connections on platforms that support SCM
credential messages. The frontend must issue an SCM credential message and then send a single
data byte. (The contents of the data byte are uninteresting; it’s only used to ensure that the server
waits long enough to receive the credential message.) If the credential is acceptable, the server
responds with an AuthenticationOk, otherwise it responds with an ErrorResponse.

If the frontend does not support the authentication method requested by the server, then it should
immediately close the connection.

After having received AuthenticationOk, the frontend must wait for further messages from the server.
In this phase a backend process is being started, and the frontend is just an interested bystander. It is
still possible for the startup attempt to fail (ErrorResponse), but in the normal case the backend will
send some ParameterStatus messages, BackendKeyData, and finally ReadyForQuery.

During this phase the backend will attempt to apply any additional run-time parameter settings that
were given in the startup message. If successful, these values become session defaults. An error causes
ErrorResponse and exit.

The possible messages from the backend in this phase are:

BackendKeyData

This message provides secret-key data that the frontend must save if it wants to be able to is-
sue cancel requests later. The frontend should not respond to this message, but should continue
listening for a ReadyForQuery message.

ParameterStatus

This message informs the frontend about the current (initial) setting of backend parameters, such
asclient_encodingor DateStyle. The frontend may ignore this message, or record the settings
for its future use; seeSection 42.2.6for more details. The frontend should not respond to this
message, but should continue listening for a ReadyForQuery message.

ReadyForQuery

Start-up is completed. The frontend may now issue commands.

ErrorResponse

Start-up failed. The connection is closed after sending this message.

1005

Chapter 42. Frontend/Backend Protocol

NoticeResponse

A warning message has been issued. The frontend should display the message but continue
listening for ReadyForQuery or ErrorResponse.

The ReadyForQuery message is the same one that the backend will issue after each command cycle.
Depending on the coding needs of the frontend, it is reasonable to consider ReadyForQuery as starting
a command cycle, or to consider ReadyForQuery as ending the start-up phase and each subsequent
command cycle.

42.2.2. Simple Query

A simple query cycle is initiated by the frontend sending a Query message to the backend. The mes-
sage includes an SQL command (or commands) expressed as a text string. The backend then sends
one or more response messages depending on the contents of the query command string, and finally
a ReadyForQuery response message. ReadyForQuery informs the frontend that it may safely send a
new command. (It is not actually necessary for the frontend to wait for ReadyForQuery before issuing
another command, but the frontend must then take responsibility for figuring out what happens if the
earlier command fails and already-issued later commands succeed.)

The possible response messages from the backend are:

CommandComplete

An SQL command completed normally.

CopyInResponse

The backend is ready to copy data from the frontend to a table; seeSection 42.2.5.

CopyOutResponse

The backend is ready to copy data from a table to the frontend; seeSection 42.2.5.

RowDescription

Indicates that rows are about to be returned in response to aSELECT, FETCH, etc query. The
contents of this message describe the column layout of the rows. This will be followed by a
DataRow message for each row being returned to the frontend.

DataRow

One of the set of rows returned by aSELECT, FETCH, etc query.

EmptyQueryResponse

An empty query string was recognized.

ErrorResponse

An error has occurred.

ReadyForQuery

Processing of the query string is complete. A separate message is sent to indicate this because the
query string may contain multiple SQL commands. (CommandComplete marks the end of pro-
cessing one SQL command, not the whole string.) ReadyForQuery will always be sent, whether
processing terminates successfully or with an error.

1006

Chapter 42. Frontend/Backend Protocol

NoticeResponse

A warning message has been issued in relation to the query. Notices are in addition to other
responses, i.e., the backend will continue processing the command.

The response to aSELECTquery (or other queries that return row sets, such asEXPLAIN or SHOW) nor-
mally consists of RowDescription, zero or more DataRow messages, and then CommandComplete.
COPYto or from the frontend invokes special protocol as described inSection 42.2.5. All other query
types normally produce only a CommandComplete message.

Since a query string could contain several queries (separated by semicolons), there might be several
such response sequences before the backend finishes processing the query string. ReadyForQuery is
issued when the entire string has been processed and the backend is ready to accept a new query
string.

If a completely empty (no contents other than whitespace) query string is received, the response is
EmptyQueryResponse followed by ReadyForQuery.

In the event of an error, ErrorResponse is issued followed by ReadyForQuery. All further processing
of the query string is aborted by ErrorResponse (even if more queries remained in it). Note that this
may occur partway through the sequence of messages generated by an individual query.

In simple Query mode, the format of retrieved values is always text, except when the given command
is a FETCHfrom a cursor declared with theBINARY option. In that case, the retrieved values are in
binary format. The format codes given in the RowDescription message tell which format is being
used.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages whenever it is
expecting any other type of message. See alsoSection 42.2.6concerning messages that the backend
may generate due to outside events.

Recommended practice is to code frontends in a state-machine style that will accept any message type
at any time that it could make sense, rather than wiring in assumptions about the exact sequence of
messages.

42.2.3. Extended Query

The extended query protocol breaks down the above-described simple query protocol into multiple
steps. The results of preparatory steps can be re-used multiple times for improved efficiency. Further-
more, additional features are available, such as the possibility of supplying data values as separate
parameters instead of having to insert them directly into a query string.

In the extended protocol, the frontend first sends a Parse message, which contains a textual query
string, optionally some information about data types of parameter placeholders, and the name of a
destination prepared-statement object (an empty string selects the unnamed prepared statement). The
response is either ParseComplete or ErrorResponse. Parameter data types may be specified by OID;
if not given, the parser attempts to infer the data types in the same way as it would do for untyped
literal string constants.

Note: The query string contained in a Parse message cannot include more than one SQL state-
ment; else a syntax error is reported. This restriction does not exist in the simple-query protocol,
but it does exist in the extended protocol, because allowing prepared statements or portals to
contain multiple commands would complicate the protocol unduly.

1007

Chapter 42. Frontend/Backend Protocol

If successfully created, a named prepared-statement object lasts till the end of the current session,
unless explicitly destroyed. An unnamed prepared statement lasts only until the next Parse statement
specifying the unnamed statement as destination is issued. (Note that a simple Query message also
destroys the unnamed statement.) Named prepared statements must be explicitly closed before they
can be redefined by a Parse message, but this is not required for the unnamed statement. Named
prepared statements can also be created and accessed at the SQL command level, usingPREPAREand
EXECUTE.

Once a prepared statement exists, it can be readied for execution using a Bind message. The Bind
message gives the name of the source prepared statement (empty string denotes the unnamed pre-
pared statement), the name of the destination portal (empty string denotes the unnamed portal), and
the values to use for any parameter placeholders present in the prepared statement. The supplied pa-
rameter set must match those needed by the prepared statement. Bind also specifies the format to use
for any data returned by the query; the format can be specified overall, or per-column. The response
is either BindComplete or ErrorResponse.

Note: The choice between text and binary output is determined by the format codes given in Bind,
regardless of the SQL command involved. The BINARYattribute in cursor declarations is irrelevant
when using extended query protocol.

Query planning for named prepared-statement objects occurs when the Parse message is received. If
a query will be repeatedly executed with different parameters, it may be beneficial to send a single
Parse message containing a parameterized query, followed by multiple Bind and Execute messages.
This will avoid replanning the query on each execution.

The unnamed prepared statement is likewise planned during Parse processing if the Parse message
defines no parameters. But if there are parameters, query planning is delayed until the first Bind
message for the statement is received. The planner will consider the actual values of the parameters
provided in the Bind message when planning the query.

Note: Query plans generated from a parameterized query may be less efficient than query plans
generated from an equivalent query with actual parameter values substituted. The query planner
cannot make decisions based on actual parameter values (for example, index selectivity) when
planning a parameterized query assigned to a named prepared-statement object. This possible
penalty is avoided when using the unnamed statement, since it is not planned until actual param-
eter values are available.

If a second or subsequent Bind referencing the unnamed prepared-statement object is received
without an intervening Parse, the query is not replanned. The parameter values used in the first
Bind message may produce a query plan that is only efficient for a subset of possible parame-
ter values. To force replanning of the query for a fresh set of parameters, send another Parse
message to replace the unnamed prepared-statement object.

If successfully created, a named portal object lasts till the end of the current transaction, unless ex-
plicitly destroyed. An unnamed portal is destroyed at the end of the transaction, or as soon as the
next Bind statement specifying the unnamed portal as destination is issued. (Note that a simple Query
message also destroys the unnamed portal.) Named portals must be explicitly closed before they can
be redefined by a Bind message, but this is not required for the unnamed portal. Named portals can
also be created and accessed at the SQL command level, usingDECLARE CURSORandFETCH.

Once a portal exists, it can be executed using an Execute message. The Execute message specifies
the portal name (empty string denotes the unnamed portal) and a maximum result-row count (zero
meaning “fetch all rows”). The result-row count is only meaningful for portals containing commands

1008

Chapter 42. Frontend/Backend Protocol

that return row sets; in other cases the command is always executed to completion, and the row count
is ignored. The possible responses to Execute are the same as those described above for queries issued
via simple query protocol, except that Execute doesn’t cause ReadyForQuery or RowDescription to
be issued.

If Execute terminates before completing the execution of a portal (due to reaching a nonzero result-
row count), it will send a PortalSuspended message; the appearance of this message tells the frontend
that another Execute should be issued against the same portal to complete the operation. The Com-
mandComplete message indicating completion of the source SQL command is not sent until the por-
tal’s execution is completed. Therefore, an Execute phase is always terminated by the appearance of
exactly one of these messages: CommandComplete, EmptyQueryResponse (if the portal was created
from an empty query string), ErrorResponse, or PortalSuspended.

At completion of each series of extended-query messages, the frontend should issue a Sync message.
This parameterless message causes the backend to close the current transaction if it’s not inside a
BEGIN/COMMITtransaction block (“close” meaning to commit if no error, or roll back if error). Then
a ReadyForQuery response is issued. The purpose of Sync is to provide a resynchronization point for
error recovery. When an error is detected while processing any extended-query message, the backend
issues ErrorResponse, then reads and discards messages until a Sync is reached, then issues Ready-
ForQuery and returns to normal message processing. (But note that no skipping occurs if an error is
detectedwhileprocessing Sync — this ensures that there is one and only one ReadyForQuery sent for
each Sync.)

Note: Sync does not cause a transaction block opened with BEGIN to be closed. It is possible to
detect this situation since the ReadyForQuery message includes transaction status information.

In addition to these fundamental, required operations, there are several optional operations that can
be used with extended-query protocol.

The Describe message (portal variant) specifies the name of an existing portal (or an empty string
for the unnamed portal). The response is a RowDescription message describing the rows that will be
returned by executing the portal; or a NoData message if the portal does not contain a query that will
return rows; or ErrorResponse if there is no such portal.

The Describe message (statement variant) specifies the name of an existing prepared statement (or an
empty string for the unnamed prepared statement). The response is a ParameterDescription message
describing the parameters needed by the statement, followed by a RowDescription message describing
the rows that will be returned when the statement is eventually executed (or a NoData message if the
statement will not return rows). ErrorResponse is issued if there is no such prepared statement. Note
that since Bind has not yet been issued, the formats to be used for returned columns are not yet known
to the backend; the format code fields in the RowDescription message will be zeroes in this case.

Tip: In most scenarios the frontend should issue one or the other variant of Describe before
issuing Execute, to ensure that it knows how to interpret the results it will get back.

The Close message closes an existing prepared statement or portal and releases resources. It is not an
error to issue Close against a nonexistent statement or portal name. The response is normally CloseC-
omplete, but could be ErrorResponse if some difficulty is encountered while releasing resources. Note
that closing a prepared statement implicitly closes any open portals that were constructed from that
statement.

1009

Chapter 42. Frontend/Backend Protocol

The Flush message does not cause any specific output to be generated, but forces the backend to
deliver any data pending in its output buffers. A Flush must be sent after any extended-query command
except Sync, if the frontend wishes to examine the results of that command before issuing more
commands. Without Flush, messages returned by the backend will be combined into the minimum
possible number of packets to minimize network overhead.

Note: The simple Query message is approximately equivalent to the series Parse, Bind, por-
tal Describe, Execute, Close, Sync, using the unnamed prepared statement and portal objects
and no parameters. One difference is that it will accept multiple SQL statements in the query
string, automatically performing the bind/describe/execute sequence for each one in succession.
Another difference is that it will not return ParseComplete, BindComplete, CloseComplete, or No-
Data messages.

42.2.4. Function Call

The Function Call sub-protocol allows the client to request a direct call of any function that exists in
the database’spg_proc system catalog. The client must have execute permission for the function.

Note: The Function Call sub-protocol is a legacy feature that is probably best avoided in new
code. Similar results can be accomplished by setting up a prepared statement that does SELECT

function($1, ...) . The Function Call cycle can then be replaced with Bind/Execute.

A Function Call cycle is initiated by the frontend sending a FunctionCall message to the backend. The
backend then sends one or more response messages depending on the results of the function call, and
finally a ReadyForQuery response message. ReadyForQuery informs the frontend that it may safely
send a new query or function call.

The possible response messages from the backend are:

ErrorResponse

An error has occurred.

FunctionCallResponse

The function call was completed and returned the result given in the message. (Note that the
Function Call protocol can only handle a single scalar result, not a row type or set of results.)

ReadyForQuery

Processing of the function call is complete. ReadyForQuery will always be sent, whether pro-
cessing terminates successfully or with an error.

NoticeResponse

A warning message has been issued in relation to the function call. Notices are in addition to
other responses, i.e., the backend will continue processing the command.

1010

Chapter 42. Frontend/Backend Protocol

42.2.5. COPY Operations

TheCOPYcommand allows high-speed bulk data transfer to or from the server. Copy-in and copy-out
operations each switch the connection into a distinct sub-protocol, which lasts until the operation is
completed.

Copy-in mode (data transfer to the server) is initiated when the backend executes aCOPY FROM

STDIN SQL statement. The backend sends a CopyInResponse message to the frontend. The frontend
should then send zero or more CopyData messages, forming a stream of input data. (The message
boundaries are not required to have anything to do with row boundaries, although that is often a rea-
sonable choice.) The frontend can terminate the copy-in mode by sending either a CopyDone message
(allowing successful termination) or a CopyFail message (which will cause theCOPYSQL statement
to fail with an error). The backend then reverts to the command-processing mode it was in before
the COPYstarted, which will be either simple or extended query protocol. It will next send either
CommandComplete (if successful) or ErrorResponse (if not).

In the event of a backend-detected error during copy-in mode (including receipt of a CopyFail mes-
sage), the backend will issue an ErrorResponse message. If theCOPYcommand was issued via an
extended-query message, the backend will now discard frontend messages until a Sync message is re-
ceived, then it will issue ReadyForQuery and return to normal processing. If theCOPYcommand was
issued in a simple Query message, the rest of that message is discarded and ReadyForQuery is issued.
In either case, any subsequent CopyData, CopyDone, or CopyFail messages issued by the frontend
will simply be dropped.

The backend will ignore Flush and Sync messages received during copy-in mode. Receipt of any
other non-copy message type constitutes an error that will abort the copy-in state as described above.
(The exception for Flush and Sync is for the convenience of client libraries that always send Flush
or Sync after an Execute message, without checking whether the command to be executed is aCOPY

FROM STDIN.)

Copy-out mode (data transfer from the server) is initiated when the backend executes aCOPY TO

STDOUTSQL statement. The backend sends a CopyOutResponse message to the frontend, followed
by zero or more CopyData messages (always one per row), followed by CopyDone. The backend
then reverts to the command-processing mode it was in before theCOPYstarted, and sends Com-
mandComplete. The frontend cannot abort the transfer (except by closing the connection or issuing a
Cancel request), but it can discard unwanted CopyData and CopyDone messages.

In the event of a backend-detected error during copy-out mode, the backend will issue an ErrorRe-
sponse message and revert to normal processing. The frontend should treat receipt of ErrorResponse
(or indeed any message type other than CopyData or CopyDone) as terminating the copy-out mode.

The CopyInResponse and CopyOutResponse messages include fields that inform the frontend of the
number of columns per row and the format codes being used for each column. (As of the present
implementation, all columns in a givenCOPYoperation will use the same format, but the message
design does not assume this.)

42.2.6. Asynchronous Operations

There are several cases in which the backend will send messages that are not specifically prompted by
the frontend’s command stream. Frontends must be prepared to deal with these messages at any time,
even when not engaged in a query. At minimum, one should check for these cases before beginning
to read a query response.

It is possible for NoticeResponse messages to be generated due to outside activity; for example, if
the database administrator commands a “fast” database shutdown, the backend will send a NoticeRe-
sponse indicating this fact before closing the connection. Accordingly, frontends should always be

1011

Chapter 42. Frontend/Backend Protocol

prepared to accept and display NoticeResponse messages, even when the connection is nominally
idle.

ParameterStatus messages will be generated whenever the active value changes for any of the param-
eters the backend believes the frontend should know about. Most commonly this occurs in response
to aSETSQL command executed by the frontend, and this case is effectively synchronous — but it is
also possible for parameter status changes to occur because the administrator changed a configuration
file and then sent the SIGHUP signal to the postmaster. Also, if aSET command is rolled back, an
appropriate ParameterStatus message will be generated to report the current effective value.

At present there is a hard-wired set of parameters for which ParameterStatus will be generated:
they are server_version , server_encoding , client_encoding , is_superuser ,
session_authorization , DateStyle , TimeZone , and integer_datetimes .
(server_encoding , TimeZone , and integer_datetimes were not reported by releases
before 8.0.) Note thatserver_version , server_encoding and integer_datetimes are
pseudo-parameters that cannot change after startup. This set might change in the future, or even
become configurable. Accordingly, a frontend should simply ignore ParameterStatus for parameters
that it does not understand or care about.

If a frontend issues aLISTEN command, then the backend will send a NotificationResponse message
(not to be confused with NoticeResponse!) whenever aNOTIFY command is executed for the same
notification name.

Note: At present, NotificationResponse can only be sent outside a transaction, and thus it will not
occur in the middle of a command-response series, though it may occur just before ReadyFor-
Query. It is unwise to design frontend logic that assumes that, however. Good practice is to be
able to accept NotificationResponse at any point in the protocol.

42.2.7. Cancelling Requests in Progress

During the processing of a query, the frontend may request cancellation of the query. The cancel
request is not sent directly on the open connection to the backend for reasons of implementation
efficiency: we don’t want to have the backend constantly checking for new input from the frontend
during query processing. Cancel requests should be relatively infrequent, so we make them slightly
cumbersome in order to avoid a penalty in the normal case.

To issue a cancel request, the frontend opens a new connection to the server and sends a CancelRe-
quest message, rather than the StartupMessage message that would ordinarily be sent across a new
connection. The server will process this request and then close the connection. For security reasons,
no direct reply is made to the cancel request message.

A CancelRequest message will be ignored unless it contains the same key data (PID and secret key)
passed to the frontend during connection start-up. If the request matches the PID and secret key
for a currently executing backend, the processing of the current query is aborted. (In the existing
implementation, this is done by sending a special signal to the backend process that is processing the
query.)

The cancellation signal may or may not have any effect — for example, if it arrives after the backend
has finished processing the query, then it will have no effect. If the cancellation is effective, it results
in the current command being terminated early with an error message.

The upshot of all this is that for reasons of both security and efficiency, the frontend has no direct way
to tell whether a cancel request has succeeded. It must continue to wait for the backend to respond

1012

Chapter 42. Frontend/Backend Protocol

to the query. Issuing a cancel simply improves the odds that the current query will finish soon, and
improves the odds that it will fail with an error message instead of succeeding.

Since the cancel request is sent across a new connection to the server and not across the regular
frontend/backend communication link, it is possible for the cancel request to be issued by any process,
not just the frontend whose query is to be canceled. This may have some benefits of flexibility in
building multiple-process applications. It also introduces a security risk, in that unauthorized persons
might try to cancel queries. The security risk is addressed by requiring a dynamically generated secret
key to be supplied in cancel requests.

42.2.8. Termination

The normal, graceful termination procedure is that the frontend sends a Terminate message and im-
mediately closes the connection. On receipt of this message, the backend closes the connection and
terminates.

In rare cases (such as an administrator-commanded database shutdown) the backend may disconnect
without any frontend request to do so. In such cases the backend will attempt to send an error or notice
message giving the reason for the disconnection before it closes the connection.

Other termination scenarios arise from various failure cases, such as core dump at one end or the other,
loss of the communications link, loss of message-boundary synchronization, etc. If either frontend or
backend sees an unexpected closure of the connection, it should clean up and terminate. The frontend
has the option of launching a new backend by recontacting the server if it doesn’t want to terminate
itself. Closing the connection is also advisable if an unrecognizable message type is received, since
this probably indicates loss of message-boundary sync.

For either normal or abnormal termination, any open transaction is rolled back, not committed. One
should note however that if a frontend disconnects while a non-SELECTquery is being processed,
the backend will probably finish the query before noticing the disconnection. If the query is outside
any transaction block (BEGIN ... COMMITsequence) then its results may be committed before the
disconnection is recognized.

42.2.9. SSL Session Encryption

If PostgreSQL was built with SSL support, frontend/backend communications can be encrypted using
SSL. This provides communication security in environments where attackers might be able to capture
the session traffic. For more information on encrypting PostgreSQL sessions with SSL, seeSection
16.7.

To initiate an SSL-encrypted connection, the frontend initially sends an SSLRequest message rather
than a StartupMessage. The server then responds with a single byte containingS or N, indicating that
it is willing or unwilling to perform SSL, respectively. The frontend may close the connection at this
point if it is dissatisfied with the response. To continue afterS, perform an SSL startup handshake
(not described here, part of the SSL specification) with the server. If this is successful, continue with
sending the usual StartupMessage. In this case the StartupMessage and all subsequent data will be
SSL-encrypted. To continue afterN, send the usual StartupMessage and proceed without encryption.

The frontend should also be prepared to handle an ErrorMessage response to SSLRequest from the
server. This would only occur if the server predates the addition of SSL support to PostgreSQL. In
this case the connection must be closed, but the frontend may choose to open a fresh connection and
proceed without requesting SSL.

An initial SSLRequest may also be used in a connection that is being opened to send a CancelRequest
message.

1013

Chapter 42. Frontend/Backend Protocol

While the protocol itself does not provide a way for the server to force SSL encryption, the ad-
ministrator may configure the server to reject unencrypted sessions as a byproduct of authentication
checking.

42.3. Message Data Types
This section describes the base data types used in messages.

Intn(i)

An n-bit integer in network byte order (most significant byte first). Ifi is specified it is the exact
value that will appear, otherwise the value is variable. Eg. Int16, Int32(42).

Intn[k]

An array ofk n -bit integers, each in network byte order. The array lengthk is always determined
by an earlier field in the message. Eg. Int16[M].

String(s)

A null-terminated string (C-style string). There is no specific length limitation on strings. Ifs
is specified it is the exact value that will appear, otherwise the value is variable. Eg. String,
String("user").

Note: There is no predefined limit on the length of a string that can be returned by the
backend. Good coding strategy for a frontend is to use an expandable buffer so that anything
that fits in memory can be accepted. If that’s not feasible, read the full string and discard
trailing characters that don’t fit into your fixed-size buffer.

Byten(c)

Exactlyn bytes. If the field widthn is not a constant, it is always determinable from an earlier
field in the message. Ifc is specified it is the exact value. Eg. Byte2, Byte1(’\n’).

42.4. Message Formats
This section describes the detailed format of each message. Each is marked to indicate that it may be
sent by a frontend (F), a backend (B), or both (F & B). Notice that although each message includes a
byte count at the beginning, the message format is defined so that the message end can be found with-
out reference to the byte count. This aids validity checking. (The CopyData message is an exception,
because it forms part of a data stream; the contents of any individual CopyData message may not be
interpretable on their own.)

AuthenticationOk (B)

Byte1(’R’)

Identifies the message as an authentication request.

1014

Chapter 42. Frontend/Backend Protocol

Int32(8)

Length of message contents in bytes, including self.

Int32(0)

Specifies that the authentication was successful.

AuthenticationKerberosV4 (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(1)

Specifies that Kerberos V4 authentication is required.

AuthenticationKerberosV5 (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(2)

Specifies that Kerberos V5 authentication is required.

AuthenticationCleartextPassword (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(3)

Specifies that a clear-text password is required.

1015

Chapter 42. Frontend/Backend Protocol

AuthenticationCryptPassword (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(10)

Length of message contents in bytes, including self.

Int32(4)

Specifies that a crypt()-encrypted password is required.

Byte2

The salt to use when encrypting the password.

AuthenticationMD5Password (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(12)

Length of message contents in bytes, including self.

Int32(5)

Specifies that an MD5-encrypted password is required.

Byte4

The salt to use when encrypting the password.

AuthenticationSCMCredential (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(6)

Specifies that an SCM credentials message is required.

BackendKeyData (B)

Byte1(’K’)

Identifies the message as cancellation key data. The frontend must save these values if it
wishes to be able to issue CancelRequest messages later.

1016

Chapter 42. Frontend/Backend Protocol

Int32(12)

Length of message contents in bytes, including self.

Int32

The process ID of this backend.

Int32

The secret key of this backend.

Bind (F)

Byte1(’B’)

Identifies the message as a Bind command.

Int32

Length of message contents in bytes, including self.

String

The name of the destination portal (an empty string selects the unnamed portal).

String

The name of the source prepared statement (an empty string selects the unnamed prepared
statement).

Int16

The number of parameter format codes that follow (denotedC below). This can be zero to
indicate that there are no parameters or that the parameters all use the default format (text);
or one, in which case the specified format code is applied to all parameters; or it can equal
the actual number of parameters.

Int16[C]

The parameter format codes. Each must presently be zero (text) or one (binary).

Int16

The number of parameter values that follow (possibly zero). This must match the number
of parameters needed by the query.

Next, the following pair of fields appear for each parameter:

Int32

The length of the parameter value, in bytes (this count does not include itself). Can be zero.
As a special case, -1 indicates a NULL parameter value. No value bytes follow in the NULL
case.

Byten

The value of the parameter, in the format indicated by the associated format code.n is the
above length.

After the last parameter, the following fields appear:

1017

Chapter 42. Frontend/Backend Protocol

Int16

The number of result-column format codes that follow (denotedRbelow). This can be zero
to indicate that there are no result columns or that the result columns should all use the
default format (text); or one, in which case the specified format code is applied to all result
columns (if any); or it can equal the actual number of result columns of the query.

Int16[R]

The result-column format codes. Each must presently be zero (text) or one (binary).

BindComplete (B)

Byte1(’2’)

Identifies the message as a Bind-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

CancelRequest (F)

Int32(16)

Length of message contents in bytes, including self.

Int32(80877102)

The cancel request code. The value is chosen to contain1234 in the most significant 16
bits, and5678 in the least 16 significant bits. (To avoid confusion, this code must not be the
same as any protocol version number.)

Int32

The process ID of the target backend.

Int32

The secret key for the target backend.

Close (F)

Byte1(’C’)

Identifies the message as a Close command.

Int32

Length of message contents in bytes, including self.

Byte1

’S’ to close a prepared statement; or ’P’ to close a portal.

1018

Chapter 42. Frontend/Backend Protocol

String

The name of the prepared statement or portal to close (an empty string selects the unnamed
prepared statement or portal).

CloseComplete (B)

Byte1(’3’)

Identifies the message as a Close-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

CommandComplete (B)

Byte1(’C’)

Identifies the message as a command-completed response.

Int32

Length of message contents in bytes, including self.

String

The command tag. This is usually a single word that identifies which SQL command was
completed.

For anINSERT command, the tag isINSERT oid rows , whererows is the number of
rows inserted.oid is the object ID of the inserted row ifrows is 1 and the target table has
OIDs; otherwiseoid is 0.

For a DELETEcommand, the tag isDELETE rows where rows is the number of rows
deleted.

For anUPDATEcommand, the tag isUPDATE rows whererows is the number of rows
updated.

For aMOVEcommand, the tag isMOVErows whererows is the number of rows the cursor’s
position has been changed by.

For aFETCHcommand, the tag isFETCH rows whererows is the number of rows that
have been retrieved from the cursor.

CopyData (F & B)

Byte1(’d’)

Identifies the message asCOPYdata.

Int32

Length of message contents in bytes, including self.

1019

Chapter 42. Frontend/Backend Protocol

Byten

Data that forms part of aCOPYdata stream. Messages sent from the backend will always
correspond to single data rows, but messages sent by frontends may divide the data stream
arbitrarily.

CopyDone (F & B)

Byte1(’c’)

Identifies the message as aCOPY-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

CopyFail (F)

Byte1(’f’)

Identifies the message as aCOPY-failure indicator.

Int32

Length of message contents in bytes, including self.

String

An error message to report as the cause of failure.

CopyInResponse (B)

Byte1(’G’)

Identifies the message as a Start Copy In response. The frontend must now send copy-in
data (if not prepared to do so, send a CopyFail message).

Int32

Length of message contents in bytes, including self.

Int8

0 indicates the overallCOPYformat is textual (rows separated by newlines, columns sepa-
rated by separator characters, etc). 1 indicates the overall copy format is binary (similar to
DataRow format). SeeCOPYfor more information.

Int16

The number of columns in the data to be copied (denotedN below).

Int16[N]

The format codes to be used for each column. Each must presently be zero (text) or one
(binary). All must be zero if the overall copy format is textual.

1020

Chapter 42. Frontend/Backend Protocol

CopyOutResponse (B)

Byte1(’H’)

Identifies the message as a Start Copy Out response. This message will be followed by
copy-out data.

Int32

Length of message contents in bytes, including self.

Int8

0 indicates the overallCOPYformat is textual (rows separated by newlines, columns sepa-
rated by separator characters, etc). 1 indicates the overall copy format is binary (similar to
DataRow format). SeeCOPYfor more information.

Int16

The number of columns in the data to be copied (denotedN below).

Int16[N]

The format codes to be used for each column. Each must presently be zero (text) or one
(binary). All must be zero if the overall copy format is textual.

DataRow (B)

Byte1(’D’)

Identifies the message as a data row.

Int32

Length of message contents in bytes, including self.

Int16

The number of column values that follow (possibly zero).

Next, the following pair of fields appear for each column:

Int32

The length of the column value, in bytes (this count does not include itself). Can be zero.
As a special case, -1 indicates a NULL column value. No value bytes follow in the NULL
case.

Byten

The value of the column, in the format indicated by the associated format code.n is the
above length.

1021

Chapter 42. Frontend/Backend Protocol

Describe (F)

Byte1(’D’)

Identifies the message as a Describe command.

Int32

Length of message contents in bytes, including self.

Byte1

’S’ to describe a prepared statement; or ’P’ to describe a portal.

String

The name of the prepared statement or portal to describe (an empty string selects the un-
named prepared statement or portal).

EmptyQueryResponse (B)

Byte1(’I’)

Identifies the message as a response to an empty query string. (This substitutes for Com-
mandComplete.)

Int32(4)

Length of message contents in bytes, including self.

ErrorResponse (B)

Byte1(’E’)

Identifies the message as an error.

Int32

Length of message contents in bytes, including self.

The message body consists of one or more identified fields, followed by a zero byte as a
terminator. Fields may appear in any order. For each field there is the following:

Byte1

A code identifying the field type; if zero, this is the message terminator and no string fol-
lows. The presently defined field types are listed inSection 42.5. Since more field types
may be added in future, frontends should silently ignore fields of unrecognized type.

String

The field value.

1022

Chapter 42. Frontend/Backend Protocol

Execute (F)

Byte1(’E’)

Identifies the message as an Execute command.

Int32

Length of message contents in bytes, including self.

String

The name of the portal to execute (an empty string selects the unnamed portal).

Int32

Maximum number of rows to return, if portal contains a query that returns rows (ignored
otherwise). Zero denotes “no limit”.

Flush (F)

Byte1(’H’)

Identifies the message as a Flush command.

Int32(4)

Length of message contents in bytes, including self.

FunctionCall (F)

Byte1(’F’)

Identifies the message as a function call.

Int32

Length of message contents in bytes, including self.

Int32

Specifies the object ID of the function to call.

Int16

The number of argument format codes that follow (denotedC below). This can be zero to
indicate that there are no arguments or that the arguments all use the default format (text);
or one, in which case the specified format code is applied to all arguments; or it can equal
the actual number of arguments.

Int16[C]

The argument format codes. Each must presently be zero (text) or one (binary).

Int16

Specifies the number of arguments being supplied to the function.

Next, the following pair of fields appear for each argument:

1023

Chapter 42. Frontend/Backend Protocol

Int32

The length of the argument value, in bytes (this count does not include itself). Can be zero.
As a special case, -1 indicates a NULL argument value. No value bytes follow in the NULL
case.

Byten

The value of the argument, in the format indicated by the associated format code.n is the
above length.

After the last argument, the following field appears:

Int16

The format code for the function result. Must presently be zero (text) or one (binary).

FunctionCallResponse (B)

Byte1(’V’)

Identifies the message as a function call result.

Int32

Length of message contents in bytes, including self.

Int32

The length of the function result value, in bytes (this count does not include itself). Can be
zero. As a special case, -1 indicates a NULL function result. No value bytes follow in the
NULL case.

Byten

The value of the function result, in the format indicated by the associated format code.n is
the above length.

NoData (B)

Byte1(’n’)

Identifies the message as a no-data indicator.

Int32(4)

Length of message contents in bytes, including self.

NoticeResponse (B)

Byte1(’N’)

Identifies the message as a notice.

1024

Chapter 42. Frontend/Backend Protocol

Int32

Length of message contents in bytes, including self.

The message body consists of one or more identified fields, followed by a zero byte as a
terminator. Fields may appear in any order. For each field there is the following:

Byte1

A code identifying the field type; if zero, this is the message terminator and no string fol-
lows. The presently defined field types are listed inSection 42.5. Since more field types
may be added in future, frontends should silently ignore fields of unrecognized type.

String

The field value.

NotificationResponse (B)

Byte1(’A’)

Identifies the message as a notification response.

Int32

Length of message contents in bytes, including self.

Int32

The process ID of the notifying backend process.

String

The name of the condition that the notify has been raised on.

String

Additional information passed from the notifying process. (Currently, this feature is unim-
plemented so the field is always an empty string.)

ParameterDescription (B)

Byte1(’t’)

Identifies the message as a parameter description.

Int32

Length of message contents in bytes, including self.

Int16

The number of parameters used by the statement (may be zero).

Then, for each parameter, there is the following:

1025

Chapter 42. Frontend/Backend Protocol

Int32

Specifies the object ID of the parameter data type.

ParameterStatus (B)

Byte1(’S’)

Identifies the message as a run-time parameter status report.

Int32

Length of message contents in bytes, including self.

String

The name of the run-time parameter being reported.

String

The current value of the parameter.

Parse (F)

Byte1(’P’)

Identifies the message as a Parse command.

Int32

Length of message contents in bytes, including self.

String

The name of the destination prepared statement (an empty string selects the unnamed pre-
pared statement).

String

The query string to be parsed.

Int16

The number of parameter data types specified (may be zero). Note that this is not an indi-
cation of the number of parameters that might appear in the query string, only the number
that the frontend wants to prespecify types for.

Then, for each parameter, there is the following:

Int32

Specifies the object ID of the parameter data type. Placing a zero here is equivalent to
leaving the type unspecified.

1026

Chapter 42. Frontend/Backend Protocol

ParseComplete (B)

Byte1(’1’)

Identifies the message as a Parse-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

PasswordMessage (F)

Byte1(’p’)

Identifies the message as a password response.

Int32

Length of message contents in bytes, including self.

String

The password (encrypted, if requested).

PortalSuspended (B)

Byte1(’s’)

Identifies the message as a portal-suspended indicator. Note this only appears if an Execute
message’s row-count limit was reached.

Int32(4)

Length of message contents in bytes, including self.

Query (F)

Byte1(’Q’)

Identifies the message as a simple query.

Int32

Length of message contents in bytes, including self.

String

The query string itself.

1027

Chapter 42. Frontend/Backend Protocol

ReadyForQuery (B)

Byte1(’Z’)

Identifies the message type. ReadyForQuery is sent whenever the backend is ready for a
new query cycle.

Int32(5)

Length of message contents in bytes, including self.

Byte1

Current backend transaction status indicator. Possible values are ’I ’ if idle (not in a transac-
tion block); ’T’ if in a transaction block; or ’E’ if in a failed transaction block (queries will
be rejected until block is ended).

RowDescription (B)

Byte1(’T’)

Identifies the message as a row description.

Int32

Length of message contents in bytes, including self.

Int16

Specifies the number of fields in a row (may be zero).

Then, for each field, there is the following:

String

The field name.

Int32

If the field can be identified as a column of a specific table, the object ID of the table;
otherwise zero.

Int16

If the field can be identified as a column of a specific table, the attribute number of the
column; otherwise zero.

Int32

The object ID of the field’s data type.

Int16

The data type size (seepg_type.typlen). Note that negative values denote variable-width
types.

Int32

The type modifier (seepg_attribute.atttypmod). The meaning of the modifier is type-
specific.

1028

Chapter 42. Frontend/Backend Protocol

Int16

The format code being used for the field. Currently will be zero (text) or one (binary). In a
RowDescription returned from the statement variant of Describe, the format code is not yet
known and will always be zero.

SSLRequest (F)

Int32(8)

Length of message contents in bytes, including self.

Int32(80877103)

The SSL request code. The value is chosen to contain1234 in the most significant 16 bits,
and5679 in the least 16 significant bits. (To avoid confusion, this code must not be the
same as any protocol version number.)

StartupMessage (F)

Int32

Length of message contents in bytes, including self.

Int32(196608)

The protocol version number. The most significant 16 bits are the major version number (3
for the protocol described here). The least significant 16 bits are the minor version number
(0 for the protocol described here).

The protocol version number is followed by one or more pairs of parameter name and value
strings. A zero byte is required as a terminator after the last name/value pair. Parameters can
appear in any order.user is required, others are optional. Each parameter is specified as:

String

The parameter name. Currently recognized names are:

user

The database user name to connect as. Required; there is no default.

database

The database to connect to. Defaults to the user name.

options

Command-line arguments for the backend. (This is deprecated in favor of setting indi-
vidual run-time parameters.)

In addition to the above, any run-time parameter that can be set at backend start time may
be listed. Such settings will be applied during backend start (after parsing the command-line
options if any). The values will act as session defaults.

1029

Chapter 42. Frontend/Backend Protocol

String

The parameter value.

Sync (F)

Byte1(’S’)

Identifies the message as a Sync command.

Int32(4)

Length of message contents in bytes, including self.

Terminate (F)

Byte1(’X’)

Identifies the message as a termination.

Int32(4)

Length of message contents in bytes, including self.

42.5. Error and Notice Message Fields
This section describes the fields that may appear in ErrorResponse and NoticeResponse messages.
Each field type has a single-byte identification token. Note that any given field type should appear at
most once per message.

S

Severity: the field contents areERROR, FATAL, or PANIC (in an error message), orWARNING,
NOTICE, DEBUG, INFO, or LOG(in a notice message), or a localized translation of one of these.
Always present.

C

Code: the SQLSTATE code for the error (seeAppendix A). Not localizable. Always present.

M

Message: the primary human-readable error message. This should be accurate but terse (typically
one line). Always present.

D

Detail: an optional secondary error message carrying more detail about the problem. May run to
multiple lines.

1030

Chapter 42. Frontend/Backend Protocol

H

Hint: an optional suggestion what to do about the problem. This is intended to differ from Detail
in that it offers advice (potentially inappropriate) rather than hard facts. May run to multiple
lines.

P

Position: the field value is a decimal ASCII integer, indicating an error cursor position as an
index into the original query string. The first character has index 1, and positions are measured
in characters not bytes.

p

Internal position: this is defined the same as theP field, but it is used when the cursor position
refers to an internally generated command rather than the one submitted by the client. Theq field
will always appear when this field appears.

q

Internal query: the text of a failed internally-generated command. This could be, for example, a
SQL query issued by a PL/pgSQL function.

W

Where: an indication of the context in which the error occurred. Presently this includes a call
stack traceback of active procedural language functions and internally-generated queries. The
trace is one entry per line, most recent first.

F

File: the file name of the source-code location where the error was reported.

L

Line: the line number of the source-code location where the error was reported.

R

Routine: the name of the source-code routine reporting the error.

The client is responsible for formatting displayed information to meet its needs; in particular it should
break long lines as needed. Newline characters appearing in the error message fields should be treated
as paragraph breaks, not line breaks.

42.6. Summary of Changes since Protocol 2.0
This section provides a quick checklist of changes, for the benefit of developers trying to update
existing client libraries to protocol 3.0.

The initial startup packet uses a flexible list-of-strings format instead of a fixed format. Notice that
session default values for run-time parameters can now be specified directly in the startup packet.
(Actually, you could do that before using theoptions field, but given the limited width ofoptions

and the lack of any way to quote whitespace in the values, it wasn’t a very safe technique.)

All messages now have a length count immediately following the message type byte (except for
startup packets, which have no type byte). Also note that PasswordMessage now has a type byte.

ErrorResponse and NoticeResponse (’E’ and ’N’) messages now contain multiple fields, from which
the client code may assemble an error message of the desired level of verbosity. Note that individual

1031

Chapter 42. Frontend/Backend Protocol

fields will typically not end with a newline, whereas the single string sent in the older protocol always
did.

The ReadyForQuery (’Z’) message includes a transaction status indicator.

The distinction between BinaryRow and DataRow message types is gone; the single DataRow mes-
sage type serves for returning data in all formats. Note that the layout of DataRow has changed to
make it easier to parse. Also, the representation of binary values has changed: it is no longer directly
tied to the server’s internal representation.

There is a new “extended query” sub-protocol, which adds the frontend message types Parse, Bind,
Execute, Describe, Close, Flush, and Sync, and the backend message types ParseComplete, Bind-
Complete, PortalSuspended, ParameterDescription, NoData, and CloseComplete. Existing clients do
not have to concern themselves with this sub-protocol, but making use of it may allow improvements
in performance or functionality.

COPYdata is now encapsulated into CopyData and CopyDone messages. There is a well-defined way
to recover from errors duringCOPY. The special “\. ” last line is not needed anymore, and is not sent
duringCOPY OUT. (It is still recognized as a terminator duringCOPY IN, but its use is deprecated and
will eventually be removed.) BinaryCOPYis supported. The CopyInResponse and CopyOutResponse
messages include fields indicating the number of columns and the format of each column.

The layout of FunctionCall and FunctionCallResponse messages has changed. FunctionCall can now
support passing NULL arguments to functions. It also can handle passing parameters and retriev-
ing results in either text or binary format. There is no longer any reason to consider FunctionCall a
potential security hole, since it does not offer direct access to internal server data representations.

The backend sends ParameterStatus (’S’) messages during connection startup for all parameters it
considers interesting to the client library. Subsequently, a ParameterStatus message is sent whenever
the active value changes for any of these parameters.

The RowDescription (’T’) message carries new table OID and column number fields for each column
of the described row. It also shows the format code for each column.

The CursorResponse (’P’) message is no longer generated by the backend.

The NotificationResponse (’A’) message has an additional string field, which is presently empty but
may someday carry additional data passed from theNOTIFY event sender.

The EmptyQueryResponse (’I ’) message used to include an empty string parameter; this has been
removed.

1032

Chapter 43. PostgreSQL Coding Conventions

43.1. Formatting
Source code formatting uses 4 column tab spacing, with tabs preserved (i.e. tabs are not expanded to
spaces). Each logical indentation level is one additional tab stop. Layout rules (brace positioning, etc)
follow BSD conventions.

While submitted patches do not absolutely have to follow these formatting rules, it’s a good idea to
do so. Your code will get run through pgindent, so there’s no point in making it look nice under some
other set of formatting conventions.

For Emacs, add the following (or something similar) to your~/.emacs initialization file:

;; check for files with a path containing "postgres" or "pgsql"
(setq auto-mode-alist

(cons ’("\\(postgres\\|pgsql\\).*\\.[ch]\\’" . pgsql-c-mode)
auto-mode-alist))

(setq auto-mode-alist
(cons ’("\\(postgres\\|pgsql\\).*\\.cc\\’" . pgsql-c-mode)

auto-mode-alist))

(defun pgsql-c-mode ()
;; sets up formatting for PostgreSQL C code
(interactive)
(c-mode)
(setq-default tab-width 4)
(c-set-style "bsd") ; set c-basic-offset to 4, plus other stuff
(c-set-offset ’case-label ’+) ; tweak case indent to match PG custom
(setq indent-tabs-mode t)) ; make sure we keep tabs when indenting

For vi, your~/.vimrc or equivalent file should contain the following:

set tabstop=4

or equivalently from within vi, try

:set ts=4

The text browsing tools more and less can be invoked as

more -x4
less -x4

to make them show tabs appropriately.

1033

Chapter 43. PostgreSQL Coding Conventions

43.2. Reporting Errors Within the Server
Error, warning, and log messages generated within the server code should be created usingereport ,
or its older cousinelog . The use of this function is complex enough to require some explanation.

There are two required elements for every message: a severity level (ranging fromDEBUGto PANIC)
and a primary message text. In addition there are optional elements, the most common of which is
an error identifier code that follows the SQL spec’s SQLSTATE conventions.ereport itself is just
a shell function, that exists mainly for the syntactic convenience of making message generation look
like a function call in the C source code. The only parameter accepted directly byereport is the
severity level. The primary message text and any optional message elements are generated by calling
auxiliary functions, such aserrmsg , within theereport call.

A typical call toereport might look like this:

ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),

errmsg("division by zero")));

This specifies error severity levelERROR(a run-of-the-mill error). Theerrcode call specifies the
SQLSTATE error code using a macro defined insrc/include/utils/errcodes.h . Theerrmsg

call provides the primary message text. Notice the extra set of parentheses surrounding the auxiliary
function calls — these are annoying but syntactically necessary.

Here is a more complex example:

ereport(ERROR,
(errcode(ERRCODE_AMBIGUOUS_FUNCTION),

errmsg("function %s is not unique",
func_signature_string(funcname, nargs,

actual_arg_types)),
errhint("Unable to choose a best candidate function. "

"You may need to add explicit typecasts.")));

This illustrates the use of format codes to embed run-time values into a message text. Also, an optional
“hint” message is provided.

The available auxiliary routines forereport are:

• errcode(sqlerrcode) specifies the SQLSTATE error identifier code for the condition. If this
routine is not called, the error identifier defaults toERRCODE_INTERNAL_ERRORwhen the error
severity level isERRORor higher,ERRCODE_WARNINGwhen the error level isWARNING, otherwise
(for NOTICE and below)ERRCODE_SUCCESSFUL_COMPLETION. While these defaults are often
convenient, always think whether they are appropriate before omitting theerrcode() call.

• errmsg(const char *msg, ...) specifies the primary error message text, and possibly run-
time values to insert into it. Insertions are specified bysprintf -style format codes. In addition
to the standard format codes accepted bysprintf , the format code%mcan be used to insert the
error message returned bystrerror for the current value oferrno . 1 %mdoes not require any
corresponding entry in the parameter list forerrmsg . Note that the message string will be run
throughgettext for possible localization before format codes are processed.

1. That is, the value that was current when theereport call was reached; changes oferrno within the auxiliary reporting
routines will not affect it. That would not be true if you were to writestrerror(errno) explicitly in errmsg ’s parameter
list; accordingly, do not do so.

1034

Chapter 43. PostgreSQL Coding Conventions

• errmsg_internal(const char *msg, ...) is the same aserrmsg , except that the message
string will not be included in the internationalization message dictionary. This should be used for
“can’t happen” cases that are probably not worth expending translation effort on.

• errdetail(const char *msg, ...) supplies an optional “detail” message; this is to be used
when there is additional information that seems inappropriate to put in the primary message. The
message string is processed in just the same way as forerrmsg .

• errhint(const char *msg, ...) supplies an optional “hint” message; this is to be used when
offering suggestions about how to fix the problem, as opposed to factual details about what went
wrong. The message string is processed in just the same way as forerrmsg .

• errcontext(const char *msg, ...) is not normally called directly from anereport mes-
sage site; rather it is used inerror_context_stack callback functions to provide information
about the context in which an error occurred, such as the current location in a PL function. The
message string is processed in just the same way as forerrmsg . Unlike the other auxiliary func-
tions, this can be called more than once perereport call; the successive strings thus supplied are
concatenated with separating newlines.

• errposition(int cursorpos) specifies the textual location of an error within a query string.
Currently it is only useful for errors detected in the lexical and syntactic analysis phases of query
processing.

• errcode_for_file_access() is a convenience function that selects an appropriate SQLSTATE
error identifier for a failure in a file-access-related system call. It uses the savederrno to determine
which error code to generate. Usually this should be used in combination with%min the primary
error message text.

• errcode_for_socket_access() is a convenience function that selects an appropriate SQL-
STATE error identifier for a failure in a socket-related system call.

There is an older functionelog that is still heavily used. Anelog call

elog(level, "format string", ...);

is exactly equivalent to

ereport(level, (errmsg_internal("format string", ...)));

Notice that the SQLSTATE errcode is always defaulted, and the message string is not included in
the internationalization message dictionary. Therefore,elog should be used only for internal errors
and low-level debug logging. Any message that is likely to be of interest to ordinary users should go
throughereport . Nonetheless, there are enough internal “can’t happen” error checks in the system
thatelog is still widely used; it is preferred for those messages for its notational simplicity.

Advice about writing good error messages can be found inSection 43.3.

43.3. Error Message Style Guide
This style guide is offered in the hope of maintaining a consistent, user-friendly style throughout all
the messages generated by PostgreSQL.

1035

Chapter 43. PostgreSQL Coding Conventions

43.3.1. What goes where

The primary message should be short, factual, and avoid reference to implementation details such as
specific function names. “Short” means “should fit on one line under normal conditions”. Use a detail
message if needed to keep the primary message short, or if you feel a need to mention implementation
details such as the particular system call that failed. Both primary and detail messages should be
factual. Use a hint message for suggestions about what to do to fix the problem, especially if the
suggestion might not always be applicable.

For example, instead of

IpcMemoryCreate: shmget(key=%d, size=%u, 0%o) failed: %m
(plus a long addendum that is basically a hint)

write

Primary: could not create shared memory segment: %m
Detail: Failed syscall was shmget(key=%d, size=%u, 0%o).
Hint: the addendum

Rationale: keeping the primary message short helps keep it to the point, and lets clients lay out screen
space on the assumption that one line is enough for error messages. Detail and hint messages may be
relegated to a verbose mode, or perhaps a pop-up error-details window. Also, details and hints would
normally be suppressed from the server log to save space. Reference to implementation details is best
avoided since users don’t know the details anyway.

43.3.2. Formatting

Don’t put any specific assumptions about formatting into the message texts. Expect clients and the
server log to wrap lines to fit their own needs. In long messages, newline characters (\n) may be used
to indicate suggested paragraph breaks. Don’t end a message with a newline. Don’t use tabs or other
formatting characters. (In error context displays, newlines are automatically added to separate levels
of context such as function calls.)

Rationale: Messages are not necessarily displayed on terminal-type displays. In GUI displays or
browsers these formatting instructions are at best ignored.

43.3.3. Quotation marks

English text should use double quotes when quoting is appropriate. Text in other languages should
consistently use one kind of quotes that is consistent with publishing customs and computer output of
other programs.

Rationale: The choice of double quotes over single quotes is somewhat arbitrary, but tends to be the
preferred use. Some have suggested choosing the kind of quotes depending on the type of object
according to SQL conventions (namely, strings single quoted, identifiers double quoted). But this is
a language-internal technical issue that many users aren’t even familiar with, it won’t scale to other
kinds of quoted terms, it doesn’t translate to other languages, and it’s pretty pointless, too.

1036

Chapter 43. PostgreSQL Coding Conventions

43.3.4. Use of quotes

Use quotes always to delimit file names, user-supplied identifiers, and other variables that might
contain words. Do not use them to mark up variables that will not contain words (for example, operator
names).

There are functions in the backend that will double-quote their own output at need (for example,
format_type_be ()). Do not put additional quotes around the output of such functions.

Rationale: Objects can have names that create ambiguity when embedded in a message. Be consistent
about denoting where a plugged-in name starts and ends. But don’t clutter messages with unnecessary
or duplicate quote marks.

43.3.5. Grammar and punctuation

The rules are different for primary error messages and for detail/hint messages:

Primary error messages: Do not capitalize the first letter. Do not end a message with a period. Do not
even think about ending a message with an exclamation point.

Detail and hint messages: Use complete sentences, and end each with a period. Capitalize the first
word of sentences.

Rationale: Avoiding punctuation makes it easier for client applications to embed the message into a
variety of grammatical contexts. Often, primary messages are not grammatically complete sentences
anyway. (And if they’re long enough to be more than one sentence, they should be split into primary
and detail parts.) However, detail and hint messages are longer and may need to include multiple
sentences. For consistency, they should follow complete-sentence style even when there’s only one
sentence.

43.3.6. Upper case vs. lower case

Use lower case for message wording, including the first letter of a primary error message. Use upper
case for SQL commands and key words if they appear in the message.

Rationale: It’s easier to make everything look more consistent this way, since some messages are
complete sentences and some not.

43.3.7. Avoid passive voice

Use the active voice. Use complete sentences when there is an acting subject (“A could not do B”).
Use telegram style without subject if the subject would be the program itself; do not use “I” for the
program.

Rationale: The program is not human. Don’t pretend otherwise.

43.3.8. Present vs past tense

Use past tense if an attempt to do something failed, but could perhaps succeed next time (perhaps
after fixing some problem). Use present tense if the failure is certainly permanent.

There is a nontrivial semantic difference between sentences of the form

could not open file "%s": %m

1037

Chapter 43. PostgreSQL Coding Conventions

and

cannot open file "%s"

The first one means that the attempt to open the file failed. The message should give a reason, such as
“disk full” or “file doesn’t exist”. The past tense is appropriate because next time the disk might not
be full anymore or the file in question may exist.

The second form indicates the the functionality of opening the named file does not exist at all in the
program, or that it’s conceptually impossible. The present tense is appropriate because the condition
will persist indefinitely.

Rationale: Granted, the average user will not be able to draw great conclusions merely from the tense
of the message, but since the language provides us with a grammar we should use it correctly.

43.3.9. Type of the object

When citing the name of an object, state what kind of object it is.

Rationale: Otherwise no one will know what “foo.bar.baz” refers to.

43.3.10. Brackets

Square brackets are only to be used (1) in command synopses to denote optional arguments, or (2) to
denote an array subscript.

Rationale: Anything else does not correspond to widely-known customary usage and will confuse
people.

43.3.11. Assembling error messages

When a message includes text that is generated elsewhere, embed it in this style:

could not open file %s: %m

Rationale: It would be difficult to account for all possible error codes to paste this into a single smooth
sentence, so some sort of punctuation is needed. Putting the embedded text in parentheses has also
been suggested, but it’s unnatural if the embedded text is likely to be the most important part of the
message, as is often the case.

43.3.12. Reasons for errors

Messages should always state the reason why an error occurred. For example:

BAD: could not open file %s
BETTER: could not open file %s (I/O failure)

If no reason is known you better fix the code.

1038

Chapter 43. PostgreSQL Coding Conventions

43.3.13. Function names

Don’t include the name of the reporting routine in the error text. We have other mechanisms for
finding that out when needed, and for most users it’s not helpful information. If the error text doesn’t
make as much sense without the function name, reword it.

BAD: pg_atoi: error in "z": can’t parse "z"
BETTER: invalid input syntax for integer: "z"

Avoid mentioning called function names, either; instead say what the code was trying to do:

BAD: open() failed: %m
BETTER: could not open file %s: %m

If it really seems necessary, mention the system call in the detail message. (In some cases, providing
the actual values passed to the system call might be appropriate information for the detail message.)

Rationale: Users don’t know what all those functions do.

43.3.14. Tricky words to avoid

Unable. “Unable” is nearly the passive voice. Better use “cannot” or “could not”, as appropriate.

Bad. Error messages like “bad result” are really hard to interpret intelligently. It’s better to write why
the result is “bad”, e.g., “invalid format”.

Illegal. “Illegal” stands for a violation of the law, the rest is “invalid”. Better yet, say why it’s invalid.

Unknown. Try to avoid “unknown”. Consider “error: unknown response”. If you don’t know what
the response is, how do you know it’s erroneous? “Unrecognized” is often a better choice. Also, be
sure to include the value being complained of.

BAD: unknown node type
BETTER: unrecognized node type: 42

Find vs. Exists. If the program uses a nontrivial algorithm to locate a resource (e.g., a path search)
and that algorithm fails, it is fair to say that the program couldn’t “find” the resource. If, on the other
hand, the expected location of the resource is known but the program cannot access it there then say
that the resource doesn’t “exist”. Using “find” in this case sounds weak and confuses the issue.

43.3.15. Proper spelling

Spell out words in full. For instance, avoid:

• spec

• stats

• parens

• auth

• xact

Rationale: This will improve consistency.

1039

Chapter 43. PostgreSQL Coding Conventions

43.3.16. Localization

Keep in mind that error message texts need to be translated into other languages. Follow the guidelines
in Section 44.2.2to avoid making life difficult for translators.

1040

Chapter 44. Native Language Support
Peter Eisentraut

44.1. For the Translator
PostgreSQL programs (server and client) can issue their messages in your favorite language — if the
messages have been translated. Creating and maintaining translated message sets needs the help of
people who speak their own language well and want to contribute to the PostgreSQL effort. You do
not have to be a programmer at all to do this. This section explains how to help.

44.1.1. Requirements

We won’t judge your language skills — this section is about software tools. Theoretically, you only
need a text editor. But this is only in the unlikely event that you do not want to try out your translated
messages. When you configure your source tree, be sure to use the--enable-nls option. This will
also check for the libintl library and themsgfmt program, which all end users will need anyway. To
try out your work, follow the applicable portions of the installation instructions.

If you want to start a new translation effort or want to do a message catalog merge (described later),
you will need the programsxgettext and msgmerge, respectively, in a GNU-compatible imple-
mentation. Later, we will try to arrange it so that if you use a packaged source distribution, you
won’t needxgettext . (From CVS, you will still need it.) GNU Gettext 0.10.36 or later is currently
recommended.

Your local gettext implementation should come with its own documentation. Some of that is probably
duplicated in what follows, but for additional details you should look there.

44.1.2. Concepts

The pairs of original (English) messages and their (possibly) translated equivalents are kept inmes-
sage catalogs, one for each program (although related programs can share a message catalog) and for
each target language. There are two file formats for message catalogs: The first is the “PO” file (for
Portable Object), which is a plain text file with special syntax that translators edit. The second is the
“MO” file (for Machine Object), which is a binary file generated from the respective PO file and is
used while the internationalized program is run. Translators do not deal with MO files; in fact hardly
anyone does.

The extension of the message catalog file is to no surprise either.po or .mo . The base name is either
the name of the program it accompanies, or the language the file is for, depending on the situation.
This is a bit confusing. Examples arepsql.po (PO file for psql) orfr.mo (MO file in French).

The file format of the PO files is illustrated here:

comment

msgid "original string"
msgstr "translated string"

msgid "more original"

1041

Chapter 44. Native Language Support

msgstr "another translated"
"string can be broken up like this"

...

The msgid’s are extracted from the program source. (They need not be, but this is the most common
way.) The msgstr lines are initially empty and are filled in with useful strings by the translator. The
strings can contain C-style escape characters and can be continued across lines as illustrated. (The
next line must start at the beginning of the line.)

The # character introduces a comment. If whitespace immediately follows the # character, then this
is a comment maintained by the translator. There may also be automatic comments, which have a
non-whitespace character immediately following the #. These are maintained by the various tools that
operate on the PO files and are intended to aid the translator.

#. automatic comment
#: filename.c:1023
#, flags, flags

The #. style comments are extracted from the source file where the message is used. Possibly the
programmer has inserted information for the translator, such as about expected alignment. The #:
comment indicates the exact location(s) where the message is used in the source. The translator need
not look at the program source, but he can if there is doubt about the correct translation. The #,
comments contain flags that describe the message in some way. There are currently two flags:fuzzy

is set if the message has possibly been outdated because of changes in the program source. The
translator can then verify this and possibly remove the fuzzy flag. Note that fuzzy messages are not
made available to the end user. The other flag isc-format , which indicates that the message is a
printf -style format template. This means that the translation should also be a format string with the
same number and type of placeholders. There are tools that can verify this, which key off the c-format
flag.

44.1.3. Creating and maintaining message catalogs

OK, so how does one create a “blank” message catalog? First, go into the directory that contains the
program whose messages you want to translate. If there is a filenls.mk , then this program has been
prepared for translation.

If there are already some.po files, then someone has already done some translation work. The files are
namedlanguage .po , wherelanguage is the ISO 639-11 two-letter language code (in lower case),
e.g.,fr.po for French. If there is really a need for more than one translation effort per language then
the files may also be namedlanguage _region .po whereregion is the ISO 3166-12 two-letter
country code (in upper case), e.g.,pt_BR.po for Portuguese in Brazil. If you find the language you
wanted you can just start working on that file.

If you need to start a new translation effort, then first run the command

gmake init-po

This will create a fileprogname .pot . (.pot to distinguish it from PO files that are “in production”.
TheT stands for “template”.) Copy this file tolanguage .po and edit it. To make it known that the
new language is available, also edit the filenls.mk and add the language (or language and country)
code to the line that looks like:

1. http://lcweb.loc.gov/standards/iso639-2/englangn.html
2. http://www.din.de/gremien/nas/nabd/iso3166ma/codlstp1/en_listp1.html

1042

Chapter 44. Native Language Support

AVAIL_LANGUAGES := de fr

(Other languages may appear, of course.)

As the underlying program or library changes, messages may be changed or added by the program-
mers. In this case you do not need to start from scratch. Instead, run the command

gmake update-po

which will create a new blank message catalog file (the pot file you started with) and will merge it
with the existing PO files. If the merge algorithm is not sure about a particular message it marks it
“fuzzy” as explained above. For the case where something went really wrong, the old PO file is saved
with a .po.old extension.

44.1.4. Editing the PO files

The PO files can be edited with a regular text editor. The translator should only change the area
between the quotes after the msgstr directive, may add comments and alter the fuzzy flag. There is
(unsurprisingly) a PO mode for Emacs, which I find quite useful.

The PO files need not be completely filled in. The software will automatically fall back to the original
string if no translation (or an empty translation) is available. It is no problem to submit incomplete
translations for inclusions in the source tree; that gives room for other people to pick up your work.
However, you are encouraged to give priority to removing fuzzy entries after doing a merge. Re-
member that fuzzy entries will not be installed; they only serve as reference what might be the right
translation.

Here are some things to keep in mind while editing the translations:

• Make sure that if the original ends with a newline, the translation does, too. Similarly for tabs, etc.

• If the original is aprintf format string, the translation also needs to be. The translation also needs
to have the same format specifiers in the same order. Sometimes the natural rules of the language
make this impossible or at least awkward. In that case you can modify the format specifiers like
this:

msgstr "Die Datei %2$s hat %1$u Zeichen."

Then the first placeholder will actually use the second argument from the list. Thedigits $ needs
to follow the % immediately, before any other format manipulators. (This feature really exists in
theprintf family of functions. You may not have heard of it before because there is little use for
it outside of message internationalization.)

• If the original string contains a linguistic mistake, report that (or fix it yourself in the program
source) and translate normally. The corrected string can be merged in when the program sources
have been updated. If the original string contains a factual mistake, report that (or fix it yourself)
and do not translate it. Instead, you may mark the string with a comment in the PO file.

• Maintain the style and tone of the original string. Specifically, messages that are not sentences
(cannot open file %s) should probably not start with a capital letter (if your language distin-
guishes letter case) or end with a period (if your language uses punctuation marks). It may help to
readSection 43.3.

• If you don’t know what a message means, or if it is ambiguous, ask on the developers’ mailing list.
Chances are that English speaking end users might also not understand it or find it ambiguous, so
it’s best to improve the message.

1043

Chapter 44. Native Language Support

44.2. For the Programmer

44.2.1. Mechanics

This section describes how to implement native language support in a program or library that is part
of the PostgreSQL distribution. Currently, it only applies to C programs.

Adding NLS support to a program

1. Insert this code into the start-up sequence of the program:

#ifdef ENABLE_NLS
#include <locale.h >

#endif

...

#ifdef ENABLE_NLS
setlocale(LC_ALL, "");
bindtextdomain(" progname ", LOCALEDIR);
textdomain(" progname ");
#endif

(Theprogname can actually be chosen freely.)

2. Wherever a message that is a candidate for translation is found, a call togettext() needs to be
inserted. E.g.,

fprintf(stderr, "panic level %d\n", lvl);

would be changed to

fprintf(stderr, gettext("panic level %d\n"), lvl);

(gettext is defined as a no-op if no NLS is configured.)

This may tend to add a lot of clutter. One common shortcut is to use

#define _(x) gettext(x)

Another solution is feasible if the program does much of its communication through one or a
few functions, such asereport() in the backend. Then you make this function callgettext

internally on all input strings.

3. Add a filenls.mk in the directory with the program sources. This file will be read as a makefile.
The following variable assignments need to be made here:

CATALOG_NAME

The program name, as provided in thetextdomain() call.

AVAIL_LANGUAGES

List of provided translations — initially empty.

GETTEXT_FILES

List of files that contain translatable strings, i.e., those marked withgettext or an alterna-
tive solution. Eventually, this will include nearly all source files of the program. If this list
gets too long you can make the first “file” be a+ and the second word be a file that contains
one file name per line.

1044

Chapter 44. Native Language Support

GETTEXT_TRIGGERS

The tools that generate message catalogs for the translators to work on need to know what
function calls contain translatable strings. By default, onlygettext() calls are known. If
you used_ or other identifiers you need to list them here. If the translatable string is not the
first argument, the item needs to be of the formfunc:2 (for the second argument).

The build system will automatically take care of building and installing the message catalogs.

44.2.2. Message-writing guidelines

Here are some guidelines for writing messages that are easily translatable.

• Do not construct sentences at run-time, like

printf("Files were %s.\n", flag ? "copied" : "removed");

The word order within the sentence may be different in other languages. Also, even if you remember
to call gettext() on each fragment, the fragments may not translate well separately. It’s better to
duplicate a little code so that each message to be translated is a coherent whole. Only numbers, file
names, and such-like run-time variables should be inserted at runtime into a message text.

• For similar reasons, this won’t work:

printf("copied %d file%s", n, n!=1 ? "s" : "");

because it assumes how the plural is formed. If you figured you could solve it like this

if (n==1)
printf("copied 1 file");

else
printf("copied %d files", n):

then be disappointed. Some languages have more than two forms, with some peculiar rules. We
may have a solution for this in the future, but for now the matter is best avoided altogether. You
could write:

printf("number of copied files: %d", n);

• If you want to communicate something to the translator, such as about how a message is intended
to line up with other output, precede the occurrence of the string with a comment that starts with
translator , e.g.,

/* translator: This message is not what it seems to be. */

These comments are copied to the message catalog files so that the translators can see them.

1045

Chapter 45. Writing A Procedural Language
Handler

All calls to functions that are written in a language other than the current “version 1” interface for
compiled languages (this includes functions in user-defined procedural languages, functions written
in SQL, and functions using the version 0 compiled language interface), go through acall handler
function for the specific language. It is the responsibility of the call handler to execute the function in
a meaningful way, such as by interpreting the supplied source text. This chapter outlines how a new
procedural language’s call handler can be written.

The call handler for a procedural language is a “normal” function that must be written in a compiled
language such as C, using the version-1 interface, and registered with PostgreSQL as taking no argu-
ments and returning the typelanguage_handler . This special pseudotype identifies the function as
a call handler and prevents it from being called directly in SQL commands.

The call handler is called in the same way as any other function: It receives a pointer to a
FunctionCallInfoData struct containing argument values and information about the called
function, and it is expected to return aDatum result (and possibly set theisnull field of the
FunctionCallInfoData structure, if it wishes to return an SQL null result). The difference
between a call handler and an ordinary callee function is that theflinfo- >fn_oid field of the
FunctionCallInfoData structure will contain the OID of the actual function to be called, not of
the call handler itself. The call handler must use this field to determine which function to execute.
Also, the passed argument list has been set up according to the declaration of the target function, not
of the call handler.

It’s up to the call handler to fetch the entry of the function from the system tablepg_proc and
to analyze the argument and return types of the called function. TheAS clause from theCREATE

FUNCTIONcommand for the function will be found in theprosrc column of thepg_proc row. This
is commonly source text in the procedural language, but in theory it could be something else, such as
a path name to a file, or anything else that tells the call handler what to do in detail.

Often, the same function is called many times per SQL statement. A call handler can avoid repeated
lookups of information about the called function by using theflinfo- >fn_extra field. This will
initially be NULL, but can be set by the call handler to point at information about the called func-
tion. On subsequent calls, ifflinfo- >fn_extra is already non-NULL then it can be used and the
information lookup step skipped. The call handler must make sure thatflinfo- >fn_extra is made
to point at memory that will live at least until the end of the current query, since anFmgrInfo data
structure could be kept that long. One way to do this is to allocate the extra data in the memory context
specified byflinfo- >fn_mcxt ; such data will normally have the same lifespan as theFmgrInfo

itself. But the handler could also choose to use a longer-lived memory context so that it can cache
function definition information across queries.

When a procedural-language function is invoked as a trigger, no arguments are passed in the usual
way, but theFunctionCallInfoData ’s context field points at aTriggerData structure, rather
than beingNULL as it is in a plain function call. A language handler should provide mechanisms for
procedural-language functions to get at the trigger information.

This is a template for a procedural-language handler written in C:

#include "postgres.h"
#include "executor/spi.h"

1046

Chapter 45. Writing A Procedural Language Handler

#include "commands/trigger.h"
#include "fmgr.h"
#include "access/heapam.h"
#include "utils/syscache.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"

PG_FUNCTION_INFO_V1(plsample_call_handler);

Datum
plsample_call_handler(PG_FUNCTION_ARGS)
{

Datum retval;

if (CALLED_AS_TRIGGER(fcinfo))
{

/*
* Called as a trigger procedure
*/

TriggerData *trigdata = (TriggerData *) fcinfo->context;

retval = ...
}
else
{

/*
* Called as a function
*/

retval = ...
}

return retval;
}

Only a few thousand lines of code have to be added instead of the dots to complete the call handler.

After having compiled the handler function into a loadable module (seeSection 31.9.6), the following
commands then register the sample procedural language:

CREATE FUNCTION plsample_call_handler() RETURNS language_handler
AS ’ filename ’
LANGUAGE C;

CREATE LANGUAGE plsample
HANDLER plsample_call_handler;

The procedural languages included in the standard distribution are good references when trying to
write your own call handler. Look into thesrc/pl subdirectory of the source tree.

1047

Chapter 46. Genetic Query Optimizer
Martin Utesch1997-10-02

Author: Written by Martin Utesch (<utesch@aut.tu-freiberg.de >) for the Institute of Automatic
Control at the University of Mining and Technology in Freiberg, Germany.

46.1. Query Handling as a Complex Optimization Problem
Among all relational operators the most difficult one to process and optimize is thejoin. The number
of alternative plans to answer a query grows exponentially with the number of joins included in it.
Further optimization effort is caused by the support of a variety ofjoin methods(e.g., nested loop,
hash join, merge join in PostgreSQL) to process individual joins and a diversity ofindexes(e.g.,
R-tree, B-tree, hash in PostgreSQL) as access paths for relations.

The current PostgreSQL optimizer implementation performs anear-exhaustive searchover the space
of alternative strategies. This algorithm, first introduced in the “System R” database, produces a near-
optimal join order, but can take an enormous amount of time and memory space when the number of
joins in the query grows large. This makes the ordinary PostgreSQL query optimizer inappropriate
for queries that join a large number of tables.

The Institute of Automatic Control at the University of Mining and Technology, in Freiberg, Germany,
encountered the described problems as its folks wanted to take the PostgreSQL DBMS as the backend
for a decision support knowledge based system for the maintenance of an electrical power grid. The
DBMS needed to handle large join queries for the inference machine of the knowledge based system.

Performance difficulties in exploring the space of possible query plans created the demand for a new
optimization technique to be developed.

In the following we describe the implementation of aGenetic Algorithmto solve the join ordering
problem in a manner that is efficient for queries involving large numbers of joins.

46.2. Genetic Algorithms
The genetic algorithm (GA) is a heuristic optimization method which operates through nondetermin-
istic, randomized search. The set of possible solutions for the optimization problem is considered as
a populationof individuals. The degree of adaptation of an individual to its environment is specified
by itsfitness.

The coordinates of an individual in the search space are represented bychromosomes, in essence a
set of character strings. Ageneis a subsection of a chromosome which encodes the value of a single
parameter being optimized. Typical encodings for a gene could bebinaryor integer.

Through simulation of the evolutionary operationsrecombination, mutation, andselectionnew gen-
erations of search points are found that show a higher average fitness than their ancestors.

1048

Chapter 46. Genetic Query Optimizer

According to the comp.ai.genetic FAQ it cannot be stressed too strongly that a GA is not a pure
random search for a solution to a problem. A GA uses stochastic processes, but the result is distinctly
non-random (better than random).

Figure 46-1. Structured Diagram of a Genetic Algorithm

P(t) generation of ancestors at a time t

P”(t) generation of descendants at a time t

+===+
|>>>>>>>>>>> Algorithm GA <<<<<<<<<<<<<<|
+===+
| INITIALIZE t := 0 |
+===+
| INITIALIZE P(t) |
+===+
| evaluate FITNESS of P(t) |
+===+
| while not STOPPING CRITERION do |
| +-------------------------------------+
| | P’(t) := RECOMBINATION{P(t)} |
| +-------------------------------------+
| | P”(t) := MUTATION{P’(t)} |
| +-------------------------------------+
| | P(t+1) := SELECTION{P”(t) + P(t)} |
| +-------------------------------------+
| | evaluate FITNESS of P”(t) |
| +-------------------------------------+
| | t := t + 1 |
+===+=====================================+

46.3. Genetic Query Optimization (GEQO) in PostgreSQL
The GEQO module approaches the query optimization problem as though it were the well-known
traveling salesman problem (TSP). Possible query plans are encoded as integer strings. Each string
represents the join order from one relation of the query to the next. For example, the join tree

/\
/\ 2

/\ 3
4 1

is encoded by the integer string ’4-1-3-2’, which means, first join relation ’4’ and ’1’, then ’3’, and
then ’2’, where 1, 2, 3, 4 are relation IDs within the PostgreSQL optimizer.

Parts of the GEQO module are adapted from D. Whitley’s Genitor algorithm.

Specific characteristics of the GEQO implementation in PostgreSQL are:

• Usage of asteady stateGA (replacement of the least fit individuals in a population, not whole-
generational replacement) allows fast convergence towards improved query plans. This is essential
for query handling with reasonable time;

1049

Chapter 46. Genetic Query Optimizer

• Usage ofedge recombination crossoverwhich is especially suited to keep edge losses low for the
solution of the TSP by means of a GA;

• Mutation as genetic operator is deprecated so that no repair mechanisms are needed to generate
legal TSP tours.

The GEQO module allows the PostgreSQL query optimizer to support large join queries effectively
through non-exhaustive search.

46.3.1. Future Implementation Tasks for PostgreSQL GEQO

Work is still needed to improve the genetic algorithm parameter settings. In file
src/backend/optimizer/geqo/geqo_main.c , routines gimme_pool_size and
gimme_number_generations , we have to find a compromise for the parameter settings to satisfy
two competing demands:

• Optimality of the query plan
• Computing time

At a more basic level, it is not clear that solving query optimization with a GA algorithm designed for
TSP is appropriate. In the TSP case, the cost associated with any substring (partial tour) is independent
of the rest of the tour, but this is certainly not true for query optimization. Thus it is questionable
whether edge recombination crossover is the most effective mutation procedure.

46.4. Further Reading
The following resources contain additional information about genetic algorithms:

• The Hitch-Hiker’s Guide to Evolutionary Computation1 (FAQ for comp.ai.genetic2)

• Evolutionary Computation and its application to art and design3 by Craig Reynolds

• Fundamentals of Database Systems

• The design and implementation of the POSTGRES query optimizer

1. http://surf.de.uu.net/encore/www/
2. news://comp.ai.genetic
3. http://www.red3d.com/cwr/evolve.html

1050

Chapter 47. Index Cost Estimation Functions

Author: Written by Tom Lane (<tgl@sss.pgh.pa.us >) on 2000-01-24

Note: This must eventually become part of a much larger chapter about writing new index access
methods.

Every index access method must provide a cost estimation function for use by the planner/optimizer.
The procedure OID of this function is given in theamcostestimate field of the access method’s
pg_am entry.

Note: Prior to PostgreSQL 7.0, a different scheme was used for registering index-specific cost
estimation functions.

The amcostestimate function is given a list of WHERE clauses that have been determined to be usable
with the index. It must return estimates of the cost of accessing the index and the selectivity of the
WHERE clauses (that is, the fraction of main-table rows that will be retrieved during the index scan).
For simple cases, nearly all the work of the cost estimator can be done by calling standard routines
in the optimizer; the point of having an amcostestimate function is to allow index access methods to
provide index-type-specific knowledge, in case it is possible to improve on the standard estimates.

Each amcostestimate function must have the signature:

void
amcostestimate (Query *root,

RelOptInfo *rel,
IndexOptInfo *index,
List *indexQuals,
Cost *indexStartupCost,
Cost *indexTotalCost,
Selectivity *indexSelectivity,
double *indexCorrelation);

The first four parameters are inputs:

root

The query being processed.

rel

The relation the index is on.

index

The index itself.

1051

Chapter 47. Index Cost Estimation Functions

indexQuals

List of index qual clauses (implicitly ANDed); a NIL list indicates no qualifiers are available.

The last four parameters are pass-by-reference outputs:

*indexStartupCost

Set to cost of index start-up processing

*indexTotalCost

Set to total cost of index processing

*indexSelectivity

Set to index selectivity

*indexCorrelation

Set to correlation coefficient between index scan order and underlying table’s order

Note that cost estimate functions must be written in C, not in SQL or any available procedural lan-
guage, because they must access internal data structures of the planner/optimizer.

The index access costs should be computed in the units used by
src/backend/optimizer/path/costsize.c : a sequential disk block fetch has cost 1.0, a
nonsequential fetch has cost random_page_cost, and the cost of processing one index row should
usually be taken as cpu_index_tuple_cost (which is a user-adjustable optimizer parameter).
In addition, an appropriate multiple of cpu_operator_cost should be charged for any comparison
operators invoked during index processing (especially evaluation of the indexQuals themselves).

The access costs should include all disk and CPU costs associated with scanning the index itself, but
NOT the costs of retrieving or processing the main-table rows that are identified by the index.

The “start-up cost” is the part of the total scan cost that must be expended before we can begin to
fetch the first row. For most indexes this can be taken as zero, but an index type with a high start-up
cost might want to set it nonzero.

The indexSelectivity should be set to the estimated fraction of the main table rows that will be re-
trieved during the index scan. In the case of a lossy index, this will typically be higher than the
fraction of rows that actually pass the given qual conditions.

The indexCorrelation should be set to the correlation (ranging between -1.0 and 1.0) between the
index order and the table order. This is used to adjust the estimate for the cost of fetching rows from
the main table.

Cost Estimation

A typical cost estimator will proceed as follows:

1. Estimate and return the fraction of main-table rows that will be visited based on the given qual
conditions. In the absence of any index-type-specific knowledge, use the standard optimizer func-
tion clauselist_selectivity() :

*indexSelectivity = clauselist_selectivity(root, indexQuals,
rel->relid, JOIN_INNER);

1052

Chapter 47. Index Cost Estimation Functions

2. Estimate the number of index rows that will be visited during the scan. For many index types
this is the same as indexSelectivity times the number of rows in the index, but it might be more.
(Note that the index’s size in pages and rows is available from the IndexOptInfo struct.)

3. Estimate the number of index pages that will be retrieved during the scan. This might be just
indexSelectivity times the index’s size in pages.

4. Compute the index access cost. A generic estimator might do this:

/*
* Our generic assumption is that the index pages will be read
* sequentially, so they have cost 1.0 each, not random_page_cost.
* Also, we charge for evaluation of the indexquals at each index row.
* All the costs are assumed to be paid incrementally during the scan.
*/

cost_qual_eval(&index_qual_cost, indexQuals);
*indexStartupCost = index_qual_cost.startup;
*indexTotalCost = numIndexPages +

(cpu_index_tuple_cost + index_qual_cost.per_tuple) * numIndexTuples;

5. Estimate the index correlation. For a simple ordered index on a single field, this can be retrieved
from pg_statistic. If the correlation is not known, the conservative estimate is zero (no correla-
tion).

Examples of cost estimator functions can be found insrc/backend/utils/adt/selfuncs.c .

By convention, thepg_proc entry for anamcostestimate function should show eight arguments
all declared asinternal (since none of them have types that are known to SQL), and the return type
is void .

1053

Chapter 48. GiST Indexes

48.1. Introduction
GiST stands for Generalized Search Tree. It is a balanced, tree-structured access method, that acts as
a base template in which to implement arbitrary indexing schemes. B+-trees, R-trees and many other
indexing schemes can be implemented in GiST.

One advantage of GiST is that it allows the development of custom data types with the appropriate
access methods, by an expert in the domain of the data type, rather than a database expert.

Some of the information here is derived from the University of California at Berkeley’s
GiST Indexing Project web site1 and Marcel Kornacker’s thesis, Access Methods for
Next-Generation Database Systems2. The GiST implementation in PostgreSQL is primarily
maintained by Teodor Sigaev and Oleg Bartunov, and there is more information on their website:
http://www.sai.msu.su/~megera/postgres/gist/.

48.2. Extensibility
Traditionally, implementing a new index access method meant a lot of difficult work. It was neces-
sary to understand the inner workings of the database, such as the lock manager and Write-Ahead
Log. The GiST interface has a high level of abstraction, requiring the access method implementor to
only implement the semantics of the data type being accessed. The GiST layer itself takes care of
concurrency, logging and searching the tree structure.

This extensibility should not be confused with the extensibility of the other standard search trees in
terms of the data they can handle. For example, PostgreSQL supports extensible B+-trees and R-trees.
That means that you can use PostgreSQL to build a B+-tree or R-tree over any data type you want.
But B+-trees only support range predicates (<, =, >), and R-trees only support n-D range queries
(contains, contained, equals).

So if you index, say, an image collection with a PostgreSQL B+-tree, you can only issue queries such
as “is imagex equal to imagey”, “is imagex less than imagey” and “is imagex greater than imagey”?
Depending on how you define “equals”, “less than” and “greater than” in this context, this could
be useful. However, by using a GiST based index, you could create ways to ask domain-specific
questions, perhaps “find all images of horses” or “find all over-exposed images”.

All it takes to get a GiST access method up and running is to implement seven user-defined meth-
ods, which define the behavior of keys in the tree. Of course these methods have to be pretty fancy
to support fancy queries, but for all the standard queries (B+-trees, R-trees, etc.) they’re relatively
straightforward. In short, GiST combines extensibility along with generality, code reuse, and a clean
interface.

48.3. Implementation
There are seven methods that an index operator class for GiST must provide:

1. http://gist.cs.berkeley.edu/
2. http://citeseer.nj.nec.com/448594.html

1054

Chapter 48. GiST Indexes

consistent

Given a predicatep on a tree page, and a user query,q, this method will return false if it is certain
that bothp andq cannot be true for a given data item.

union

This method consolidates information in the tree. Given a set of entries, this function generates
a new predicate that is true for all the entries.

compress

Converts the data item into a format suitable for physical storage in an index page.

decompress

The reverse of thecompress method. Converts the index representation of the data item into a
format that can be manipulated by the database.

penalty

Returns a value indicating the “cost” of inserting the new entry into a particular branch of the
tree. items will be inserted down the path of leastpenalty in the tree.

picksplit

When a page split is necessary, this function decides which entries on the page are to stay on the
old page, and which are to move to the new page.

same

Returns true if two entries are identical, false otherwise.

48.4. Limitations
The current implementation of GiST within PostgreSQL has some major limitations: GiST access is
not concurrent; the GiST interface doesn’t allow the development of certain data types, such as digital
trees (see papers by Aoki et al); and there is not yet any support for write-ahead logging of updates in
GiST indexes.

Solutions to the concurrency problems appear in Marcel Kornacker’s thesis; however these ideas have
not yet been put into practice in the PostgreSQL implementation.

The lack of write-ahead logging is just a small matter of programming, but since it isn’t done yet, a
crash could render a GiST index inconsistent, forcing a REINDEX.

48.5. Examples
To see example implementations of index methods implemented using GiST, examine the following
contrib modules:

btree_gist

B-Tree

cube

Indexing for multi-dimensional cubes

1055

Chapter 48. GiST Indexes

intarray

RD-Tree for one-dimensional array of int4 values

ltree

Indexing for tree-like stuctures

rtree_gist

R-Tree

seg

Storage and indexed access for “float ranges”

tsearch and tsearch2

Full text indexing

1056

Chapter 49. Database Physical Storage
This chapter provides an overview of the physical storage format used by PostgreSQL databases.

49.1. Database File Layout
This section describes the storage format at the level of files and directories.

All the data needed for a database cluster is stored within the cluster’s data directory, commonly
referred to asPGDATA(after the name of the environment variable that can be used to define it). A
common location forPGDATAis /var/lib/pgsql/data . Multiple clusters, managed by different
postmasters, can exist on the same machine.

The PGDATAdirectory contains several subdirectories and control files, as shown inTable 49-1. In
addition to these required items, the cluster configuration filespostgresql.conf , pg_hba.conf ,
andpg_ident.conf are traditionally stored inPGDATA(although beginning in PostgreSQL 8.0 it is
possible to keep them elsewhere).

Table 49-1. Contents ofPGDATA

Item Description

PG_VERSION A file containing the major version number of
PostgreSQL

base Subdirectory containing per-database
subdirectories

global Subdirectory containing cluster-wide tables, such
aspg_database

pg_clog Subdirectory containing transaction commit status
data

pg_subtrans Subdirectory containing subtransaction status data

pg_tblspc Subdirectory containing symbolic links to
tablespaces

pg_xlog Subdirectory containing WAL (Write Ahead Log)
files

postmaster.opts A file recording the command-line options the
postmaster was last started with

postmaster.pid A lock file recording the current postmaster PID
and shared memory segment ID (not present after
postmaster shutdown)

For each database in the cluster there is a subdirectory withinPGDATA/base, named after the
database’s OID inpg_database . This subdirectory is the default location for the database’s files; in
particular, its system catalogs are stored there.

Each table and index is stored in a separate file, named after the table or index’sfilenodenumber,
which can be found inpg_class .relfilenode .

1057

Chapter 49. Database Physical Storage

Caution
Note that while a table’s filenode often matches its OID, this is not necessarily
the case; some operations, like TRUNCATE, REINDEX, CLUSTERand some forms
of ALTER TABLE, can change the filenode while preserving the OID. Avoid as-
suming that filenode and table OID are the same.

When a table or index exceeds 1Gb, it is divided into gigabyte-sizedsegments. The first segment’s
file name is the same as the filenode; subsequent segments are named filenode.1, filenode.2, etc. This
arrangement avoids problems on platforms that have file size limitations. The contents of tables and
indexes are discussed further inSection 49.3.

A table that has columns with potentially large entries will have an associatedTOASTtable, which
is used for out-of-line storage of field values that are too large to keep in the table rows proper.
pg_class .reltoastrelid links from a table to its TOAST table, if any. SeeSection 49.2for more
information.

Tablespaces make the scenario more complicated. Each user-defined tablespace has a symbolic link
inside thePGDATA/pg_tblspc directory, which points to the physical tablespace directory (as spec-
ified in itsCREATE TABLESPACEcommand). The symbolic link is named after the tablespace’s OID.
Inside the physical tablespace directory there is a subdirectory for each database that has elements
in the tablespace, named after the database’s OID. Tables within that directory follow the filenode
naming scheme. Thepg_default tablespace is not accessed throughpg_tblspc , but corresponds
to PGDATA/base. Similarly, thepg_global tablespace is not accessed throughpg_tblspc , but cor-
responds toPGDATA/global .

49.2. TOAST
This section provides an overview of TOAST (The Oversized-Attribute Storage Technique).

Since PostgreSQL uses a fixed page size (commonly 8Kb), and does not allow tuples to span multiple
pages, it’s not possible to store very large field values directly. Before PostgreSQL 7.1 there was a
hard limit of just under one page on the total amount of data that could be put into a table row. In
release 7.1 and later, this limit is overcome by allowing large field values to be compressed and/or
broken up into multiple physical rows. This happens transparently to the user, with only small impact
on most of the backend code. The technique is affectionately known as TOAST (or “the best thing
since sliced bread”).

Only certain data types support TOAST — there is no need to impose the overhead on data types
that cannot produce large field values. To support TOAST, a data type must have a variable-length
(varlena) representation, in which the first 32-bit word of any stored value contains the total length
of the value in bytes (including itself). TOAST does not constrain the rest of the representation. All
the C-level functions supporting a TOAST-able data type must be careful to handle TOASTed input
values. (This is normally done by invokingPG_DETOAST_DATUMbefore doing anything with an input
value; but in some cases more efficient approaches are possible.)

TOAST usurps the high-order two bits of the varlena length word, thereby limiting the logical size
of any value of a TOAST-able data type to 1Gb (230 - 1 bytes). When both bits are zero, the value
is an ordinary un-TOASTed value of the data type. One of these bits, if set, indicates that the value
has been compressed and must be decompressed before use. The other bit, if set, indicates that the
value has been stored out-of-line. In this case the remainder of the value is actually just a pointer,
and the correct data has to be found elsewhere. When both bits are set, the out-of-line data has been
compressed too. In each case the length in the low-order bits of the varlena word indicates the actual

1058

Chapter 49. Database Physical Storage

size of the datum, not the size of the logical value that would be extracted by decompression or
fetching of the out-of-line data.

If any of the columns of a table are TOAST-able, the table will have an associated TOAST table,
whose OID is stored in the table’spg_class .reltoastrelid entry. Out-of-line TOASTed values
are kept in the TOAST table, as described in more detail below.

The compression technique used is a fairly simple and very fast member of the LZ family of com-
pression techniques. Seesrc/backend/utils/adt/pg_lzcompress.c for the details.

Out-of-line values are divided (after compression if used) into chunks of at most
TOAST_MAX_CHUNK_SIZEbytes (this value is a little less thanBLCKSZ/4, or about 2000 bytes by
default). Each chunk is stored as a separate row in the TOAST table for the owning table. Every
TOAST table has the columnschunk_id (an OID identifying the particular TOASTed value),
chunk_seq (a sequence number for the chunk within its value), andchunk_data (the actual data of
the chunk). A unique index onchunk_id andchunk_seq provides fast retrieval of the values. A
pointer datum representing an out-of-line TOASTed value therefore needs to store the OID of the
TOAST table in which to look and the OID of the specific value (itschunk_id). For convenience,
pointer datums also store the logical datum size (original uncompressed data length) and actual
stored size (different if compression was applied). Allowing for the varlena header word, the total
size of a TOAST pointer datum is therefore 20 bytes regardless of the actual size of the represented
value.

The TOAST code is triggered only when a row value to be stored in a table is wider thanBLCKSZ/4

bytes (normally 2Kb). The TOAST code will compress and/or move field values out-of-line until
the row value is shorter thanBLCKSZ/4 bytes or no more gains can be had. During an UPDATE
operation, values of unchanged fields are normally preserved as-is; so an UPDATE of a row with
out-of-line values incurs no TOAST costs if none of the out-of-line values change.

The TOAST code recognizes four different strategies for storing TOAST-able columns:

• PLAIN prevents either compression or out-of-line storage. This is the only possible strategy for
columns of non-TOAST-able data types.

• EXTENDEDallows both compression and out-of-line storage. This is the default for most TOAST-
able data types. Compression will be attempted first, then out-of-line storage if the row is still too
big.

• EXTERNALallows out-of-line storage but not compression. Use ofEXTERNALwill make substring
operations on widetext and bytea columns faster (at the penalty of increased storage space)
because these operations are optimized to fetch only the required parts of the out-of-line value
when it is not compressed.

• MAIN allows compression but not out-of-line storage. (Actually, out-of-line storage will still be
performed for such columns, but only as a last resort when there is no other way to make the row
small enough.)

Each TOAST-able data type specifies a default strategy for columns of that data type, but the strategy
for a given table column can be altered withALTER TABLE SET STORAGE.

This scheme has a number of advantages compared to a more straightforward approach such as al-
lowing row values to span pages. Assuming that queries are usually qualified by comparisons against
relatively small key values, most of the work of the executor will be done using the main row entry.
The big values of TOASTed attributes will only be pulled out (if selected at all) at the time the result
set is sent to the client. Thus, the main table is much smaller and more of its rows fit in the shared
buffer cache than would be the case without any out-of-line storage. Sort sets shrink also, and sorts
will more often be done entirely in memory. A little test showed that a table containing typical HTML
pages and their URLs was stored in about half of the raw data size including the TOAST table, and

1059

Chapter 49. Database Physical Storage

that the main table contained only about 10% of the entire data (the URLs and some small HTML
pages). There was no runtime difference compared to an un-TOASTed comparison table, in which all
the HTML pages were cut down to 7Kb to fit.

49.3. Database Page Layout
This section provides an overview of the page format used within PostgreSQL tables and indexes.1

Sequences and TOAST tables are formatted just like a regular table.

In the following explanation, abyteis assumed to contain 8 bits. In addition, the termitem refers to
an individual data value that is stored on a page. In a table, an item is a row; in an index, an item is an
index entry.

Every table and index is stored as an array ofpagesof a fixed size (usually 8Kb, although a different
page size can be selected when compiling the server). In a table, all the pages are logically equivalent,
so a particular item (row) can be stored in any page. In indexes, the first page is generally reserved as
a metapageholding control information, and there may be different types of pages within the index,
depending on the index access method.

Table 49-2shows the overall layout of a page. There are five parts to each page.

Table 49-2. Overall Page Layout

Item Description

PageHeaderData 20 bytes long. Contains general information about
the page, including free space pointers.

ItemPointerData Array of (offset,length) pairs pointing to the
actual items. 4 bytes per item.

Free space The unallocated space. New item pointers are
allocated from the start of this area, new items
from the end.

Items The actual items themselves.

Special space Index access method specific data. Different
methods store different data. Empty in ordinary
tables.

The first 20 bytes of each page consists of a page header (PageHeaderData). Its format is detailed in
Table 49-3. The first two fields track the most recent WAL entry related to this page. They are followed
by three 2-byte integer fields (pd_lower , pd_upper , andpd_special). These contain byte offsets
from the page start to the start of unallocated space, to the end of unallocated space, and to the start of
the special space. The last 2 bytes of the page header,pd_pagesize_version , store both the page
size and a version indicator. Beginning with PostgreSQL 8.0 the version number is 2; PostgreSQL
7.3 and 7.4 used version number 1; prior releases used version number 0. (The basic page layout and
header format has not changed in these versions, but the layout of heap row headers has.) The page
size is basically only present as a cross-check; there is no support for having more than one page size
in an installation.

Table 49-3. PageHeaderData Layout

1. Actually, index access methods need not use this page format. All the existing index methods do use this basic format, but
the data kept on index metapages usually doesn’t follow the item layout rules.

1060

Chapter 49. Database Physical Storage

Field Type Length Description

pd_lsn XLogRecPtr 8 bytes LSN: next byte after last
byte of xlog record for
last change to this page

pd_tli TimeLineID 4 bytes TLI of last change

pd_lower LocationIndex 2 bytes Offset to start of free
space

pd_upper LocationIndex 2 bytes Offset to end of free
space

pd_special LocationIndex 2 bytes Offset to start of special
space

pd_pagesize_version uint16 2 bytes Page size and layout
version number
information

All the details may be found insrc/include/storage/bufpage.h .

Following the page header are item identifiers (ItemIdData), each requiring four bytes. An item
identifier contains a byte-offset to the start of an item, its length in bytes, and a few attribute bits
which affect its interpretation. New item identifiers are allocated as needed from the beginning of the
unallocated space. The number of item identifiers present can be determined by looking atpd_lower ,
which is increased to allocate a new identifier. Because an item identifier is never moved until it is
freed, its index may be used on a long-term basis to reference an item, even when the item itself is
moved around on the page to compact free space. In fact, every pointer to an item (ItemPointer ,
also known asCTID) created by PostgreSQL consists of a page number and the index of an item
identifier.

The items themselves are stored in space allocated backwards from the end of unallocated space. The
exact structure varies depending on what the table is to contain. Tables and sequences both use a
structure namedHeapTupleHeaderData , described below.

The final section is the “special section” which may contain anything the access method wishes to
store. For example, b-tree indexes store links to the page’s left and right siblings, as well as some
other data relevant to the index structure. Ordinary tables do not use a special section at all (indicated
by settingpd_special to equal the page size).

All table rows are structured in the same way. There is a fixed-size header (occupying 27 bytes on
most machines), followed by an optional null bitmap, an optional object ID field, and the user data.
The header is detailed inTable 49-4. The actual user data (columns of the row) begins at the offset
indicated byt_hoff , which must always be a multiple of the MAXALIGN distance for the platform.
The null bitmap is only present if theHEAP_HASNULLbit is set int_infomask . If it is present it
begins just after the fixed header and occupies enough bytes to have one bit per data column (that is,
t_natts bits altogether). In this list of bits, a 1 bit indicates not-null, a 0 bit is a null. When the bitmap
is not present, all columns are assumed not-null. The object ID is only present if theHEAP_HASOID
bit is set int_infomask . If present, it appears just before thet_hoff boundary. Any padding needed
to maket_hoff a MAXALIGN multiple will appear between the null bitmap and the object ID. (This
in turn ensures that the object ID is suitably aligned.)

Table 49-4. HeapTupleHeaderData Layout

Field Type Length Description

t_xmin TransactionId 4 bytes insert XID stamp

1061

Chapter 49. Database Physical Storage

Field Type Length Description

t_cmin CommandId 4 bytes insert CID stamp

t_xmax TransactionId 4 bytes delete XID stamp

t_cmax CommandId 4 bytes delete CID stamp
(overlays with t_xvac)

t_xvac TransactionId 4 bytes XID for VACUUM
operation moving a row
version

t_ctid ItemPointerData 6 bytes current TID of this or
newer row version

t_natts int16 2 bytes number of attributes

t_infomask uint16 2 bytes various flag bits

t_hoff uint8 1 byte offset to user data

All the details may be found insrc/include/access/htup.h .

Interpreting the actual data can only be done with information obtained from other tables, mostly
pg_attribute . The key values needed to identify field locations areattlen andattalign . There
is no way to directly get a particular attribute, except when there are only fixed width fields and no
NULLs. All this trickery is wrapped up in the functionsheap_getattr, fastgetattrandheap_getsysattr.

To read the data you need to examine each attribute in turn. First check whether the field is NULL
according to the null bitmap. If it is, go to the next. Then make sure you have the right alignment. If the
field is a fixed width field, then all the bytes are simply placed. If it’s a variable length field (attlen =
-1) then it’s a bit more complicated. All variable-length datatypes share the common header structure
varattrib , which includes the total length of the stored value and some flag bits. Depending on the
flags, the data may be either inline or in a TOAST table; it might be compressed, too (seeSection
49.2).

1062

Chapter 50. BKI Backend Interface
Backend Interface (BKI) files are scripts in a special language that is understood by the PostgreSQL
backend when running in the “bootstrap” mode. The bootstrap mode allows system catalogs to be
created and filled from scratch, whereas ordinary SQL commands require the catalogs to exist already.
BKI files can therefore be used to create the database system in the first place. (And they are probably
not useful for anything else.)

initdb uses a BKI file to do part of its job when creating a new database cluster. The input file used
by initdb is created as part of building and installing PostgreSQL by a program namedgenbki.sh ,
which reads some specially formatted C header files in thesrc/include/catalog/ directory of
the source tree. The created BKI file is calledpostgres.bki and is normally installed in theshare

subdirectory of the installation tree.

Related information may be found in the documentation for initdb.

50.1. BKI File Format
This section describes how the PostgreSQL backend interprets BKI files. This description will be
easier to understand if thepostgres.bki file is at hand as an example.

BKI input consists of a sequence of commands. Commands are made up of a number of tokens,
depending on the syntax of the command. Tokens are usually separated by whitespace, but need not
be if there is no ambiguity. There is no special command separator; the next token that syntactically
cannot belong to the preceding command starts a new one. (Usually you would put a new command
on a new line, for clarity.) Tokens can be certain key words, special characters (parentheses, commas,
etc.), numbers, or double-quoted strings. Everything is case sensitive.

Lines starting with a# are ignored.

50.2. BKI Commands

create [bootstrap] [shared_relation] [without_oids]tablename (name1 = type1 [, name2 =
type2 , ...])

Create a table namedtablename with the columns given in parentheses.

The following column types are supported directly bybootstrap.c : bool , bytea , char

(1 byte), name, int2 , int4 , regproc , regclass , regtype , text , oid , tid , xid , cid ,
int2vector , oidvector , _int4 (array), _text (array), _aclitem (array). Although it is
possible to create tables containing columns of other types, this cannot be done until after
pg_type has been created and filled with appropriate entries.

Whenbootstrap is specified, the table will only be created on disk; nothing is entered into
pg_class , pg_attribute , etc, for it. Thus the table will not be accessible by ordinary SQL
operations until such entries are made the hard way (withinsert commands). This option is
used for creatingpg_class etc themselves.

The table is created as shared ifshared_relation is specified. It will have OIDs unless
without_oids is specified.

1063

Chapter 50. BKI Backend Interface

opentablename

Open the table calledtablename for further manipulation.

close [tablename]

Close the open table calledtablename . It is an error iftablename is not already opened. If
no tablename is given, then the currently open table is closed.

insert [OID =oid_value] (value1 value2 ...)

Insert a new row into the open table usingvalue1 , value2 , etc., for its column values and
oid_value for its OID. If oid_value is zero (0) or the clause is omitted, then the next
available OID is used.

NULL values can be specified using the special key word_null_ . Values containing spaces
must be double quoted.

declare [unique] indexindexname on tablename usingamname(opclass1 name1 [, ...])

Create an index namedindexname on the table namedtablename using theamnameaccess
method. The fields to index are calledname1, name2 etc., and the operator classes to use are
opclass1 , opclass2 etc., respectively. The index file is created and appropriate catalog
entries are made for it, but the index contents are not initialized by this command.

build indices

Fill in the indices that have previously been declared.

50.3. Example
The following sequence of commands will create the tabletest_table with two columnscola and
colb of type int4 andtext , respectively, and insert two rows into the table.

create test_table (cola = int4, colb = text)
open test_table
insert OID=421 (1 "value1")
insert OID=422 (2 _null_)
close test_table

1064

VIII. Appendixes

Appendix A. PostgreSQL Error Codes
All messages emitted by the PostgreSQL server are assigned five-character error codes that follow
the SQL standard’s conventions for “SQLSTATE” codes. Applications that need to know which error
condition has occurred should usually test the error code, rather than looking at the textual error
message. The error codes are less likely to change across PostgreSQL releases, and also are not
subject to change due to localization of error messages. Note that some, but not all, of the error codes
produced by PostgreSQL are defined by the SQL standard; some additional error codes for conditions
not defined by the standard have been invented or borrowed from other databases.

According to the standard, the first two characters of an error code denote a class of errors, while the
last three characters indicate a specific condition within that class. Thus, an application that does not
recognize the specific error code may still be able to infer what to do from the error class.

Table A-1lists all the error codes defined in PostgreSQL 8.0.0. (Some are not actually used at present,
but are defined by the SQL standard.) The error classes are also shown. For each error class there is a
“standard” error code having the last three characters000 . This code is used only for error conditions
that fall within the class but do not have any more-specific code assigned.

The PL/pgSQL condition name for each error code is the same as the phrase shown in the table, with
underscores substituted for spaces. For example, code22012 , DIVISION BY ZERO, has condition
nameDIVISION_BY_ZERO. Condition names can be written in either upper or lower case. (Note that
PL/pgSQL does not recognize warning, as opposed to error, condition names; those are classes 00,
01, and 02.)

Table A-1. PostgreSQL Error Codes

Error Code Meaning

Class 00 Successful Completion

00000 SUCCESSFUL COMPLETION

Class 01 Warning

01000 WARNING

0100C DYNAMIC RESULT SETS RETURNED

01008 IMPLICIT ZERO BIT PADDING

01003 NULL VALUE ELIMINATED IN SET
FUNCTION

01007 PRIVILEGE NOT GRANTED

01006 PRIVILEGE NOT REVOKED

01004 STRING DATA RIGHT TRUNCATION

01P01 DEPRECATED FEATURE

Class 02 No Data — this is also a warning class per
SQL:1999

02000 NO DATA

02001 NO ADDITIONAL DYNAMIC RESULT SETS
RETURNED

Class 03 SQL Statement Not Yet Complete

03000 SQL STATEMENT NOT YET COMPLETE

Class 08 Connection Exception

08000 CONNECTION EXCEPTION

1066

Appendix A. PostgreSQL Error Codes

Error Code Meaning

08003 CONNECTION DOES NOT EXIST

08006 CONNECTION FAILURE

08001 SQLCLIENT UNABLE TO ESTABLISH
SQLCONNECTION

08004 SQLSERVER REJECTED ESTABLISHMENT
OF SQLCONNECTION

08007 TRANSACTION RESOLUTION UNKNOWN

08P01 PROTOCOL VIOLATION

Class 09 Triggered Action Exception

09000 TRIGGERED ACTION EXCEPTION

Class 0A Feature Not Supported

0A000 FEATURE NOT SUPPORTED

Class 0B Invalid Transaction Initiation

0B000 INVALID TRANSACTION INITIATION

Class 0F Locator Exception

0F000 LOCATOR EXCEPTION

0F001 INVALID LOCATOR SPECIFICATION

Class 0L Invalid Grantor

0L000 INVALID GRANTOR

0LP01 INVALID GRANT OPERATION

Class 0P Invalid Role Specification

0P000 INVALID ROLE SPECIFICATION

Class 21 Cardinality Violation

21000 CARDINALITY VIOLATION

Class 22 Data Exception

22000 DATA EXCEPTION

2202E ARRAY SUBSCRIPT ERROR

22021 CHARACTER NOT IN REPERTOIRE

22008 DATETIME FIELD OVERFLOW

22012 DIVISION BY ZERO

22005 ERROR IN ASSIGNMENT

2200B ESCAPE CHARACTER CONFLICT

22022 INDICATOR OVERFLOW

22015 INTERVAL FIELD OVERFLOW

2201E INVALID ARGUMENT FOR LOGARITHM

2201F INVALID ARGUMENT FOR POWER
FUNCTION

2201G INVALID ARGUMENT FOR WIDTH BUCKET
FUNCTION

22018 INVALID CHARACTER VALUE FOR CAST

22007 INVALID DATETIME FORMAT

22019 INVALID ESCAPE CHARACTER

1067

Appendix A. PostgreSQL Error Codes

Error Code Meaning

2200D INVALID ESCAPE OCTET

22025 INVALID ESCAPE SEQUENCE

22010 INVALID INDICATOR PARAMETER VALUE

22020 INVALID LIMIT VALUE

22023 INVALID PARAMETER VALUE

2201B INVALID REGULAR EXPRESSION

22009 INVALID TIME ZONE DISPLACEMENT
VALUE

2200C INVALID USE OF ESCAPE CHARACTER

2200G MOST SPECIFIC TYPE MISMATCH

22004 NULL VALUE NOT ALLOWED

22002 NULL VALUE NO INDICATOR PARAMETER

22003 NUMERIC VALUE OUT OF RANGE

22026 STRING DATA LENGTH MISMATCH

22001 STRING DATA RIGHT TRUNCATION

22011 SUBSTRING ERROR

22027 TRIM ERROR

22024 UNTERMINATED C STRING

2200F ZERO LENGTH CHARACTER STRING

22P01 FLOATING POINT EXCEPTION

22P02 INVALID TEXT REPRESENTATION

22P03 INVALID BINARY REPRESENTATION

22P04 BAD COPY FILE FORMAT

22P05 UNTRANSLATABLE CHARACTER

Class 23 Integrity Constraint Violation

23000 INTEGRITY CONSTRAINT VIOLATION

23001 RESTRICT VIOLATION

23502 NOT NULL VIOLATION

23503 FOREIGN KEY VIOLATION

23505 UNIQUE VIOLATION

23514 CHECK VIOLATION

Class 24 Invalid Cursor State

24000 INVALID CURSOR STATE

Class 25 Invalid Transaction State

25000 INVALID TRANSACTION STATE

25001 ACTIVE SQL TRANSACTION

25002 BRANCH TRANSACTION ALREADY
ACTIVE

25008 HELD CURSOR REQUIRES SAME
ISOLATION LEVEL

25003 INAPPROPRIATE ACCESS MODE FOR
BRANCH TRANSACTION

1068

Appendix A. PostgreSQL Error Codes

Error Code Meaning

25004 INAPPROPRIATE ISOLATION LEVEL FOR
BRANCH TRANSACTION

25005 NO ACTIVE SQL TRANSACTION FOR
BRANCH TRANSACTION

25006 READ ONLY SQL TRANSACTION

25007 SCHEMA AND DATA STATEMENT MIXING
NOT SUPPORTED

25P01 NO ACTIVE SQL TRANSACTION

25P02 IN FAILED SQL TRANSACTION

Class 26 Invalid SQL Statement Name

26000 INVALID SQL STATEMENT NAME

Class 27 Triggered Data Change Violation

27000 TRIGGERED DATA CHANGE VIOLATION

Class 28 Invalid Authorization Specification

28000 INVALID AUTHORIZATION SPECIFICATION

Class 2B Dependent Privilege Descriptors Still Exist

2B000 DEPENDENT PRIVILEGE DESCRIPTORS
STILL EXIST

2BP01 DEPENDENT OBJECTS STILL EXIST

Class 2D Invalid Transaction Termination

2D000 INVALID TRANSACTION TERMINATION

Class 2F SQL Routine Exception

2F000 SQL ROUTINE EXCEPTION

2F005 FUNCTION EXECUTED NO RETURN
STATEMENT

2F002 MODIFYING SQL DATA NOT PERMITTED

2F003 PROHIBITED SQL STATEMENT ATTEMPTED

2F004 READING SQL DATA NOT PERMITTED

Class 34 Invalid Cursor Name

34000 INVALID CURSOR NAME

Class 38 External Routine Exception

38000 EXTERNAL ROUTINE EXCEPTION

38001 CONTAINING SQL NOT PERMITTED

38002 MODIFYING SQL DATA NOT PERMITTED

38003 PROHIBITED SQL STATEMENT ATTEMPTED

38004 READING SQL DATA NOT PERMITTED

Class 39 External Routine Invocation Exception

39000 EXTERNAL ROUTINE INVOCATION
EXCEPTION

39001 INVALID SQLSTATE RETURNED

39004 NULL VALUE NOT ALLOWED

1069

Appendix A. PostgreSQL Error Codes

Error Code Meaning

39P01 TRIGGER PROTOCOL VIOLATED

39P02 SRF PROTOCOL VIOLATED

Class 3B Savepoint Exception

3B000 SAVEPOINT EXCEPTION

3B001 INVALID SAVEPOINT SPECIFICATION

Class 3D Invalid Catalog Name

3D000 INVALID CATALOG NAME

Class 3F Invalid Schema Name

3F000 INVALID SCHEMA NAME

Class 40 Transaction Rollback

40000 TRANSACTION ROLLBACK

40002 TRANSACTION INTEGRITY CONSTRAINT
VIOLATION

40001 SERIALIZATION FAILURE

40003 STATEMENT COMPLETION UNKNOWN

40P01 DEADLOCK DETECTED

Class 42 Syntax Error or Access Rule Violation

42000 SYNTAX ERROR OR ACCESS RULE
VIOLATION

42601 SYNTAX ERROR

42501 INSUFFICIENT PRIVILEGE

42846 CANNOT COERCE

42803 GROUPING ERROR

42830 INVALID FOREIGN KEY

42602 INVALID NAME

42622 NAME TOO LONG

42939 RESERVED NAME

42804 DATATYPE MISMATCH

42P18 INDETERMINATE DATATYPE

42809 WRONG OBJECT TYPE

42703 UNDEFINED COLUMN

42883 UNDEFINED FUNCTION

42P01 UNDEFINED TABLE

42P02 UNDEFINED PARAMETER

42704 UNDEFINED OBJECT

42701 DUPLICATE COLUMN

42P03 DUPLICATE CURSOR

42P04 DUPLICATE DATABASE

42723 DUPLICATE FUNCTION

42P05 DUPLICATE PREPARED STATEMENT

42P06 DUPLICATE SCHEMA

42P07 DUPLICATE TABLE

1070

Appendix A. PostgreSQL Error Codes

Error Code Meaning

42712 DUPLICATE ALIAS

42710 DUPLICATE OBJECT

42702 AMBIGUOUS COLUMN

42725 AMBIGUOUS FUNCTION

42P08 AMBIGUOUS PARAMETER

42P09 AMBIGUOUS ALIAS

42P10 INVALID COLUMN REFERENCE

42611 INVALID COLUMN DEFINITION

42P11 INVALID CURSOR DEFINITION

42P12 INVALID DATABASE DEFINITION

42P13 INVALID FUNCTION DEFINITION

42P14 INVALID PREPARED STATEMENT
DEFINITION

42P15 INVALID SCHEMA DEFINITION

42P16 INVALID TABLE DEFINITION

42P17 INVALID OBJECT DEFINITION

Class 44 WITH CHECK OPTION Violation

44000 WITH CHECK OPTION VIOLATION

Class 53 Insufficient Resources

53000 INSUFFICIENT RESOURCES

53100 DISK FULL

53200 OUT OF MEMORY

53300 TOO MANY CONNECTIONS

Class 54 Program Limit Exceeded

54000 PROGRAM LIMIT EXCEEDED

54001 STATEMENT TOO COMPLEX

54011 TOO MANY COLUMNS

54023 TOO MANY ARGUMENTS

Class 55 Object Not In Prerequisite State

55000 OBJECT NOT IN PREREQUISITE STATE

55006 OBJECT IN USE

55P02 CANT CHANGE RUNTIME PARAM

55P03 LOCK NOT AVAILABLE

Class 57 Operator Intervention

57000 OPERATOR INTERVENTION

57014 QUERY CANCELED

57P01 ADMIN SHUTDOWN

57P02 CRASH SHUTDOWN

57P03 CANNOT CONNECT NOW

Class 58 System Error (errors external to PostgreSQL
itself)

58030 IO ERROR

1071

Appendix A. PostgreSQL Error Codes

Error Code Meaning

58P01 UNDEFINED FILE

58P02 DUPLICATE FILE

Class F0 Configuration File Error

F0000 CONFIG FILE ERROR

F0001 LOCK FILE EXISTS

Class P0 PL/pgSQL Error

P0000 PLPGSQL ERROR

P0001 RAISE EXCEPTION

Class XX Internal Error

XX000 INTERNAL ERROR

XX001 DATA CORRUPTED

XX002 INDEX CORRUPTED

1072

Appendix B. Date/Time Support
PostgreSQL uses an internal heuristic parser for all date/time input support. Dates and times are input
as strings, and are broken up into distinct fields with a preliminary determination of what kind of
information may be in the field. Each field is interpreted and either assigned a numeric value, ignored,
or rejected. The parser contains internal lookup tables for all textual fields, including months, days of
the week, and time zones.

This appendix includes information on the content of these lookup tables and describes the steps used
by the parser to decode dates and times.

B.1. Date/Time Input Interpretation
The date/time type inputs are all decoded using the following procedure.

1. Break the input string into tokens and categorize each token as a string, time, time zone, or
number.

a. If the numeric token contains a colon (:), this is a time string. Include all subsequent
digits and colons.

b. If the numeric token contains a dash (-), slash (/), or two or more dots (.), this is a
date string which may have a text month.

c. If the token is numeric only, then it is either a single field or an ISO 8601 concatenated
date (e.g.,19990113 for January 13, 1999) or time (e.g.,141516 for 14:15:16).

d. If the token starts with a plus (+) or minus (-), then it is either a time zone or a special
field.

2. If the token is a text string, match up with possible strings.

a. Do a binary-search table lookup for the token as either a special string (e.g.,today),
day (e.g.,Thursday), month (e.g.,January), or noise word (e.g.,at , on).

Set field values and bit mask for fields. For example, set year, month, day fortoday ,
and additionally hour, minute, second fornow.

b. If not found, do a similar binary-search table lookup to match the token with a time
zone.

c. If still not found, throw an error.

3. When the token is a number or number field:

a. If there are eight or six digits, and if no other date fields have been previously read,
then interpret as a “concatenated date” (e.g.,19990118 or 990118). The interpretation
is YYYYMMDDor YYMMDD.

b. If the token is three digits and a year has already been read, then interpret as day of
year.

c. If four or six digits and a year has already been read, then interpret as a time (HHMMor
HHMMSS).

1073

Appendix B. Date/Time Support

d. If three or more digits and no date fields have yet been found, interpret as a year (this
forces yy-mm-dd ordering of the remaining date fields).

e. Otherwise the date field ordering is assumed to follow theDateStyle setting: mm-
dd-yy, dd-mm-yy, or yy-mm-dd. Throw an error if a month or day field is found to be
out of range.

4. If BC has been specified, negate the year and add one for internal storage. (There is no year zero
in the Gregorian calendar, so numerically 1 BC becomes year zero.)

5. If BC was not specified, and if the year field was two digits in length, then adjust the year to four
digits. If the field is less than 70, then add 2000, otherwise add 1900.

Tip: Gregorian years AD 1-99 may be entered by using 4 digits with leading zeros (e.g., 0099 is
AD 99). Previous versions of PostgreSQL accepted years with three digits and with single
digits, but as of version 7.0 the rules have been tightened up to reduce the possibility of
ambiguity.

B.2. Date/Time Key Words
Table B-1shows the tokens that are recognized as names of months.

Table B-1. Month Names

Month Abbreviations

January Jan

February Feb

March Mar

April Apr

May

June Jun

July Jul

August Aug

September Sep, Sept

October Oct

November Nov

December Dec

Table B-2shows the tokens that are recognized as names of days of the week.

Table B-2. Day of the Week Names

Day Abbreviations

Sunday Sun

Monday Mon

Tuesday Tue, Tues

1074

Appendix B. Date/Time Support

Day Abbreviations

Wednesday Wed, Weds

Thursday Thu, Thur, Thurs

Friday Fri

Saturday Sat

Table B-3shows the tokens that serve various modifier purposes.

Table B-3. Date/Time Field Modifiers

Identifier Description

ABSTIME Ignored

AM Time is before 12:00

AT Ignored

JULIAN , JD, J Next field is Julian Day

ON Ignored

PM Time is on or after 12:00

T Next field is time

The key wordABSTIME is ignored for historical reasons: In very old releases of PostgreSQL, invalid
values of typeabstime were emitted asInvalid Abstime . This is no longer the case however and
this key word will likely be dropped in a future release.

Table B-4shows the time zone abbreviations recognized by PostgreSQL in date/time input values.
Note that these names arenot necessarily used for date/time output — output is driven by the offi-
cial timezone abbreviation(s) associated with the currently selectedtimezoneparameter setting. (It is
likely that future releases will make some use oftimezone for input as well.)

The table is organized by time zone offset from UTC, rather than alphabetically. This is intended to
facilitate matching local usage with recognized abbreviations for cases where these might differ.

Table B-4. Time Zone Abbreviations for Input

Time Zone Offset from UTC Description

NZDT +13:00 New Zealand Daylight-Saving
Time

IDLE +12:00 International Date Line, East

NZST +12:00 New Zealand Standard Time

NZT +12:00 New Zealand Time

AESST +11:00 Australia Eastern Summer
Standard Time

ACSST +10:30 Central Australia Summer
Standard Time

CADT +10:30 Central Australia
Daylight-Saving Time

SADT +10:30 South Australian
Daylight-Saving Time

AEST +10:00 Australia Eastern Standard Time

EAST +10:00 East Australian Standard Time

1075

Appendix B. Date/Time Support

Time Zone Offset from UTC Description

GST +10:00 Guam Standard Time, Russia
zone 9

LIGT +10:00 Melbourne, Australia

SAST +09:30 South Australia Standard Time

CAST +09:30 Central Australia Standard Time

AWSST +09:00 Australia Western Summer
Standard Time

JST +09:00 Japan Standard Time, Russia
zone 8

KST +09:00 Korea Standard Time

MHT +09:00 Kwajalein Time

WDT +09:00 West Australian Daylight-Saving
Time

MT +08:30 Moluccas Time

AWST +08:00 Australia Western Standard Time

CCT +08:00 China Coastal Time

WADT +08:00 West Australian Daylight-Saving
Time

WST +08:00 West Australian Standard Time

JT +07:30 Java Time

ALMST +07:00 Almaty Summer Time

WAST +07:00 West Australian Standard Time

CXT +07:00 Christmas (Island) Time

MMT +06:30 Myanmar Time

ALMT +06:00 Almaty Time

MAWT +06:00 Mawson (Antarctica) Time

IOT +05:00 Indian Chagos Time

MVT +05:00 Maldives Island Time

TFT +05:00 Kerguelen Time

AFT +04:30 Afghanistan Time

EAST +04:00 Antananarivo Summer Time

MUT +04:00 Mauritius Island Time

RET +04:00 Reunion Island Time

SCT +04:00 Mahe Island Time

IRT, IT +03:30 Iran Time

EAT +03:00 Antananarivo, Comoro Time

BT +03:00 Baghdad Time

EETDST +03:00 Eastern Europe Daylight-Saving
Time

HMT +03:00 Hellas Mediterranean Time (?)

BDST +02:00 British Double Summer Time

CEST +02:00 Central European Summer Time

1076

Appendix B. Date/Time Support

Time Zone Offset from UTC Description

CETDST +02:00 Central European
Daylight-Saving Time

EET +02:00 Eastern European Time, Russia
zone 1

FWT +02:00 French Winter Time

IST +02:00 Israel Standard Time

MEST +02:00 Middle European Summer Time

METDST +02:00 Middle Europe Daylight-Saving
Time

SST +02:00 Swedish Summer Time

BST +01:00 British Summer Time

CET +01:00 Central European Time

DNT +01:00 Dansk Normal Tid

FST +01:00 French Summer Time

MET +01:00 Middle European Time

MEWT +01:00 Middle European Winter Time

MEZ +01:00 Mitteleuropäische Zeit

NOR +01:00 Norway Standard Time

SET +01:00 Seychelles Time

SWT +01:00 Swedish Winter Time

WETDST +01:00 Western European
Daylight-Saving Time

GMT 00:00 Greenwich Mean Time

UT 00:00 Universal Time

UTC 00:00 Universal Coordinated Time

Z 00:00 Same as UTC

ZULU 00:00 Same as UTC

WET 00:00 Western European Time

WAT -01:00 West Africa Time

FNST -01:00 Fernando de Noronha Summer
Time

FNT -02:00 Fernando de Noronha Time

BRST -02:00 Brasilia Summer Time

NDT -02:30 Newfoundland Daylight-Saving
Time

ADT -03:00 Atlantic Daylight-Saving Time

AWT -03:00 (unknown)

BRT -03:00 Brasilia Time

NFT -03:30 Newfoundland Standard Time

NST -03:30 Newfoundland Standard Time

AST -04:00 Atlantic Standard Time (Canada)

ACST -04:00 Atlantic/Porto Acre Summer
Time

1077

Appendix B. Date/Time Support

Time Zone Offset from UTC Description

EDT -04:00 Eastern Daylight-Saving Time

ACT -05:00 Atlantic/Porto Acre Standard
Time

CDT -05:00 Central Daylight-Saving Time

EST -05:00 Eastern Standard Time

CST -06:00 Central Standard Time

MDT -06:00 Mountain Daylight-Saving Time

MST -07:00 Mountain Standard Time

PDT -07:00 Pacific Daylight-Saving Time

AKDT -08:00 Alaska Daylight-Saving Time

PST -08:00 Pacific Standard Time

YDT -08:00 Yukon Daylight-Saving Time

AKST -09:00 Alaska Standard Time

HDT -09:00 Hawaii/Alaska Daylight-Saving
Time

YST -09:00 Yukon Standard Time

MART -09:30 Marquesas Time

AHST -10:00 Alaska/Hawaii Standard Time

HST -10:00 Hawaii Standard Time

CAT -10:00 Central Alaska Time

NT -11:00 Nome Time

IDLW -12:00 International Date Line, West

Australian Time Zones. There are three naming conflicts between Australian time zone names and
time zone names commonly used in North and South America:ACST, CST, and EST. If the run-
time optionaustralian_timezones is set to true thenACST, CST, EST, andSATare interpreted as
Australian time zone names, as shown inTable B-5. If it is false (which is the default), thenACST, CST,
andEST are taken as American time zone names, andSAT is interpreted as a noise word indicating
Saturday.

Table B-5. Australian Time Zone Abbreviations for Input

Time Zone Offset from UTC Description

ACST +09:30 Central Australia Standard Time

CST +10:30 Australian Central Standard
Time

EST +10:00 Australian Eastern Standard
Time

SAT +09:30 South Australian Standard Time

Table B-6shows the time zone names recognized by PostgreSQL as valid settings for thetimezone
parameter. Note that these names are conceptually as well as practically different from the names
shown inTable B-4: most of these names imply a local daylight-savings time rule, whereas the former
names each represent just a fixed offset from UTC.

In many cases there are several equivalent names for the same zone. These are listed on the same line.
The table is primarily sorted by the name of the principal city of the zone.

1078

Appendix B. Date/Time Support

Table B-6. Time Zone Names for Settingtimezone

Time Zone

Africa/Abidjan

Africa/Accra

Africa/Addis_Ababa

Africa/Algiers

Africa/Asmera

Africa/Bamako

Africa/Bangui

Africa/Banjul

Africa/Bissau

Africa/Blantyre

Africa/Brazzaville

Africa/Bujumbura

Africa/Cairo Egypt

Africa/Casablanca

Africa/Ceuta

Africa/Conakry

Africa/Dakar

Africa/Dar_es_Salaam

Africa/Djibouti

Africa/Douala

Africa/El_Aaiun

Africa/Freetown

Africa/Gaborone

Africa/Harare

Africa/Johannesburg

Africa/Kampala

Africa/Khartoum

Africa/Kigali

Africa/Kinshasa

Africa/Lagos

Africa/Libreville

Africa/Lome

Africa/Luanda

Africa/Lubumbashi

Africa/Lusaka

Africa/Malabo

Africa/Maputo

Africa/Maseru

Africa/Mbabane

Africa/Mogadishu

1079

Appendix B. Date/Time Support

Time Zone

Africa/Monrovia

Africa/Nairobi

Africa/Ndjamena

Africa/Niamey

Africa/Nouakchott

Africa/Ouagadougou

Africa/Porto-Novo

Africa/Sao_Tome

Africa/Timbuktu

Africa/Tripoli Libya

Africa/Tunis

Africa/Windhoek

America/Adak America/Atka US/Aleutian

America/Anchorage SystemV/YST9YDT US/Alaska

America/Anguilla

America/Antigua

America/Araguaina

America/Aruba

America/Asuncion

America/Bahia

America/Barbados

America/Belem

America/Belize

America/Boa_Vista

America/Bogota

America/Boise

America/Buenos_Aires

America/Cambridge_Bay

America/Campo_Grande

America/Cancun

America/Caracas

America/Catamarca

America/Cayenne

America/Cayman

America/Chicago CST6CDT SystemV/CST6CDT US/Central

America/Chihuahua

America/Cordoba America/Rosario

America/Costa_Rica

America/Cuiaba

America/Curacao

America/Danmarkshavn

America/Dawson

1080

Appendix B. Date/Time Support

Time Zone

America/Dawson_Creek

America/Denver MST7MDT SystemV/MST7MDT US/Mountain America/Shiprock Navajo

America/Detroit US/Michigan

America/Dominica

America/Edmonton Canada/Mountain

America/Eirunepe

America/El_Salvador

America/Ensenada America/Tijuana Mexico/BajaNorte

America/Fortaleza

America/Glace_Bay

America/Godthab

America/Goose_Bay

America/Grand_Turk

America/Grenada

America/Guadeloupe

America/Guatemala

America/Guayaquil

America/Guyana

America/Halifax Canada/Atlantic SystemV/AST4ADT

America/Havana Cuba

America/Hermosillo

America/Indiana/Indianapolis America/Indianapolis America/Fort_Wayne EST SystemV/EST5
US/East-Indiana

America/Indiana/Knox America/Knox_IN US/Indiana-Starke

America/Indiana/Marengo

America/Indiana/Vevay

America/Inuvik

America/Iqaluit

America/Jamaica Jamaica

America/Jujuy

America/Juneau

America/Kentucky/Louisville America/Louisville

America/Kentucky/Monticello

America/La_Paz

America/Lima

America/Los_Angeles PST8PDT SystemV/PST8PDT US/Pacific US/Pacific-New

America/Maceio

America/Managua

America/Manaus Brazil/West

America/Martinique

America/Mazatlan Mexico/BajaSur

America/Mendoza

1081

Appendix B. Date/Time Support

Time Zone

America/Menominee

America/Merida

America/Mexico_City Mexico/General

America/Miquelon

America/Monterrey

America/Montevideo

America/Montreal

America/Montserrat

America/Nassau

America/New_York EST5EDT SystemV/EST5EDT US/Eastern

America/Nipigon

America/Nome

America/Noronha Brazil/DeNoronha

America/North_Dakota/Center

America/Panama

America/Pangnirtung

America/Paramaribo

America/Phoenix MST SystemV/MST7 US/Arizona

America/Port-au-Prince

America/Port_of_Spain

America/Porto_Acre America/Rio_Branco Brazil/Acre

America/Porto_Velho

America/Puerto_Rico SystemV/AST4

America/Rainy_River

America/Rankin_Inlet

America/Recife

America/Regina Canada/East-Saskatchewan Canada/Saskatchewan SystemV/CST6

America/Santiago Chile/Continental

America/Santo_Domingo

America/Sao_Paulo Brazil/East

America/Scoresbysund

America/St_Johns Canada/Newfoundland

America/St_Kitts

America/St_Lucia

America/St_Thomas America/Virgin

America/St_Vincent

America/Swift_Current

America/Tegucigalpa

America/Thule

America/Thunder_Bay

America/Toronto Canada/Eastern

America/Tortola

1082

Appendix B. Date/Time Support

Time Zone

America/Vancouver Canada/Pacific

America/Whitehorse Canada/Yukon

America/Winnipeg Canada/Central

America/Yakutat

America/Yellowknife

Antarctica/Casey

Antarctica/Davis

Antarctica/DumontDUrville

Antarctica/Mawson

Antarctica/McMurdo Antarctica/South_Pole

Antarctica/Palmer

Antarctica/Rothera

Antarctica/Syowa

Antarctica/Vostok

Asia/Aden

Asia/Almaty

Asia/Amman

Asia/Anadyr

Asia/Aqtau

Asia/Aqtobe

Asia/Ashgabat Asia/Ashkhabad

Asia/Baghdad

Asia/Bahrain

Asia/Baku

Asia/Bangkok

Asia/Beirut

Asia/Bishkek

Asia/Brunei

Asia/Calcutta

Asia/Choibalsan

Asia/Chongqing Asia/Chungking

Asia/Colombo

Asia/Dacca Asia/Dhaka

Asia/Damascus

Asia/Dili

Asia/Dubai

Asia/Dushanbe

Asia/Gaza

Asia/Harbin

Asia/Hong_Kong Hongkong

Asia/Hovd

Asia/Irkutsk

1083

Appendix B. Date/Time Support

Time Zone

Asia/Jakarta

Asia/Jayapura

Asia/Jerusalem Asia/Tel_Aviv Israel

Asia/Kabul

Asia/Kamchatka

Asia/Karachi

Asia/Kashgar

Asia/Katmandu

Asia/Krasnoyarsk

Asia/Kuala_Lumpur

Asia/Kuching

Asia/Kuwait

Asia/Macao Asia/Macau

Asia/Magadan

Asia/Makassar Asia/Ujung_Pandang

Asia/Manila

Asia/Muscat

Asia/Nicosia Europe/Nicosia

Asia/Novosibirsk

Asia/Omsk

Asia/Oral

Asia/Phnom_Penh

Asia/Pontianak

Asia/Pyongyang

Asia/Qatar

Asia/Qyzylorda

Asia/Rangoon

Asia/Riyadh

Asia/Riyadh87 Mideast/Riyadh87

Asia/Riyadh88 Mideast/Riyadh88

Asia/Riyadh89 Mideast/Riyadh89

Asia/Saigon

Asia/Sakhalin

Asia/Samarkand

Asia/Seoul ROK

Asia/Shanghai PRC

Asia/Singapore Singapore

Asia/Taipei ROC

Asia/Tashkent

Asia/Tbilisi

Asia/Tehran Iran

Asia/Thimbu Asia/Thimphu

1084

Appendix B. Date/Time Support

Time Zone

Asia/Tokyo Japan

Asia/Ulaanbaatar Asia/Ulan_Bator

Asia/Urumqi

Asia/Vientiane

Asia/Vladivostok

Asia/Yakutsk

Asia/Yekaterinburg

Asia/Yerevan

Atlantic/Azores

Atlantic/Bermuda

Atlantic/Canary

Atlantic/Cape_Verde

Atlantic/Faeroe

Atlantic/Madeira

Atlantic/Reykjavik Iceland

Atlantic/South_Georgia

Atlantic/St_Helena

Atlantic/Stanley

Australia/ACT Australia/Canberra Australia/NSW Australia/Sydney

Australia/Adelaide Australia/South

Australia/Brisbane Australia/Queensland

Australia/Broken_Hill Australia/Yancowinna

Australia/Darwin Australia/North

Australia/Hobart Australia/Tasmania

Australia/LHI Australia/Lord_Howe

Australia/Lindeman

Australia/Melbourne Australia/Victoria

Australia/Perth Australia/West

CET

EET

Etc/GMT+1

Etc/GMT+2

Etc/GMT+3

Etc/GMT+4

Etc/GMT+5

Etc/GMT+6

Etc/GMT+7

Etc/GMT+8

Etc/GMT+9

Etc/GMT+10

Etc/GMT+11

Etc/GMT+12

1085

Appendix B. Date/Time Support

Time Zone

Etc/GMT-1

Etc/GMT-2

Etc/GMT-3

Etc/GMT-4

Etc/GMT-5

Etc/GMT-6

Etc/GMT-7

Etc/GMT-8

Etc/GMT-9

Etc/GMT-10

Etc/GMT-11

Etc/GMT-12

Etc/GMT-13

Etc/GMT-14

Europe/Amsterdam

Europe/Andorra

Europe/Athens

Europe/Belfast

Europe/Belgrade Europe/Ljubljana Europe/Sarajevo Europe/Skopje Europe/Zagreb

Europe/Berlin

Europe/Brussels

Europe/Bucharest

Europe/Budapest

Europe/Chisinau Europe/Tiraspol

Europe/Copenhagen

Europe/Dublin Eire

Europe/Gibraltar

Europe/Helsinki

Europe/Istanbul Asia/Istanbul Turkey

Europe/Kaliningrad

Europe/Kiev

Europe/Lisbon Portugal

Europe/London GB GB-Eire

Europe/Luxembourg

Europe/Madrid

Europe/Malta

Europe/Minsk

Europe/Monaco

Europe/Moscow W-SU

Europe/Oslo Arctic/Longyearbyen Atlantic/Jan_Mayen

Europe/Paris

Europe/Prague Europe/Bratislava

1086

Appendix B. Date/Time Support

Time Zone

Europe/Riga

Europe/Rome Europe/San_Marino Europe/Vatican

Europe/Samara

Europe/Simferopol

Europe/Sofia

Europe/Stockholm

Europe/Tallinn

Europe/Tirane

Europe/Uzhgorod

Europe/Vaduz

Europe/Vienna

Europe/Vilnius

Europe/Warsaw Poland

Europe/Zaporozhye

Europe/Zurich

Factory

GMT GMT+0 GMT-0 GMT0 Greenwich Etc/GMT Etc/GMT+0 Etc/GMT-0 Etc/GMT0
Etc/Greenwich

Indian/Antananarivo

Indian/Chagos

Indian/Christmas

Indian/Cocos

Indian/Comoro

Indian/Kerguelen

Indian/Mahe

Indian/Maldives

Indian/Mauritius

Indian/Mayotte

Indian/Reunion

MET

Pacific/Apia

Pacific/Auckland NZ

Pacific/Chatham NZ-CHAT

Pacific/Easter Chile/EasterIsland

Pacific/Efate

Pacific/Enderbury

Pacific/Fakaofo

Pacific/Fiji

Pacific/Funafuti

Pacific/Galapagos

Pacific/Gambier SystemV/YST9

Pacific/Guadalcanal

1087

Appendix B. Date/Time Support

Time Zone

Pacific/Guam

Pacific/Honolulu HST SystemV/HST10 US/Hawaii

Pacific/Johnston

Pacific/Kiritimati

Pacific/Kosrae

Pacific/Kwajalein Kwajalein

Pacific/Majuro

Pacific/Marquesas

Pacific/Midway

Pacific/Nauru

Pacific/Niue

Pacific/Norfolk

Pacific/Noumea

Pacific/Pago_Pago Pacific/Samoa US/Samoa

Pacific/Palau

Pacific/Pitcairn SystemV/PST8

Pacific/Ponape

Pacific/Port_Moresby

Pacific/Rarotonga

Pacific/Saipan

Pacific/Tahiti

Pacific/Tarawa

Pacific/Tongatapu

Pacific/Truk

Pacific/Wake

Pacific/Wallis

Pacific/Yap

UCT Etc/UCT

UTC Universal Zulu Etc/UTC Etc/Universal Etc/Zulu

WET

In addition to the names listed in the table, PostgreSQL will accept time zone names of the form
STDoffset or STDoffsetDST , whereSTD is a zone abbreviation,offset is a numeric offset
in hours west from UTC, andDST is an optional daylight-savings zone abbreviation, assumed to stand
for one hour ahead of the given offset. For example, ifEST5EDTwere not already a recognized zone
name, it would be accepted and would be functionally equivalent to USA East Coast time. When a
daylight-savings zone name is present, it is assumed to be used according to USA time zone rules,
so this feature is of limited use outside North America. One should also be wary that this provision
can lead to silently accepting bogus input, since there is no check on the reasonableness of the zone
abbreviations. For example,SET TIMEZONE TO FOOBAR0will work, leaving the system effectively
using a rather peculiar abbreviation for GMT.

1088

Appendix B. Date/Time Support

B.3. History of Units
The Julian Date was invented by the French scholar Joseph Justus Scaliger (1540-1609) and prob-
ably takes its name from Scaliger’s father, the Italian scholar Julius Caesar Scaliger (1484-1558).
Astronomers have used the Julian period to assign a unique number to every day since 1 January 4713
BC. This is the so-called Julian Date (JD). JD 0 designates the 24 hours from noon UTC on 1 January
4713 BC to noon UTC on 2 January 4713 BC.

The “Julian Date” is different from the “Julian Calendar”. The Julian calendar was introduced by
Julius Caesar in 45 BC. It was in common use until the year 1582, when countries started changing
to the Gregorian calendar. In the Julian calendar, the tropical year is approximated as 365 1/4 days =
365.25 days. This gives an error of about 1 day in 128 years.

The accumulating calendar error prompted Pope Gregory XIII to reform the calendar in accordance
with instructions from the Council of Trent. In the Gregorian calendar, the tropical year is approxi-
mated as 365 + 97 / 400 days = 365.2425 days. Thus it takes approximately 3300 years for the tropical
year to shift one day with respect to the Gregorian calendar.

The approximation 365+97/400 is achieved by having 97 leap years every 400 years, using the fol-
lowing rules:

Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap year.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years.
By contrast, in the older Julian calendar all years divisible by 4 are leap years.

The papal bull of February 1582 decreed that 10 days should be dropped from October 1582 so that
15 October should follow immediately after 4 October. This was observed in Italy, Poland, Portugal,
and Spain. Other Catholic countries followed shortly after, but Protestant countries were reluctant
to change, and the Greek orthodox countries didn’t change until the start of the 20th century. The
reform was observed by Great Britain and Dominions (including what is now the USA) in 1752. Thus
2 September 1752 was followed by 14 September 1752. This is why Unix systems have thecal

program produce the following:

$ cal 9 1752
September 1752

S M Tu W Th F S
1 2 14 15 16

17 18 19 20 21 22 23
24 25 26 27 28 29 30

Note: The SQL standard states that “Within the definition of a ‘datetime literal’, the ‘datetime
value’s are constrained by the natural rules for dates and times according to the Gregorian cal-
endar”. Dates between 1752-09-03 and 1752-09-13, although eliminated in some countries by
Papal fiat, conform to “natural rules” and are hence valid dates.

Different calendars have been developed in various parts of the world, many predating the Gregorian
system. For example, the beginnings of the Chinese calendar can be traced back to the 14th century
BC. Legend has it that the Emperor Huangdi invented the calendar in 2637 BC. The People’s Republic
of China uses the Gregorian calendar for civil purposes. The Chinese calendar is used for determining
festivals.

1089

Appendix C. SQL Key Words
Table C-1lists all tokens that are key words in the SQL standard and in PostgreSQL 8.0.0. Background
information can be found inSection 4.1.1.

SQL distinguishes betweenreservedandnon-reservedkey words. According to the standard, reserved
key words are the only real key words; they are never allowed as identifiers. Non-reserved key words
only have a special meaning in particular contexts and can be used as identifiers in other contexts.
Most non-reserved key words are actually the names of built-in tables and functions specified by
SQL. The concept of non-reserved key words essentially only exists to declare that some predefined
meaning is attached to a word in some contexts.

In the PostgreSQL parser life is a bit more complicated. There are several different classes of tokens
ranging from those that can never be used as an identifier to those that have absolutely no special
status in the parser as compared to an ordinary identifier. (The latter is usually the case for functions
specified by SQL.) Even reserved key words are not completely reserved in PostgreSQL, but can be
used as column labels (for example,SELECT 55 AS CHECK, even thoughCHECKis a reserved key
word).

In Table C-1in the column for PostgreSQL we classify as “non-reserved” those key words that are
explicitly known to the parser but are allowed in most or all contexts where an identifier is expected.
Some key words that are otherwise non-reserved cannot be used as function or data type names and
are marked accordingly. (Most of these words represent built-in functions or data types with special
syntax. The function or type is still available but it cannot be redefined by the user.) Labeled “reserved”
are those tokens that are only allowed as “AS” column label names (and perhaps in very few other
contexts). Some reserved key words are allowable as names for functions; this is also shown in the
table.

As a general rule, if you get spurious parser errors for commands that contain any of the listed key
words as an identifier you should try to quote the identifier to see if the problem goes away.

It is important to understand before studyingTable C-1that the fact that a key word is not reserved
in PostgreSQL does not mean that the feature related to the word is not implemented. Conversely, the
presence of a key word does not indicate the existence of a feature.

Table C-1. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

A non-reserved

ABORT non-reserved

ABS reserved non-reserved

ABSOLUTE non-reserved non-reserved reserved reserved

ACCESS non-reserved

ACTION non-reserved non-reserved reserved reserved

ADA non-reserved non-reserved non-reserved

ADD non-reserved non-reserved reserved reserved

ADMIN non-reserved reserved

AFTER non-reserved non-reserved reserved

AGGREGATE non-reserved reserved

1090

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

ALIAS reserved

ALL reserved reserved reserved reserved

ALLOCATE reserved reserved reserved

ALSO non-reserved

ALTER non-reserved reserved reserved reserved

ALWAYS non-reserved

ANALYSE reserved

ANALYZE reserved

AND reserved reserved reserved reserved

ANY reserved reserved reserved reserved

ARE reserved reserved reserved

ARRAY reserved reserved reserved

AS reserved reserved reserved reserved

ASC reserved non-reserved reserved reserved

ASENSITIVE reserved non-reserved

ASSERTION non-reserved non-reserved reserved reserved

ASSIGNMENT non-reserved non-reserved non-reserved

ASYMMETRIC reserved non-reserved

AT non-reserved reserved reserved reserved

ATOMIC reserved non-reserved

ATTRIBUTE non-reserved

ATTRIBUTES non-reserved

AUTHORIZATION reserved (can be
function)

reserved reserved reserved

AVG reserved non-reserved reserved

BACKWARD non-reserved

BEFORE non-reserved non-reserved reserved

BEGIN non-reserved reserved reserved reserved

BERNOULLI non-reserved

BETWEEN reserved (can be
function)

reserved non-reserved reserved

BIGINT non-reserved
(cannot be function
or type)

reserved

BINARY reserved (can be
function)

reserved reserved

BIT non-reserved
(cannot be function
or type)

reserved reserved

BITVAR non-reserved

BIT_LENGTH non-reserved reserved

BLOB reserved reserved

1091

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

BOOLEAN non-reserved
(cannot be function
or type)

reserved reserved

BOTH reserved reserved reserved reserved

BREADTH non-reserved reserved

BY non-reserved reserved reserved reserved

C non-reserved non-reserved non-reserved

CACHE non-reserved

CALL reserved reserved

CALLED non-reserved reserved non-reserved

CARDINALITY reserved non-reserved

CASCADE non-reserved non-reserved reserved reserved

CASCADED reserved reserved reserved

CASE reserved reserved reserved reserved

CAST reserved reserved reserved reserved

CATALOG non-reserved reserved reserved

CATALOG_NAME non-reserved non-reserved non-reserved

CEIL reserved

CEILING reserved

CHAIN non-reserved non-reserved non-reserved

CHAR non-reserved
(cannot be function
or type)

reserved reserved reserved

CHARACTER non-reserved
(cannot be function
or type)

reserved reserved reserved

CHARACTERISTICSnon-reserved non-reserved

CHARACTERS non-reserved

CHARACTER_LENGTH reserved non-reserved reserved

CHARACTER_SET_CATALOG non-reserved non-reserved non-reserved

CHARACTER_SET_NAME non-reserved non-reserved non-reserved

CHARACTER_SET_SCHEMA non-reserved non-reserved non-reserved

CHAR_LENGTH reserved non-reserved reserved

CHECK reserved reserved reserved reserved

CHECKED non-reserved

CHECKPOINT non-reserved

CLASS non-reserved reserved

CLASS_ORIGIN non-reserved non-reserved non-reserved

1092

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

CLOB reserved reserved

CLOSE non-reserved reserved reserved reserved

CLUSTER non-reserved

COALESCE non-reserved
(cannot be function
or type)

reserved non-reserved reserved

COBOL non-reserved non-reserved non-reserved

COLLATE reserved reserved reserved reserved

COLLATION non-reserved reserved reserved

COLLATION_CATALOG non-reserved non-reserved non-reserved

COLLATION_NAME non-reserved non-reserved non-reserved

COLLATION_SCHEMA non-reserved non-reserved non-reserved

COLLECT reserved

COLUMN reserved reserved reserved reserved

COLUMN_NAME non-reserved non-reserved non-reserved

COMMAND_FUNCTION non-reserved non-reserved non-reserved

COMMAND_FUNCTION_CODE non-reserved non-reserved

COMMENT non-reserved

COMMIT non-reserved reserved reserved reserved

COMMITTED non-reserved non-reserved non-reserved non-reserved

COMPLETION reserved

CONDITION reserved

CONDITION_NUMBER non-reserved non-reserved non-reserved

CONNECT reserved reserved reserved

CONNECTION non-reserved reserved reserved

CONNECTION_NAME non-reserved non-reserved non-reserved

CONSTRAINT reserved reserved reserved reserved

CONSTRAINTS non-reserved non-reserved reserved reserved

CONSTRAINT_CATALOG non-reserved non-reserved non-reserved

CONSTRAINT_NAME non-reserved non-reserved non-reserved

CONSTRAINT_SCHEMA non-reserved non-reserved non-reserved

CONSTRUCTOR non-reserved reserved

CONTAINS non-reserved non-reserved

CONTINUE non-reserved reserved reserved

1093

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

CONVERSION non-reserved

CONVERT non-reserved
(cannot be function
or type)

reserved non-reserved reserved

COPY non-reserved

CORR reserved

CORRESPONDING reserved reserved reserved

COUNT reserved non-reserved reserved

COVAR_POP reserved

COVAR_SAMP reserved

CREATE reserved reserved reserved reserved

CREATEDB non-reserved

CREATEUSER non-reserved

CROSS reserved (can be
function)

reserved reserved reserved

CSV non-reserved

CUBE reserved reserved

CUME_DIST reserved

CURRENT reserved reserved reserved

CURRENT_DATE reserved reserved reserved reserved

CURRENT_DEFAULT_TRANSFORM_GROUPreserved

CURRENT_PATH reserved reserved

CURRENT_ROLE reserved reserved

CURRENT_TIME reserved reserved reserved reserved

CURRENT_TIMESTAMPreserved reserved reserved reserved

CURRENT_TRANSFORM_GROUP_FOR_TYPEreserved

CURRENT_USER reserved reserved reserved reserved

CURSOR non-reserved reserved reserved reserved

CURSOR_NAME non-reserved non-reserved non-reserved

CYCLE non-reserved reserved reserved

DATA non-reserved reserved non-reserved

DATABASE non-reserved

DATE reserved reserved reserved

DATETIME_INTERVAL_CODE non-reserved non-reserved non-reserved

DATETIME_INTERVAL_PRECISION non-reserved non-reserved non-reserved

DAY non-reserved reserved reserved reserved

DEALLOCATE non-reserved reserved reserved reserved

1094

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

DEC non-reserved
(cannot be function
or type)

reserved reserved reserved

DECIMAL non-reserved
(cannot be function
or type)

reserved reserved reserved

DECLARE non-reserved reserved reserved reserved

DEFAULT reserved reserved reserved reserved

DEFAULTS non-reserved non-reserved

DEFERRABLE reserved non-reserved reserved reserved

DEFERRED non-reserved non-reserved reserved reserved

DEFINED non-reserved non-reserved

DEFINER non-reserved non-reserved non-reserved

DEGREE non-reserved

DELETE non-reserved reserved reserved reserved

DELIMITER non-reserved

DELIMITERS non-reserved

DENSE_RANK reserved

DEPTH non-reserved reserved

DEREF reserved reserved

DERIVED non-reserved

DESC reserved non-reserved reserved reserved

DESCRIBE reserved reserved reserved

DESCRIPTOR non-reserved reserved reserved

DESTROY reserved

DESTRUCTOR reserved

DETERMINISTIC reserved reserved

DIAGNOSTICS non-reserved reserved reserved

DICTIONARY reserved

DISCONNECT reserved reserved reserved

DISPATCH non-reserved non-reserved

DISTINCT reserved reserved reserved reserved

DO reserved

DOMAIN non-reserved non-reserved reserved reserved

DOUBLE non-reserved reserved reserved reserved

DROP non-reserved reserved reserved reserved

DYNAMIC reserved reserved

DYNAMIC_FUNCTION non-reserved non-reserved non-reserved

DYNAMIC_FUNCTION_CODE non-reserved non-reserved

EACH non-reserved reserved reserved

ELEMENT reserved

1095

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

ELSE reserved reserved reserved reserved

ENCODING non-reserved

ENCRYPTED non-reserved

END reserved reserved reserved reserved

END-EXEC reserved reserved reserved

EQUALS non-reserved reserved

ESCAPE non-reserved reserved reserved reserved

EVERY reserved reserved

EXCEPT reserved reserved reserved reserved

EXCEPTION non-reserved reserved reserved

EXCLUDE non-reserved

EXCLUDING non-reserved non-reserved

EXCLUSIVE non-reserved

EXEC reserved reserved reserved

EXECUTE non-reserved reserved reserved reserved

EXISTING non-reserved

EXISTS non-reserved
(cannot be function
or type)

reserved non-reserved reserved

EXP reserved

EXPLAIN non-reserved

EXTERNAL non-reserved reserved reserved reserved

EXTRACT non-reserved
(cannot be function
or type)

reserved non-reserved reserved

FALSE reserved reserved reserved reserved

FETCH non-reserved reserved reserved reserved

FILTER reserved

FINAL non-reserved non-reserved

FIRST non-reserved non-reserved reserved reserved

FLOAT non-reserved
(cannot be function
or type)

reserved reserved reserved

FLOOR reserved

FOLLOWING non-reserved

FOR reserved reserved reserved reserved

FORCE non-reserved

FOREIGN reserved reserved reserved reserved

FORTRAN non-reserved non-reserved non-reserved

FORWARD non-reserved

FOUND non-reserved reserved reserved

FREE reserved reserved

1096

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

FREEZE reserved (can be
function)

FROM reserved reserved reserved reserved

FULL reserved (can be
function)

reserved reserved reserved

FUNCTION non-reserved reserved reserved

FUSION reserved

G non-reserved non-reserved

GENERAL non-reserved reserved

GENERATED non-reserved non-reserved

GET reserved reserved reserved

GLOBAL non-reserved reserved reserved reserved

GO non-reserved reserved reserved

GOTO non-reserved reserved reserved

GRANT reserved reserved reserved reserved

GRANTED non-reserved non-reserved

GROUP reserved reserved reserved reserved

GROUPING reserved reserved

HANDLER non-reserved

HAVING reserved reserved reserved reserved

HIERARCHY non-reserved non-reserved

HOLD non-reserved reserved non-reserved

HOST reserved

HOUR non-reserved reserved reserved reserved

IDENTITY reserved reserved reserved

IGNORE reserved

ILIKE reserved (can be
function)

IMMEDIATE non-reserved non-reserved reserved reserved

IMMUTABLE non-reserved

IMPLEMENTATION non-reserved non-reserved

IMPLICIT non-reserved

IN reserved reserved reserved reserved

INCLUDING non-reserved non-reserved

INCREMENT non-reserved non-reserved

INDEX non-reserved

INDICATOR reserved reserved reserved

INFIX non-reserved

INHERITS non-reserved

INITIALIZE reserved

INITIALLY reserved non-reserved reserved reserved

1097

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

INNER reserved (can be
function)

reserved reserved reserved

INOUT non-reserved
(cannot be function
or type)

reserved reserved

INPUT non-reserved non-reserved reserved reserved

INSENSITIVE non-reserved reserved non-reserved reserved

INSERT non-reserved reserved reserved reserved

INSTANCE non-reserved non-reserved

INSTANTIABLE non-reserved non-reserved

INSTEAD non-reserved

INT non-reserved
(cannot be function
or type)

reserved reserved reserved

INTEGER non-reserved
(cannot be function
or type)

reserved reserved reserved

INTERSECT reserved reserved reserved reserved

INTERSECTION reserved

INTERVAL non-reserved
(cannot be function
or type)

reserved reserved reserved

INTO reserved reserved reserved reserved

INVOKER non-reserved non-reserved non-reserved

IS reserved (can be
function)

reserved reserved reserved

ISNULL reserved (can be
function)

ISOLATION non-reserved non-reserved reserved reserved

ITERATE reserved

JOIN reserved (can be
function)

reserved reserved reserved

K non-reserved non-reserved

KEY non-reserved non-reserved reserved reserved

KEY_MEMBER non-reserved non-reserved

KEY_TYPE non-reserved non-reserved

LANCOMPILER non-reserved

LANGUAGE non-reserved reserved reserved reserved

LARGE non-reserved reserved reserved

LAST non-reserved non-reserved reserved reserved

LATERAL reserved reserved

LEADING reserved reserved reserved reserved

LEFT reserved (can be
function)

reserved reserved reserved

1098

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

LENGTH non-reserved non-reserved non-reserved

LESS reserved

LEVEL non-reserved non-reserved reserved reserved

LIKE reserved (can be
function)

reserved reserved reserved

LIMIT reserved reserved

LISTEN non-reserved

LN reserved

LOAD non-reserved

LOCAL non-reserved reserved reserved reserved

LOCALTIME reserved reserved reserved

LOCALTIMESTAMPreserved reserved reserved

LOCATION non-reserved

LOCATOR non-reserved reserved

LOCK non-reserved

LOWER reserved non-reserved reserved

M non-reserved non-reserved

MAP non-reserved reserved

MATCH non-reserved reserved reserved reserved

MATCHED non-reserved

MAX reserved non-reserved reserved

MAXVALUE non-reserved non-reserved

MEMBER reserved

MERGE reserved

MESSAGE_LENGTH non-reserved non-reserved non-reserved

MESSAGE_OCTET_LENGTH non-reserved non-reserved non-reserved

MESSAGE_TEXT non-reserved non-reserved non-reserved

METHOD reserved non-reserved

MIN reserved non-reserved reserved

MINUTE non-reserved reserved reserved reserved

MINVALUE non-reserved non-reserved

MOD reserved non-reserved

MODE non-reserved

MODIFIES reserved reserved

MODIFY reserved

MODULE reserved reserved reserved

MONTH non-reserved reserved reserved reserved

MORE non-reserved non-reserved non-reserved

MOVE non-reserved

MULTISET reserved

MUMPS non-reserved non-reserved non-reserved

1099

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

NAME non-reserved non-reserved non-reserved

NAMES non-reserved non-reserved reserved reserved

NATIONAL non-reserved
(cannot be function
or type)

reserved reserved reserved

NATURAL reserved (can be
function)

reserved reserved reserved

NCHAR non-reserved
(cannot be function
or type)

reserved reserved reserved

NCLOB reserved reserved

NESTING non-reserved

NEW reserved reserved reserved

NEXT non-reserved non-reserved reserved reserved

NO non-reserved reserved reserved reserved

NOCREATEDB non-reserved

NOCREATEUSER non-reserved

NONE non-reserved
(cannot be function
or type)

reserved reserved

NORMALIZE reserved

NORMALIZED non-reserved

NOT reserved reserved reserved reserved

NOTHING non-reserved

NOTIFY non-reserved

NOTNULL reserved (can be
function)

NOWAIT non-reserved

NULL reserved reserved reserved reserved

NULLABLE non-reserved non-reserved non-reserved

NULLIF non-reserved
(cannot be function
or type)

reserved non-reserved reserved

NULLS non-reserved

NUMBER non-reserved non-reserved non-reserved

NUMERIC non-reserved
(cannot be function
or type)

reserved reserved reserved

OBJECT non-reserved non-reserved reserved

OCTETS non-reserved

OCTET_LENGTH reserved non-reserved reserved

OF non-reserved reserved reserved reserved

OFF reserved reserved

OFFSET reserved

1100

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

OIDS non-reserved

OLD reserved reserved reserved

ON reserved reserved reserved reserved

ONLY reserved reserved reserved reserved

OPEN reserved reserved reserved

OPERATION reserved

OPERATOR non-reserved

OPTION non-reserved non-reserved reserved reserved

OPTIONS non-reserved non-reserved

OR reserved reserved reserved reserved

ORDER reserved reserved reserved reserved

ORDERING non-reserved

ORDINALITY non-reserved reserved

OTHERS non-reserved

OUT non-reserved
(cannot be function
or type)

reserved reserved

OUTER reserved (can be
function)

reserved reserved reserved

OUTPUT non-reserved reserved reserved

OVER reserved

OVERLAPS reserved (can be
function)

reserved non-reserved reserved

OVERLAY non-reserved
(cannot be function
or type)

reserved non-reserved

OVERRIDING non-reserved non-reserved

OWNER non-reserved

PAD non-reserved reserved reserved

PARAMETER reserved reserved

PARAMETERS reserved

PARAMETER_MODE non-reserved non-reserved

PARAMETER_NAME non-reserved non-reserved

PARAMETER_ORDINAL_POSITION non-reserved non-reserved

PARAMETER_SPECIFIC_CATALOG non-reserved non-reserved

PARAMETER_SPECIFIC_NAME non-reserved non-reserved

PARAMETER_SPECIFIC_SCHEMA non-reserved non-reserved

PARTIAL non-reserved non-reserved reserved reserved

PARTITION reserved

1101

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

PASCAL non-reserved non-reserved non-reserved

PASSWORD non-reserved

PATH non-reserved reserved

PERCENTILE_CONT reserved

PERCENTILE_DISC reserved

PERCENT_RANK reserved

PLACING reserved non-reserved

PLI non-reserved non-reserved non-reserved

POSITION non-reserved
(cannot be function
or type)

reserved non-reserved reserved

POSTFIX reserved

POWER reserved

PRECEDING non-reserved

PRECISION non-reserved
(cannot be function
or type)

reserved reserved reserved

PREFIX reserved

PREORDER reserved

PREPARE non-reserved reserved reserved reserved

PRESERVE non-reserved non-reserved reserved reserved

PRIMARY reserved reserved reserved reserved

PRIOR non-reserved non-reserved reserved reserved

PRIVILEGES non-reserved non-reserved reserved reserved

PROCEDURAL non-reserved

PROCEDURE non-reserved reserved reserved reserved

PUBLIC non-reserved reserved reserved

QUOTE non-reserved

RANGE reserved

RANK reserved

READ non-reserved non-reserved reserved reserved

READS reserved reserved

REAL non-reserved
(cannot be function
or type)

reserved reserved reserved

RECHECK non-reserved

RECURSIVE reserved reserved

REF reserved reserved

REFERENCES reserved reserved reserved reserved

REFERENCING reserved reserved

REGR_AVGX reserved

1102

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

REGR_AVGY reserved

REGR_COUNT reserved

REGR_INTERCEPT reserved

REGR_R2 reserved

REGR_SLOPE reserved

REGR_SXX reserved

REGR_SXY reserved

REGR_SYY reserved

REINDEX non-reserved

RELATIVE non-reserved non-reserved reserved reserved

RELEASE non-reserved reserved

RENAME non-reserved

REPEATABLE non-reserved non-reserved non-reserved non-reserved

REPLACE non-reserved

RESET non-reserved

RESTART non-reserved non-reserved

RESTRICT non-reserved non-reserved reserved reserved

RESULT reserved reserved

RETURN reserved reserved

RETURNED_CARDINALITY non-reserved

RETURNED_LENGTH non-reserved non-reserved non-reserved

RETURNED_OCTET_LENGTH non-reserved non-reserved non-reserved

RETURNED_SQLSTATE non-reserved non-reserved non-reserved

RETURNS non-reserved reserved reserved

REVOKE non-reserved reserved reserved reserved

RIGHT reserved (can be
function)

reserved reserved reserved

ROLE non-reserved reserved

ROLLBACK non-reserved reserved reserved reserved

ROLLUP reserved reserved

ROUTINE non-reserved reserved

ROUTINE_CATALOG non-reserved non-reserved

ROUTINE_NAME non-reserved non-reserved

ROUTINE_SCHEMA non-reserved non-reserved

ROW non-reserved
(cannot be function
or type)

reserved reserved

ROWS non-reserved reserved reserved reserved

1103

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

ROW_COUNT non-reserved non-reserved non-reserved

ROW_NUMBER reserved

RULE non-reserved

SAVEPOINT non-reserved reserved reserved

SCALE non-reserved non-reserved non-reserved

SCHEMA non-reserved non-reserved reserved reserved

SCHEMA_NAME non-reserved non-reserved non-reserved

SCOPE reserved reserved

SCOPE_CATALOG non-reserved

SCOPE_NAME non-reserved

SCOPE_SCHEMA non-reserved

SCROLL non-reserved reserved reserved reserved

SEARCH reserved reserved

SECOND non-reserved reserved reserved reserved

SECTION non-reserved reserved reserved

SECURITY non-reserved non-reserved non-reserved

SELECT reserved reserved reserved reserved

SELF non-reserved non-reserved

SENSITIVE reserved non-reserved

SEQUENCE non-reserved non-reserved reserved

SERIALIZABLE non-reserved non-reserved non-reserved non-reserved

SERVER_NAME non-reserved non-reserved non-reserved

SESSION non-reserved non-reserved reserved reserved

SESSION_USER reserved reserved reserved reserved

SET non-reserved reserved reserved reserved

SETOF non-reserved
(cannot be function
or type)

SETS non-reserved reserved

SHARE non-reserved

SHOW non-reserved

SIMILAR reserved (can be
function)

reserved non-reserved

SIMPLE non-reserved non-reserved non-reserved

SIZE non-reserved reserved reserved

SMALLINT non-reserved
(cannot be function
or type)

reserved reserved reserved

SOME reserved reserved reserved reserved

SOURCE non-reserved non-reserved

SPACE non-reserved reserved reserved

SPECIFIC reserved reserved

1104

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

SPECIFICTYPE reserved reserved

SPECIFIC_NAME non-reserved non-reserved

SQL reserved reserved reserved

SQLCODE reserved

SQLERROR reserved

SQLEXCEPTION reserved reserved

SQLSTATE reserved reserved reserved

SQLWARNING reserved reserved

SQRT reserved

STABLE non-reserved

START non-reserved reserved reserved

STATE non-reserved reserved

STATEMENT non-reserved non-reserved reserved

STATIC reserved reserved

STATISTICS non-reserved

STDDEV_POP reserved

STDDEV_SAMP reserved

STDIN non-reserved

STDOUT non-reserved

STORAGE non-reserved

STRICT non-reserved

STRUCTURE non-reserved reserved

STYLE non-reserved non-reserved

SUBCLASS_ORIGIN non-reserved non-reserved non-reserved

SUBLIST non-reserved

SUBMULTISET reserved

SUBSTRING non-reserved
(cannot be function
or type)

reserved non-reserved reserved

SUM reserved non-reserved reserved

SYMMETRIC reserved non-reserved

SYSID non-reserved

SYSTEM reserved non-reserved

SYSTEM_USER reserved reserved reserved

TABLE reserved reserved reserved reserved

TABLESAMPLE reserved

TABLESPACE non-reserved

TABLE_NAME non-reserved non-reserved non-reserved

TEMP non-reserved

TEMPLATE non-reserved

TEMPORARY non-reserved non-reserved reserved reserved

1105

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

TERMINATE reserved

THAN reserved

THEN reserved reserved reserved reserved

TIES non-reserved

TIME non-reserved
(cannot be function
or type)

reserved reserved reserved

TIMESTAMP non-reserved
(cannot be function
or type)

reserved reserved reserved

TIMEZONE_HOUR reserved reserved reserved

TIMEZONE_MINUTE reserved reserved reserved

TO reserved reserved reserved reserved

TOAST non-reserved

TOP_LEVEL_COUNT non-reserved

TRAILING reserved reserved reserved reserved

TRANSACTION non-reserved non-reserved reserved reserved

TRANSACTIONS_COMMITTED non-reserved non-reserved

TRANSACTIONS_ROLLED_BACK non-reserved non-reserved

TRANSACTION_ACTIVE non-reserved non-reserved

TRANSFORM non-reserved non-reserved

TRANSFORMS non-reserved non-reserved

TRANSLATE reserved non-reserved reserved

TRANSLATION reserved reserved reserved

TREAT non-reserved
(cannot be function
or type)

reserved reserved

TRIGGER non-reserved reserved reserved

TRIGGER_CATALOG non-reserved non-reserved

TRIGGER_NAME non-reserved non-reserved

TRIGGER_SCHEMA non-reserved non-reserved

TRIM non-reserved
(cannot be function
or type)

reserved non-reserved reserved

TRUE reserved reserved reserved reserved

TRUNCATE non-reserved

TRUSTED non-reserved

TYPE non-reserved non-reserved non-reserved non-reserved

1106

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

UESCAPE reserved

UNBOUNDED non-reserved

UNCOMMITTED non-reserved non-reserved non-reserved non-reserved

UNDER non-reserved reserved

UNENCRYPTED non-reserved

UNION reserved reserved reserved reserved

UNIQUE reserved reserved reserved reserved

UNKNOWN non-reserved reserved reserved reserved

UNLISTEN non-reserved

UNNAMED non-reserved non-reserved non-reserved

UNNEST reserved reserved

UNTIL non-reserved

UPDATE non-reserved reserved reserved reserved

UPPER reserved non-reserved reserved

USAGE non-reserved non-reserved reserved reserved

USER reserved reserved reserved reserved

USER_DEFINED_TYPE_CATALOG non-reserved non-reserved

USER_DEFINED_TYPE_CODE non-reserved

USER_DEFINED_TYPE_NAME non-reserved non-reserved

USER_DEFINED_TYPE_SCHEMA non-reserved non-reserved

USING reserved reserved reserved reserved

VACUUM non-reserved

VALID non-reserved

VALIDATOR non-reserved

VALUE reserved reserved reserved

VALUES non-reserved reserved reserved reserved

VARCHAR non-reserved
(cannot be function
or type)

reserved reserved reserved

VARIABLE reserved

VARYING non-reserved reserved reserved reserved

VAR_POP reserved

VAR_SAMP reserved

VERBOSE reserved (can be
function)

VIEW non-reserved non-reserved reserved reserved

VOLATILE non-reserved

WHEN reserved reserved reserved reserved

WHENEVER reserved reserved reserved

1107

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2003 SQL:1999 SQL-92

WHERE reserved reserved reserved reserved

WIDTH_BUCKET reserved

WINDOW reserved

WITH non-reserved reserved reserved reserved

WITHIN reserved

WITHOUT non-reserved reserved reserved

WORK non-reserved non-reserved reserved reserved

WRITE non-reserved non-reserved reserved reserved

YEAR non-reserved reserved reserved

ZONE non-reserved non-reserved reserved reserved

1108

Appendix D. SQL Conformance
This section attempts to outline to what extent PostgreSQL conforms to the current SQL standard.
The following information is not a full statement of conformance, but it presents the main topics in as
much detail as is both reasonable and useful for users.

The formal name of the SQL standard is ISO/IEC 9075 “Database Language SQL”. A revised ver-
sion of the standard is released from time to time; the most recent one appearing in late 2003. That
version is referred to as ISO/IEC 9075:2003, or simply as SQL:2003. The versions prior to that were
SQL:1999 and SQL-92. Each version replaces the previous one, so claims of conformance to earlier
versions have no official merit. PostgreSQL development aims for conformance with the latest official
version of the standard where such conformance does not contradict traditional features or common
sense. The PostgreSQL project was not represented in the ISO/IEC 9075 Working Group during the
preparation of SQL:2003. Even so, many of the features required by SQL:2003 are already supported,
though sometimes with slightly differing syntax or function. Further moves towards conformance may
be expected in later releases.

SQL-92 defined three feature sets for conformance: Entry, Intermediate, and Full. Most database
management systems claiming SQL standard conformance were conforming at only the Entry level,
since the entire set of features in the Intermediate and Full levels was either too voluminous or in
conflict with legacy behaviors.

Starting with SQL:1999, the SQL standard defines a large set of individual features rather than the in-
effectively broad three levels found in SQL-92. A large subset of these features represents the “Core”
features, which every conforming SQL implementation must supply. The rest of the features are purely
optional. Some optional features are grouped together to form “packages”, which SQL implementa-
tions can claim conformance to, thus claiming conformance to particular groups of features.

The SQL:2003 standard is also split into a number of parts. Each is known by a shorthand name. Note
that these parts are not consecutively numbered.

• ISO/IEC 9075-1 Framework (SQL/Framework)

• ISO/IEC 9075-2 Foundation (SQL/Foundation)

• ISO/IEC 9075-3 Call Level Interface (SQL/CLI)

• ISO/IEC 9075-4 Persistent Stored Modules (SQL/PSM)

• ISO/IEC 9075-9 Management of External Data (SQL/MED)

• ISO/IEC 9075-10 Object Language Bindings (SQL/OLB)

• ISO/IEC 9075-11 Information and Definition Schemas (SQL/Schemata)

• ISO/IEC 9075-13 Routines and Types using the Java Language (SQL/JRT)

• ISO/IEC 9075-14 XML-related specifications (SQL/XML)

PostgreSQL covers parts 1, 2, and 11. Part 3 is similar to the ODBC interface, and part 4 is similar to
the PL/pgSQL programming language, but exact conformance is not specifically intended or verified
in either case.

PostgreSQL supports most of the major features of SQL:2003. Out of 164 mandatory features required
for full Core conformance, PostgreSQL conforms to at least 150. In addition, there is a long list of

1109

Appendix D. SQL Conformance

supported optional features. It may be worth noting that at the time of writing, no current version of
any database management system claims full conformance to Core SQL:2003.

In the following two sections, we provide a list of those features that PostgreSQL supports, followed
by a list of the features defined in SQL:2003 which are not yet supported in PostgreSQL. Both of
these lists are approximate: There may be minor details that are nonconforming for a feature that is
listed as supported, and large parts of an unsupported feature may in fact be implemented. The main
body of the documentation always contains the most accurate information about what does and does
not work.

Note: Feature codes containing a hyphen are subfeatures. Therefore, if a particular subfeature
is not supported, the main feature is listed as unsupported even if some other subfeatures are
supported.

D.1. Supported Features

Identifier Package Description Comment

B012 Embedded C

B021 Direct SQL

E011 Core Numeric data types

E011-01 Core INTEGER and
SMALLINT data types

E011-02 Core REAL, DOUBLE
PRECISION, and
FLOAT data types

E011-03 Core DECIMAL and
NUMERIC data types

E011-04 Core Arithmetic operators

E011-05 Core Numeric comparison

E011-06 Core Implicit casting among
the numeric data types

E021 Core Character data types

E021-01 Core CHARACTER data type

E021-02 Core CHARACTER
VARYING data type

E021-03 Core Character literals

E021-04 Core CHARACTER_LENGTH
function

trims trailing spaces
from CHARACTER
values before counting

E021-05 Core OCTET_LENGTH
function

E021-06 Core SUBSTRING function

E021-07 Core Character concatenation

1110

Appendix D. SQL Conformance

Identifier Package Description Comment

E021-08 Core UPPER and LOWER
functions

E021-09 Core TRIM function

E021-10 Core Implicit casting among
the character string types

E021-11 Core POSITION function

E021-12 Core Character comparison

E031 Core Identifiers

E031-01 Core Delimited identifiers

E031-02 Core Lower case identifiers

E031-03 Core Trailing underscore

E051 Core Basic query specification

E051-01 Core SELECT DISTINCT

E051-02 Core GROUP BY clause

E051-04 Core GROUP BY can contain
columns not in<select
list>

E051-05 Core Select list items can be
renamed

AS is required

E051-06 Core HAVING clause

E051-07 Core Qualified * in select list

E051-08 Core Correlation names in the
FROM clause

E051-09 Core Rename columns in the
FROM clause

E061 Core Basic predicates and
search conditions

E061-01 Core Comparison predicate

E061-02 Core BETWEEN predicate

E061-03 Core IN predicate with list of
values

E061-04 Core LIKE predicate

E061-05 Core LIKE predicate
ESCAPE clause

E061-06 Core NULL predicate

E061-07 Core Quantified comparison
predicate

E061-08 Core EXISTS predicate

E061-09 Core Subqueries in
comparison predicate

E061-11 Core Subqueries in IN
predicate

1111

Appendix D. SQL Conformance

Identifier Package Description Comment

E061-12 Core Subqueries in quantified
comparison predicate

E061-13 Core Correlated subqueries

E061-14 Core Search condition

E071 Core Basic query expressions

E071-01 Core UNION DISTINCT
table operator

E071-02 Core UNION ALL table
operator

E071-03 Core EXCEPT DISTINCT
table operator

E071-05 Core Columns combined via
table operators need not
have exactly the same
data type

E071-06 Core Table operators in
subqueries

E081-01 Core SELECT privilege

E081-02 Core DELETE privilege

E081-03 Core INSERT privilege at the
table level

E081-04 Core UPDATE privilege at the
table level

E081-06 Core REFERENCES privilege
at the table level

E081-08 Core WITH GRANT
OPTION

E081-10 Core EXECUTE privilege

E091 Core Set functions

E091-01 Core AVG

E091-02 Core COUNT

E091-03 Core MAX

E091-04 Core MIN

E091-05 Core SUM

E091-06 Core ALL quantifier

E091-07 Core DISTINCT quantifier

E101 Core Basic data manipulation

E101-01 Core INSERT statement

E101-03 Core Searched UPDATE
statement

E101-04 Core Searched DELETE
statement

E111 Core Single row SELECT
statement

E121-01 Core DECLARE CURSOR

1112

Appendix D. SQL Conformance

Identifier Package Description Comment

E121-02 Core ORDER BY columns
need not be in select list

E121-03 Core Value expressions in
ORDER BY clause

E121-04 Core OPEN statement

E121-08 Core CLOSE statement

E121-10 Core FETCH statement
implicit NEXT

E121-17 Core WITH HOLD cursors

E131 Core Null value support (nulls
in lieu of values)

E141 Core Basic integrity
constraints

E141-01 Core NOT NULL constraints

E141-02 Core UNIQUE constraints of
NOT NULL columns

E141-03 Core PRIMARY KEY
constraints

E141-04 Core Basic FOREIGN KEY
constraint with the NO
ACTION default for
both referential delete
action and referential
update action

E141-06 Core CHECK constraints

E141-07 Core Column defaults

E141-08 Core NOT NULL inferred on
PRIMARY KEY

E141-10 Core Names in a foreign key
can be specified in any
order

E151 Core Transaction support

E151-01 Core COMMIT statement

E151-02 Core ROLLBACK statement

E152 Core Basic SET
TRANSACTION
statement

E152-01 Core SET TRANSACTION
statement: ISOLATION
LEVEL
SERIALIZABLE clause

E152-02 Core SET TRANSACTION
statement: READ ONLY
and READ WRITE
clauses

1113

Appendix D. SQL Conformance

Identifier Package Description Comment

E161 Core SQL comments using
leading double minus

E171 Core SQLSTATE support

F021 Core Basic information
schema

F021-01 Core COLUMNS view

F021-02 Core TABLES view

F021-03 Core VIEWS view

F021-04 Core TABLE_CONSTRAINTS
view

F021-05 Core REFERENTIAL_CONSTRAINTS
view

F021-06 Core CHECK_CONSTRAINTS
view

F031 Core Basic schema
manipulation

F031-01 Core CREATE TABLE
statement to create
persistent base tables

F031-02 Core CREATE VIEW
statement

F031-03 Core GRANT statement

F031-04 Core ALTER TABLE
statement: ADD
COLUMN clause

F031-13 Core DROP TABLE
statement: RESTRICT
clause

F031-16 Core DROP VIEW statement:
RESTRICT clause

F031-19 Core REVOKE statement:
RESTRICT clause

F032 CASCADE drop
behavior

F033 ALTER TABLE
statement: DROP
COLUMN clause

F034 Extended REVOKE
statement

F034-01 REVOKE statement
performed by other than
the owner of a schema
object

F034-02 REVOKE statement:
GRANT OPTION FOR
clause

1114

Appendix D. SQL Conformance

Identifier Package Description Comment

F034-03 REVOKE statement to
revoke a privilege that
the grantee has WITH
GRANT OPTION

F041 Core Basic joined table

F041-01 Core Inner join (but not
necessarily the INNER
keyword)

F041-02 Core INNER keyword

F041-03 Core LEFT OUTER JOIN

F041-04 Core RIGHT OUTER JOIN

F041-05 Core Outer joins can be nested

F041-07 Core The inner table in a left
or right outer join can
also be used in an inner
join

F041-08 Core All comparison
operators are supported
(rather than just =)

F051 Core Basic date and time

F051-01 Core DATE data type
(including support of
DATE literal)

F051-02 Core TIME data type
(including support of
TIME literal) with
fractional seconds
precision of at least 0

F051-03 Core TIMESTAMP data type
(including support of
TIMESTAMP literal)
with fractional seconds
precision of at least 0
and 6

F051-04 Core Comparison predicate on
DATE, TIME, and
TIMESTAMP data types

F051-05 Core Explicit CAST between
datetime types and
character string types

F051-06 Core CURRENT_DATE

F051-07 Core LOCALTIME

F051-08 Core LOCALTIMESTAMP

F052 Enhanced datetime
facilities

Intervals and datetime
arithmetic

1115

Appendix D. SQL Conformance

Identifier Package Description Comment

F053 OVERLAPS predicate

F081 Core UNION and EXCEPT in
views

F111 Isolation levels other
than SERIALIZABLE

F111-01 READ
UNCOMMITTED
isolation level

F111-02 READ COMMITTED
isolation level

F111-03 REPEATABLE READ
isolation level

F131 Core Grouped operations

F131-01 Core WHERE, GROUP BY,
and HAVING clauses
supported in queries
with grouped views

F131-02 Core Multiple tables
supported in queries
with grouped views

F131-03 Core Set functions supported
in queries with grouped
views

F131-04 Core Subqueries with GROUP
BY and HAVING
clauses and grouped
views

F131-05 Core Single row SELECT
with GROUP BY and
HAVING clauses and
grouped views

F171 Multiple schemas per
user

F191 Enhanced integrity
management

Referential delete
actions

F201 Core CAST function

F221 Core Explicit defaults

F222 INSERT statement:
DEFAULT VALUES
clause

F231 Privilege tables

F231-01 TABLE_PRIVILEGES
view

F231-02 COLUMN_PRIVILEGES
view

1116

Appendix D. SQL Conformance

Identifier Package Description Comment

F231-03 USAGE_PRIVILEGES
view

F251 Domain support

F261 Core CASE expression

F261-01 Core Simple CASE

F261-02 Core Searched CASE

F261-03 Core NULLIF

F261-04 Core COALESCE

F271 Compound character
literals

F281 LIKE enhancements

F302 INTERSECT table
operator

F302-01 INTERSECT
DISTINCT table
operator

F302-02 INTERSECT ALL table
operator

F304 EXCEPT ALL table
operator

F311-01 Core CREATE SCHEMA

F311-02 Core CREATE TABLE for
persistent base tables

F311-03 Core CREATE VIEW

F311-05 Core GRANT statement

F321 User authorization

F361 Subprogram support

F381 Extended schema
manipulation

F381-01 ALTER TABLE
statement: ALTER
COLUMN clause

F381-02 ALTER TABLE
statement: ADD
CONSTRAINT clause

F381-03 ALTER TABLE
statement: DROP
CONSTRAINT clause

F391 Long identifiers

F401 Extended joined table

F401-01 NATURAL JOIN

F401-02 FULL OUTER JOIN

F401-04 CROSS JOIN

F411 Enhanced datetime
facilities

Time zone specificationdifferences regarding
literal interpretation

1117

Appendix D. SQL Conformance

Identifier Package Description Comment

F421 National character

F431 Read-only scrollable
cursors

F431-01 FETCH with explicit
NEXT

F431-02 FETCH FIRST

F431-03 FETCH LAST

F431-04 FETCH PRIOR

F431-05 FETCH ABSOLUTE

F431-06 FETCH RELATIVE

F441 Extended set function
support

F471 Core Scalar subquery values

F481 Core Expanded NULL
predicate

F491 Enhanced integrity
management

Constraint management

F501 Core Features and
conformance views

F501-01 Core SQL_FEATURES view

F501-02 Core SQL_SIZING view

F501-03 Core SQL_LANGUAGES
view

F502 Enhanced
documentation tables

F502-01 SQL_SIZING_PROFILES
view

F502-02 SQL_IMPLEMENTATION_INFO
view

F502-03 SQL_PACKAGES view

F531 Temporary tables

F555 Enhanced datetime
facilities

Enhanced seconds
precision

F561 Full value expressions

F571 Truth value tests

F591 Derived tables

F611 Indicator data types

F651 Catalog name qualifiers

F672 Retrospective check
constraints

F701 Enhanced integrity
management

Referential update
actions

F711 ALTER domain

F761 Session management

1118

Appendix D. SQL Conformance

Identifier Package Description Comment

F771 Connection management

F781 Self-referencing
operations

F791 Insensitive cursors

F801 Full set function

S071 Enhanced object supportSQL paths in function
and type name resolution

S111 Enhanced object supportONLY in query
expressions

S211 Enhanced object supportUser-defined cast
functions

T031 BOOLEAN data type

T071 BIGINT data type

T141 SIMILAR predicate

T151 DISTINCT predicate

T171 LIKE clause in table
definition

T191 Enhanced integrity
management

Referential action
RESTRICT

T201 Enhanced integrity
management

Comparable data types
for referential
constraints

T211-01 Active database,
Enhanced integrity
management

Triggers activated on
UPDATE, INSERT, or
DELETE of one base
table

T211-02 Active database,
Enhanced integrity
management

BEFORE triggers

T211-03 Active database,
Enhanced integrity
management

AFTER triggers

T211-04 Active database,
Enhanced integrity
management

FOR EACH ROW
triggers

T211-07 Active database,
Enhanced integrity
management

TRIGGER privilege

T212 Enhanced integrity
management

Enhanced trigger
capability

T231 Sensitive cursors

T241 START
TRANSACTION
statement

1119

Appendix D. SQL Conformance

Identifier Package Description Comment

T271 Savepoints

T312 OVERLAY function

T321-01 Core User-defined functions
with no overloading

T321-03 Core Function invocation

T321-06 Core ROUTINES view

T321-07 Core PARAMETERS view

T322 PSM Overloading of
SQL-invoked functions
and procedures

T323 Explicit security for
external routines

T351 Bracketed SQL
comments (/*...*/
comments)

T441 ABS and MOD
functions

T501 Enhanced EXISTS
predicate

T551 Optional key words for
default syntax

T581 Regular expression
substring function

T591 UNIQUE constraints of
possibly null columns

D.2. Unsupported Features
The following features defined in SQL:2003 are not implemented in this release of PostgreSQL. In a
few cases, equivalent functionality is available.

Identifier Package Description Comment

B011 Embedded Ada

B013 Embedded COBOL

B014 Embedded Fortran

B015 Embedded MUMPS

B016 Embedded Pascal

B017 Embedded PL/I

B031 Basic dynamic SQL

B032 Extended dynamic SQL

B032-01 <describe input
statement>

1120

Appendix D. SQL Conformance

Identifier Package Description Comment

B033 Untyped SQL-invoked
function arguments

B034 Dynamic specification of
cursor attributes

B041 Extensions to embedded
SQL exception
declarations

B051 Enhanced execution
rights

B111 Module language Ada

B112 Module language C

B113 Module language
COBOL

B114 Module language
Fortran

B115 Module language
MUMPS

B116 Module language Pascal

B117 Module language PL/I

B121 Routine language Ada

B122 Routine language C

B123 Routine language
COBOL

B124 Routine language
Fortran

B125 Routine language
MUMPS

B126 Routine language Pascal

B127 Routine language PL/I

B128 Routine language SQL

C011 Core Call-Level Interface

E081 Core Basic Privileges

E081-05 Core UPDATE privilege at the
column level

E081-07 Core REFERENCES privilege
at the column level

E081-09 Core USAGE privilege

E121 Core Basic cursor support

E121-06 Core Positioned UPDATE
statement

E121-07 Core Positioned DELETE
statement

E153 Core Updatable queries with
subqueries

E182 Core Module language

1121

Appendix D. SQL Conformance

Identifier Package Description Comment

F121 Basic diagnostics
management

F121-01 GET DIAGNOSTICS
statement

F121-02 SET TRANSACTION
statement:
DIAGNOSTICS SIZE
clause

F181 Core Multiple module support

F262 Extended CASE
expression

F263 Comma-separated
predicates in simple
CASE expression

F291 UNIQUE predicate

F301 CORRESPONDING in
query expressions

F311 Core Schema definition
statement

F311-04 Core CREATE VIEW: WITH
CHECK OPTION

F312 MERGE statement

F341 Usage tables

F392 Unicode escapes in
identifiers

F393 Unicode escapes in
literals

F402 Named column joins for
LOBs, arrays, and
multisets

F442 Mixed column
references in set
functions

F451 Character set definition

F461 Named character sets

F521 Enhanced integrity
management

Assertions

F641 Row and table
constructors

F661 Simple tables

F671 Enhanced integrity
management

Subqueries in CHECK intentionally omitted

F691 Collation and translation

F692 Enhanced collation
support

1122

Appendix D. SQL Conformance

Identifier Package Description Comment

F693 SQL-session and client
module collations

F695 Translation support

F696 Additional translation
documentation

F721 Deferrable constraints foreign keys only

F731 INSERT column
privileges

F741 Referential MATCH
types

no partial match yet

F751 View CHECK
enhancements

F811 Extended flagging

F812 Core Basic flagging

F813 Extended flagging

F821 Local table references

F831 Full cursor update

F831-01 Updatable scrollable
cursors

F831-02 Updatable ordered
cursors

S011 Core Distinct data types

S011-01 Core USER_DEFINED_TYPES
view

S023 Basic object support Basic structured types

S024 Enhanced object supportEnhanced structured
types

S025 Final structured types

S026 Self-referencing
structured types

S027 Create method by
specific method name

S028 Permutable UDT options
list

S041 Basic object support Basic reference types

S043 Enhanced object supportEnhanced reference
types

S051 Basic object support Create table of type

S081 Enhanced object supportSubtables

S091 Basic array support

S091-01 Arrays of built-in data
types

S091-02 Arrays of distinct types

S091-03 Array expressions

1123

Appendix D. SQL Conformance

Identifier Package Description Comment

S092 Arrays of user-defined
types

S094 Arrays of reference
types

S095 Array constructors by
query

S096 Optional array bounds

S097 Array element
assignment

S151 Basic object support Type predicate

S161 Enhanced object supportSubtype treatment

S162 Subtype treatment for
references

S201 SQL-invoked routines on
arrays

S201-01 Array parameters

S201-02 Array as result type of
functions

S202 SQL-invoked routines on
multisets

S231 Enhanced object supportStructured type locators

S232 Array locators

S233 Multiset locators

S241 Transform functions

S242 Alter transform
statement

S251 User-defined orderings

S261 Specific type method

S271 Basic multiset support

S272 Multisets of user-defined
types

S274 Multisets of reference
types

S275 Advanced multiset
support

S281 Nested collection types

S291 Unique constraint on
entire row

T011 Timestamp in
Information Schema

T041 Basic object support Basic LOB data type
support

T041-01 Basic object support BLOB data type

T041-02 Basic object support CLOB data type

1124

Appendix D. SQL Conformance

Identifier Package Description Comment

T041-03 Basic object support POSITION, LENGTH,
LOWER, TRIM,
UPPER, and
SUBSTRING functions
for LOB data types

T041-04 Basic object support Concatenation of LOB
data types

T041-05 Basic object support LOB locator:
non-holdable

T042 Extended LOB data type
support

T051 Row types

T052 MAX and MIN for row
types

T053 Explicit aliases for
all-fields reference

T061 UCS support

T111 Updatable joins, unions,
and columns

T121 WITH (excluding
RECURSIVE) in query
expression

T122 WITH (excluding
RECURSIVE) in
subquery

T131 Recursive query

T132 Recursive query in
subquery

T152 DISTINCT predicate
with negation

T172 AS subquery clause in
table definition

T173 Extended LIKE clause in
table definition

T174 Identity columns

T175 Generated columns

T176 Sequence generator
support

T211 Active database,
Enhanced integrity
management

Basic trigger capability

T211-05 Active database,
Enhanced integrity
management

Ability to specify a
search condition that
must be true before the
trigger is invoked

1125

Appendix D. SQL Conformance

Identifier Package Description Comment

T211-06 Active database,
Enhanced integrity
management

Support for run-time
rules for the interaction
of triggers and
constraints

T211-08 Active database,
Enhanced integrity
management

Multiple triggers for the
same event are executed
in the order in which
they were created in the
catalog

intentionally omitted

T251 SET TRANSACTION
statement: LOCAL
option

T261 Chained transactions

T272 Enhanced savepoint
management

T281 SELECT privilege with
column granularity

T301 Functional dependencies

T321 Core Basic SQL-invoked
routines

T321-02 Core User-defined stored
procedures with no
overloading

T321-04 Core CALL statement

T321-05 Core RETURN statement

T324 Explicit security for
SQL routines

T325 Qualified SQL
parameter references

T326 Table functions

T331 Basic roles

T332 Extended roles

T401 INSERT into a cursor

T411 UPDATE statement:
SET ROW option

T431 OLAP Extended grouping
capabilities

T432 Nested and concatenated
GROUPING SETS

T433 Multiargument
GROUPING function

T434 GROUP BY DISINCT

T461 Symmetric BETWEEN
predicate

T471 Result sets return value

1126

Appendix D. SQL Conformance

Identifier Package Description Comment

T491 LATERAL derived table

T511 Transaction counts

T541 Updatable table
references

T561 Holdable locators

T571 Array-returning external
SQL-invoked functions

T572 Multiset-returning
external SQL-invoked
functions

T601 Local cursor references

T611 OLAP Elementary OLAP
operations

T612 Advanced OLAP
operations

T613 Sampling

T621 Enhanced numeric
functions

T631 Core IN predicate with one
list element

T641 Multiple column
assignment

T651 SQL-schema statements
in SQL routines

T652 SQL-dynamic
statements in SQL
routines

T653 SQL-schema statements
in external routines

T654 SQL-dynamic
statements in external
routines

T655 Cyclically dependent
routines

1127

Appendix E. Release Notes

E.1. Release 8.0

Release date: 2005-01-19

E.1.1. Overview

Major changes in this release:

Microsoft Windows Native Server

This is the first PostgreSQL release to run natively on Microsoft Windows® as a server. It can
run as a Windows service. This release supports NT-based Windows releases like Windows 2000,
Windows XP, and Windows 2003. Older releases like Windows 95, Windows 98, and Windows
ME are not supported because these operating systems do not have the infrastructure to support
PostgreSQL. A separate installer project has been created to ease installation on Windows — see
http://pgfoundry.org/projects/pginstaller1.

Although tested throughout our release cycle, the Windows port does not have the benefit of
years of use in production environments that PostgreSQL has on Unix platforms. Therefore it
should be treated with the same level of caution as you would a new product.

Previous releases required the Unix emulation toolkit Cygwin in order to run the server on Win-
dows operating systems. PostgreSQL has supported native clients on Windows for many years.

Savepoints

Savepoints allow specific parts of a transaction to be aborted without affecting the remainder
of the transaction. Prior releases had no such capability; there was no way to recover from a
statement failure within a transaction except by aborting the whole transaction. This feature is
valuable for application writers who require error recovery within a complex transaction.

Point-In-Time Recovery

In previous releases there was no way to recover from disk drive failure except to restore from
a previous backup or use a standby replication server. Point-in-time recovery allows continuous
backup of the server. You can recover either to the point of failure or to some transaction in the
past.

Tablespaces

Tablespaces allow administrators to select different file systems for storage of individual tables,
indexes, and databases. This improves performance and control over disk space usage. Prior
releases used initlocation and manual symlink management for such tasks.

1. http://pgfoundry.org/projects/pginstaller

1128

Appendix E. Release Notes

Improved Buffer Management,CHECKPOINT, VACUUM

This release has a more intelligent buffer replacement strategy, which will make better use of
available shared buffers and improve performance. The performance impact of vacuum and
checkpoints is also lessened.

Change Column Types

A column’s data type can now be changed withALTER TABLE.

New Perl Server-Side Language

A new version of the plperl server-side language now supports a persistent shared storage area,
triggers, returning records and arrays of records, and SPI calls to access the database.

Comma-separated-value (CSV) support inCOPY

COPYcan now read and write comma-separated-value files. It has the flexibility to interpret non-
standard quoting and separation characters too.

E.1.2. Migration to version 8.0

A dump/restore using pg_dump is required for those wishing to migrate data from any previous re-
lease.

Observe the following incompatibilities:

• In READ COMMITTEDserialization mode, volatile functions now see the results of concurrent trans-
actions committed up to the beginning of each statement within the function, rather than up to the
beginning of the interactive command that called the function.

• Functions declaredSTABLEor IMMUTABLEalways use the snapshot of the calling query, and there-
fore do not see the effects of actions taken after the calling query starts, whether in their own
transaction or other transactions. Such a function must be read-only, too, meaning that it cannot use
any SQL commands other thanSELECT.

• Non-deferredAFTERtriggers are now fired immediately after completion of the triggering query,
rather than upon finishing the current interactive command. This makes a difference when the
triggering query occurred within a function: the trigger is invoked before the function proceeds to
its next operation.

• Server configuration parametersvirtual_host and tcpip_socket have been replaced with a
more general parameterlisten_addresses . Also, the server now listens onlocalhost by de-
fault, which eliminates the need for the-i postmaster switch in many scenarios.

• Server configuration parametersSortMem andVacuumMemhave been renamed towork_mem and
maintenance_work_mem to better reflect their use. The original names are still supported inSET

andSHOW.

• Server configuration parameterslog_pid , log_timestamp , andlog_source_port have been
replaced with a more general parameterlog_line_prefix .

• Server configuration parametersyslog has been replaced with a more logicallog_destination

variable to control the log output destination.

1129

Appendix E. Release Notes

• Server configuration parameterlog_statement has been changed so it can selectively log
just database modification or data definition statements. Server configuration parameter
log_duration now prints only whenlog_statement prints the query.

• Server configuration parametermax_expr_depth parameter has been replaced with
max_stack_depth which measures the physical stack size rather than the expression nesting
depth. This helps prevent session termination due to stack overflow caused by recursive functions.

• The length() function no longer counts trailing spaces inCHAR(n) values.

• Casting an integer toBIT(N) selects the rightmost N bits of the integer, not the leftmost N bits as
before.

• Updating an element or slice of a NULL array value now produces a non-NULL array result,
namely an array containing just the assigned-to positions.

• Syntax checking of array input values has been tightened up considerably. Junk that was previously
allowed in odd places with odd results now causes an error. Empty-string element values must
now be written as"" , rather than writing nothing. Also changed behavior with respect to whites-
pace surrounding array elements: trailing whitespace is now ignored, for symmetry with leading
whitespace (which has always been ignored).

• Overflow in integer arithmetic operations is now detected and reported as an error.

• The arithmetic operators associated with the single-byte"char" data type have been removed.

• The extract() function (also calleddate_part) now returns the proper year for BC dates. It
previously returned one less than the correct year. The function now also returns the proper values
for millennium and century.

• CIDR values now must have their non-masked bits be zero. For example, we no longer allow
204.248.199.1/31 as aCIDR value. Such values should never have been accepted by Post-
greSQL and will now be rejected.

• EXECUTEnow returns a completion tag that matches the executed statement.

• psql’s \copy command now reads or writes to the query’sstdin/stdout , rather than psql’s
stdin/stdout . The previous behavior can be accessed via newpstdin /pstdout parameters.

• The JDBC client interface has been removed from the core distribution, and is now hosted at
http://jdbc.postgresql.org.

• The Tcl client interface has also been removed. There are several Tcl interfaces now hosted at
http://gborg.postgresql.org.

• The server now uses its own time zone database, rather than the one supplied by the operating
system. This will provide consistent behavior across all platforms. In most cases, there should
be little noticeable difference in time zone behavior, except that the time zone names used by
SET/SHOW TimeZonemay be different from what your platform provides.

• Configure’s threading option no longer requires users to run tests or edit configuration files; thread-
ing options are now detected automatically.

• Now that tablespaces have been implemented, initlocation has been removed.

E.1.3. Deprecated Features

Some aspects of PostgreSQL’s behavior have been determined to be suboptimal. For the sake of
backward compatibility these have not been removed in 8.0, but they are considered deprecated and

1130

Appendix E. Release Notes

will be removed in the next major release.

• The 8.1 release will remove the functionto_char(interval, text) .

• The server now warns of empty strings passed tooid /float4 /float8 data types, but continues
to interpret them as zeroes as before. In the next major release, empty strings will be considered
invalid input for these data types.

• By default, tables in PostgreSQL 8.0 and earlier are created withOIDs. In the next release, this
will not be the case: to create a table that containsOIDs, theWITH OIDS clause must be speci-
fied or thedefault_with_oids configuration parameter must be set. Users are encouraged to
explicitly specifyWITH OIDS if their tables require OIDs for compatibility with future releases of
PostgreSQL.

E.1.4. Changes

Below you will find a detailed account of the changes between release 8.0 and the previous major
release.

E.1.4.1. Performance Improvements

• Support cross-data-type index usage (Tom)

Before this change, many queries would not use an index if the data types did not match exactly.
This improvement makes index usage more intuitive and consistent.

• New buffer replacement strategy that improves caching (Jan)

Prior releases used a least-recently-used (LRU) cache to keep recently referenced pages in memory.
The LRU algorithm did not consider the number of times a specific cache entry was accessed, so
large table scans could force out useful cache pages. The new cache algorithm uses four separate
lists to track most recently used and most frequently used cache pages and dynamically optimize
their replacement based on the work load. This should lead to much more efficient use of the shared
buffer cache. Administrators who have tested shared buffer sizes in the past should retest with this
new cache replacement policy.

• Add subprocess to write dirty buffers periodically to reduce checkpoint writes (Jan)

In previous releases, the checkpoint process, which runs every few minutes, would write all dirty
buffers to the operating system’s buffer cache then flush all dirty operating system buffers to disk.
This resulted in a periodic spike in disk usage that often hurt performance. The new code uses a
background writer to trickle disk writes at a steady pace so checkpoints have far fewer dirty pages
to write to disk. Also, the new code does not issue a globalsync() call, but insteadfsync() s
just the files written since the last checkpoint. This should improve performance and minimize
degradation during checkpoints.

• Add ability to prolong vacuum to reduce performance impact (Jan)

On busy systems,VACUUMperforms many I/O requests which can hurt performance for other users.
This release allows you to slow downVACUUMto reduce its impact on other users, though this
increases the total duration ofVACUUM.

1131

Appendix E. Release Notes

• Improve B-tree index performance for duplicate keys (Dmitry Tkach, Tom)

This improves the way indexes are scanned when many duplicate values exist in the index.

• Use dynamically-generated table size estimates while planning (Tom)

Formerly the planner estimated table sizes using the values seen by the lastVACUUMor ANALYZE,
both as to physical table size (number of pages) and number of rows. Now, the current physical
table size is obtained from the kernel, and the number of rows is estimated by multiplying the
table size by the row density (rows per page) seen by the lastVACUUMor ANALYZE. This should
produce more reliable estimates in cases where the table size has changed significantly since the
last housekeeping command.

• Improved index usage withORclauses (Tom)

This allows the optimizer to use indexes in statements with many OR clauses that would not have
been indexed in the past. It can also use multi-column indexes where the first column is specified
and the second column is part of anORclause.

• Improve matching of partial index clauses (Tom)

The server is now smarter about using partial indexes in queries involving complexWHEREclauses.

• Improve performance of the GEQO optimizer (Tom)

The GEQO optimizer is used to plan queries involving many tables (by default, twelve or more).
This release speeds up the way queries are analyzed to decrease time spent in optimization.

• Miscellaneous optimizer improvements

There is not room here to list all the minor improvements made, but numerous special cases work
better than in prior releases.

• Improve lookup speed for C functions (Tom)

This release uses a hash table to lookup information for dynamically loaded C functions. This
improves their speed so they perform nearly as quickly as functions that are built into the server
executable.

• Add type-specificANALYZEstatistics capability (Mark Cave-Ayland)

This feature allows more flexibility in generating statistics for non-standard data types.

• ANALYZEnow collects statistics for expression indexes (Tom)

Expression indexes (also called functional indexes) allow users to index not just columns but the
results of expressions and function calls. With this release, the optimizer can gather and use statis-
tics about the contents of expression indexes. This will greatly improve the quality of planning for
queries in which an expression index is relevant.

1132

Appendix E. Release Notes

• New two-stage sampling method forANALYZE(Manfred Koizar)

This gives better statistics when the density of valid rows is very different in different regions of a
table.

• Speed upTRUNCATE(Tom)

This buys back some of the performance loss observed in 7.4, while still keepingTRUNCATE

transaction-safe.

E.1.4.2. Server Changes

• Add WAL file archiving and point-in-time recovery (Simon Riggs)

• Add tablespaces so admins can control disk layout (Gavin)

• Add a built-in log rotation program (Andreas Pflug)

It is now possible to log server messages conveniently without relying on either syslog or an exter-
nal log rotation program.

• Add new read-only server configuration parameters to show server compile-time settings:
block_size , integer_datetimes , max_function_args , max_identifier_length ,
max_index_keys (Joe)

• Make quoting ofsameuser , samegroup , and all remove special meaning of these terms in
pg_hba.conf (Andrew)

• Use clearer IPv6 name::1/128 for localhost in defaultpg_hba.conf (Andrew)

• Use CIDR format inpg_hba.conf examples (Andrew)

• Rename server configuration parametersSortMem and VacuumMem to work_mem and
maintenance_work_mem (Old names still supported) (Tom)

This change was made to clarify that bulk operations such as index and foreign key creation use
maintenance_work_mem , while work_mem is for workspaces used during query execution.

• Allow logging of session disconnections using server configurationlog_disconnections (An-
drew)

• Add new server configuration parameterlog_line_prefix to allow control of information emit-
ted in each log line (Andrew)

Available information includes user name, database name, remote IP address, and session start
time.

• Remove server configuration parameterslog_pid , log_timestamp , log_source_port ; func-
tionality superseded bylog_line_prefix (Andrew)

• Replace thevirtual_host andtcpip_socket parameters with a unifiedlisten_addresses

parameter (Andrew, Tom)

1133

Appendix E. Release Notes

virtual_host could only specify a single IP address to listen on.listen_addresses allows
multiple addresses to be specified.

• Listen on localhost by default, which eliminates the need for the-i postmaster switch in many
scenarios (Andrew)

Listening on localhost (127.0.0.1) opens no new security holes but allows configurations like
Windows and JDBC, which do not support local sockets, to work without special adjustments.

• Removesyslog server configuration parameter, and add more logicallog_destination vari-
able to control log output location (Magnus)

• Change server configuration parameterlog_statement to take valuesall , mod, ddl , or none to
select which queries are logged (Bruce)

This allows administrators to log only data definition changes or only data modification statements.

• Some logging-related configuration parameters could formerly be adjusted by ordinary users, but
only in the “more verbose” direction. They are now treated more strictly: only superusers can set
them. However, a superuser may useALTER USERto provide per-user settings of these values for
non-superusers. Also, it is now possible for superusers to set values of superuser-only configuration
parameters viaPGOPTIONS.

• Allow configuration files to be placed outside the data directory (mlw)

By default, configuration files are kept in the cluster’s top directory. With this addition, configura-
tion files can be placed outside the data directory, easing administration.

• Plan prepared queries only when first executed so constants can be used for statistics (Oliver Jowett)

Prepared statements plan queries once and execute them many times. While prepared queries avoid
the overhead of re-planning on each use, the quality of the plan suffers from not knowing the exact
parameters to be used in the query. In this release, planning of unnamed prepared statements is
delayed until the first execution, and the actual parameter values of that execution are used as op-
timization hints. This allows use of out-of-line parameter passing without incurring a performance
penalty.

• Allow DECLARE CURSORto take parameters (Oliver Jowett)

It is now useful to issueDECLARE CURSORin a Parse message with parameters. The parameter
values sent atBind time will be substituted into the execution of the cursor’s query.

• Fix hash joins and aggregates ofinet andcidr data types (Tom)

Release 7.4 handled hashing of mixedinet andcidr values incorrectly. (This bug did not exist in
prior releases because they wouldn’t try to hash either data type.)

• Make log_duration print only whenlog_statement prints the query (Ed L.)

1134

Appendix E. Release Notes

E.1.4.3. Query Changes

• Add savepoints (nested transactions) (Alvaro)

• Unsupported isolation levels are now accepted and promoted to the nearest supported level (Peter)

The SQL specification states that if a database doesn’t support a specific isolation level, it should
use the next more restrictive level. This change complies with that recommendation.

• Allow BEGIN WORKto specify transaction isolation levels likeSTART TRANSACTIONdoes (Bruce)

• Fix table permission checking for cases in which rules generate a query type different from the
originally submitted query (Tom)

• Implement dollar quoting to simplify single-quote usage (Andrew, Tom, David Fetter)

In previous releases, because single quotes had to be used to quote a function’s body, the use
of single quotes inside the function text required use of two single quotes or other error-prone
notations. With this release we add the ability to use "dollar quoting" to quote a block of text. The
ability to use different quoting delimiters at different nesting levels greatly simplifies the task of
quoting correctly, especially in complex functions. Dollar quoting can be used anywhere quoted
text is needed.

• MakeCASE val WHEN compval1 THEN ... evaluateval only once (Tom)

CASEno longer evaluates the tested expression multiple times. This has benefits when the expres-
sion is complex or is volatile.

• TestHAVINGbefore computing target list of an aggregate query (Tom)

Fixes improper failure of cases such asSELECT SUM(win)/SUM(lose) ... GROUP BY ...

HAVING SUM(lose) > 0 . This should work but formerly could fail with divide-by-zero.

• Replacemax_expr_depth parameter withmax_stack_depth parameter, measured in kilobytes
of stack size (Tom)

This gives us a fairly bulletproof defense against crashing due to runaway recursive functions.
Instead of measuring the depth of expression nesting, we now directly measure the size of the
execution stack.

• Allow arbitrary row expressions (Tom)

This release allows SQL expressions to contain arbitrary composite types, that is, row values. It
also allows functions to more easily take rows as arguments and return row values.

• Allow LIKE /ILIKE to be used as the operator in row and subselect comparisons (Fabien Coelho)

• Avoid locale-specific case conversion of basic ASCII letters in identifiers and keywords (Tom)

This solves the “Turkish problem” with mangling of words containingI andi . Folding of charac-
ters outside the 7-bit-ASCII set is still locale-aware.

• Improve syntax error reporting (Fabien, Tom)

1135

Appendix E. Release Notes

Syntax error reports are more useful than before.

• ChangeEXECUTEto return a completion tag matching the executed statement (Kris Jurka)

Previous releases return anEXECUTEtag for anyEXECUTEcall. In this release, the tag returned will
reflect the command executed.

• Avoid emittingNATURAL CROSS JOINin rule listings (Tom)

Such a clause makes no logical sense, but in some cases the rule decompiler formerly produced this
syntax.

E.1.4.4. Object Manipulation Changes

• Add COMMENT ONfor casts, conversions, languages, operator classes, and large objects (Christo-
pher)

• Add new server configuration parameterdefault_with_oids to control whether tables are cre-
ated withOIDs by default (Neil)

This allows administrators to control whetherCREATE TABLE commands create tables
with or without OID columns by default. (Note: the current factory default setting for
default_with_oids is TRUE, but the default will becomeFALSE in future releases.)

• Add WITH / WITHOUT OIDSclause toCREATE TABLE AS(Neil)

• Allow ALTER TABLE DROP COLUMNto drop anOID column (ALTER TABLE SET WITHOUT

OIDS still works) (Tom)

• Allow composite types as table columns (Tom)

• Allow ALTER ... ADD COLUMNwith defaults andNOT NULLconstraints; works per SQL spec
(Rod)

It is now possible forADD COLUMNto create a column that is not initially filled with NULLs, but
with a specified default value.

• Add ALTER COLUMN TYPEto change column’s type (Rod)

It is now possible to alter a column’s data type without dropping and re-adding the column.

• Allow multiple ALTERactions in a singleALTER TABLEcommand (Rod)

This is particularly useful forALTER commands that rewrite the table (which includeALTER

COLUMN TYPEand ADD COLUMNwith a default). By groupingALTER commands together, the
table need be rewritten only once.

• Allow ALTER TABLEto addSERIAL columns (Tom)

This falls out from the new capability of specifying defaults for new columns.

1136

Appendix E. Release Notes

• Allow changing the owners of aggregates, conversions, databases, functions, operators, operator
classes, schemas, types, and tablespaces (Christopher, Euler Taveira de Oliveira)

Previously this required modifying the system tables directly.

• Allow temporary object creation to be limited toSECURITY DEFINERfunctions (Sean Chittenden)

• Add ALTER TABLE ... SET WITHOUT CLUSTER(Christopher)

Prior to this release, there was no way to clear an auto-cluster specification except to modify the
system tables.

• Constraint/Index/SERIAL names are nowtable_column_type with numbers appended to
guarantee uniqueness within the schema (Tom)

The SQL specification states that such names should be unique within a schema.

• Add pg_get_serial_sequence() to return aSERIAL column’s sequence name (Christopher)

This allows automated scripts to reliably find theSERIAL sequence name.

• Warn when primary/foreign key data type mismatch requires costly lookup

• New ALTER INDEXcommand to allow moving of indexes between tablespaces (Gavin)

• MakeALTER TABLE OWNERchange dependent sequence ownership too (Alvaro)

E.1.4.5. Utility Command Changes

• Allow CREATE SCHEMAto create triggers, indexes, and sequences (Neil)

• Add ALSOkeyword toCREATE RULE(Fabien Coelho)

This allowsALSOto be added to rule creation to contrast it withINSTEAD rules.

• Add NOWAIToption toLOCK(Tatsuo)

This allows theLOCKcommand to fail if it would have to wait for the requested lock.

• Allow COPYto read and write comma-separated-value (CSV) files (Andrew, Bruce)

• Generate error if theCOPYdelimiter and NULL string conflict (Bruce)

• GRANT/REVOKEbehavior follows the SQL spec more closely

• Avoid locking conflict betweenCREATE INDEXandCHECKPOINT(Tom)

In 7.3 and 7.4, a long-running B-tree index build could block concurrentCHECKPOINTs from com-
pleting, thereby causing WAL bloat because the WAL log could not be recycled.

• Database-wideANALYZEdoes not hold locks across tables (Tom)

1137

Appendix E. Release Notes

This reduces the potential for deadlocks against other backends that want exclusive locks on tables.
To get the benefit of this change, do not execute database-wideANALYZEinside a transaction block
(BEGIN block); it must be able to commit and start a new transaction for each table.

• REINDEXdoes not exclusively lock the index’s parent table anymore

The index itself is still exclusively locked, but readers of the table can continue if they are not using
the particular index being rebuilt.

• Erase MD5 user passwords when a user is renamed (Bruce)

PostgreSQL uses the user name as salt when encrypting passwords via MD5. When a user’s name
is changed, the salt will no longer match the stored MD5 password, so the stored password becomes
useless. In this release a notice is generated and the password is cleared. A new password must then
be assigned if the user is to be able to log in with a password.

• New pg_ctlkill option for Windows (Andrew)

Windows does not have akill command to send signals to backends so this capability was added
to pg_ctl.

• Information schema improvements

• Add --pwfile option to initdb so the initial password can be set by GUI tools (Magnus)

• Detect locale/encoding mismatch in initdb (Peter)

• Add register command to pg_ctl to register Windows operating system service (Dave Page)

E.1.4.6. Data Type and Function Changes

• More complete support for composite types (row types) (Tom)

Composite values can be used in many places where only scalar values worked before.

• Reject non-rectangular array values as erroneous (Joe)

Formerly,array_in would silently build a surprising result.

• Overflow in integer arithmetic operations is now detected (Tom)

• The arithmetic operators associated with the single-byte"char" data type have been removed.

Formerly, the parser would select these operators in many situations where an “unable to select
an operator” error would be more appropriate, such asnull * null . If you actually want to do
arithmetic on a"char" column, you can cast it to integer explicitly.

• Syntax checking of array input values considerably tightened up (Joe)

Junk that was previously allowed in odd places with odd results now causes anERROR, for example,
non-whitespace after the closing right brace.

1138

Appendix E. Release Notes

• Empty-string array element values must now be written as"" , rather than writing nothing (Joe)

Formerly, both ways of writing an empty-string element value were allowed, but now a quoted
empty string is required. The case where nothing at all appears will probably be considered to be a
NULL element value in some future release.

• Array element trailing whitespace is now ignored (Joe)

Formerly leading whitespace was ignored, but trailing whitespace between an element value and
the delimiter or right brace was significant. Now trailing whitespace is also ignored.

• Emit array values with explicit array bounds when lower bound is not one (Joe)

• AcceptYYYY-monthname-DD as a date string (Tom)

• Makenetmask andhostmask functions return maximum-length mask length (Tom)

• Change factorial function to returnnumeric (Gavin)

Returningnumeric allows the factorial function to work for a wider range of input values.

• to_char /to_date() date conversion improvements (Kurt Roeckx, Fabien Coelho)

• Make length() disregard trailing spaces inCHAR(n) (Gavin)

This change was made to improve consistency: trailing spaces are semantically insignificant in
CHAR(n) data, so they should not be counted bylength() .

• Warn about empty string being passed toOID/float4 /float8 data types (Neil)

8.1 will throw an error instead.

• Allow leading or trailing whitespace inint2 /int4 /int8 /float4 /float8 input routines (Neil)

• Better support for IEEEInfinity andNaNvalues infloat4 /float8 (Neil)

These should now work on all platforms that support IEEE-compliant floating point arithmetic.

• Add week option todate_trunc() (Robert Creager)

• Fix to_char for 1 BC (previously it returned1 AD) (Bruce)

• Fix date_part(year) for BC dates (previously it returned one less than the correct year) (Bruce)

• Fix date_part() to return the proper millennium and century (Fabien Coelho)

In previous versions, the century and millennium results had a wrong number and started in the
wrong year, as compared to standard reckoning of such things.

• Add ceiling() as an alias forceil() , andpower() as an alias forpow() for standards compli-
ance (Neil)

• Changeln() , log() , power() , andsqrt() to emit the correctSQLSTATEerror codes for certain
error conditions, as specified by SQL:2003 (Neil)

1139

Appendix E. Release Notes

• Add width_bucket() function as defined by SQL:2003 (Neil)

• Add generate_series() functions to simplify working with numeric sets (Joe)

• Fix upper/lower/initcap() functions to work with multibyte encodings (Tom)

• Add boolean and bitwise integerAND/ORaggregates (Fabien Coelho)

• New session information functions to return network addresses for client and server (Sean Chitten-
den)

• Add function to determine the area of a closed path (Sean Chittenden)

• Add function to send cancel request to other backends (Magnus)

• Add interval plusdatetime operators (Tom)

The reverse ordering,datetime plus interval , was already supported, but both are required by
the SQL standard.

• Casting an integer toBIT(N) selects the rightmost N bits of the integer (Tom)

In prior releases, the leftmost N bits were selected, but this was deemed unhelpful, not to mention
inconsistent with casting from bit to int.

• RequireCIDR values to have all non-masked bits be zero (Kevin Brintnall)

E.1.4.7. Server-Side Language Changes

• In READ COMMITTEDserialization mode, volatile functions now see the results of concurrent trans-
actions committed up to the beginning of each statement within the function, rather than up to the
beginning of the interactive command that called the function.

• Functions declaredSTABLEor IMMUTABLEalways use the snapshot of the calling query, and there-
fore do not see the effects of actions taken after the calling query starts, whether in their own
transaction or other transactions. Such a function must be read-only, too, meaning that it cannot use
any SQL commands other thanSELECT. There is a considerable performance gain from declaring
a functionSTABLEor IMMUTABLErather thanVOLATILE.

• Non-deferredAFTERtriggers are now fired immediately after completion of the triggering query,
rather than upon finishing the current interactive command. This makes a difference when the
triggering query occurred within a function: the trigger is invoked before the function proceeds
to its next operation. For example, if a function inserts a new row into a table, any non-deferred
foreign key checks occur before proceeding with the function.

• Allow function parameters to be declared with names (Dennis Bjorklund)

This allows better documentation of functions. Whether the names actually do anything depends
on the specific function language being used.

• Allow PL/pgSQL parameter names to be referenced in the function (Dennis Bjorklund)

This basically creates an automatic alias for each named parameter.

• Do minimal syntax checking of PL/pgSQL functions at creation time (Tom)

This allows us to catch simple syntax errors sooner.

1140

Appendix E. Release Notes

• More support for composite types (row and record variables) in PL/pgSQL

For example, it now works to pass a rowtype variable to another function as a single variable.

• Default values for PL/pgSQL variables can now reference previously declared variables

• Improve parsing of PL/pgSQL FOR loops (Tom)

Parsing is now driven by presence of".." rather than data type ofFORvariable. This makes no
difference for correct functions, but should result in more understandable error messages when a
mistake is made.

• Major overhaul of PL/Perl server-side language (Command Prompt, Andrew Dunstan)

• In PL/Tcl, SPI commands are now run in subtransactions. If an error occurs, the subtransaction is
cleaned up and the error is reported as an ordinary Tcl error, which can be trapped withcatch .
Formerly, it was not possible to catch such errors.

• AcceptELSEIF in PL/pgSQL (Neil)

Previously PL/pgSQL only allowedELSIF , but many people are accustomed to spelling this key-
word ELSEIF .

E.1.4.8. psql Changes

• Improve psql information display about database objects (Christopher)

• Allow psql to display group membership in\du and\dg (Markus Bertheau)

• Prevent psql\dn from showing temporary schemas (Bruce)

• Allow psql to handle tilde user expansion for file names (Zach Irmen)

• Allow psql to display fancy prompts, including color, via readline (Reece Hart, Chet Ramey)

• Make psql\copy matchCOPYcommand syntax fully (Tom)

• Show the location of syntax errors (Fabien Coelho, Tom)

• Add CLUSTERinformation to psql\d display (Bruce)

• Change psql\copy stdin/stdout to read from command input/output (Bruce)

• Add pstdin /pstdout to read from psql’sstdin /stdout (Mark Feit)

• Add global psql configuration file,psqlrc.sample (Bruce)

This allows a central file where global psql startup commands can be stored.

• Have psql\d+ indicate if the table has anOID column (Neil)

• On Windows, use binary mode in psql when reading files so control-Z is not seen as end-of-file

• Have\dn+ show permissions and description for schemas (Dennis Bjorklund)

• Improve tab completion support (Stefan Kaltenbrunn, Greg Sabino Mullane)

• Allow boolean settings to be set using upper or lower case (Michael Paesold)

1141

Appendix E. Release Notes

E.1.4.9. pg_dump Changes

• Use dependency information to improve the reliability of pg_dump (Tom)

This should solve the longstanding problems with related objects sometimes being dumped in the
wrong order.

• Have pg_dump output objects in alphabetical order if possible (Tom)

This should make it easier to identify changes between dump files.

• Allow pg_restore to ignore some SQL errors (Fabien Coelho)

This makes pg_restore’s behavior similar to the results of feeding a pg_dump output script to psql.
In most cases, ignoring errors and plowing ahead is the most useful thing to do. Also added was a
pg_restore option to give the old behavior of exiting on an error.

• pg_restore-l display now includes objects’ schema names

• New begin/end markers in pg_dump text output (Bruce)

• Add start/stop times for pg_dump/pg_dumpall in verbose mode (Bruce)

• Allow most pg_dump options in pg_dumpall (Christopher)

• Have pg_dump useALTER OWNERrather thanSET SESSION AUTHORIZATIONby default
(Christopher)

E.1.4.10. libpq Changes

• Make libpq’sSIGPIPE handling thread-safe (Bruce)

• Add PQmbdsplen() which returns the display length of a character (Tatsuo)

• Add thread locking to SSL and Kerberos connections (Manfred Spraul)

• Allow PQoidValue() , PQcmdTuples() , andPQoidStatus() to work onEXECUTEcommands
(Neil)

• Add PQserverVersion() to provide more convenient access to the server version number (Greg
Sabino Mullane)

• Add PQprepare/PQsendPrepared() functions to support preparing statements without neces-
sarily specifying the data types of their parameters (Abhijit Menon-Sen)

• Many ECPG improvements, includingSET DESCRIPTOR(Michael)

E.1.4.11. Source Code Changes

• Allow the database server to run natively on Windows (Claudio, Magnus, Andrew)

• Shell script commands converted to C versions for Windows support (Andrew)

• Create an extension makefile framework (Fabien Coelho, Peter)

This simplifies the task of building extensions outside the original source tree.

1142

Appendix E. Release Notes

• Support relocatable installations (Bruce)

Directory paths for installed files (such as the/share directory) are now computed relative to the
actual location of the executables, so that an installation tree can be moved to another place without
reconfiguring and rebuilding.

• Use --with-docdir to choose installation location of documentation; also allow--infodir

(Peter)

• Add --without-docdir to prevent installation of documentation (Peter)

• Upgrade to DocBook V4.2 SGML (Peter)

• New PostgreSQL CVS tag (Marc)

This was done to make it easier for organizations to manage their own copies of the PostgreSQL
CVS repository. File version stamps from the master repository will not get munged by checking
into or out of a copied repository.

• Clarify locking code (Manfred Koizar)

• Buffer manager cleanup (Neil)

• Decouple platform tests from CPU spinlock code (Bruce, Tom)

• Add inlined test-and-set code on PA-RISC for gcc (ViSolve, Tom)

• Improve i386 spinlock code (Manfred Spraul)

• Clean up spinlock assembly code to avoid warnings from newer gcc releases (Tom)

• Remove JDBC from source tree; now a separate project

• Remove the libpgtcl client interface; now a separate project

• More accurately estimate memory and file descriptor usage (Tom)

• Improvements to the Mac OS X startup scripts (Ray A.)

• New fsync() test program (Bruce)

• Major documentation improvements (Neil, Peter)

• Remove pg_encoding; not needed anymore

• Remove pg_id; not needed anymore

• Remove initlocation; not needed anymore

• Auto-detect thread flags (no more manual testing) (Bruce)

• Use Olson’s public domain timezone library (Magnus)

• With threading enabled, use thread flags on Unixware for backend executables too (Bruce)

Unixware can not mix threaded and non-threaded object files in the same executable, so everything
must be compiled as threaded.

• psql now uses a flex-generated lexical analyzer to process command strings

• Reimplement the linked list data structure used throughout the backend (Neil)

This improves performance by allowing list append and length operations to be more efficient.

1143

Appendix E. Release Notes

• Allow dynamically loaded modules to create their own server configuration parameters (Thomas
Hallgren)

• New Brazilian version of FAQ (Euler Taveira de Oliveira)

• Add French FAQ (Guillaume Lelarge)

• New pgevent for Windows logging

• Make libpq and ECPG build as proper shared libraries on OS X (Tom)

E.1.4.12. Contrib Changes

• Overhaul ofcontrib/dblink (Joe)

• contrib/dbmirror improvements (Steven Singer)

• New contrib/xml2 (John Gray, Torchbox)

• Updatedcontrib/mysql

• New version ofcontrib/btree_gist (Teodor)

• New contrib/trgm , trigram matching for PostgreSQL (Teodor)

• Many contrib/tsearch2 improvements (Teodor)

• Add double metaphone tocontrib/fuzzystrmatch (Andrew)

• Allow contrib/pg_autovacuum to run as a Windows service (Dave Page)

• Add functions tocontrib/dbsize (Andreas Pflug)

• Removedcontrib/pg_logger : obsoleted by integrated logging subprocess

• Removedcontrib/rserv : obsoleted by various separate projects

E.2. Release 7.4.6

Release date: 2004-10-22

This release contains a variety of fixes from 7.4.5.

E.2.1. Migration to version 7.4.6

A dump/restore is not required for those running 7.4.X.

E.2.2. Changes

• Repair possible failure to update hint bits on disk

Under rare circumstances this oversight could lead to “could not access transaction status” failures,
which qualifies it as a potential-data-loss bug.

1144

Appendix E. Release Notes

• Ensure that hashed outer join does not miss tuples

Very large left joins using a hash join plan could fail to output unmatched left-side rows given just
the right data distribution.

• Disallow running pg_ctl as root

This is to guard against any possible security issues.

• Avoid using temp files in/tmp in make_oidjoins_check

This has been reported as a security issue, though it’s hardly worthy of concern since there is no
reason for non-developers to use this script anyway.

• Prevent forced backend shutdown from re-emitting prior command result

In rare cases, a client might think that its last command had succeeded when it really had been
aborted by forced database shutdown.

• Repair bug inpg_stat_get_backend_idset

This could lead to misbehavior in some of the system-statistics views.

• Fix small memory leak in postmaster

• Fix “expected both swapped tables to have TOAST tables” bug

This could arise in cases such as CLUSTER after ALTER TABLE DROP COLUMN.

• Preventpg_ctl restart from adding-D multiple times

• Fix problem with NULL values in GiST indexes

• :: is no longer interpreted as a variable in an ECPG prepare statement

E.3. Release 7.4.5

Release date: 2004-08-18

This release contains one serious bug fix over 7.4.4.

E.3.1. Migration to version 7.4.5

A dump/restore is not required for those running 7.4.X.

1145

Appendix E. Release Notes

E.3.2. Changes

• Repair possible crash during concurrent B-tree index insertions

This patch fixes a rare case in which concurrent insertions into a B-tree index could result in a
server panic. No permanent damage would result, but it’s still worth a re-release. The bug does not
exist in pre-7.4 releases.

E.4. Release 7.4.4

Release date: 2004-08-16

This release contains a variety of fixes from 7.4.3.

E.4.1. Migration to version 7.4.4

A dump/restore is not required for those running 7.4.X.

E.4.2. Changes

• Prevent possible loss of committed transactions during crash

Due to insufficient interlocking between transaction commit and checkpointing, it was possible
for transactions committed just before the most recent checkpoint to be lost, in whole or in part,
following a database crash and restart. This is a serious bug that has existed since PostgreSQL 7.1.

• Check HAVING restriction before evaluating result list of an aggregate plan

• Avoid crash when session’s current user ID is deleted

• Fix hashed crosstab for zero-rows case (Joe)

• Force cache update after renaming a column in a foreign key

• Pretty-print UNION queries correctly

• Make psql handle\r\n newlines properly in COPY IN

• pg_dump handled ACLs with grant options incorrectly

• Fix thread support for OS X and Solaris

• Updated JDBC driver (build 215) with various fixes

• ECPG fixes

• Translation updates (various contributors)

1146

Appendix E. Release Notes

E.5. Release 7.4.3

Release date: 2004-06-14

This release contains a variety of fixes from 7.4.2.

E.5.1. Migration to version 7.4.3

A dump/restore is not required for those running 7.4.X.

E.5.2. Changes

• Fix temporary memory leak when using non-hashed aggregates (Tom)

• ECPG fixes, including some for Informix compatibility (Michael)

• Fixes for compiling with thread-safety, particularly Solaris (Bruce)

• Fix error in COPY IN termination when using the old network protocol (ljb)

• Several important fixes in pg_autovacuum, including fixes for large tables, unsigned oids, stability,
temp tables, and debug mode (Matthew T. O’Connor)

• Fix problem with reading tar-format dumps on NetBSD and BSD/OS (Bruce)

• Several JDBC fixes

• Fix ALTER SEQUENCE RESTART where last_value equals the restart value (Tom)

• Repair failure to recalculate nested sub-selects (Tom)

• Fix problems with non-constant expressions in LIMIT/OFFSET

• Support FULL JOIN with no join clause, such as X FULL JOIN Y ON TRUE (Tom)

• Fix another zero-column table bug (Tom)

• Improve handling of non-qualified identifiers in GROUP BY clauses in sub-selects (Tom)

Select-list aliases within the sub-select will now take precedence over names from outer query
levels.

• Do not generate “NATURAL CROSS JOIN” when decompiling rules (Tom)

• Add checks for invalid field length in binary COPY (Tom)

This fixes a difficult-to-exploit security hole.

• Avoid locking conflict betweenANALYZEandLISTEN /NOTIFY

• Numerous translation updates (various contributors)

1147

Appendix E. Release Notes

E.6. Release 7.4.2

Release date: 2004-03-08

This release contains a variety of fixes from 7.4.1.

E.6.1. Migration to version 7.4.2

A dump/restore is not required for those running 7.4.X. However, it may be advisable as the easiest
method of incorporating fixes for two errors that have been found in the initial contents of 7.4.X
system catalogs. A dump/initdb/reload sequence using 7.4.2’s initdb will automatically correct these
problems.

The more severe of the two errors is that data typeanyarray has the wrong alignment label; this
is a problem because thepg_statistic system catalog usesanyarray columns. The mislabeling
can cause planner misestimations and even crashes when planning queries that involveWHEREclauses
on double-aligned columns (such asfloat8 and timestamp). It is strongly recommended that all
installations repair this error, either by initdb or by following the manual repair procedure given below.

The lesser error is that the system viewpg_settings ought to be marked as having public update ac-
cess, to allowUPDATE pg_settings to be used as a substitute forSET. This can also be fixed either
by initdb or manually, but it is not necessary to fix unless you want to useUPDATE pg_settings .

If you wish not to do an initdb, the following procedure will work for fixingpg_statistic . As the
database superuser, do:

-- clear out old data in pg_statistic:
DELETE FROM pg_statistic;
VACUUM pg_statistic;
-- this should update 1 row:
UPDATE pg_type SET typalign = ’d’ WHERE oid = 2277;
-- this should update 6 rows:
UPDATE pg_attribute SET attalign = ’d’ WHERE atttypid = 2277;
--
-- At this point you MUST start a fresh backend to avoid a crash!
--
-- repopulate pg_statistic:
ANALYZE;

This can be done in a live database, but beware that all backends running in the altered database must
be restarted before it is safe to repopulatepg_statistic .

To repair thepg_settings error, simply do:

GRANT SELECT, UPDATE ON pg_settings TO PUBLIC;

The above procedures must be carried out ineachdatabase of an installation, includingtemplate1 ,
and ideally includingtemplate0 as well. If you do not fix the template databases then any subse-
quently created databases will contain the same errors.template1 can be fixed in the same way as
any other database, but fixingtemplate0 requires additional steps. First, from any database issue

UPDATE pg_database SET datallowconn = true WHERE datname = ’template0’;

Next connect totemplate0 and perform the above repair procedures. Finally, do

1148

Appendix E. Release Notes

-- re-freeze template0:
VACUUM FREEZE;
-- and protect it against future alterations:
UPDATE pg_database SET datallowconn = false WHERE datname = ’template0’;

E.6.2. Changes

Release 7.4.2 incorporates all the fixes included in release 7.3.6, plus the following fixes:

• Fix pg_statistics alignment bug that could crash optimizer

See above for details about this problem.

• Allow non-super users to updatepg_settings

• Fix several optimizer bugs, most of which led to “variable not found in subplan target lists” errors

• Avoid out-of-memory failure during startup of large multiple index scan

• Fix multibyte problem that could lead to “out of memory” error duringCOPY IN

• Fix problems withSELECT INTO/ CREATE TABLE ASfrom tables without OIDs

• Fix problems withalter_table regression test during parallel testing

• Fix problems with hitting open file limit, especially on OS X (Tom)

• Partial fix for Turkish-locale issues

initdb will succeed now in Turkish locale, but there are still some inconveniences associated with
the i/I problem.

• Make pg_dump set client encoding on restore

• Other minor pg_dump fixes

• Allow ecpg to again use C keywords as column names (Michael)

• Added ecpgWHENEVER NOT_FOUNDto SELECT/INSERT/UPDATE/DELETE (Michael)

• Fix ecpg crash for queries calling set-returning functions (Michael)

• Various other ecpg fixes (Michael)

• Fixes for Borland compiler

• Thread build improvements (Bruce)

• Various other build fixes

• Various JDBC fixes

E.7. Release 7.4.1

Release date: 2003-12-22

1149

Appendix E. Release Notes

This release contains a variety of fixes from 7.4.

E.7.1. Migration to version 7.4.1

A dump/restore isnot required for those running 7.4.

If you want to install the fixes in the information schema you need to reload it into the database. This
is either accomplished by initializing a new cluster by runninginitdb , or by running the following
sequence of SQL commands in each database (ideally includingtemplate1) as a superuser in psql,
after installing the new release:

DROP SCHEMA information_schema CASCADE;
\i /usr/local/pgsql/share/information_schema.sql

Substitute your installation path in the second command.

E.7.2. Changes

• Fixed bug inCREATE SCHEMAparsing in ECPG (Michael)

• Fix compile error when--enable-thread-safety and--with-perl are used together (Peter)

• Fix for subqueries that used hash joins (Tom)

Certain subqueries that used hash joins would crash because of improperly shared structures.

• Fix free space map compaction bug (Tom)

This fixes a bug where compaction of the free space map could lead to a database server shutdown.

• Fix for Borland compiler build of libpq (Bruce)

• Fix netmask() andhostmask() to return the maximum-length masklen (Tom)

Fix these functions to return values consistent with pre-7.4 releases.

• Severalcontrib/pg_autovacuum fixes

Fixes include improper variable initialization, missing vacuum afterTRUNCATE, and duration com-
putation overflow for long vacuums.

• Allow compile of contrib/cube under Cygwin (Jason Tishler)

• Fix Solaris use of password file when no passwords are defined (Tom)

Fix crash on Solaris caused by use of any type of password authentication when no passwords were
defined.

• JDBC fix for thread problems, other fixes

• Fix for bytea index lookups (Joe)

• Fix information schema for bit data types (Peter)

• Force zero_damaged_pages to be on during recovery from WAL

1150

Appendix E. Release Notes

• Prevent some obscure cases of “variable not in subplan target lists”

• MakePQescapeBytea andbyteaout consistent with each other (Joe)

• Escapebytea output for bytes > 0x7e(Joe)

If different client encodings are used forbytea output and input, it is possible forbytea values to
be corrupted by the differing encodings. This fix escapes all bytes that might be affected.

• Added missingSPI_finish() calls to dblink’sget_tuple_of_interest() (Joe)

• New Czech FAQ

• Fix information schema viewconstraint_column_usage for foreign keys (Peter)

• ECPG fixes (Michael)

• Fix bug with multipleIN subqueries and joins in the subqueries (Tom)

• Alllow COUNT(’x’) to work (Tom)

• Install ECPG include files for Informix compatibility into separate directory (Peter)

Some names of ECPG include files for Informix compatibility conflicted with operating system
include files. By installing them in their own directory, name conflicts have been reduced.

• Fix SSL memory leak (Neil)

This release fixes a bug in 7.4 where SSL didn’t free all memory it allocated.

• Preventpg_service.conf from using service name as default dbname (Bruce)

• Fix local ident authentication on FreeBSD (Tom)

E.8. Release 7.4

Release date: 2003-11-17

E.8.1. Overview

Major changes in this release:

IN / NOT IN subqueries are now much more efficient

In previous releases,IN /NOT INsubqueries were joined to the upper query by sequentially scan-
ning the subquery looking for a match. The 7.4 code uses the same sophisticated techniques used
by ordinary joins and so is much faster. AnIN will now usually be as fast as or faster than an
equivalentEXISTS subquery; this reverses the conventional wisdom that applied to previous
releases.

ImprovedGROUP BYprocessing by using hash buckets

In previous releases, rows to be grouped had to be sorted first. The 7.4 code can doGROUP BY

without sorting, by accumulating results into a hash table with one entry per group. It will still
use the sort technique, however, if the hash table is estimated to be too large to fit insort_mem .

1151

Appendix E. Release Notes

New multikey hash join capability

In previous releases, hash joins could only occur on single keys. This release allows multicolumn
hash joins.

Queries using the explicitJOIN syntax are now better optimized

Prior releases evaluated queries using the explicitJOIN syntax only in the order implied by the
syntax. 7.4 allows full optimization of these queries, meaning the optimizer considers all possible
join orderings and chooses the most efficient. Outer joins, however, must still follow the declared
ordering.

Faster and more powerful regular expression code

The entire regular expression module has been replaced with a new version by Henry Spencer,
originally written for Tcl. The code greatly improves performance and supports several flavors
of regular expressions.

Function-inlining for simple SQL functions

Simple SQL functions can now be inlined by including their SQL in the main query. This im-
proves performance by eliminating per-call overhead. That means simple SQL functions now
behave like macros.

Full support for IPv6 connections and IPv6 address data types

Previous releases allowed only IPv4 connections, and the IP data types only supported IPv4
addresses. This release adds full IPv6 support in both of these areas.

Major improvements in SSL performance and reliability

Several people very familiar with the SSL API have overhauled our SSL code to improve SSL
key negotiation and error recovery.

Make free space map efficiently reuse empty index pages, and other free space management improve-
ments

In previous releases, B-tree index pages that were left empty because of deleted rows could only
be reused by rows with index values similar to the rows originally indexed on that page. In 7.4,
VACUUMrecords empty index pages and allows them to be reused for any future index rows.

SQL-standard information schema

The information schema provides a standardized and stable way to access information about the
schema objects defined in a database.

Cursors conform more closely to the SQL standard

The commandsFETCHand MOVEhave been overhauled to conform more closely to the SQL
standard.

Cursors can exist outside transactions

These cursors are also called holdable cursors.

New client-to-server protocol

The new protocol adds error codes, more status information, faster startup, better support for
binary data transmission, parameter values separated from SQL commands, prepared statements
available at the protocol level, and cleaner recovery fromCOPYfailures. The older protocol is
still supported by both server and clients.

1152

Appendix E. Release Notes

libpq and ECPG applications are now fully thread-safe

While previous libpq releases already supported threads, this release improves thread safety
by fixing some non-thread-safe code that was used during database connection startup. The
configure option--enable-thread-safety must be used to enable this feature.

New version of full-text indexing

A new full-text indexing suite is available incontrib/tsearch2 .

New autovacuum tool

The new autovacuum tool incontrib/autovacuum monitors the database statistics tables for
INSERT/UPDATE/DELETEactivity and automatically vacuums tables when needed.

Array handling has been improved and moved into the server core

Many array limitations have been removed, and arrays behave more like fully-supported data
types.

E.8.2. Migration to version 7.4

A dump/restore using pg_dump is required for those wishing to migrate data from any previous re-
lease.

Observe the following incompatibilities:

• The server-side autocommit setting was removed and reimplemented in client applications and lan-
guages. Server-side autocommit was causing too many problems with languages and applications
that wanted to control their own autocommit behavior, so autocommit was removed from the server
and added to individual client APIs as appropriate.

• Error message wording has changed substantially in this release. Significant effort was invested to
make the messages more consistent and user-oriented. If your applications try to detect different
error conditions by parsing the error message, you are strongly encouraged to use the new error
code facility instead.

• Inner joins using the explicitJOIN syntax may behave differently because they are now better
optimized.

• A number of server configuration parameters have been renamed for clarity, primarily those related
to logging.

• FETCH 0or MOVE 0now does nothing. In prior releases,FETCH 0would fetch all remaining rows,
andMOVE 0would move to the end of the cursor.

• FETCHand MOVEnow return the actual number of rows fetched/moved, or zero if at the begin-
ning/end of the cursor. Prior releases would return the row count passed to the command, not the
number of rows actually fetched or moved.

• COPYnow can process files that use carriage-return or carriage-return/line-feed end-of-line se-
quences. Literal carriage-returns and line-feeds are no longer accepted in data values; use\r and
\n instead.

• Trailing spaces are now trimmed when converting from typechar(n) to varchar(n) or text .
This is what most people always expected to happen anyway.

1153

Appendix E. Release Notes

• The data typefloat(p) now measuresp in binary digits, not decimal digits. The new behavior
follows the SQL standard.

• Ambiguous date values now must match the ordering specified by thedatestyle setting. In prior
releases, a date specification of10/20/03 was interpreted as a date in October even ifdatestyle

specified that the day should be first. 7.4 will throw an error if a date specification is invalid for the
current setting ofdatestyle .

• The functionsoidrand , oidsrand , anduserfntest have been removed. These functions were
determined to be no longer useful.

• String literals specifying time-varying date/time values, such as’now’ or ’today’ will no longer
work as expected in column default expressions; they now cause the time of the table creation to
be the default, not the time of the insertion. Functions such asnow() , current_timestamp , or
current_date should be used instead.

In previous releases, there was special code so that strings such as’now’ were interpreted
at INSERT time and not at table creation time, but this work around didn’t cover all cases.
Release 7.4 now requires that defaults be defined properly using functions such asnow() or
current_timestamp . These will work in all situations.

• The dollar sign ($) is no longer allowed in operator names. It can instead be a non-first character
in identifiers. This was done to improve compatibility with other database systems, and to avoid
syntax problems when parameter placeholders ($n) are written adjacent to operators.

E.8.3. Changes

Below you will find a detailed account of the changes between release 7.4 and the previous major
release.

E.8.3.1. Server Operation Changes

• Allow IPv6 server connections (Nigel Kukard, Johan Jordaan, Bruce, Tom, Kurt Roeckx, Andrew
Dunstan)

• Fix SSL to handle errors cleanly (Nathan Mueller)

In prior releases, certain SSL API error reports were not handled correctly. This release fixes those
problems.

• SSL protocol security and performance improvements (Sean Chittenden)

SSL key renegotiation was happening too frequently, causing poor SSL performance. Also, initial
key handling was improved.

• Print lock information when a deadlock is detected (Tom)

This allows easier debugging of deadlock situations.

• Update/tmp socket modification times regularly to avoid their removal (Tom)

1154

Appendix E. Release Notes

This should help prevent/tmp directory cleaner administration scripts from removing server socket
files.

• Enable PAM for Mac OS X (Aaron Hillegass)

• Make B-tree indexes fully WAL-safe (Tom)

In prior releases, under certain rare cases, a server crash could cause B-tree indexes to become
corrupt. This release removes those last few rare cases.

• Allow B-tree index compaction and empty page reuse (Tom)

• Fix inconsistent index lookups during split of first root page (Tom)

In prior releases, when a single-page index split into two pages, there was a brief period when
another database session could miss seeing an index entry. This release fixes that rare failure case.

• Improve free space map allocation logic (Tom)

• Preserve free space information between server restarts (Tom)

In prior releases, the free space map was not saved when the postmaster was stopped, so newly
started servers had no free space information. This release saves the free space map, and reloads it
when the server is restarted.

• Add start time topg_stat_activity (Neil)

• New code to detect corrupt disk pages; erase withzero_damaged_pages (Tom)

• New client/server protocol: faster, no username length limit, allow clean exit fromCOPY(Tom)

• Add transaction status, table ID, column ID to client/server protocol (Tom)

• Add binary I/O to client/server protocol (Tom)

• Remove autocommit server setting; move to client applications (Tom)

• New error message wording, error codes, and three levels of error detail (Tom, Joe, Peter)

E.8.3.2. Performance Improvements

• Add hashing forGROUP BYaggregates (Tom)

• Make nested-loop joins be smarter about multicolumn indexes (Tom)

• Allow multikey hash joins (Tom)

• Improve constant folding (Tom)

• Add ability to inline simple SQL functions (Tom)

• Reduce memory usage for queries using complex functions (Tom)

In prior releases, functions returning allocated memory would not free it until the query completed.
This release allows the freeing of function-allocated memory when the function call completes,
reducing the total memory used by functions.

• Improve GEQO optimizer performance (Tom)

1155

Appendix E. Release Notes

This release fixes several inefficiencies in the way the GEQO optimizer manages potential query
paths.

• Allow IN /NOT IN to be handled via hash tables (Tom)

• ImproveNOT IN (subquery) performance (Tom)

• Allow most IN subqueries to be processed as joins (Tom)

• Pattern matching operations can use indexes regardless of locale (Peter)

There is no way for non-ASCII locales to use the standard indexes forLIKE comparisons. This
release adds a way to create a special index forLIKE .

• Allow the postmaster to preload libraries usingpreload_libraries (Joe)

For shared libraries that require a long time to load, this option is available so the library can be
preloaded in the postmaster and inherited by all database sessions.

• Improve optimizer cost computations, particularly for subqueries (Tom)

• Avoid sort when subqueryORDER BYmatches upper query (Tom)

• Deduce thatWHERE a.x = b.y AND b.y = 42 also meansa.x = 42 (Tom)

• Allow hash/merge joins on complex joins (Tom)

• Allow hash joins for more data types (Tom)

• Allow join optimization of explicit inner joins, disable withjoin_collapse_limit (Tom)

• Add parameterfrom_collapse_limit to control conversion of subqueries to joins (Tom)

• Use faster and more powerful regular expression code from Tcl (Henry Spencer, Tom)

• Use bit-mapped relation sets in the optimizer (Tom)

• Improve connection startup time (Tom)

The new client/server protocol requires fewer network packets to start a database session.

• Improve trigger/constraint performance (Stephan)

• Improve speed ofcol IN (const, const, const, ...) (Tom)

• Fix hash indexes which were broken in rare cases (Tom)

• Improve hash index concurrency and speed (Tom)

Prior releases suffered from poor hash index performance, particularly for high concurrency situa-
tions. This release fixes that, and the development group is interested in reports comparing B-tree
and hash index performance.

• Align shared buffers on 32-byte boundary for copy speed improvement (Manfred Spraul)

Certain CPU’s perform faster data copies when addresses are 32-byte aligned.

• Data typenumeric reimplemented for better performance (Tom)

1156

Appendix E. Release Notes

numeric used to be stored in base 100. The new code uses base 10000, for significantly better
performance.

E.8.3.3. Server Configuration Changes

• Rename server parameterserver_min_messages to log_min_messages (Bruce)

This was done so most parameters that control the server logs begin withlog_ .

• Renameshow_*_stats to log_*_stats (Bruce)

• Renameshow_source_port to log_source_port (Bruce)

• Renamehostname_lookup to log_hostname (Bruce)

• Add checkpoint_warning to warn of excessive checkpointing (Bruce)

In prior releases, it was difficult to determine if checkpoint was happening too frequently. This
feature adds a warning to the server logs when excessive checkpointing happens.

• New read-only server parameters for localization (Tom)

• Change debug server log messages to output asDEBUGrather thanLOG(Bruce)

• Prevent server log variables from being turned off by non-superusers (Bruce)

This is a security feature so non-superusers cannot disable logging that was enabled by the admin-
istrator.

• log_min_messages /client_min_messages now controlsdebug_* output (Bruce)

This centralizes client debug information so all debug output can be sent to either the client or
server logs.

• Add Mac OS X Rendezvous server support (Chris Campbell)

This allows Mac OS X hosts to query the network for available PostgreSQL servers.

• Add ability to print only slow statements usinglog_min_duration_statement (Christopher)

This is an often requested debugging feature that allows administrators to see only slow queries in
their server logs.

• Allow pg_hba.conf to accept netmasks in CIDR format (Andrew Dunstan)

This allows administrators to merge the host IP address and netmask fields into a single CIDR field
in pg_hba.conf .

• New read-only parameteris_superuser (Tom)

• New parameterlog_error_verbosity to control error detail (Tom)

1157

Appendix E. Release Notes

This works with the new error reporting feature to supply additional error information like hints,
file names and line numbers.

• postgres --describe-config now dumps server config variables (Aizaz Ahmed, Peter)

This option is useful for administration tools that need to know the configuration variable names
and their minimums, maximums, defaults, and descriptions.

• Add new columns inpg_settings : context , type , source , min_val , max_val (Joe)

• Make defaultshared_buffers 1000 andmax_connections 100, if possible (Tom)

Prior versions defaulted to 64 shared buffers so PostgreSQL would start on even very old systems.
This release tests the amount of shared memory allowed by the platform and selects more reason-
able default values if possible. Of course, users are still encouraged to evaluate their resource load
and sizeshared_buffers accordingly.

• New pg_hba.conf record typehostnossl to prevent SSL connections (Jon Jensen)

In prior releases, there was no way to prevent SSL connections if both the client and server sup-
ported SSL. This option allows that capability.

• Remove parametergeqo_random_seed (Tom)

• Add server parameterregex_flavor to control regular expression processing (Tom)

• Makepg_ctl better handle nonstandard ports (Greg)

E.8.3.4. Query Changes

• New SQL-standard information schema (Peter)

• Add read-only transactions (Peter)

• Print key name and value in foreign-key violation messages (Dmitry Tkach)

• Allow users to see their own queries inpg_stat_activity (Kevin Brown)

In prior releases, only the superuser could see query strings usingpg_stat_activity . Now or-
dinary users can see their own query strings.

• Fix aggregates in subqueries to match SQL standard (Tom)

The SQL standard says that an aggregate function appearing within a nested subquery belongs to
the outer query if its argument contains only outer-query variables. Prior PostgreSQL releases did
not handle this fine point correctly.

• Add option to prevent auto-addition of tables referenced in query (Nigel J. Andrews)

By default, tables mentioned in the query are automatically added to theFROMclause if they are
not already there. This is compatible with historic POSTGRES behavior but is contrary to the SQL
standard. This option allows selecting standard-compatible behavior.

1158

Appendix E. Release Notes

• Allow UPDATE ... SET col = DEFAULT (Rod)

This allowsUPDATEto set a column to its declared default value.

• Allow expressions to be used inLIMIT /OFFSET(Tom)

In prior releases,LIMIT /OFFSETcould only use constants, not expressions.

• ImplementCREATE TABLE AS EXECUTE(Neil, Peter)

E.8.3.5. Object Manipulation Changes

• MakeCREATE SEQUENCEgrammar more conforming to SQL:2003 (Neil)

• Add statement-level triggers (Neil)

While this allows a trigger to fire at the end of a statement, it does not allow the trigger to access
all rows modified by the statement. This capability is planned for a future release.

• Add check constraints for domains (Rod)

This greatly increases the usefulness of domains by allowing them to use check constraints.

• Add ALTER DOMAIN(Rod)

This allows manipulation of existing domains.

• Fix several zero-column table bugs (Tom)

PostgreSQL supports zero-column tables. This fixes various bugs that occur when using such tables.

• HaveALTER TABLE ... ADD PRIMARY KEYadd not-null constraint (Rod)

In prior releases,ALTER TABLE ... ADD PRIMARY would add a unique index, but not a not-null
constraint. That is fixed in this release.

• Add ALTER TABLE ... WITHOUT OIDS (Rod)

This allows control over whether new and updated rows will have an OID column. This is most
useful for saving storage space.

• Add ALTER SEQUENCEto modify minimum, maximum, increment, cache, cycle values (Rod)

• Add ALTER TABLE ... CLUSTER ON(Alvaro Herrera)

This command is used bypg_dump to record the cluster column for each table previously clustered.
This information is used by database-wide cluster to cluster all previously clustered tables.

• Improve automatic type casting for domains (Rod, Tom)

• Allow dollar signs in identifiers, except as first character (Tom)

1159

Appendix E. Release Notes

• Disallow dollar signs in operator names, sox=$1 works (Tom)

• Allow copying table schema usingLIKE subtable , also SQL:2003 featureINCLUDING

DEFAULTS(Rod)

• Add WITH GRANT OPTIONclause toGRANT(Peter)

This enabledGRANTto give other users the ability to grant privileges on a object.

E.8.3.6. Utility Command Changes

• Add ON COMMITclause toCREATE TABLEfor temporary tables (Gavin)

This adds the ability for a table to be dropped or all rows deleted on transaction commit.

• Allow cursors outside transactions usingWITH HOLD(Neil)

In previous releases, cursors were removed at the end of the transaction that created them. Cursors
can now be created with theWITH HOLDoption, which allows them to continue to be accessed after
the creating transaction has committed.

• FETCH 0andMOVE 0 now do nothing (Bruce)

In previous releases,FETCH 0fetched all remaining rows, andMOVE 0moved to the end of the
cursor.

• CauseFETCHandMOVEto return the number of rows fetched/moved, or zero if at the beginning/end
of cursor, per SQL standard (Bruce)

In prior releases, the row count returned byFETCHandMOVEdid not accurately reflect the number
of rows processed.

• Properly handleSCROLLwith cursors, or report an error (Neil)

Allowing random access (both forward and backward scrolling) to some kinds of queries cannot
be done without some additional work. IfSCROLLis specified when the cursor is created, this
additional work will be performed. Furthermore, if the cursor has been created withNO SCROLL,
no random access is allowed.

• Implement SQL-compatible optionsFIRST , LAST, ABSOLUTEn, RELATIVE n for FETCHand
MOVE(Tom)

• Allow EXPLAIN on DECLARE CURSOR(Tom)

• Allow CLUSTERto use index marked as pre-clustered by default (Alvaro Herrera)

• Allow CLUSTERto cluster all tables (Alvaro Herrera)

This allows all previously clustered tables in a database to be reclustered with a single command.

• PreventCLUSTERon partial indexes (Tom)

1160

Appendix E. Release Notes

• Allow DOS and Mac line-endings inCOPYfiles (Bruce)

• Disallow literal carriage return as a data value, backslash-carriage-return and\r are still allowed
(Bruce)

• COPYchanges (binary,\.) (Tom)

• Recover fromCOPYfailure cleanly (Tom)

• Prevent possible memory leaks inCOPY(Tom)

• MakeTRUNCATEtransaction-safe (Rod)

TRUNCATEcan now be used inside a transaction. If the transaction aborts, the changes made by the
TRUNCATEare automatically rolled back.

• Allow prepare/bind of utility commands likeFETCHandEXPLAIN (Tom)

• Add EXPLAIN EXECUTE(Neil)

• ImproveVACUUMperformance on indexes by reducing WAL traffic (Tom)

• Functional indexes have been generalized into indexes on expressions (Tom)

In prior releases, functional indexes only supported a simple function applied to one or more col-
umn names. This release allows any type of scalar expression.

• HaveSHOW TRANSACTION ISOLATIONmatch input toSET TRANSACTION ISOLATION(Tom)

• HaveCOMMENT ON DATABASEon nonlocal database generate a warning, rather than an error (Rod)

Database comments are stored in database-local tables so comments on a database have to be stored
in each database.

• Improve reliability ofLISTEN /NOTIFY (Tom)

• Allow REINDEXto reliably reindex nonshared system catalog indexes (Tom)

This allows system tables to be reindexed without the requirement of a standalone session, which
was necessary in previous releases. The only tables that now require a standalone session for rein-
dexing are the global system tablespg_database , pg_shadow , andpg_group .

E.8.3.7. Data Type and Function Changes

• New server parameterextra_float_digits to control precision display of floating-point num-
bers (Pedro Ferreira, Tom)

This controls output precision which was causing regression testing problems.

• Allow +1300 as a numeric time-zone specifier, for FJST (Tom)

• Remove rarely used functionsoidrand , oidsrand , anduserfntest functions (Neil)

• Add md5() function to main server, already incontrib/pgcrypto (Joe)

An MD5 function was frequently requested. For more complex encryption capabilities, use
contrib/pgcrypto .

1161

Appendix E. Release Notes

• Increase date range oftimestamp (John Cochran)

• ChangeEXTRACT(EPOCH FROM timestamp)sotimestamp without time zone is assumed
to be in local time, not GMT (Tom)

• Trap division by zero in case the operating system doesn’t prevent it (Tom)

• Change thenumeric data type internally to base 10000 (Tom)

• New hostmask() function (Greg Wickham)

• Fixes forto_char() andto_timestamp() (Karel)

• Allow functions that can take any argument data type and return any data type, usinganyelement

andanyarray (Joe)

This allows the creation of functions that can work with any data type.

• Arrays may now be specified asARRAY[1,2,3] , ARRAY[[’a’,’b’],[’c’,’d’]] , or
ARRAY[ARRAY[ARRAY[2]]] (Joe)

• Allow proper comparisons for arrays, includingORDER BYandDISTINCT support (Joe)

• Allow indexes on array columns (Joe)

• Allow array concatenation with|| (Joe)

• Allow WHEREqualificationexpr op ANY/SOME/ALL (array_expr) (Joe)

This allows arrays to behave like a list of values, for purposes likeSELECT * FROM tab WHERE

col IN (array_val) .

• New array functions array_append , array_cat , array_lower , array_prepend ,
array_to_string , array_upper , string_to_array (Joe)

• Allow user defined aggregates to use polymorphic functions (Joe)

• Allow assignments to empty arrays (Joe)

• Allow 60 in seconds fields oftime , timestamp , andinterval input values (Tom)

Sixty-second values are needed for leap seconds.

• Allow cidr data type to be cast totext (Tom)

• Disallow invalid time zone names in SET TIMEZONE

• Trim trailing spaces whenchar is cast tovarchar or text (Tom)

• Make float(p) measure the precisionp in binary digits, not decimal digits (Tom)

• Add IPv6 support to theinet andcidr data types (Michael Graff)

• Add family() function to report whether address is IPv4 or IPv6 (Michael Graff)

• HaveSHOW datestyle generate output similar to that used bySET datestyle (Tom)

• MakeEXTRACT(TIMEZONE)andSET/SHOW TIME ZONEfollow the SQL convention for the sign
of time zone offsets, i.e., positive is east from UTC (Tom)

• Fix date_trunc(’quarter’, ...) (Böjthe Zoltán)

Prior releases returned an incorrect value for this function call.

1162

Appendix E. Release Notes

• Make initcap() more compatible with Oracle (Mike Nolan)

initcap() now uppercases a letter appearing after any non-alphanumeric character, rather than
only after whitespace.

• Allow only datestyle field order for date values not in ISO-8601 format (Greg)

• Add newdatestyle valuesMDY, DMY, andYMDto set input field order; honorUSandEuropean

for backward compatibility (Tom)

• String literals like’now’ or ’today’ will no longer work as a column default. Use functions such
asnow() , current_timestamp instead. (change required for prepared statements) (Tom)

• Treat NaN as larger than any other value inmin() /max() (Tom)

NaN was already sorted after ordinary numeric values for most purposes, butmin() andmax()

didn’t get this right.

• Prevent interval from suppressing:00 seconds display

• New functionspg_get_triggerdef(prettyprint) and pg_conversion_is_visible()

(Christopher)

• Allow time to be specified as040506 or 0405 (Tom)

• Input date order must now beYYYY-MM-DD(with 4-digit year) or matchdatestyle

• Makepg_get_constraintdef support unique, primary-key, and check constraints (Christopher)

E.8.3.8. Server-Side Language Changes

• Prevent PL/pgSQL crash whenRETURN NEXTis used on a zero-row record variable (Tom)

• Make PL/Python’sspi_execute interface handle null values properly (Andrew Bosma)

• Allow PL/pgSQL to declare variables of composite types without%ROWTYPE(Tom)

• Fix PL/Python’s_quote() function to handle big integers

• Make PL/Python an untrusted language, now calledplpythonu (Kevin Jacobs, Tom)

The Python language no longer supports a restricted execution environment, so the trusted version
of PL/Python was removed. If this situation changes, a version of PL/Python that can be used by
non-superusers will be readded.

• Allow polymorphic PL/pgSQL functions (Joe, Tom)

• Allow polymorphic SQL functions (Joe)

• Improved compiled function caching mechanism in PL/pgSQL with full support for polymorphism
(Joe)

• Add new parameter$0 in PL/pgSQL representing the function’s actual return type (Joe)

• Allow PL/Tcl and PL/Python to use the same trigger on multiple tables (Tom)

• Fixed PL/Tcl’sspi_prepare to accept fully qualified type names in the parameter type list (Jan)

1163

Appendix E. Release Notes

E.8.3.9. psql Changes

• Add \pset pager always to always use pager (Greg)

This forces the pager to be used even if the number of rows is less than the screen height. This is
valuable for rows that wrap across several screen rows.

• Improve tab completion (Rod, Ross Reedstrom, Ian Barwick)

• Reorder\? help into groupings (Harald Armin Massa, Bruce)

• Add backslash commands for listing schemas, casts, and conversions (Christopher)

• \encoding now changes based on the server parameterclient_encoding (Tom)

In previous versions,\encoding was not aware of encoding changes made usingSET

client_encoding .

• Save editor buffer into readline history (Ross)

When\e is used to edit a query, the result is saved in the readline history for retrieval using the up
arrow.

• Improve\d display (Christopher)

• Enhance HTML mode to be more standards-conforming (Greg)

• New \set AUTOCOMMIT off capability (Tom)

This takes the place of the removed server parameterautocommit .

• New \set VERBOSITY to control error detail (Tom)

This controls the new error reporting details.

• New prompt escape sequence%xto show transaction status (Tom)

• Long options for psql are now available on all platforms

E.8.3.10. pg_dump Changes

• Multiple pg_dump fixes, including tar format and large objects

• Allow pg_dump to dump specific schemas (Neil)

• Make pg_dump preserve column storage characteristics (Christopher)

This preservesALTER TABLE ... SET STORAGEinformation.

• Make pg_dump preserveCLUSTERcharacteristics (Christopher)

• Have pg_dumpall useGRANT/REVOKEto dump database-level privleges (Tom)

• Allow pg_dumpall to support the options-a , -s , -x of pg_dump (Tom)

• Prevent pg_dump from lowercasing identifiers specified on the command line (Tom)

1164

Appendix E. Release Notes

• pg_dump options--use-set-session-authorization and--no-reconnect now do noth-
ing, all dumps useSET SESSION AUTHORIZATION

pg_dump no longer reconnects to switch users, but instead always usesSET SESSION

AUTHORIZATION. This will reduce password prompting during restores.

• Long options for pg_dump are now available on all platforms

PostgreSQL now includes its own long-option processing routines.

E.8.3.11. libpq Changes

• Add functionPQfreemem for freeing memory on Windows, suggested forNOTIFY (Bruce)

Windows requires that memory allocated in a library be freed by a function in the same library,
hencefree() doesn’t work for freeing memory allocated by libpq.PQfreemem is the proper way
to free libpq memory, especially on Windows, and is recommended for other platforms as well.

• Document service capability, and add sample file (Bruce)

This allows clients to look up connection information in a central file on the client machine.

• MakePQsetdbLogin have the same defaults asPQconnectdb (Tom)

• Allow libpq to cleanly fail when result sets are too large (Tom)

• Improve performance of functionPQunescapeBytea (Ben Lamb)

• Allow thread-safe libpq withconfigure option --enable-thread-safety (Lee Kindness,
Philip Yarra)

• Allow function pqInternalNotice to accept a format string and arguments instead of just a
preformatted message (Tom, Sean Chittenden)

• Control SSL negotiation withsslmode valuesdisable , allow , prefer , and require (Jon
Jensen)

• Allow new error codes and levels of text (Tom)

• Allow access to the underlying table and column of a query result (Tom)

This is helpful for query-builder applications that want to know the underlying table and column
names associated with a specific result set.

• Allow access to the current transaction status (Tom)

• Add ability to pass binary data directly to the server (Tom)

• Add function PQexecPrepared and PQsendQueryPrepared functions which perform
bind/execute of previously prepared statements (Tom)

1165

Appendix E. Release Notes

E.8.3.12. JDBC Changes

• Allow setNull on updateable result sets

• Allow executeBatch on a prepared statement (Barry)

• Support SSL connections (Barry)

• Handle schema names in result sets (Paul Sorenson)

• Add refcursor support (Nic Ferrier)

E.8.3.13. Miscellaneous Interface Changes

• Prevent possible memory leak or core dump during libpgtcl shutdown (Tom)

• Add Informix compatibility to ECPG (Michael)

This allows ECPG to process embedded C programs that were written using certain Informix ex-
tensions.

• Add typedecimal to ECPG that is fixed length, for Informix (Michael)

• Allow thread-safe embedded SQL programs withconfigure option--enable-thread-safety

(Lee Kindness, Bruce)

This allows multiple threads to access the database at the same time.

• Moved Python client PyGreSQL to http://www.pygresql.org (Marc)

E.8.3.14. Source Code Changes

• Prevent need for separate platform geometry regression result files (Tom)

• Improved PPC locking primitive (Reinhard Max)

• New functionpalloc0 to allocate and clear memory (Bruce)

• Fix locking code for s390x CPU (64-bit) (Tom)

• Allow OpenBSD to use local ident credentials (William Ahern)

• Make query plan trees read-only to executor (Tom)

• Add Darwin startup scripts (David Wheeler)

• Allow libpq to compile with Borland C++ compiler (Lester Godwin, Karl Waclawek)

• Use our own version ofgetopt_long() if needed (Peter)

• Convert administration scripts to C (Peter)

• Bison >= 1.85 is now required to build the PostgreSQL grammar, if building from CVS

• Merge documentation into one book (Peter)

• Add Windows compatibility functions (Bruce)

• Allow client interfaces to compile under MinGW (Bruce)

• New ereport() function for error reporting (Tom)

1166

Appendix E. Release Notes

• Support Intel compiler on Linux (Peter)

• Improve Linux startup scripts (Slawomir Sudnik, Darko Prenosil)

• Add support for AMD Opteron and Itanium (Jeffrey W. Baker, Bruce)

• Remove--enable-recode option fromconfigure

This was no longer needed now that we haveCREATE CONVERSION.

• Generate a compile error if spinlock code is not found (Bruce)

Platforms without spinlock code will now fail to compile, rather than silently using semaphores.
This failure can be disabled with a newconfigure option.

E.8.3.15. Contrib Changes

• Change dbmirror license to BSD

• Improve earthdistance (Bruno Wolff III)

• Portability improvements to pgcrypto (Marko Kreen)

• Prevent crash in xml (John Gray, Michael Richards)

• Update oracle

• Update mysql

• Update cube (Bruno Wolff III)

• Update earthdistance to use cube (Bruno Wolff III)

• Update btree_gist (Oleg)

• New tsearch2 full-text search module (Oleg, Teodor)

• Add hash-based crosstab function to tablefuncs (Joe)

• Add serial column to orderconnectby() siblings in tablefuncs (Nabil Sayegh,Joe)

• Add named persistent connections to dblink (Shridhar Daithanka)

• New pg_autovacuum allows automaticVACUUM(Matthew T. O’Connor)

• Make pgbench honor environment variablesPGHOST, PGPORT, PGUSER(Tatsuo)

• Improve intarray (Teodor Sigaev)

• Improve pgstattuple (Rod)

• Fix bug inmetaphone() in fuzzystrmatch

• Improve adddepend (Rod)

• Update spi/timetravel (Böjthe Zoltán)

• Fix dbase-s option and improve non-ASCII handling (Thomas Behr, Márcio Smiderle)

• Remove array module because features now included by default (Joe)

1167

Appendix E. Release Notes

E.9. Release 7.3.8

Release date: 2004-10-22

This release contains a variety of fixes from 7.3.7.

E.9.1. Migration to version 7.3.8

A dump/restore is not required for those running 7.3.X.

E.9.2. Changes

• Repair possible failure to update hint bits on disk

Under rare circumstances this oversight could lead to “could not access transaction status” failures,
which qualifies it as a potential-data-loss bug.

• Ensure that hashed outer join does not miss tuples

Very large left joins using a hash join plan could fail to output unmatched left-side rows given just
the right data distribution.

• Disallow running pg_ctl as root

This is to guard against any possible security issues.

• Avoid using temp files in /tmp in make_oidjoins_check

This has been reported as a security issue, though it’s hardly worthy of concern since there is no
reason for non-developers to use this script anyway.

E.10. Release 7.3.7

Release date: 2004-08-16

This release contains one critical fix over 7.3.6, and some minor items.

E.10.1. Migration to version 7.3.7

A dump/restore is not required for those running 7.3.X.

1168

Appendix E. Release Notes

E.10.2. Changes

• Prevent possible loss of committed transactions during crash

Due to insufficient interlocking between transaction commit and checkpointing, it was possible
for transactions committed just before the most recent checkpoint to be lost, in whole or in part,
following a database crash and restart. This is a serious bug that has existed since PostgreSQL 7.1.

• Remove asymmetrical word processing in tsearch (Teodor)

• Properly schema-qualify function names when pg_dump’ing a CAST

E.11. Release 7.3.6

Release date: 2004-03-02

This release contains a variety of fixes from 7.3.5.

E.11.1. Migration to version 7.3.6

A dump/restore isnot required for those running 7.3.*.

E.11.2. Changes

• Revert erroneous changes in rule permissions checking

A patch applied in 7.3.3 to fix a corner case in rule permissions checks turns out to have disabled
rule-related permissions checks in many not-so-corner cases. This would for example allow users
to insert into views they weren’t supposed to have permission to insert into. We have therefore
reverted the 7.3.3 patch. The original bug will be fixed in 8.0.

• Repair incorrect order of operations in GetNewTransactionId()

This bug could result in failure under out-of-disk-space conditions, including inability to restart
even after disk space is freed.

• Ensure configure selects -fno-strict-aliasing even when an external value for CFLAGS is supplied

On some platforms, building with -fstrict-aliasing causes bugs.

• Make pg_restore handle 64-bit off_t correctly

This bug prevented proper restoration from archive files exceeding 4Gb.

• Make contrib/dblink not assume that local and remote type OIDs match (Joe)

1169

Appendix E. Release Notes

• Quote connectby()’s start_with argument properly (Joe)

• Don’t crash when a rowtype argument to a plpgsql function is NULL

• Avoid generating invalid character encoding sequences in corner cases when planning LIKE oper-
ations

• Ensure text_position() cannot scan past end of source string in multibyte cases (Korea PostgreSQL
Users’ Group)

• Fix index optimization and selectivity estimates for LIKE operations on bytea columns (Joe)

E.12. Release 7.3.5

Release date: 2003-12-03

This has a variety of fixes from 7.3.4.

E.12.1. Migration to version 7.3.5

A dump/restore isnot required for those running 7.3.*.

E.12.2. Changes

• Force zero_damaged_pages to be on during recovery from WAL

• Prevent some obscure cases of “variable not in subplan target lists”

• Force stats processes to detach from shared memory, ensuring cleaner shutdown

• Make PQescapeBytea and byteaout consistent with each other (Joe)

• Added missing SPI_finish() calls to dblink’s get_tuple_of_interest() (Joe)

• Fix for possible foreign key violation when rule rewrites INSERT (Jan)

• Support qualified type names in PL/Tcl’s spi_prepare command (Jan)

• Make pg_dump handle a procedural language handler located in pg_catalog

• Make pg_dump handle cases where a custom opclass is in another schema

• Make pg_dump dump binary-compatible casts correctly (Jan)

• Fix insertion of expressions containing subqueries into rule bodies

• Fix incorrect argument processing in clusterdb script (Anand Ranganathan)

• Fix problems with dropped columns in plpython triggers

• Repair problems with to_char() reading past end of its input string (Karel)

• Fix GB18030 mapping errors (Tatsuo)

• Fix several problems with SSL error handling and asynchronous SSL I/O

• Remove ability to bind a list of values to a single parameter in JDBC (prevents possible SQL-
injection attacks)

1170

Appendix E. Release Notes

• Fix some errors in HAVE_INT64_TIMESTAMP code paths

• Fix corner case for btree search in parallel with first root page split

E.13. Release 7.3.4

Release date: 2003-07-24

This has a variety of fixes from 7.3.3.

E.13.1. Migration to version 7.3.4

A dump/restore isnot required for those running 7.3.*.

E.13.2. Changes

• Repair breakage in timestamp-to-date conversion for dates before 2000

• Prevent rare possibility of server startup failure (Tom)

• Fix bugs in interval-to-time conversion (Tom)

• Add constraint names in a few places in pg_dump (Rod)

• Improve performance of functions with many parameters (Tom)

• Fix to_ascii() buffer overruns (Tom)

• Prevent restore of database comments from throwing an error (Tom)

• Work around buggy strxfrm() present in some Solaris releases (Tom)

• Properly escape jdbc setObject() strings to improve security (Barry)

E.14. Release 7.3.3

Release date: 2003-05-22

This release contains a variety of fixes for version 7.3.2.

E.14.1. Migration to version 7.3.3

A dump/restore isnot required for those running version 7.3.*.

1171

Appendix E. Release Notes

E.14.2. Changes

• Repair sometimes-incorrect computation of StartUpID after a crash

• Avoid slowness with lots of deferred triggers in one transaction (Stephan)

• Don’t lock referenced row whenUPDATEdoesn’t change foreign key’s value (Jan)

• Use-fPIC not -fpic on Sparc (Tom Callaway)

• Repair lack of schema-awareness in contrib/reindexdb

• Fix contrib/intarray error for zero-element result array (Teodor)

• Ensure createuser script will exit on control-C (Oliver)

• Fix errors when the type of a dropped column has itself been dropped

• CHECKPOINTdoes not cause database panic on failure in noncritical steps

• Accept 60 in seconds fields of timestamp, time, interval input values

• Issue notice, not error, ifTIMESTAMP, TIME, or INTERVAL precision too large

• Fix abstime-to-time cast function (fix is not applied unless you initdb)

• Fix pg_proc entry fortimestampt_izone (fix is not applied unless you initdb)

• MakeEXTRACT(EPOCH FROM timestamp without time zone) treat input as local time

• ’now’::timestamptz gave wrong answer if timezone changed earlier in transaction

• HAVE_INT64_TIMESTAMPcode for time with timezone overwrote its input

• AcceptGLOBAL TEMP/TEMPORARYas a synonym forTEMPORARY

• Avoid improper schema-privilege-check failure in foreign-key triggers

• Fix bugs in foreign-key triggers forSET DEFAULTaction

• Fix incorrect time-qual check in row fetch forUPDATEandDELETEtriggers

• Foreign-key clauses were parsed but ignored inALTER TABLE ADD COLUMN

• Fix createlang script breakage for case where handler function already exists

• Fix misbehavior on zero-column tables in pg_dump, COPY, ANALYZE, other places

• Fix misbehavior offunc_error() on type names containing ’%’

• Fix misbehavior ofreplace() on strings containing ’%’

• Regular-expression patterns containing certain multibyte characters failed

• Account correctly forNULLs in more cases in join size estimation

• Avoid conflict with system definition ofisblank() function or macro

• Fix failure to convert large code point values in EUC_TW conversions (Tatsuo)

• Fix error recovery forSSL_read /SSL_write calls

• Don’t do early constant-folding of type coercion expressions

• Validate page header fields immediately after reading in any page

• Repair incorrect check for ungrouped variables in unnamed joins

• Fix buffer overrun into_ascii (Guido Notari)

• contrib/ltree fixes (Teodor)

• Fix core dump in deadlock detection on machines where char is unsigned

1172

Appendix E. Release Notes

• Avoid running out of buffers in many-way indexscan (bug introduced in 7.3)

• Fix planner’s selectivity estimation functions to handle domains properly

• Fix dbmirror memory-allocation bug (Steven Singer)

• Prevent infinite loop inln(numeric) due to roundoff error

• GROUP BYgot confused if there were multiple equal GROUP BY items

• Fix bad plan when inheritedUPDATE/DELETEreferences another inherited table

• Prevent clustering on incomplete (partial or non-NULL-storing) indexes

• Service shutdown request at proper time if it arrives while still starting up

• Fix left-links in temporary indexes (could make backwards scans miss entries)

• Fix incorrect handling of client_encoding setting in postgresql.conf (Tatsuo)

• Fix failure to respond topg_ctl stop -m fast after Async_NotifyHandler runs

• Fix SPI for case where rule contains multiple statements of the same type

• Fix problem with checking for wrong type of access privilege in rule query

• Fix problem withEXCEPTin CREATE RULE

• Prevent problem with dropping temp tables having serial columns

• Fix replace_vars_with_subplan_refs failure in complex views

• Fix regexp slowness in single-byte encodings (Tatsuo)

• Allow qualified type names inCREATE CASTand DROP CAST

• AcceptSETOF type[] , which formerly had to be writtenSETOF _type

• Fix pg_dump core dump in some cases with procedural languages

• Force ISO datestyle in pg_dump output, for portability (Oliver)

• pg_dump failed to handle error return fromlo_read (Oleg Drokin)

• pg_dumpall failed with groups having no members (Nick Eskelinen)

• pg_dumpall failed to recognize --globals-only switch

• pg_restore failed to restore blobs if -X disable-triggers is specified

• Repair intrafunction memory leak in plpgsql

• pltcl’s elog command dumped core if given wrong parameters (Ian Harding)

• plpython used wrong value ofatttypmod (Brad McLean)

• Fix improper quoting of boolean values in Python interface (D’Arcy)

• AddedaddDataType() method to PGConnection interface for JDBC

• Fixed various problems with updateable ResultSets for JDBC (Shawn Green)

• Fixed various problems with DatabaseMetaData for JDBC (Kris Jurka, Peter Royal)

• Fixed problem with parsing table ACLs in JDBC

• Better error message for character set conversion problems in JDBC

1173

Appendix E. Release Notes

E.15. Release 7.3.2

Release date: 2003-02-04

This release contains a variety of fixes for version 7.3.1.

E.15.1. Migration to version 7.3.2

A dump/restore isnot required for those running version 7.3.*.

E.15.2. Changes

• Restore creation of OID column in CREATE TABLE AS / SELECT INTO

• Fix pg_dump core dump when dumping views having comments

• Dump DEFERRABLE/INITIALLY DEFERRED constraints properly

• Fix UPDATE when child table’s column numbering differs from parent

• Increase default value of max_fsm_relations

• Fix problem when fetching backwards in a cursor for a single-row query

• Make backward fetch work properly with cursor on SELECT DISTINCT query

• Fix problems with loading pg_dump files containing contrib/lo usage

• Fix problem with all-numeric user names

• Fix possible memory leak and core dump during disconnect in libpgtcl

• Make plpython’s spi_execute command handle nulls properly (Andrew Bosma)

• Adjust plpython error reporting so that its regression test passes again

• Work with bison 1.875

• Handle mixed-case names properly in plpgsql’s %type (Neil)

• Fix core dump in pltcl when executing a query rewritten by a rule

• Repair array subscript overruns (per report from Yichen Xie)

• Reduce MAX_TIME_PRECISION from 13 to 10 in floating-point case

• Correctly case-fold variable names in per-database and per-user settings

• Fix coredump in plpgsql’s RETURN NEXT when SELECT into record returns no rows

• Fix outdated use of pg_type.typprtlen in python client interface

• Correctly handle fractional seconds in timestamps in JDBC driver

• Improve performance of getImportedKeys() in JDBC

• Make shared-library symlinks work standardly on HPUX (Giles)

• Repair inconsistent rounding behavior for timestamp, time, interval

• SSL negotiation fixes (Nathan Mueller)

• Make libpq’s ~/.pgpass feature work when connecting with PQconnectDB

• Update my2pg, ora2pg

1174

Appendix E. Release Notes

• Translation updates

• Add casts between types lo and oid in contrib/lo

• fastpath code now checks for privilege to call function

E.16. Release 7.3.1

Release date: 2002-12-18

This release contains a variety of fixes for version 7.3.

E.16.1. Migration to version 7.3.1

A dump/restore isnot required for those running version 7.3. However, it should be noted that the
main PostgreSQL interface library, libpq, has a new major version number for this release, which
may require recompilation of client code in certain cases.

E.16.2. Changes

• Fix a core dump of COPY TO when client/server encodings don’t match (Tom)

• Allow pg_dump to work with pre-7.2 servers (Philip)

• contrib/adddepend fixes (Tom)

• Fix problem with deletion of per-user/per-database config settings (Tom)

• contrib/vacuumlo fix (Tom)

• Allow ’password’ encryption even when pg_shadow contains MD5 passwords (Bruce)

• contrib/dbmirror fix (Steven Singer)

• Optimizer fixes (Tom)

• contrib/tsearch fixes (Teodor Sigaev, Magnus)

• Allow locale names to be mixed case (Nicolai Tufar)

• Increment libpq library’s major version number (Bruce)

• pg_hba.conf error reporting fixes (Bruce, Neil)

• Add SCO Openserver 5.0.4 as a supported platform (Bruce)

• Prevent EXPLAIN from crashing server (Tom)

• SSL fixes (Nathan Mueller)

• Prevent composite column creation via ALTER TABLE (Tom)

1175

Appendix E. Release Notes

E.17. Release 7.3

Release date: 2002-11-27

E.17.1. Overview

Major changes in this release:

Schemas

Schemas allow users to create objects in separate namespaces, so two people or applications can
have tables with the same name. There is also a public schema for shared tables. Table/index
creation can be restricted by removing privileges on the public schema.

Drop Column

PostgreSQL now supports theALTER TABLE ... DROP COLUMNfunctionality.

Table Functions

Functions returning multiple rows and/or multiple columns are now much easier to use than
before. You can call such a “table function” in theSELECT FROMclause, treating its output like a
table. Also, PL/pgSQL functions can now return sets.

Prepared Queries

PostgreSQL now supports prepared queries, for improved performance.

Dependency Tracking

PostgreSQL now records object dependencies, which allows improvements in many areas.DROP

statements now take eitherCASCADEor RESTRICTto control whether dependent objects are also
dropped.

Privileges

Functions and procedural languages now have privileges, and functions can be defined to run
with the privileges of their creator.

Internationalization

Both multibyte and locale support are now always enabled.

Logging

A variety of logging options have been enhanced.

Interfaces

A large number of interfaces have been moved to http://gborg.postgresql.org where they can be
developed and released independently.

Functions/Identifiers

By default, functions can now take up to 32 parameters, and identifiers can be up to 63 bytes
long. Also,OPAQUEis now deprecated: there are specific “pseudo-datatypes” to represent each
of the former meanings ofOPAQUEin function argument and result types.

1176

Appendix E. Release Notes

E.17.2. Migration to version 7.3

A dump/restore using pg_dump is required for those wishing to migrate data from any
previous release. If your application examines the system catalogs, additional changes
will be required due to the introduction of schemas in 7.3; for more information, see:
http://developer.postgresql.org/~momjian/upgrade_tips_7.36.

Observe the following incompatibilities:

• Pre-6.3 clients are no longer supported.

• pg_hba.conf now has a column for the user name and additional features. Existing files need to
be adjusted.

• Severalpostgresql.conf logging parameters have been renamed.

• LIMIT #,# has been disabled; useLIMIT # OFFSET # .

• INSERT statements with column lists must specify a value for each specified column. For exam-
ple, INSERT INTO tab (col1, col2) VALUES (’val1’) is now invalid. It’s still allowed to
supply fewer columns than expected if theINSERT does not have a column list.

• serial columns are no longer automaticallyUNIQUE; thus, an index will not automatically be
created.

• A SETcommand inside an aborted transaction is now rolled back.

• COPYno longer considers missing trailing columns to be null. All columns need to be specified.
(However, one may achieve a similar effect by specifying a column list in theCOPYcommand.)

• The data typetimestamp is now equivalent totimestamp without time zone , instead of
timestamp with time zone .

• Pre-7.3 databases loaded into 7.3 will not have the new object dependencies forserial columns,
unique constraints, and foreign keys. See the directorycontrib/adddepend/ for a detailed de-
scription and a script that will add such dependencies.

• An empty string (”) is no longer allowed as the input into an integer field. Formerly, it was silently
interpreted as 0.

E.17.3. Changes

E.17.3.1. Server Operation

• Add pg_locks view to show locks (Neil)

• Security fixes for password negotiation memory allocation (Neil)

• Remove support for version 0 FE/BE protocol (PostgreSQL 6.2 and earlier) (Tom)

• Reserve the last few backend slots for superusers, add parameter superuser_reserved_connections
to control this (Nigel J. Andrews)

6. http://developer.postgresql.org/~momjian/upgrade_tips_7.3

1177

Appendix E. Release Notes

E.17.3.2. Performance

• Improve startup by calling localtime() only once (Tom)

• Cache system catalog information in flat files for faster startup (Tom)

• Improve caching of index information (Tom)

• Optimizer improvements (Tom, Fernando Nasser)

• Catalog caches now store failed lookups (Tom)

• Hash function improvements (Neil)

• Improve performance of query tokenization and network handling (Peter)

• Speed improvement for large object restore (Mario Weilguni)

• Mark expired index entries on first lookup, saving later heap fetches (Tom)

• Avoid excessive NULL bitmap padding (Manfred Koizar)

• Add BSD-licensed qsort() for Solaris, for performance (Bruce)

• Reduce per-row overhead by four bytes (Manfred Koizar)

• Fix GEQO optimizer bug (Neil Conway)

• Make WITHOUT OID actually save four bytes per row (Manfred Koizar)

• Add default_statistics_target variable to specify ANALYZE buckets (Neil)

• Use local buffer cache for temporary tables so no WAL overhead (Tom)

• Improve free space map performance on large tables (Stephen Marshall, Tom)

• Improved WAL write concurrency (Tom)

E.17.3.3. Privileges

• Add privileges on functions and procedural languages (Peter)

• Add OWNER to CREATE DATABASE so superusers can create databases on behalf of unprivi-
leged users (Gavin Sherry, Tom)

• Add new object privilege bits EXECUTE and USAGE (Tom)

• Add SET SESSION AUTHORIZATION DEFAULT and RESET SESSION AUTHORIZATION
(Tom)

• Allow functions to be executed with the privilege of the function owner (Peter)

E.17.3.4. Server Configuration

• Server log messages now tagged with LOG, not DEBUG (Bruce)

• Add user column to pg_hba.conf (Bruce)

• Have log_connections output two lines in log file (Tom)

• Remove debug_level from postgresql.conf, now server_min_messages (Bruce)

• New ALTER DATABASE/USER ... SET command for per-user/database initialization (Peter)

1178

Appendix E. Release Notes

• New parameters server_min_messages and client_min_messages to control which messages are
sent to the server logs or client applications (Bruce)

• Allow pg_hba.conf to specify lists of users/databases separated by commas, group names
prepended with +, and file names prepended with @ (Bruce)

• Remove secondary password file capability and pg_password utility (Bruce)

• Add variable db_user_namespace for database-local user names (Bruce)

• SSL improvements (Bear Giles)

• Make encryption of stored passwords the default (Bruce)

• Allow pg_statistics to be reset by calling pg_stat_reset() (Christopher)

• Add log_duration parameter (Bruce)

• Rename debug_print_query to log_statement (Bruce)

• Rename show_query_stats to show_statement_stats (Bruce)

• Add param log_min_error_statement to print commands to logs on error (Gavin)

E.17.3.5. Queries

• Make cursors insensitive, meaning their contents do not change (Tom)

• Disable LIMIT #,# syntax; now only LIMIT # OFFSET # supported (Bruce)

• Increase identifier length to 63 (Neil, Bruce)

• UNION fixes for merging >= 3 columns of different lengths (Tom)

• Add DEFAULT key word to INSERT, e.g., INSERT ... (..., DEFAULT, ...) (Rod)

• Allow views to have default values using ALTER COLUMN ... SET DEFAULT (Neil)

• Fail on INSERTs with column lists that don’t supply all column values, e.g., INSERT INTO tab
(col1, col2) VALUES (’val1’); (Rod)

• Fix for join aliases (Tom)

• Fix for FULL OUTER JOINs (Tom)

• Improve reporting of invalid identifier and location (Tom, Gavin)

• Fix OPEN cursor(args) (Tom)

• Allow ’ctid’ to be used in a view and currtid(viewname) (Hiroshi)

• Fix for CREATE TABLE AS with UNION (Tom)

• SQL99 syntax improvements (Thomas)

• Add statement_timeout variable to cancel queries (Bruce)

• Allow prepared queries with PREPARE/EXECUTE (Neil)

• Allow FOR UPDATE to appear after LIMIT/OFFSET (Bruce)

• Add variable autocommit (Tom, David Van Wie)

1179

Appendix E. Release Notes

E.17.3.6. Object Manipulation

• Make equals signs optional in CREATE DATABASE (Gavin Sherry)

• Make ALTER TABLE OWNER change index ownership too (Neil)

• New ALTER TABLE tabname ALTER COLUMN colname SET STORAGE controls TOAST stor-
age, compression (John Gray)

• Add schema support, CREATE/DROP SCHEMA (Tom)

• Create schema for temporary tables (Tom)

• Add variable search_path for schema search (Tom)

• Add ALTER TABLE SET/DROP NOT NULL (Christopher)

• New CREATE FUNCTION volatility levels (Tom)

• Make rule names unique only per table (Tom)

• Add ’ON tablename’ clause to DROP RULE and COMMENT ON RULE (Tom)

• Add ALTER TRIGGER RENAME (Joe)

• New current_schema() and current_schemas() inquiry functions (Tom)

• Allow functions to return multiple rows (table functions) (Joe)

• Make WITH optional in CREATE DATABASE, for consistency (Bruce)

• Add object dependency tracking (Rod, Tom)

• Add RESTRICT/CASCADE to DROP commands (Rod)

• Add ALTER TABLE DROP for non-CHECK CONSTRAINT (Rod)

• Autodestroy sequence on DROP of table with SERIAL (Rod)

• Prevent column dropping if column is used by foreign key (Rod)

• Automatically drop constraints/functions when object is dropped (Rod)

• Add CREATE/DROP OPERATOR CLASS (Bill Studenmund, Tom)

• Add ALTER TABLE DROP COLUMN (Christopher, Tom, Hiroshi)

• Prevent inherited columns from being removed or renamed (Alvaro Herrera)

• Fix foreign key constraints to not error on intermediate database states (Stephan)

• Propagate column or table renaming to foreign key constraints

• Add CREATE OR REPLACE VIEW (Gavin, Neil, Tom)

• Add CREATE OR REPLACE RULE (Gavin, Neil, Tom)

• Have rules execute alphabetically, returning more predictable values (Tom)

• Triggers are now fired in alphabetical order (Tom)

• Add /contrib/adddepend to handle pre-7.3 object dependencies (Rod)

• Allow better casting when inserting/updating values (Tom)

E.17.3.7. Utility Commands

• Have COPY TO output embedded carriage returns and newlines as \r and \n (Tom)

1180

Appendix E. Release Notes

• Allow DELIMITER in COPY FROM to be 8-bit clean (Tatsuo)

• Make pg_dump use ALTER TABLE ADD PRIMARY KEY, for performance (Neil)

• Disable brackets in multistatement rules (Bruce)

• Disable VACUUM from being called inside a function (Bruce)

• Allow dropdb and other scripts to use identifiers with spaces (Bruce)

• Restrict database comment changes to the current database

• Allow comments on operators, independent of the underlying function (Rod)

• Rollback SET commands in aborted transactions (Tom)

• EXPLAIN now outputs as a query (Tom)

• Display condition expressions and sort keys in EXPLAIN (Tom)

• Add ’SET LOCAL var = value’ to set configuration variables for a single transaction (Tom)

• Allow ANALYZE to run in a transaction (Bruce)

• Improve COPY syntax using new WITH clauses, keep backward compatibility (Bruce)

• Fix pg_dump to consistently output tags in non-ASCII dumps (Bruce)

• Make foreign key constraints clearer in dump file (Rod)

• Add COMMENT ON CONSTRAINT (Rod)

• Allow COPY TO/FROM to specify column names (Brent Verner)

• Dump UNIQUE and PRIMARY KEY constraints as ALTER TABLE (Rod)

• Have SHOW output a query result (Joe)

• Generate failure on short COPY lines rather than pad NULLs (Neil)

• Fix CLUSTER to preserve all table attributes (Alvaro Herrera)

• New pg_settings table to view/modify GUC settings (Joe)

• Add smart quoting, portability improvements to pg_dump output (Peter)

• Dump serial columns out as SERIAL (Tom)

• Enable large file support, >2G for pg_dump (Peter, Philip Warner, Bruce)

• Disallow TRUNCATE on tables that are involved in referential constraints (Rod)

• Have TRUNCATE also auto-truncate the toast table of the relation (Tom)

• Add clusterdb utility that will auto-cluster an entire database based on previous CLUSTER opera-
tions (Alvaro Herrera)

• Overhaul pg_dumpall (Peter)

• Allow REINDEX of TOAST tables (Tom)

• Implemented START TRANSACTION, per SQL99 (Neil)

• Fix rare index corruption when a page split affects bulk delete (Tom)

• Fix ALTER TABLE ... ADD COLUMN for inheritance (Alvaro Herrera)

1181

Appendix E. Release Notes

E.17.3.8. Data Types and Functions

• Fix factorial(0) to return 1 (Bruce)

• Date/time/timezone improvements (Thomas)

• Fix for array slice extraction (Tom)

• Fix extract/date_part to report proper microseconds for timestamp (Tatsuo)

• Allow text_substr() and bytea_substr() to read TOAST values more efficiently (John Gray)

• Add domain support (Rod)

• Make WITHOUT TIME ZONE the default for TIMESTAMP and TIME data types (Thomas)

• Allow alternate storage scheme of 64-bit integers for date/time types using
--enable-integer-datetimes in configure (Thomas)

• Make timezone(timestamptz) return timestamp rather than a string (Thomas)

• Allow fractional seconds in date/time types for dates prior to 1BC (Thomas)

• Limit timestamp data types to 6 decimal places of precision (Thomas)

• Change timezone conversion functions from timetz() to timezone() (Thomas)

• Add configuration variables datestyle and timezone (Tom)

• Add OVERLAY(), which allows substitution of a substring in a string (Thomas)

• Add SIMILAR TO (Thomas, Tom)

• Add regular expression SUBSTRING(string FROM pat FOR escape) (Thomas)

• Add LOCALTIME and LOCALTIMESTAMP functions (Thomas)

• Add named composite types using CREATE TYPE typename AS (column) (Joe)

• Allow composite type definition in the table alias clause (Joe)

• Add new API to simplify creation of C language table functions (Joe)

• Remove ODBC-compatible empty parentheses from calls to SQL99 functions for which these
parentheses do not match the standard (Thomas)

• Allow macaddr data type to accept 12 hex digits with no separators (Mike Wyer)

• Add CREATE/DROP CAST (Peter)

• Add IS DISTINCT FROM operator (Thomas)

• Add SQL99 TREAT() function, synonym for CAST() (Thomas)

• Add pg_backend_pid() to output backend pid (Bruce)

• Add IS OF / IS NOT OF type predicate (Thomas)

• Allow bit string constants without fully-specified length (Thomas)

• Allow conversion between 8-byte integers and bit strings (Thomas)

• Implement hex literal conversion to bit string literal (Thomas)

• Allow table functions to appear in the FROM clause (Joe)

• Increase maximum number of function parameters to 32 (Bruce)

• No longer automatically create index for SERIAL column (Tom)

• Add current_database() (Rod)

1182

Appendix E. Release Notes

• Fix cash_words() to not overflow buffer (Tom)

• Add functions replace(), split_part(), to_hex() (Joe)

• Fix LIKE for bytea as a right-hand argument (Joe)

• Prevent crashes caused by SELECT cash_out(2) (Tom)

• Fix to_char(1,’FM999.99’) to return a period (Karel)

• Fix trigger/type/language functions returning OPAQUE to return proper type (Tom)

E.17.3.9. Internationalization

• Add additional encodings: Korean (JOHAB), Thai (WIN874), Vietnamese (TCVN), Arabic
(WIN1256), Simplified Chinese (GBK), Korean (UHC) (Eiji Tokuya)

• Enable locale support by default (Peter)

• Add locale variables (Peter)

• Escape byes >= 0x7f for multibyte in PQescapeBytea/PQunescapeBytea (Tatsuo)

• Add locale awareness to regular expression character classes

• Enable multibyte support by default (Tatsuo)

• Add GB18030 multibyte support (Bill Huang)

• Add CREATE/DROP CONVERSION, allowing loadable encodings (Tatsuo, Kaori)

• Add pg_conversion table (Tatsuo)

• Add SQL99 CONVERT() function (Tatsuo)

• pg_dumpall, pg_controldata, and pg_resetxlog now national-language aware (Peter)

• New and updated translations

E.17.3.10. Server-side Languages

• Allow recursive SQL function (Peter)

• Change PL/Tcl build to use configured compiler and Makefile.shlib (Peter)

• Overhaul the PL/pgSQL FOUND variable to be more Oracle-compatible (Neil, Tom)

• Allow PL/pgSQL to handle quoted identifiers (Tom)

• Allow set-returning PL/pgSQL functions (Neil)

• Make PL/pgSQL schema-aware (Joe)

• Remove some memory leaks (Nigel J. Andrews, Tom)

E.17.3.11. psql

• Don’t lowercase psql \connect database name for 7.2.0 compatibility (Tom)

• Add psql \timing to time user queries (Greg Sabino Mullane)

• Have psql \d show index information (Greg Sabino Mullane)

• New psql \dD shows domains (Jonathan Eisler)

1183

Appendix E. Release Notes

• Allow psql to show rules on views (Paul ?)

• Fix for psql variable substitution (Tom)

• Allow psql \d to show temporary table structure (Tom)

• Allow psql \d to show foreign keys (Rod)

• Fix \? to honor \pset pager (Bruce)

• Have psql reports its version number on startup (Tom)

• Allow \copy to specify column names (Tom)

E.17.3.12. libpq

• Add ~/.pgpass to store host/user password combinations (Alvaro Herrera)

• Add PQunescapeBytea() function to libpq (Patrick Welche)

• Fix for sending large queries over non-blocking connections (Bernhard Herzog)

• Fix for libpq using timers on Win9X (David Ford)

• Allow libpq notify to handle servers with different-length identifiers (Tom)

• Add libpq PQescapeString() and PQescapeBytea() to Windows (Bruce)

• Fix for SSL with non-blocking connections (Jack Bates)

• Add libpq connection timeout parameter (Denis A Ustimenko)

E.17.3.13. JDBC

• Allow JDBC to compile with JDK 1.4 (Dave)

• Add JDBC 3 support (Barry)

• Allows JDBC to set loglevel by adding ?loglevel=X to the connection URL (Barry)

• Add Driver.info() message that prints out the version number (Barry)

• Add updateable result sets (Raghu Nidagal, Dave)

• Add support for callable statements (Paul Bethe)

• Add query cancel capability

• Add refresh row (Dave)

• Fix MD5 encryption handling for multibyte servers (Jun Kawai)

• Add support for prepared statements (Barry)

E.17.3.14. Miscellaneous Interfaces

• Fixed ECPG bug concerning octal numbers in single quotes (Michael)

• Move src/interfaces/libpgeasy to http://gborg.postgresql.org (Marc, Bruce)

• Improve Python interface (Elliot Lee, Andrew Johnson, Greg Copeland)

• Add libpgtcl connection close event (Gerhard Hintermayer)

1184

Appendix E. Release Notes

• Move src/interfaces/libpq++ to http://gborg.postgresql.org (Marc, Bruce)

• Move src/interfaces/odbc to http://gborg.postgresql.org (Marc)

• Move src/interfaces/libpgeasy to http://gborg.postgresql.org (Marc, Bruce)

• Move src/interfaces/perl5 to http://gborg.postgresql.org (Marc, Bruce)

• Remove src/bin/pgaccess from main tree, now at http://www.pgaccess.org (Bruce)

• Add pg_on_connection_loss command to libpgtcl (Gerhard Hintermayer, Tom)

E.17.3.15. Source Code

• Fix for parallel make (Peter)

• AIX fixes for linking Tcl (Andreas Zeugswetter)

• Allow PL/Perl to build under Cygwin (Jason Tishler)

• Improve MIPS compiles (Peter, Oliver Elphick)

• Require Autoconf version 2.53 (Peter)

• Require readline and zlib by default in configure (Peter)

• Allow Solaris to use Intimate Shared Memory (ISM), for performance (Scott Brunza, P.J. Josh
Rovero)

• Always enable syslog in compile, remove --enable-syslog option (Tatsuo)

• Always enable multibyte in compile, remove --enable-multibyte option (Tatsuo)

• Always enable locale in compile, remove --enable-locale option (Peter)

• Fix for Win9x DLL creation (Magnus Naeslund)

• Fix for link() usage by WAL code on Windows, BeOS (Jason Tishler)

• Add sys/types.h to c.h, remove from main files (Peter, Bruce)

• Fix AIX hang on SMP machines (Tomoyuki Niijima)

• AIX SMP hang fix (Tomoyuki Niijima)

• Fix pre-1970 date handling on newer glibc libraries (Tom)

• Fix PowerPC SMP locking (Tom)

• Prevent gcc -ffast-math from being used (Peter, Tom)

• Bison>= 1.50 now required for developer builds

• Kerberos 5 support now builds with Heimdal (Peter)

• Add appendix in the User’s Guide which lists SQL features (Thomas)

• Improve loadable module linking to use RTLD_NOW (Tom)

• New error levels WARNING, INFO, LOG, DEBUG[1-5] (Bruce)

• New src/port directory holds replaced libc functions (Peter, Bruce)

• New pg_namespace system catalog for schemas (Tom)

• Add pg_class.relnamespace for schemas (Tom)

• Add pg_type.typnamespace for schemas (Tom)

• Add pg_proc.pronamespace for schemas (Tom)

1185

Appendix E. Release Notes

• Restructure aggregates to have pg_proc entries (Tom)

• System relations now have their own namespace, pg_* test not required (Fernando Nasser)

• Rename TOAST index names to be *_index rather than *_idx (Neil)

• Add namespaces for operators, opclasses (Tom)

• Add additional checks to server control file (Thomas)

• New Polish FAQ (Marcin Mazurek)

• Add Posix semaphore support (Tom)

• Document need for reindex (Bruce)

• Rename some internal identifiers to simplify Windows compile (Jan, Katherine Ward)

• Add documentation on computing disk space (Bruce)

• Remove KSQO from GUC (Bruce)

• Fix memory leak in rtree (Kenneth Been)

• Modify a few error messages for consistency (Bruce)

• Remove unused system table columns (Peter)

• Make system columns NOT NULL where appropriate (Tom)

• Clean up use of sprintf in favor of snprintf() (Neil, Jukka Holappa)

• Remove OPAQUE and create specific subtypes (Tom)

• Cleanups in array internal handling (Joe, Tom)

• Disallow pg_atoi(”) (Bruce)

• Remove parameter wal_files because WAL files are now recycled (Bruce)

• Add version numbers to heap pages (Tom)

E.17.3.16. Contrib

• Allow inet arrays in /contrib/array (Neil)

• GiST fixes (Teodor Sigaev, Neil)

• Upgrade /contrib/mysql

• Add /contrib/dbsize which shows table sizes without vacuum (Peter)

• Add /contrib/intagg, integer aggregator routines (mlw)

• Improve /contrib/oid2name (Neil, Bruce)

• Improve /contrib/tsearch (Oleg, Teodor Sigaev)

• Cleanups of /contrib/rserver (Alexey V. Borzov)

• Update /contrib/oracle conversion utility (Gilles Darold)

• Update /contrib/dblink (Joe)

• Improve options supported by /contrib/vacuumlo (Mario Weilguni)

• Improvements to /contrib/intarray (Oleg, Teodor Sigaev, Andrey Oktyabrski)

• Add /contrib/reindexdb utility (Shaun Thomas)

• Add indexing to /contrib/isbn_issn (Dan Weston)

1186

Appendix E. Release Notes

• Add /contrib/dbmirror (Steven Singer)

• Improve /contrib/pgbench (Neil)

• Add /contrib/tablefunc table function examples (Joe)

• Add /contrib/ltree data type for tree structures (Teodor Sigaev, Oleg Bartunov)

• Move /contrib/pg_controldata, pg_resetxlog into main tree (Bruce)

• Fixes to /contrib/cube (Bruno Wolff)

• Improve /contrib/fulltextindex (Christopher)

E.18. Release 7.2.6

Release date: 2004-10-22

This release contains a variety of fixes from 7.2.5.

E.18.1. Migration to version 7.2.6

A dump/restore is not required for those running 7.2.X.

E.18.2. Changes

• Repair possible failure to update hint bits on disk

Under rare circumstances this oversight could lead to “could not access transaction status” failures,
which qualifies it as a potential-data-loss bug.

• Ensure that hashed outer join does not miss tuples

Very large left joins using a hash join plan could fail to output unmatched left-side rows given just
the right data distribution.

• Disallow running pg_ctl as root

This is to guard against any possible security issues.

• Avoid using temp files in /tmp in make_oidjoins_check

This has been reported as a security issue, though it’s hardly worthy of concern since there is no
reason for non-developers to use this script anyway.

• Update to newer versions of Bison

1187

Appendix E. Release Notes

E.19. Release 7.2.5

Release date: 2004-08-16

This release contains a variety of fixes from 7.2.4.

E.19.1. Migration to version 7.2.5

A dump/restore is not required for those running 7.2.X.

E.19.2. Changes

• Prevent possible loss of committed transactions during crash

Due to insufficient interlocking between transaction commit and checkpointing, it was possible
for transactions committed just before the most recent checkpoint to be lost, in whole or in part,
following a database crash and restart. This is a serious bug that has existed since PostgreSQL 7.1.

• Fix corner case for btree search in parallel with first root page split

• Fix buffer overrun into_ascii (Guido Notari)

• Fix core dump in deadlock detection on machines where char is unsigned

• Fix failure to respond topg_ctl stop -m fast after Async_NotifyHandler runs

• Repair memory leaks in pg_dump

• Avoid conflict with system definition ofisblank() function or macro

E.20. Release 7.2.4

Release date: 2003-01-30

This release contains a variety of fixes for version 7.2.3, including fixes to prevent possible data loss.

E.20.1. Migration to version 7.2.4

A dump/restore isnot required for those running version 7.2.*.

E.20.2. Changes

• Fix some additional cases of VACUUM "No one parent tuple was found" error

• Prevent VACUUM from being called inside a function (Bruce)

• Ensure pg_clog updates are sync’d to disk before marking checkpoint complete

1188

Appendix E. Release Notes

• Avoid integer overflow during large hash joins

• Make GROUP commands work when pg_group.grolist is large enough to be toasted

• Fix errors in datetime tables; some timezone names weren’t being recognized

• Fix integer overflows in circle_poly(), path_encode(), path_add() (Neil)

• Repair long-standing logic errors in lseg_eq(), lseg_ne(), lseg_center()

E.21. Release 7.2.3

Release date: 2002-10-01

This release contains a variety of fixes for version 7.2.2, including fixes to prevent possible data loss.

E.21.1. Migration to version 7.2.3

A dump/restore isnot required for those running version 7.2.*.

E.21.2. Changes

• Prevent possible compressed transaction log loss (Tom)

• Prevent non-superuser from increasing most recent vacuum info (Tom)

• Handle pre-1970 date values in newer versions of glibc (Tom)

• Fix possible hang during server shutdown

• Prevent spinlock hangs on SMP PPC machines (Tomoyuki Niijima)

• Fix pg_dump to properly dump FULL JOIN USING (Tom)

E.22. Release 7.2.2

Release date: 2002-08-23

This release contains a variety of fixes for version 7.2.1.

E.22.1. Migration to version 7.2.2

A dump/restore isnot required for those running version 7.2.*.

1189

Appendix E. Release Notes

E.22.2. Changes

• Allow EXECUTE of "CREATE TABLE AS ... SELECT" in PL/pgSQL (Tom)

• Fix for compressed transaction log id wraparound (Tom)

• Fix PQescapeBytea/PQunescapeBytea so that they handle bytes > 0x7f (Tatsuo)

• Fix for psql and pg_dump crashing when invoked with non-existent long options (Tatsuo)

• Fix crash when invoking geometric operators (Tom)

• Allow OPEN cursor(args) (Tom)

• Fix for rtree_gist index build (Teodor)

• Fix for dumping user-defined aggregates (Tom)

• contrib/intarray fixes (Oleg)

• Fix for complex UNION/EXCEPT/INTERSECT queries using parens (Tom)

• Fix to pg_convert (Tatsuo)

• Fix for crash with long DATA strings (Thomas, Neil)

• Fix for repeat(), lpad(), rpad() and long strings (Neil)

E.23. Release 7.2.1

Release date: 2002-03-21

This release contains a variety of fixes for version 7.2.

E.23.1. Migration to version 7.2.1

A dump/restore isnot required for those running version 7.2.

E.23.2. Changes

• Ensure that sequence counters do not go backwards after a crash (Tom)

• Fix pgaccess kanji-conversion key binding (Tatsuo)

• Optimizer improvements (Tom)

• Cash I/O improvements (Tom)

• New Russian FAQ

• Compile fix for missing AuthBlockSig (Heiko)

• Additional time zones and time zone fixes (Thomas)

• Allow psql \connect to handle mixed case database and user names (Tom)

• Return proper OID on command completion even with ON INSERT rules (Tom)

• Allow COPY FROM to use 8-bit DELIMITERS (Tatsuo)

1190

Appendix E. Release Notes

• Fix bug in extract/date_part for milliseconds/microseconds (Tatsuo)

• Improve handling of multiple UNIONs with different lengths (Tom)

• contrib/btree_gist improvements (Teodor Sigaev)

• contrib/tsearch dictionary improvements, see README.tsearch for an additional installation step
(Thomas T. Thai, Teodor Sigaev)

• Fix for array subscripts handling (Tom)

• Allow EXECUTE of "CREATE TABLE AS ... SELECT" in PL/pgSQL (Tom)

E.24. Release 7.2

Release date: 2002-02-04

E.24.1. Overview

This release improves PostgreSQL for use in high-volume applications.

Major changes in this release:

VACUUM

Vacuuming no longer locks tables, thus allowing normal user access during the vacuum. A new
VACUUM FULLcommand does old-style vacuum by locking the table and shrinking the on-disk
copy of the table.

Transactions

There is no longer a problem with installations that exceed four billion transactions.

OIDs

OIDs are now optional. Users can now create tables without OIDs for cases where OID usage is
excessive.

Optimizer

The system now computes histogram column statistics duringANALYZE, allowing much better
optimizer choices.

Security

A new MD5 encryption option allows more secure storage and transfer of passwords. A new
Unix-domain socket authentication option is available on Linux and BSD systems.

Statistics

Administrators can use the new table access statistics module to get fine-grained information
about table and index usage.

Internationalization

Program and library messages can now be displayed in several languages.

1191

Appendix E. Release Notes

E.24.2. Migration to version 7.2

A dump/restore usingpg_dump is required for those wishing to migrate data from any previous re-
lease.

Observe the following incompatibilities:

• The semantics of theVACUUMcommand have changed in this release. You may wish to update your
maintenance procedures accordingly.

• In this release, comparisons using= NULL will always return false (or NULL, more precisely).
Previous releases automatically transformed this syntax toIS NULL . The old behavior can be re-
enabled using apostgresql.conf parameter.

• The pg_hba.conf and pg_ident.conf configuration is now only reloaded after receiving a
SIGHUP signal, not with each connection.

• The functionoctet_length() now returns the uncompressed data length.

• The date/time value’current’ is no longer available. You will need to rewrite your applications.

• The timestamp() , time() , and interval() functions are no longer available. Instead of
timestamp() , usetimestamp ’string’ or CAST.

TheSELECT ... LIMIT #,# syntax will be removed in the next release. You should change your
queries to use separate LIMIT and OFFSET clauses, e.g.LIMIT 10 OFFSET 20 .

E.24.3. Changes

E.24.3.1. Server Operation

• Create temporary files in a separate directory (Bruce)

• Delete orphaned temporary files on postmaster startup (Bruce)

• Added unique indexes to some system tables (Tom)

• System table operator reorganization (Oleg Bartunov, Teodor Sigaev, Tom)

• Renamed pg_log to pg_clog (Tom)

• Enable SIGTERM, SIGQUIT to kill backends (Jan)

• Removed compile-time limit on number of backends (Tom)

• Better cleanup for semaphore resource failure (Tatsuo, Tom)

• Allow safe transaction ID wraparound (Tom)

• Removed OIDs from some system tables (Tom)

• Removed "triggered data change violation" error check (Tom)

• SPI portal creation of prepared/saved plans (Jan)

• Allow SPI column functions to work for system columns (Tom)

• Long value compression improvement (Tom)

• Statistics collector for table, index access (Jan)

• Truncate extra-long sequence names to a reasonable value (Tom)

1192

Appendix E. Release Notes

• Measure transaction times in milliseconds (Thomas)

• Fix TID sequential scans (Hiroshi)

• Superuser ID now fixed at 1 (Peter E)

• New pg_ctl "reload" option (Tom)

E.24.3.2. Performance

• Optimizer improvements (Tom)

• New histogram column statistics for optimizer (Tom)

• Reuse write-ahead log files rather than discarding them (Tom)

• Cache improvements (Tom)

• IS NULL, IS NOT NULL optimizer improvement (Tom)

• Improve lock manager to reduce lock contention (Tom)

• Keep relcache entries for index access support functions (Tom)

• Allow better selectivity with NaN and infinities in NUMERIC (Tom)

• R-tree performance improvements (Kenneth Been)

• B-tree splits more efficient (Tom)

E.24.3.3. Privileges

• Change UPDATE, DELETE privileges to be distinct (Peter E)

• New REFERENCES, TRIGGER privileges (Peter E)

• Allow GRANT/REVOKE to/from more than one user at a time (Peter E)

• New has_table_privilege() function (Joe Conway)

• Allow non-superuser to vacuum database (Tom)

• New SET SESSION AUTHORIZATION command (Peter E)

• Fix bug in privilege modifications on newly created tables (Tom)

• Disallow access to pg_statistic for non-superuser, add user-accessible views (Tom)

E.24.3.4. Client Authentication

• Fork postmaster before doing authentication to prevent hangs (Peter E)

• Add ident authentication over Unix domain sockets on Linux, *BSD (Helge Bahmann, Oliver El-
phick, Teodor Sigaev, Bruce)

• Add a password authentication method that uses MD5 encryption (Bruce)

• Allow encryption of stored passwords using MD5 (Bruce)

• PAM authentication (Dominic J. Eidson)

• Load pg_hba.conf and pg_ident.conf only on startup and SIGHUP (Bruce)

1193

Appendix E. Release Notes

E.24.3.5. Server Configuration

• Interpretation of some time zone abbreviations as Australian rather than North American now set-
table at run time (Bruce)

• New parameter to set default transaction isolation level (Peter E)

• New parameter to enable conversion of "expr = NULL" into "expr IS NULL", off by default (Peter
E)

• New parameter to control memory usage by VACUUM (Tom)

• New parameter to set client authentication timeout (Tom)

• New parameter to set maximum number of open files (Tom)

E.24.3.6. Queries

• Statements added by INSERT rules now execute after the INSERT (Jan)

• Prevent unadorned relation names in target list (Bruce)

• NULLs now sort after all normal values in ORDER BY (Tom)

• New IS UNKNOWN, IS NOT UNKNOWN Boolean tests (Tom)

• New SHARE UPDATE EXCLUSIVE lock mode (Tom)

• New EXPLAIN ANALYZE command that shows run times and row counts (Martijn van Ooster-
hout)

• Fix problem with LIMIT and subqueries (Tom)

• Fix for LIMIT, DISTINCT ON pushed into subqueries (Tom)

• Fix nested EXCEPT/INTERSECT (Tom)

E.24.3.7. Schema Manipulation

• Fix SERIAL in temporary tables (Bruce)

• Allow temporary sequences (Bruce)

• Sequences now use int8 internally (Tom)

• New SERIAL8 creates int8 columns with sequences, default still SERIAL4 (Tom)

• Make OIDs optional using WITHOUT OIDS (Tom)

• Add %TYPE syntax to CREATE TYPE (Ian Lance Taylor)

• Add ALTER TABLE / DROP CONSTRAINT for CHECK constraints (Christopher Kings-Lynne)

• New CREATE OR REPLACE FUNCTION to alter existing function (preserving the function OID)
(Gavin Sherry)

• Add ALTER TABLE / ADD [UNIQUE | PRIMARY] (Christopher Kings-Lynne)

• Allow column renaming in views

• Make ALTER TABLE / RENAME COLUMN update column names of indexes (Brent Verner)

• Fix for ALTER TABLE / ADD CONSTRAINT ... CHECK with inherited tables (Stephan Szabo)

• ALTER TABLE RENAME update foreign-key trigger arguments correctly (Brent Verner)

1194

Appendix E. Release Notes

• DROP AGGREGATE and COMMENT ON AGGREGATE now accept an aggtype (Tom)

• Add automatic return type data casting for SQL functions (Tom)

• Allow GiST indexes to handle NULLs and multikey indexes (Oleg Bartunov, Teodor Sigaev, Tom)

• Enable partial indexes (Martijn van Oosterhout)

E.24.3.8. Utility Commands

• Add RESET ALL, SHOW ALL (Marko Kreen)

• CREATE/ALTER USER/GROUP now allow options in any order (Vince)

• Add LOCK A, B, C functionality (Neil Padgett)

• New ENCRYPTED/UNENCRYPTED option to CREATE/ALTER USER (Bruce)

• New light-weight VACUUM does not lock table; old semantics are available as VACUUM FULL
(Tom)

• Disable COPY TO/FROM on views (Bruce)

• COPY DELIMITERS string must be exactly one character (Tom)

• VACUUM warning about index tuples fewer than heap now only appears when appropriate (Martijn
van Oosterhout)

• Fix privilege checks for CREATE INDEX (Tom)

• Disallow inappropriate use of CREATE/DROP INDEX/TRIGGER/VIEW (Tom)

E.24.3.9. Data Types and Functions

• SUM(), AVG(), COUNT() now uses int8 internally for speed (Tom)

• Add convert(), convert2() (Tatsuo)

• New function bit_length() (Peter E)

• Make the "n" in CHAR(n)/VARCHAR(n) represents letters, not bytes (Tatsuo)

• CHAR(), VARCHAR() now reject strings that are too long (Peter E)

• BIT VARYING now rejects bit strings that are too long (Peter E)

• BIT now rejects bit strings that do not match declared size (Peter E)

• INET, CIDR text conversion functions (Alex Pilosov)

• INET, CIDR operators<< and<<= indexable (Alex Pilosov)

• Bytea \### now requires valid three digit octal number

• Bytea comparison improvements, now supports =,<>, >, >=, <, and<=

• Bytea now supports B-tree indexes

• Bytea now supports LIKE, LIKE...ESCAPE, NOT LIKE, NOT LIKE...ESCAPE

• Bytea now supports concatenation

• New bytea functions: position, substring, trim, btrim, and length

• New encode() function mode, "escaped", converts minimally escaped bytea to/from text

• Add pg_database_encoding_max_length() (Tatsuo)

1195

Appendix E. Release Notes

• Add pg_client_encoding() function (Tatsuo)

• now() returns time with millisecond precision (Thomas)

• New TIMESTAMP WITHOUT TIMEZONE data type (Thomas)

• Add ISO date/time specification with "T", yyyy-mm-ddThh:mm:ss (Thomas)

• New xid/int comparison functions (Hiroshi)

• Add precision to TIME, TIMESTAMP, and INTERVAL data types (Thomas)

• Modify type coercion logic to attempt binary-compatible functions first (Tom)

• New encode() function installed by default (Marko Kreen)

• Improved to_*() conversion functions (Karel Zak)

• Optimize LIKE/ILIKE when using single-byte encodings (Tatsuo)

• New functions in contrib/pgcrypto: crypt(), hmac(), encrypt(), gen_salt() (Marko Kreen)

• Correct description of translate() function (Bruce)

• Add INTERVAL argument for SET TIME ZONE (Thomas)

• Add INTERVAL YEAR TO MONTH (etc.) syntax (Thomas)

• Optimize length functions when using single-byte encodings (Tatsuo)

• Fix path_inter, path_distance, path_length, dist_ppath to handle closed paths (Curtis Barrett, Tom)

• octet_length(text) now returns non-compressed length (Tatsuo, Bruce)

• Handle "July" full name in date/time literals (Greg Sabino Mullane)

• Some datatype() function calls now evaluated differently

• Add support for Julian and ISO time specifications (Thomas)

E.24.3.10. Internationalization

• National language support in psql, pg_dump, libpq, and server (Peter E)

• Message translations in Chinese (simplified, traditional), Czech, French, German, Hungarian, Rus-
sian, Swedish (Peter E, Serguei A. Mokhov, Karel Zak, Weiping He, Zhenbang Wei, Kovacs Zoltan)

• Make trim, ltrim, rtrim, btrim, lpad, rpad, translate multibyte aware (Tatsuo)

• Add LATIN5,6,7,8,9,10 support (Tatsuo)

• Add ISO 8859-5,6,7,8 support (Tatsuo)

• Correct LATIN5 to mean ISO-8859-9, not ISO-8859-5 (Tatsuo)

• Make mic2ascii() non-ASCII aware (Tatsuo)

• Reject invalid multibyte character sequences (Tatsuo)

E.24.3.11. PL/pgSQL

• Now uses portals for SELECT loops, allowing huge result sets (Jan)

• CURSOR and REFCURSOR support (Jan)

• Can now return open cursors (Jan)

1196

Appendix E. Release Notes

• Add ELSEIF (Klaus Reger)

• Improve PL/pgSQL error reporting, including location of error (Tom)

• Allow IS or FOR key words in cursor declaration, for compatibility (Bruce)

• Fix for SELECT ... FOR UPDATE (Tom)

• Fix for PERFORM returning multiple rows (Tom)

• Make PL/pgSQL use the server’s type coercion code (Tom)

• Memory leak fix (Jan, Tom)

• Make trailing semicolon optional (Tom)

E.24.3.12. PL/Perl

• New untrusted PL/Perl (Alex Pilosov)

• PL/Perl is now built on some platforms even if libperl is not shared (Peter E)

E.24.3.13. PL/Tcl

• Now reports errorInfo (Vsevolod Lobko)

• Add spi_lastoid function (bob@redivi.com)

E.24.3.14. PL/Python

• ...is new (Andrew Bosma)

E.24.3.15. psql

• \d displays indexes in unique, primary groupings (Christopher Kings-Lynne)

• Allow trailing semicolons in backslash commands (Greg Sabino Mullane)

• Read password from /dev/tty if possible

• Force new password prompt when changing user and database (Tatsuo, Tom)

• Format the correct number of columns for Unicode (Patrice)

E.24.3.16. libpq

• New function PQescapeString() to escape quotes in command strings (Florian Weimer)

• New function PQescapeBytea() escapes binary strings for use as SQL string literals

1197

Appendix E. Release Notes

E.24.3.17. JDBC

• Return OID of INSERT (Ken K)

• Handle more data types (Ken K)

• Handle single quotes and newlines in strings (Ken K)

• Handle NULL variables (Ken K)

• Fix for time zone handling (Barry Lind)

• Improved Druid support

• Allow eight-bit characters with non-multibyte server (Barry Lind)

• Support BIT, BINARY types (Ned Wolpert)

• Reduce memory usage (Michael Stephens, Dave Cramer)

• Update DatabaseMetaData (Peter E)

• Add DatabaseMetaData.getCatalogs() (Peter E)

• Encoding fixes (Anders Bengtsson)

• Get/setCatalog methods (Jason Davies)

• DatabaseMetaData.getColumns() now returns column defaults (Jason Davies)

• DatabaseMetaData.getColumns() performance improvement (Jeroen van Vianen)

• Some JDBC1 and JDBC2 merging (Anders Bengtsson)

• Transaction performance improvements (Barry Lind)

• Array fixes (Greg Zoller)

• Serialize addition

• Fix batch processing (Rene Pijlman)

• ExecSQL method reorganization (Anders Bengtsson)

• GetColumn() fixes (Jeroen van Vianen)

• Fix isWriteable() function (Rene Pijlman)

• Improved passage of JDBC2 conformance tests (Rene Pijlman)

• Add bytea type capability (Barry Lind)

• Add isNullable() (Rene Pijlman)

• JDBC date/time test suite fixes (Liam Stewart)

• Fix for SELECT ’id’ AS xxx FROM table (Dave Cramer)

• Fix DatabaseMetaData to show precision properly (Mark Lillywhite)

• New getImported/getExported keys (Jason Davies)

• MD5 password encryption support (Jeremy Wohl)

• Fix to actually use type cache (Ned Wolpert)

1198

Appendix E. Release Notes

E.24.3.18. ODBC

• Remove query size limit (Hiroshi)

• Remove text field size limit (Hiroshi)

• Fix for SQLPrimaryKeys in multibyte mode (Hiroshi)

• Allow ODBC procedure calls (Hiroshi)

• Improve boolean handing (Aidan Mountford)

• Most configuration options now settable via DSN (Hiroshi)

• Multibyte, performance fixes (Hiroshi)

• Allow driver to be used with iODBC or unixODBC (Peter E)

• MD5 password encryption support (Bruce)

• Add more compatibility functions to odbc.sql (Peter E)

E.24.3.19. ECPG

• EXECUTE ... INTO implemented (Christof Petig)

• Multiple row descriptor support (e.g. CARDINALITY) (Christof Petig)

• Fix for GRANT parameters (Lee Kindness)

• Fix INITIALLY DEFERRED bug

• Various bug fixes (Michael, Christof Petig)

• Auto allocation for indicator variable arrays (int *ind_p=NULL)

• Auto allocation for string arrays (char **foo_pp=NULL)

• ECPGfree_auto_mem fixed

• All function names with external linkage are now prefixed by ECPG

• Fixes for arrays of structures (Michael)

E.24.3.20. Misc. Interfaces

• Python fix fetchone() (Gerhard Haring)

• Use UTF, Unicode in Tcl where appropriate (Vsevolod Lobko, Reinhard Max)

• Add Tcl COPY TO/FROM (ljb)

• Prevent output of default index op class in pg_dump (Tom)

• Fix libpgeasy memory leak (Bruce)

E.24.3.21. Build and Install

• Configure, dynamic loader, and shared library fixes (Peter E)

• Fixes in QNX 4 port (Bernd Tegge)

1199

Appendix E. Release Notes

• Fixes in Cygwin and Windows ports (Jason Tishler, Gerhard Haring, Dmitry Yurtaev, Darko
Prenosil, Mikhail Terekhov)

• Fix for Windows socket communication failures (Magnus, Mikhail Terekhov)

• Hurd compile fix (Oliver Elphick)

• BeOS fixes (Cyril Velter)

• Remove configure --enable-unicode-conversion, now enabled by multibyte (Tatsuo)

• AIX fixes (Tatsuo, Andreas)

• Fix parallel make (Peter E)

• Install SQL language manual pages into OS-specific directories (Peter E)

• Rename config.h to pg_config.h (Peter E)

• Reorganize installation layout of header files (Peter E)

E.24.3.22. Source Code

• Remove SEP_CHAR (Bruce)

• New GUC hooks (Tom)

• Merge GUC and command line handling (Marko Kreen)

• Remove EXTEND INDEX (Martijn van Oosterhout, Tom)

• New pgjindent utility to indent java code (Bruce)

• Remove define of true/false when compiling under C++ (Leandro Fanzone, Tom)

• pgindent fixes (Bruce, Tom)

• Replace strcasecmp() with strcmp() where appropriate (Peter E)

• Dynahash portability improvements (Tom)

• Add ’volatile’ usage in spinlock structures

• Improve signal handling logic (Tom)

E.24.3.23. Contrib

• New contrib/rtree_gist (Oleg Bartunov, Teodor Sigaev)

• New contrib/tsearch full-text indexing (Oleg, Teodor Sigaev)

• Add contrib/dblink for remote database access (Joe Conway)

• contrib/ora2pg Oracle conversion utility (Gilles Darold)

• contrib/xml XML conversion utility (John Gray)

• contrib/fulltextindex fixes (Christopher Kings-Lynne)

• New contrib/fuzzystrmatch with levenshtein and metaphone, soundex merged (Joe Conway)

• Add contrib/intarray boolean queries, binary search, fixes (Oleg Bartunov)

• New pg_upgrade utility (Bruce)

• Add new pg_resetxlog options (Bruce, Tom)

1200

Appendix E. Release Notes

E.25. Release 7.1.3

Release date: 2001-08-15

E.25.1. Migration to version 7.1.3

A dump/restore isnot required for those running 7.1.X.

E.25.2. Changes

Remove unused WAL segements of large transactions (Tom)
Multiaction rule fix (Tom)
PL/pgSQL memory allocation fix (Jan)
VACUUM buffer fix (Tom)
Regression test fixes (Tom)
pg_dump fixes for GRANT/REVOKE/comments on views, user-defined types (Tom)
Fix subselects with DISTINCT ON or LIMIT (Tom)
BeOS fix
Disable COPY TO/FROM a view (Tom)
Cygwin build (Jason Tishler)

E.26. Release 7.1.2

Release date: 2001-05-11

This has one fix from 7.1.1.

E.26.1. Migration to version 7.1.2

A dump/restore isnot required for those running 7.1.X.

E.26.2. Changes

Fix PL/pgSQL SELECTs when returning no rows
Fix for psql backslash core dump
Referential integrity privilege fix
Optimizer fixes
pg_dump cleanups

1201

Appendix E. Release Notes

E.27. Release 7.1.1

Release date: 2001-05-05

This has a variety of fixes from 7.1.

E.27.1. Migration to version 7.1.1

A dump/restore isnot required for those running 7.1.

E.27.2. Changes

Fix for numeric MODULO operator (Tom)
pg_dump fixes (Philip)
pg_dump can dump 7.0 databases (Philip)
readline 4.2 fixes (Peter E)
JOIN fixes (Tom)
AIX, MSWIN, VAX, N32K fixes (Tom)
Multibytes fixes (Tom)
Unicode fixes (Tatsuo)
Optimizer improvements (Tom)
Fix for whole rows in functions (Tom)
Fix for pg_ctl and option strings with spaces (Peter E)
ODBC fixes (Hiroshi)
EXTRACT can now take string argument (Thomas)
Python fixes (Darcy)

E.28. Release 7.1

Release date: 2001-04-13

This release focuses on removing limitations that have existed in the PostgreSQL code for many years.

Major changes in this release:

Write-ahead Log (WAL)

To maintain database consistency in case of an operating system crash, previous releases of
PostgreSQL have forced all data modifications to disk before each transaction commit. With
WAL, only one log file must be flushed to disk, greatly improving performance. If you have been
using -F in previous releases to disable disk flushes, you may want to consider discontinuing its
use.

1202

Appendix E. Release Notes

TOAST

TOAST - Previous releases had a compiled-in row length limit, typically 8k - 32k. This limit
made storage of long text fields difficult. With TOAST, long rows of any length can be stored
with good performance.

Outer Joins

We now support outer joins. The UNION/NOT IN workaround for outer joins is no longer re-
quired. We use the SQL92 outer join syntax.

Function Manager

The previous C function manager did not handle null values properly, nor did it support 64-
bit CPU’s (Alpha). The new function manager does. You can continue using your old custom
functions, but you may want to rewrite them in the future to use the new function manager call
interface.

Complex Queries

A large number of complex queries that were unsupported in previous releases now work. Many
combinations of views, aggregates, UNION, LIMIT, cursors, subqueries, and inherited tables
now work properly. Inherited tables are now accessed by default. Subqueries in FROM are now
supported.

E.28.1. Migration to version 7.1

A dump/restore using pg_dump is required for those wishing to migrate data from any previous re-
lease.

E.28.2. Changes

Bug Fixes

Many multibyte/Unicode/locale fixes (Tatsuo and others)
More reliable ALTER TABLE RENAME (Tom)
Kerberos V fixes (David Wragg)
Fix for INSERT INTO...SELECT where targetlist has subqueries (Tom)
Prompt username/password on standard error (Bruce)
Large objects inv_read/inv_write fixes (Tom)
Fixes for to_char(), to_date(), to_ascii(), and to_timestamp() (Karel,

Daniel Baldoni)
Prevent query expressions from leaking memory (Tom)
Allow UPDATE of arrays elements (Tom)
Wake up lock waiters during cancel (Hiroshi)
Fix rare cursor crash when using hash join (Tom)
Fix for DROP TABLE/INDEX in rolled-back transaction (Hiroshi)
Fix psql crash from \l+ if MULTIBYTE enabled (Peter E)
Fix truncation of rule names during CREATE VIEW (Ross Reedstrom)
Fix PL/perl (Alex Kapranoff)
Disallow LOCK on views (Mark Hollomon)
Disallow INSERT/UPDATE/DELETE on views (Mark Hollomon)
Disallow DROP RULE, CREATE INDEX, TRUNCATE on views (Mark Hollomon)
Allow PL/pgSQL accept non-ASCII identifiers (Tatsuo)

1203

Appendix E. Release Notes

Allow views to proper handle GROUP BY, aggregates, DISTINCT (Tom)
Fix rare failure with TRUNCATE command (Tom)
Allow UNION/INTERSECT/EXCEPT to be used with ALL, subqueries, views,

DISTINCT, ORDER BY, SELECT...INTO (Tom)
Fix parser failures during aborted transactions (Tom)
Allow temporary relations to properly clean up indexes (Bruce)
Fix VACUUM problem with moving rows in same page (Tom)
Modify pg_dump to better handle user-defined items in template1 (Philip)
Allow LIMIT in VIEW (Tom)
Require cursor FETCH to honor LIMIT (Tom)
Allow PRIMARY/FOREIGN Key definitions on inherited columns (Stephan)
Allow ORDER BY, LIMIT in subqueries (Tom)
Allow UNION in CREATE RULE (Tom)
Make ALTER/DROP TABLE rollback-able (Vadim, Tom)
Store initdb collation in pg_control so collation cannot be changed (Tom)
Fix INSERT...SELECT with rules (Tom)
Fix FOR UPDATE inside views and subselects (Tom)
Fix OVERLAPS operators conform to SQL92 spec regarding NULLs (Tom)
Fix lpad() and rpad() to handle length less than input string (Tom)
Fix use of NOTIFY in some rules (Tom)
Overhaul btree code (Tom)
Fix NOT NULL use in Pl/pgSQL variables (Tom)
Overhaul GIST code (Oleg)
Fix CLUSTER to preserve constraints and column default (Tom)
Improved deadlock detection handling (Tom)
Allow multiple SERIAL columns in a table (Tom)
Prevent occasional index corruption (Vadim)

Enhancements

Add OUTER JOINs (Tom)
Function manager overhaul (Tom)
Allow ALTER TABLE RENAME on indexes (Tom)
Improve CLUSTER (Tom)
Improve ps status display for more platforms (Peter E, Marc)
Improve CREATE FUNCTION failure message (Ross)
JDBC improvements (Peter, Travis Bauer, Christopher Cain, William Webber,

Gunnar)
Grand Unified Configuration scheme/GUC. Many options can now be set in

data/postgresql.conf, postmaster/postgres flags, or SET commands (Peter E)
Improved handling of file descriptor cache (Tom)
New warning code about auto-created table alias entries (Bruce)
Overhaul initdb process (Tom, Peter E)
Overhaul of inherited tables; inherited tables now accessed by default;

new ONLY key word prevents it (Chris Bitmead, Tom)
ODBC cleanups/improvements (Nick Gorham, Stephan Szabo, Zoltan Kovacs,

Michael Fork)
Allow renaming of temp tables (Tom)
Overhaul memory manager contexts (Tom)
pg_dumpall uses CREATE USER or CREATE GROUP rather using COPY (Peter E)
Overhaul pg_dump (Philip Warner)
Allow pg_hba.conf secondary password file to specify only username (Peter E)
Allow TEMPORARY or TEMP key word when creating temporary tables (Bruce)
New memory leak checker (Karel)
New SET SESSION CHARACTERISTICS (Thomas)
Allow nested block comments (Thomas)
Add WITHOUT TIME ZONE type qualifier (Thomas)

1204

Appendix E. Release Notes

New ALTER TABLE ADD CONSTRAINT (Stephan)
Use NUMERIC accumulators for INTEGER aggregates (Tom)
Overhaul aggregate code (Tom)
New VARIANCE and STDDEV() aggregates
Improve dependency ordering of pg_dump (Philip)
New pg_restore command (Philip)
New pg_dump tar output option (Philip)
New pg_dump of large objects (Philip)
New ESCAPE option to LIKE (Thomas)
New case-insensitive LIKE - ILIKE (Thomas)
Allow functional indexes to use binary-compatible type (Tom)
Allow SQL functions to be used in more contexts (Tom)
New pg_config utility (Peter E)
New PL/pgSQL EXECUTE command which allows dynamic SQL and utility statements

(Jan)
New PL/pgSQL GET DIAGNOSTICS statement for SPI value access (Jan)
New quote_identifiers() and quote_literal() functions (Jan)
New ALTER TABLE table OWNER TO user command (Mark Hollomon)
Allow subselects in FROM, i.e. FROM (SELECT ...) [AS] alias (Tom)
Update PyGreSQL to version 3.1 (D’Arcy)
Store tables as files named by OID (Vadim)
New SQL function setval(seq,val,bool) for use in pg_dump (Philip)
Require DROP VIEW to remove views, no DROP TABLE (Mark)
Allow DROP VIEW view1, view2 (Mark)
Allow multiple objects in DROP INDEX, DROP RULE, and DROP TYPE (Tom)
Allow automatic conversion to/from Unicode (Tatsuo, Eiji)
New /contrib/pgcrypto hashing functions (Marko Kreen)
New pg_dumpall --globals-only option (Peter E)
New CHECKPOINT command for WAL which creates new WAL log file (Vadim)
New AT TIME ZONE syntax (Thomas)
Allow location of Unix domain socket to be configurable (David J. MacKenzie)
Allow postmaster to listen on a specific IP address (David J. MacKenzie)
Allow socket path name to be specified in hostname by using leading slash

(David J. MacKenzie)
Allow CREATE DATABASE to specify template database (Tom)
New utility to convert MySQL schema dumps to SQL92 and PostgreSQL (Thomas)
New /contrib/rserv replication toolkit (Vadim)
New file format for COPY BINARY (Tom)
New /contrib/oid2name to map numeric files to table names (B Palmer)
New "idle in transaction" ps status message (Marc)
Update to pgaccess 0.98.7 (Constantin Teodorescu)
pg_ctl now defaults to -w (wait) on shutdown, new -l (log) option
Add rudimentary dependency checking to pg_dump (Philip)

Types

Fix INET/CIDR type ordering and add new functions (Tom)
Make OID behave as an unsigned type (Tom)
Allow BIGINT as synonym for INT8 (Peter E)
New int2 and int8 comparison operators (Tom)
New BIT and BIT VARYING types (Adriaan Joubert, Tom, Peter E)
CHAR() no longer faster than VARCHAR() because of TOAST (Tom)
New GIST seg/cube examples (Gene Selkov)
Improved round(numeric) handling (Tom)
Fix CIDR output formatting (Tom)
New CIDR abbrev() function (Tom)

1205

Appendix E. Release Notes

Performance

Write-Ahead Log (WAL) to provide crash recovery with less performance

overhead (Vadim)
ANALYZE stage of VACUUM no longer exclusively locks table (Bruce)
Reduced file seeks (Denis Perchine)
Improve BTREE code for duplicate keys (Tom)
Store all large objects in a single table (Denis Perchine, Tom)
Improve memory allocation performance (Karel, Tom)

Source Code

New function manager call conventions (Tom)
SGI portability fixes (David Kaelbling)
New configure --enable-syslog option (Peter E)
New BSDI README (Bruce)
configure script moved to top level, not /src (Peter E)
Makefile/configuration/compilation overhaul (Peter E)
New configure --with-python option (Peter E)
Solaris cleanups (Peter E)
Overhaul /contrib Makefiles (Karel)
New OpenSSL configuration option (Magnus, Peter E)
AIX fixes (Andreas)
QNX fixes (Maurizio)
New heap_open(), heap_openr() API (Tom)
Remove colon and semi-colon operators (Thomas)
New pg_class.relkind value for views (Mark Hollomon)
Rename ichar() to chr() (Karel)
New documentation for btrim(), ascii(), chr(), repeat() (Karel)
Fixes for NT/Cygwin (Pete Forman)
AIX port fixes (Andreas)
New BeOS port (David Reid, Cyril Velter)
Add proofreader’s changes to docs (Addison-Wesley, Bruce)
New Alpha spinlock code (Adriaan Joubert, Compaq)
UnixWare port overhaul (Peter E)
New Darwin/MacOS X port (Peter Bierman, Bruce Hartzler)
New FreeBSD Alpha port (Alfred)
Overhaul shared memory segments (Tom)
Add IBM S/390 support (Neale Ferguson)
Moved macmanuf to /contrib (Larry Rosenman)
Syslog improvements (Larry Rosenman)
New template0 database that contains no user additions (Tom)
New /contrib/cube and /contrib/seg GIST sample code (Gene Selkov)
Allow NetBSD’s libedit instead of readline (Peter)
Improved assembly language source code format (Bruce)
New contrib/pg_logger
New --template option to createdb
New contrib/pg_control utility (Oliver)
New FreeBSD tools ipc_check, start-scripts/freebsd

1206

Appendix E. Release Notes

E.29. Release 7.0.3

Release date: 2000-11-11

This has a variety of fixes from 7.0.2.

E.29.1. Migration to version 7.0.3

A dump/restore isnot required for those running 7.0.*.

E.29.2. Changes

Jdbc fixes (Peter)
Large object fix (Tom)
Fix lean in COPY WITH OIDS leak (Tom)
Fix backwards-index-scan (Tom)
Fix SELECT ... FOR UPDATE so it checks for duplicate keys (Hiroshi)
Add --enable-syslog to configure (Marc)
Fix abort transaction at backend exit in rare cases (Tom)
Fix for psql \l+ when multibyte enabled (Tatsuo)
Allow PL/pgSQL to accept non ascii identifiers (Tatsuo)
Make vacuum always flush buffers (Tom)
Fix to allow cancel while waiting for a lock (Hiroshi)
Fix for memory aloocation problem in user authentication code (Tom)
Remove bogus use of int4out() (Tom)
Fixes for multiple subqueries in COALESCE or BETWEEN (Tom)
Fix for failure of triggers on heap open in certain cases (Jeroen van

Vianen)
Fix for erroneous selectivity of not-equals (Tom)
Fix for erroneous use of strcmp() (Tom)
Fix for bug where storage manager accesses items beyond end of file

(Tom)
Fix to include kernel errno message in all smgr elog messages (Tom)
Fix for ’.’ not in PATH at build time (SL Baur)
Fix for out-of-file-descriptors error (Tom)
Fix to make pg_dump dump ’iscachable’ flag for functions (Tom)
Fix for subselect in targetlist of Append node (Tom)
Fix for mergejoin plans (Tom)
Fix TRUNCATE failure on relations with indexes (Tom)
Avoid database-wide restart on write error (Hiroshi)
Fix nodeMaterial to honor chgParam by recomputing its output (Tom)
Fix VACUUM problem with moving chain of update row versions when source

and destination of a row version lie on the same page (Tom)
Fix user.c CommandCounterIncrement (Tom)
Fix for AM/PM boundary problem in to_char() (Karel Zak)
Fix TIME aggregate handling (Tom)
Fix to_char() to avoid coredump on NULL input (Tom)
Buffer fix (Tom)
Fix for inserting/copying longer multibyte strings into char() data

types (Tatsuo)
Fix for crash of backend, on abort (Tom)

1207

Appendix E. Release Notes

E.30. Release 7.0.2

Release date: 2000-06-05

This is a repackaging of 7.0.1 with added documentation.

E.30.1. Migration to version 7.0.2

A dump/restore isnot required for those running 7.*.

E.30.2. Changes

Added documentation to tarball.

E.31. Release 7.0.1

Release date: 2000-06-01

This is a cleanup release for 7.0.

E.31.1. Migration to version 7.0.1

A dump/restore isnot required for those running 7.0.

E.31.2. Changes

Fix many CLUSTER failures (Tom)
Allow ALTER TABLE RENAME works on indexes (Tom)
Fix plpgsql to handle datetime->timestamp and timespan->interval (Bruce)
New configure --with-setproctitle switch to use setproctitle() (Marc, Bruce)
Fix the off by one errors in ResultSet from 6.5.3, and more.
jdbc ResultSet fixes (Joseph Shraibman)
optimizer tunings (Tom)
Fix create user for pgaccess
Fix for UNLISTEN failure
IRIX fixes (David Kaelbling)
QNX fixes (Andreas Kardos)
Reduce COPY IN lock level (Tom)

1208

Appendix E. Release Notes

Change libpqeasy to use PQconnectdb() style parameters (Bruce)
Fix pg_dump to handle OID indexes (Tom)
Fix small memory leak (Tom)
Solaris fix for createdb/dropdb (Tatsuo)
Fix for non-blocking connections (Alfred Perlstein)
Fix improper recovery after RENAME TABLE failures (Tom)
Copy pg_ident.conf.sample into /lib directory in install (Bruce)
Add SJIS UDC (NEC selection IBM kanji) support (Eiji Tokuya)
Fix too long syslog message (Tatsuo)
Fix problem with quoted indexes that are too long (Tom)
JDBC ResultSet.getTimestamp() fix (Gregory Krasnow & Floyd Marinescu)
ecpg changes (Michael)

E.32. Release 7.0

Release date: 2000-05-08

This release contains improvements in many areas, demonstrating the continued growth of Post-
greSQL. There are more improvements and fixes in 7.0 than in any previous release. The developers
have confidence that this is the best release yet; we do our best to put out only solid releases, and this
one is no exception.

Major changes in this release:

Foreign Keys

Foreign keys are now implemented, with the exception of PARTIAL MATCH foreign keys. Many
users have been asking for this feature, and we are pleased to offer it.

Optimizer Overhaul

Continuing on work started a year ago, the optimizer has been improved, allowing better query
plan selection and faster performance with less memory usage.

Updated psql

psql, our interactive terminal monitor, has been updated with a variety of new features. See the
psql manual page for details.

Join Syntax

SQL92 join syntax is now supported, though only asINNER JOIN for this release.JOIN ,
NATURAL JOIN, JOIN /USING, andJOIN /ONare available, as are column correlation names.

E.32.1. Migration to version 7.0

A dump/restore using pg_dump is required for those wishing to migrate data from any previous release
of PostgreSQL. For those upgrading from 6.5.*, you may instead use pg_upgrade to upgrade to this
release; however, a full dump/reload installation is always the most robust method for upgrades.

1209

Appendix E. Release Notes

Interface and compatibility issues to consider for the new release include:

• The date/time typesdatetime andtimespan have been superseded by the SQL92-defined types
timestamp andinterval . Although there has been some effort to ease the transition by allowing
PostgreSQL to recognize the deprecated type names and translate them to the new type names, this
mechanism may not be completely transparent to your existing application.

• The optimizer has been substantially improved in the area of query cost estimation. In some cases,
this will result in decreased query times as the optimizer makes a better choice for the preferred
plan. However, in a small number of cases, usually involving pathological distributions of data,
your query times may go up. If you are dealing with large amounts of data, you may want to check
your queries to verify performance.

• The JDBC and ODBC interfaces have been upgraded and extended.

• The string functionCHAR_LENGTHis now a native function. Previous versions translated this into
a call toLENGTH, which could result in ambiguity with other types implementingLENGTHsuch as
the geometric types.

E.32.2. Changes

Bug Fixes

Prevent function calls exceeding maximum number of arguments (Tom)
Improve CASE construct (Tom)
Fix SELECT coalesce(f1,0) FROM int4_tbl GROUP BY f1 (Tom)
Fix SELECT sentence.words[0] FROM sentence GROUP BY sentence.words[0] (Tom)
Fix GROUP BY scan bug (Tom)
Improvements in SQL grammar processing (Tom)
Fix for views involved in INSERT ... SELECT ... (Tom)
Fix for SELECT a/2, a/2 FROM test_missing_target GROUP BY a/2 (Tom)
Fix for subselects in INSERT ... SELECT (Tom)
Prevent INSERT ... SELECT ... ORDER BY (Tom)
Fixes for relations greater than 2GB, including vacuum
Improve propagating system table changes to other backends (Tom)
Improve propagating user table changes to other backends (Tom)
Fix handling of temp tables in complex situations (Bruce, Tom)
Allow table locking at table open, improving concurrent reliability (Tom)
Properly quote sequence names in pg_dump (Ross J. Reedstrom)
Prevent DROP DATABASE while others accessing
Prevent any rows from being returned by GROUP BY if no rows processed (Tom)
Fix SELECT COUNT(1) FROM table WHERE ...’ if no rows matching WHERE (Tom)
Fix pg_upgrade so it works for MVCC (Tom)
Fix for SELECT ... WHERE x IN (SELECT ... HAVING SUM(x) > 1) (Tom)
Fix for "f1 datetime DEFAULT ’now’" (Tom)
Fix problems with CURRENT_DATE used in DEFAULT (Tom)
Allow comment-only lines, and ;;; lines too. (Tom)
Improve recovery after failed disk writes, disk full (Hiroshi)
Fix cases where table is mentioned in FROM but not joined (Tom)
Allow HAVING clause without aggregate functions (Tom)
Fix for "--" comment and no trailing newline, as seen in perl interface
Improve pg_dump failure error reports (Bruce)
Allow sorts and hashes to exceed 2GB file sizes (Tom)
Fix for pg_dump dumping of inherited rules (Tom)

1210

Appendix E. Release Notes

Fix for NULL handling comparisons (Tom)
Fix inconsistent state caused by failed CREATE/DROP commands (Hiroshi)
Fix for dbname with dash
Prevent DROP INDEX from interfering with other backends (Tom)
Fix file descriptor leak in verify_password()
Fix for "Unable to identify an operator =$" problem
Fix ODBC so no segfault if CommLog and Debug enabled (Dirk Niggemann)
Fix for recursive exit call (Massimo)
Fix for extra-long timezones (Jeroen van Vianen)
Make pg_dump preserve primary key information (Peter E)
Prevent databases with single quotes (Peter E)
Prevent DROP DATABASE inside transaction (Peter E)
ecpg memory leak fixes (Stephen Birch)
Fix for SELECT null::text, SELECT int4fac(null) and SELECT 2 + (null) (Tom)
Y2K timestamp fix (Massimo)
Fix for VACUUM ’HEAP_MOVED_IN was not expected’ errors (Tom)
Fix for views with tables/columns containing spaces (Tom)
Prevent privileges on indexes (Peter E)
Fix for spinlock stuck problem when error is generated (Hiroshi)
Fix ipcclean on Linux
Fix handling of NULL constraint conditions (Tom)
Fix memory leak in odbc driver (Nick Gorham)
Fix for privilege check on UNION tables (Tom)
Fix to allow SELECT ’a’ LIKE ’a’ (Tom)
Fix for SELECT 1 + NULL (Tom)
Fixes to CHAR
Fix log() on numeric type (Tom)
Deprecate ’:’ and ’;’ operators
Allow vacuum of temporary tables
Disallow inherited columns with the same name as new columns
Recover or force failure when disk space is exhausted (Hiroshi)
Fix INSERT INTO ... SELECT with AS columns matching result columns
Fix INSERT ... SELECT ... GROUP BY groups by target columns not source columns (Tom)
Fix CREATE TABLE test (a char(5) DEFAULT text ”, b int4) with INSERT (Tom)
Fix UNION with LIMIT
Fix CREATE TABLE x AS SELECT 1 UNION SELECT 2
Fix CREATE TABLE test(col char(2) DEFAULT user)
Fix mismatched types in CREATE TABLE ... DEFAULT
Fix SELECT * FROM pg_class where oid in (0,-1)
Fix SELECT COUNT(’asdf’) FROM pg_class WHERE oid=12
Prevent user who can create databases can modifying pg_database table (Peter E)
Fix btree to give a useful elog when key > 1/2 (page - overhead) (Tom)
Fix INSERT of 0.0 into DECIMAL(4,4) field (Tom)

Enhancements

New CLI interface include file sqlcli.h, based on SQL3/SQL98
Remove all limits on query length, row length limit still exists (Tom)
Update jdbc protocol to 2.0 (Jens Glaser < jens@jens.de >)
Add TRUNCATE command to quickly truncate relation (Mike Mascari)
Fix to give super user and createdb user proper update catalog rights (Peter E)
Allow ecpg bool variables to have NULL values (Christof)
Issue ecpg error if NULL value for variable with no NULL indicator (Christof)
Allow ^C to cancel COPY command (Massimo)
Add SET FSYNC and SHOW PG_OPTIONS commands(Massimo)
Function name overloading for dynamically-loaded C functions (Frankpitt)
Add CmdTuples() to libpq++(Vince)

1211

Appendix E. Release Notes

New CREATE CONSTRAINT TRIGGER and SET CONSTRAINTS commands(Jan)
Allow CREATE FUNCTION/WITH clause to be used for all language types
configure --enable-debug adds -g (Peter E)
configure --disable-debug removes -g (Peter E)
Allow more complex default expressions (Tom)
First real FOREIGN KEY constraint trigger functionality (Jan)
Add FOREIGN KEY ... MATCH FULL ... ON DELETE CASCADE (Jan)
Add FOREIGN KEY ... MATCH <unspecified > referential actions (Don Baccus)
Allow WHERE restriction on ctid (physical heap location) (Hiroshi)
Move pginterface from contrib to interface directory, rename to pgeasy (Bruce)
Change pgeasy connectdb() parameter ordering (Bruce)
Require SELECT DISTINCT target list to have all ORDER BY columns (Tom)
Add Oracle’s COMMENT ON command (Mike Mascari < mascarim@yahoo.com >)
libpq’s PQsetNoticeProcessor function now returns previous hook(Peter E)
Prevent PQsetNoticeProcessor from being set to NULL (Peter E)
Make USING in COPY optional (Bruce)
Allow subselects in the target list (Tom)
Allow subselects on the left side of comparison operators (Tom)
New parallel regression test (Jan)
Change backend-side COPY to write files with permissions 644 not 666 (Tom)
Force permissions on PGDATA directory to be secure, even if it exists (Tom)
Added psql LASTOID variable to return last inserted oid (Peter E)
Allow concurrent vacuum and remove pg_vlock vacuum lock file (Tom)
Add privilege check for vacuum (Peter E)
New libpq functions to allow asynchronous connections: PQconnectStart(),

PQconnectPoll(), PQresetStart(), PQresetPoll(), PQsetenvStart(),
PQsetenvPoll(), PQsetenvAbort (Ewan Mellor)

New libpq PQsetenv() function (Ewan Mellor)
create/alter user extension (Peter E)
New postmaster.pid and postmaster.opts under $PGDATA (Tatsuo)
New scripts for create/drop user/db (Peter E)
Major psql overhaul (Peter E)
Add const to libpq interface (Peter E)
New libpq function PQoidValue (Peter E)
Show specific non-aggregate causing problem with GROUP BY (Tom)
Make changes to pg_shadow recreate pg_pwd file (Peter E)
Add aggregate(DISTINCT ...) (Tom)
Allow flag to control COPY input/output of NULLs (Peter E)
Make postgres user have a password by default (Peter E)
Add CREATE/ALTER/DROP GROUP (Peter E)
All administration scripts now support --long options (Peter E, Karel)
Vacuumdb script now supports --all option (Peter E)
ecpg new portable FETCH syntax
Add ecpg EXEC SQL IFDEF, EXEC SQL IFNDEF, EXEC SQL ELSE, EXEC SQL ELIF

and EXEC SQL ENDIF directives
Add pg_ctl script to control backend start-up (Tatsuo)
Add postmaster.opts.default file to store start-up flags (Tatsuo)
Allow --with-mb=SQL_ASCII
Increase maximum number of index keys to 16 (Bruce)
Increase maximum number of function arguments to 16 (Bruce)
Allow configuration of maximum number of index keys and arguments (Bruce)
Allow unprivileged users to change their passwords (Peter E)
Password authentication enabled; required for new users (Peter E)
Disallow dropping a user who owns a database (Peter E)
Change initdb option --with-mb to --enable-multibyte
Add option for initdb to prompts for superuser password (Peter E)
Allow complex type casts like col::numeric(9,2) and col::int2::float8 (Tom)

1212

Appendix E. Release Notes

Updated user interfaces on initdb, initlocation, pg_dump, ipcclean (Peter E)
New pg_char_to_encoding() and pg_encoding_to_char() functions (Tatsuo)
libpq non-blocking mode (Alfred Perlstein)
Improve conversion of types in casts that don’t specify a length
New plperl internal programming language (Mark Hollomon)
Allow COPY IN to read file that do not end with a newline (Tom)
Indicate when long identifiers are truncated (Tom)
Allow aggregates to use type equivalency (Peter E)
Add Oracle’s to_char(), to_date(), to_datetime(), to_timestamp(), to_number()

conversion functions (Karel Zak <zakkr@zf.jcu.cz >)
Add SELECT DISTINCT ON (expr [, expr ...]) targetlist ... (Tom)
Check to be sure ORDER BY is compatible with the DISTINCT operation (Tom)
Add NUMERIC and int8 types to ODBC
Improve EXPLAIN results for Append, Group, Agg, Unique (Tom)
Add ALTER TABLE ... ADD FOREIGN KEY (Stephan Szabo)
Allow SELECT .. FOR UPDATE in PL/pgSQL (Hiroshi)
Enable backward sequential scan even after reaching EOF (Hiroshi)
Add btree indexing of boolean values, >= and <= (Don Baccus)
Print current line number when COPY FROM fails (Massimo)
Recognize POSIX time zone e.g. "PST+8" and "GMT-8" (Thomas)
Add DEC as synonym for DECIMAL (Thomas)
Add SESSION_USER as SQL92 key word, same as CURRENT_USER (Thomas)
Implement SQL92 column aliases (aka correlation names) (Thomas)
Implement SQL92 join syntax (Thomas)
Make INTERVAL reserved word allowed as a column identifier (Thomas)
Implement REINDEX command (Hiroshi)
Accept ALL in aggregate function SUM(ALL col) (Tom)
Prevent GROUP BY from using column aliases (Tom)
New psql \encoding option (Tatsuo)
Allow PQrequestCancel() to terminate when in waiting-for-lock state (Hiroshi)
Allow negation of a negative number in all cases
Add ecpg descriptors (Christof, Michael)
Allow CREATE VIEW v AS SELECT f1::char(8) FROM tbl
Allow casts with length, like foo::char(8)
New libpq functions PQsetClientEncoding(), PQclientEncoding() (Tatsuo)
Add support for SJIS user defined characters (Tatsuo)
Larger views/rules supported
Make libpq’s PQconndefaults() thread-safe (Tom)
Disable // as comment to be ANSI conforming, should use -- (Tom)
Allow column aliases on views CREATE VIEW name (collist)
Fixes for views with subqueries (Tom)
Allow UPDATE table SET fld = (SELECT ...) (Tom)
SET command options no longer require quotes
Update pgaccess to 0.98.6
New SET SEED command
New pg_options.sample file
New SET FSYNC command (Massimo)
Allow pg_descriptions when creating tables
Allow pg_descriptions when creating types, columns, and functions
Allow psql \copy to allow delimiters (Peter E)
Allow psql to print nulls as distinct from "" [null] (Peter E)

Types

Many array fixes (Tom)
Allow bare column names to be subscripted as arrays (Tom)
Improve type casting of int and float constants (Tom)

1213

Appendix E. Release Notes

Cleanups for int8 inputs, range checking, and type conversion (Tom)
Fix for SELECT timespan(’21:11:26’::time) (Tom)
netmask(’x.x.x.x/0’) is 255.255.255.255 instead of 0.0.0.0 (Oleg Sharoiko)
Add btree index on NUMERIC (Jan)
Perl fix for large objects containing NUL characters (Douglas Thomson)
ODBC fix for for large objects (free)
Fix indexing of cidr data type
Fix for Ethernet MAC addresses (macaddr type) comparisons
Fix for date/time types when overflows happened in computations (Tom)
Allow array on int8 (Peter E)
Fix for rounding/overflow of NUMERIC type, like NUMERIC(4,4) (Tom)
Allow NUMERIC arrays
Fix bugs in NUMERIC ceil() and floor() functions (Tom)
Make char_length()/octet_length including trailing blanks (Tom)
Made abstime/reltime use int4 instead of time_t (Peter E)
New lztext data type for compressed text fields
Revise code to handle coercion of int and float constants (Tom)
Start at new code to implement a BIT and BIT VARYING type (Adriaan Joubert)
NUMERIC now accepts scientific notation (Tom)
NUMERIC to int4 rounds (Tom)
Convert float4/8 to NUMERIC properly (Tom)
Allow type conversion with NUMERIC (Thomas)
Make ISO date style (2000-02-16 09:33) the default (Thomas)
Add NATIONAL CHAR [VARYING] (Thomas)
Allow NUMERIC round and trunc to accept negative scales (Tom)
New TIME WITH TIME ZONE type (Thomas)
Add MAX()/MIN() on time type (Thomas)
Add abs(), mod(), fac() for int8 (Thomas)
Rename functions to round(), sqrt(), cbrt(), pow() for float8 (Thomas)
Add transcendental math functions (e.g. sin(), acos()) for float8 (Thomas)
Add exp() and ln() for NUMERIC type
Rename NUMERIC power() to pow() (Thomas)
Improved TRANSLATE() function (Edwin Ramirez, Tom)
Allow X=-Y operators (Tom)
Allow SELECT float8(COUNT(*))/(SELECT COUNT(*) FROM t) FROM t GROUP BY f1; (Tom)
Allow LOCALE to use indexes in regular expression searches (Tom)
Allow creation of functional indexes to use default types

Performance

Prevent exponential space consumption with many AND’s and OR’s (Tom)
Collect attribute selectivity values for system columns (Tom)
Reduce memory usage of aggregates (Tom)
Fix for LIKE optimization to use indexes with multibyte encodings (Tom)
Fix r-tree index optimizer selectivity (Thomas)
Improve optimizer selectivity computations and functions (Tom)
Optimize btree searching for cases where many equal keys exist (Tom)
Enable fast LIKE index processing only if index present (Tom)
Re-use free space on index pages with duplicates (Tom)
Improve hash join processing (Tom)
Prevent descending sort if result is already sorted(Hiroshi)
Allow commuting of index scan query qualifications (Tom)
Prefer index scans in cases where ORDER BY/GROUP BY is required (Tom)
Allocate large memory requests in fix-sized chunks for performance (Tom)
Fix vacuum’s performance by reducing memory allocation requests (Tom)
Implement constant-expression simplification (Bernard Frankpitt, Tom)
Use secondary columns to be used to determine start of index scan (Hiroshi)

1214

Appendix E. Release Notes

Prevent quadruple use of disk space when doing internal sorting (Tom)
Faster sorting by calling fewer functions (Tom)
Create system indexes to match all system caches (Bruce, Hiroshi)
Make system caches use system indexes (Bruce)
Make all system indexes unique (Bruce)
Improve pg_statistics management for VACUUM speed improvement (Tom)
Flush backend cache less frequently (Tom, Hiroshi)
COPY now reuses previous memory allocation, improving performance (Tom)
Improve optimization cost estimation (Tom)
Improve optimizer estimate of range queries x > lowbound AND x < highbound (Tom)
Use DNF instead of CNF where appropriate (Tom, Taral)
Further cleanup for OR-of-AND WHERE-clauses (Tom)
Make use of index in OR clauses (x = 1 AND y = 2) OR (x = 2 AND y = 4) (Tom)
Smarter optimizer computations for random index page access (Tom)
New SET variable to control optimizer costs (Tom)
Optimizer queries based on LIMIT, OFFSET, and EXISTS qualifications (Tom)
Reduce optimizer internal housekeeping of join paths for speedup (Tom)
Major subquery speedup (Tom)
Fewer fsync writes when fsync is not disabled (Tom)
Improved LIKE optimizer estimates (Tom)
Prevent fsync in SELECT-only queries (Vadim)
Make index creation use psort code, because it is now faster (Tom)
Allow creation of sort temp tables > 1 Gig

Source Tree Changes

Fix for linux PPC compile
New generic expression-tree-walker subroutine (Tom)
Change form() to varargform() to prevent portability problems
Improved range checking for large integers on Alphas
Clean up #include in /include directory (Bruce)
Add scripts for checking includes (Bruce)
Remove un-needed #include’s from *.c files (Bruce)
Change #include’s to use <> and "" as appropriate (Bruce)
Enable Windows compilation of libpq
Alpha spinlock fix from Uncle George < gatgul@voicenet.com >
Overhaul of optimizer data structures (Tom)
Fix to cygipc library (Yutaka Tanida)
Allow pgsql to work on newer Cygwin snapshots (Dan)
New catalog version number (Tom)
Add Linux ARM
Rename heap_replace to heap_update
Update for QNX (Dr. Andreas Kardos)
New platform-specific regression handling (Tom)
Rename oid8 - > oidvector and int28 - > int2vector (Bruce)
Included all yacc and lex files into the distribution (Peter E.)
Remove lextest, no longer needed (Peter E)
Fix for libpq and psql on Windows (Magnus)
Internally change datetime and timespan into timestamp and interval (Thomas)
Fix for plpgsql on BSD/OS
Add SQL_ASCII test case to the regression test (Tatsuo)
configure --with-mb now deprecated (Tatsuo)
NT fixes
NetBSD fixes (Johnny C. Lam < lamj@stat.cmu.edu >)
Fixes for Alpha compiles
New multibyte encodings

1215

Appendix E. Release Notes

E.33. Release 6.5.3

Release date: 1999-10-13

This is basically a cleanup release for 6.5.2. We have added a new PgAccess that was missing in 6.5.2,
and installed an NT-specific fix.

E.33.1. Migration to version 6.5.3

A dump/restore isnot required for those running 6.5.*.

E.33.2. Changes

Updated version of pgaccess 0.98
NT-specific patch
Fix dumping rules on inherited tables

E.34. Release 6.5.2

Release date: 1999-09-15

This is basically a cleanup release for 6.5.1. We have fixed a variety of problems reported by 6.5.1
users.

E.34.1. Migration to version 6.5.2

A dump/restore isnot required for those running 6.5.*.

E.34.2. Changes

subselect+CASE fixes(Tom)
Add SHLIB_LINK setting for solaris_i386 and solaris_sparc ports(Daren Sefcik)
Fixes for CASE in WHERE join clauses(Tom)
Fix BTScan abort(Tom)
Repair the check for redundant UNIQUE and PRIMARY KEY indexes(Thomas)
Improve it so that it checks for multicolumn constraints(Thomas)
Fix for Windows making problem with MB enabled(Hiroki Kataoka)
Allow BSD yacc and bison to compile pl code(Bruce)

1216

Appendix E. Release Notes

Fix SET NAMES working
int8 fixes(Thomas)
Fix vacuum’s memory consumption(Hiroshi,Tatsuo)
Reduce the total memory consumption of vacuum(Tom)
Fix for timestamp(datetime)
Rule deparsing bugfixes(Tom)
Fix quoting problems in mkMakefile.tcldefs.sh.in and mkMakefile.tkdefs.sh.in(Tom)
This is to re-use space on index pages freed by vacuum(Vadim)
document -x for pg_dump(Bruce)
Fix for unary operators in rule deparser(Tom)
Comment out FileUnlink of excess segments during mdtruncate()(Tom)
IRIX linking fix from Yu Cao >yucao@falcon.kla-tencor.com <

Repair logic error in LIKE: should not return LIKE_ABORT
when reach end of pattern before end of text(Tom)

Repair incorrect cleanup of heap memory allocation during transaction abort(Tom)
Updated version of pgaccess 0.98

E.35. Release 6.5.1

Release date: 1999-07-15

This is basically a cleanup release for 6.5. We have fixed a variety of problems reported by 6.5 users.

E.35.1. Migration to version 6.5.1

A dump/restore isnot required for those running 6.5.

E.35.2. Changes

Add NT README file
Portability fixes for linux_ppc, IRIX, linux_alpha, OpenBSD, alpha
Remove QUERY_LIMIT, use SELECT...LIMIT
Fix for EXPLAIN on inheritance(Tom)
Patch to allow vacuum on multisegment tables(Hiroshi)
R-Tree optimizer selectivity fix(Tom)
ACL file descriptor leak fix(Atsushi Ogawa)
New expresssion subtree code(Tom)
Avoid disk writes for read-only transactions(Vadim)
Fix for removal of temp tables if last transaction was aborted(Bruce)
Fix to prevent too large row from being created(Bruce)
plpgsql fixes
Allow port numbers 32k - 64k(Bruce)
Add ^ precidence(Bruce)
Rename sort files called pg_temp to pg_sorttemp(Bruce)
Fix for microseconds in time values(Tom)
Tutorial source cleanup
New linux_m68k port

1217

Appendix E. Release Notes

Fix for sorting of NULL’s in some cases(Tom)
Shared library dependencies fixed (Tom)
Fixed glitches affecting GROUP BY in subselects(Tom)
Fix some compiler warnings (Tomoaki Nishiyama)
Add Win1250 (Czech) support (Pavel Behal)

E.36. Release 6.5

Release date: 1999-06-09

This release marks a major step in the development team’s mastery of the source code we inherited
from Berkeley. You will see we are now easily adding major features, thanks to the increasing size
and experience of our world-wide development team.

Here is a brief summary of the more notable changes:

Multiversion concurrency control(MVCC)

This removes our old table-level locking, and replaces it with a locking system that is superior to
most commercial database systems. In a traditional system, each row that is modified is locked
until committed, preventing reads by other users. MVCC uses the natural multiversion nature of
PostgreSQL to allow readers to continue reading consistent data during writer activity. Writers
continue to use the compact pg_log transaction system. This is all performed without having to
allocate a lock for every row like traditional database systems. So, basically, we no longer are
restricted by simple table-level locking; we have something better than row-level locking.

Hot backups from pg_dump

pg_dump takes advantage of the new MVCC features to give a consistent database dump/backup
while the database stays online and available for queries.

Numeric data type

We now have a true numeric data type, with user-specified precision.

Temporary tables

Temporary tables are guaranteed to have unique names within a database session, and are de-
stroyed on session exit.

New SQL features

We now have CASE, INTERSECT, and EXCEPT statement support. We have new
LIMIT/OFFSET, SET TRANSACTION ISOLATION LEVEL, SELECT ... FOR UPDATE, and
an improved LOCK TABLE command.

Speedups

We continue to speed up PostgreSQL, thanks to the variety of talents within our team. We have
sped up memory allocation, optimization, table joins, and row transfer routines.

Ports

We continue to expand our port list, this time including Windows NT/ix86 and NetBSD/arm32.

1218

Appendix E. Release Notes

Interfaces

Most interfaces have new versions, and existing functionality has been improved.

Documentation

New and updated material is present throughout the documentation. New FAQs have been con-
tributed for SGI and AIX platforms. TheTutorial has introductory information on SQL from
Stefan Simkovics. For theUser’s Guide, there are reference pages covering the postmaster and
more utility programs, and a new appendix contains details on date/time behavior. TheAdmin-
istrator’s Guidehas a new chapter on troubleshooting from Tom Lane. And theProgrammer’s
Guidehas a description of query processing, also from Stefan, and details on obtaining the Post-
greSQL source tree via anonymous CVS and CVSup.

E.36.1. Migration to version 6.5

A dump/restore using pg_dump is required for those wishing to migrate data from any previous release
of PostgreSQL. pg_upgrade cannot be used to upgrade to this release because the on-disk structure
of the tables has changed compared to previous releases.

The new Multiversion Concurrency Control (MVCC) features can give somewhat different behaviors
in multiuser environments.Read and understand the following section to ensure that your existing
applications will give you the behavior you need.

E.36.1.1. Multiversion Concurrency Control

Because readers in 6.5 don’t lock data, regardless of transaction isolation level, data read by one trans-
action can be overwritten by another. In other words, if a row is returned bySELECTit doesn’t mean
that this row really exists at the time it is returned (i.e. sometime after the statement or transaction
began) nor that the row is protected from being deleted or updated by concurrent transactions before
the current transaction does a commit or rollback.

To ensure the actual existence of a row and protect it against concurrent updates one must useSELECT

FOR UPDATEor an appropriateLOCK TABLEstatement. This should be taken into account when
porting applications from previous releases of PostgreSQL and other environments.

Keep the above in mind if you are usingcontrib/refint.* triggers for referential integrity. Ad-
ditional techniques are required now. One way is to useLOCK parent_table IN SHARE ROW
EXCLUSIVE MODEcommand if a transaction is going to update/delete a primary key and useLOCK
parent_table IN SHARE MODE command if a transaction is going to update/insert a foreign key.

Note: Note that if you run a transaction in SERIALIZABLE mode then you must
execute the LOCK commands above before execution of any DML statement
(SELECT/INSERT/DELETE/UPDATE/FETCH/COPY_TO) in the transaction.

These inconveniences will disappear in the future when the ability to read dirty (uncommitted) data
(regardless of isolation level) and true referential integrity will be implemented.

1219

Appendix E. Release Notes

E.36.2. Changes

Bug Fixes

Fix text<->float8 and text<->float4 conversion functions(Thomas)
Fix for creating tables with mixed-case constraints(Billy)
Change exp()/pow() behavior to generate error on underflow/overflow(Jan)
Fix bug in pg_dump -z
Memory overrun cleanups(Tatsuo)
Fix for lo_import crash(Tatsuo)
Adjust handling of data type names to suppress double quotes(Thomas)
Use type coercion for matching columns and DEFAULT(Thomas)
Fix deadlock so it only checks once after one second of sleep(Bruce)
Fixes for aggregates and PL/pgsql(Hiroshi)
Fix for subquery crash(Vadim)
Fix for libpq function PQfnumber and case-insensitive names(Bahman Rafatjoo)
Fix for large object write-in-middle, no extra block, memory consumption(Tatsuo)
Fix for pg_dump -d or -D and quote special characters in INSERT
Repair serious problems with dynahash(Tom)
Fix INET/CIDR portability problems
Fix problem with selectivity error in ALTER TABLE ADD COLUMN(Bruce)
Fix executor so mergejoin of different column types works(Tom)
Fix for Alpha OR selectivity bug
Fix OR index selectivity problem(Bruce)
Fix so \d shows proper length for char()/varchar()(Ryan)
Fix tutorial code(Clark)
Improve destroyuser checking(Oliver)
Fix for Kerberos(Rodney McDuff)
Fix for dropping database while dirty buffers(Bruce)
Fix so sequence nextval() can be case-sensitive(Bruce)
Fix !!= operator
Drop buffers before destroying database files(Bruce)
Fix case where executor evaluates functions twice(Tatsuo)
Allow sequence nextval actions to be case-sensitive(Bruce)
Fix optimizer indexing not working for negative numbers(Bruce)
Fix for memory leak in executor with fjIsNull
Fix for aggregate memory leaks(Erik Riedel)
Allow user name containing a dash to grant privileges
Cleanup of NULL in inet types
Clean up system table bugs(Tom)
Fix problems of PAGER and \? command(Masaaki Sakaida)
Reduce default multisegment file size limit to 1GB(Peter)
Fix for dumping of CREATE OPERATOR(Tom)
Fix for backward scanning of cursors(Hiroshi Inoue)
Fix for COPY FROM STDIN when using \i(Tom)
Fix for subselect is compared inside an expression(Jan)
Fix handling of error reporting while returning rows(Tom)
Fix problems with reference to array types(Tom,Jan)
Prevent UPDATE SET oid(Jan)
Fix pg_dump so -t option can handle case-sensitive tablenames
Fixes for GROUP BY in special cases(Tom, Jan)
Fix for memory leak in failed queries(Tom)
DEFAULT now supports mixed-case identifiers(Tom)
Fix for multisegment uses of DROP/RENAME table, indexes(Ole Gjerde)
Disable use of pg_dump with both -o and -d options(Bruce)
Allow pg_dump to properly dump group privileges(Bruce)
Fix GROUP BY in INSERT INTO table SELECT * FROM table2(Jan)

1220

Appendix E. Release Notes

Fix for computations in views(Jan)
Fix for aggregates on array indexes(Tom)
Fix for DEFAULT handles single quotes in value requiring too many quotes
Fix security problem with non-super users importing/exporting large objects(Tom)
Rollback of transaction that creates table cleaned up properly(Tom)
Fix to allow long table and column names to generate proper serial names(Tom)

Enhancements

Add "vacuumdb" utility
Speed up libpq by allocating memory better(Tom)
EXPLAIN all indexes used(Tom)
Implement CASE, COALESCE, NULLIF expression(Thomas)
New pg_dump table output format(Constantin)
Add string min()/max() functions(Thomas)
Extend new type coercion techniques to aggregates(Thomas)
New moddatetime contrib(Terry)
Update to pgaccess 0.96(Constantin)
Add routines for single-byte "char" type(Thomas)
Improved substr() function(Thomas)
Improved multibyte handling(Tatsuo)
Multiversion concurrency control/MVCC(Vadim)
New Serialized mode(Vadim)
Fix for tables over 2gigs(Peter)
New SET TRANSACTION ISOLATION LEVEL(Vadim)
New LOCK TABLE IN ... MODE(Vadim)
Update ODBC driver(Byron)
New NUMERIC data type(Jan)
New SELECT FOR UPDATE(Vadim)
Handle "NaN" and "Infinity" for input values(Jan)
Improved date/year handling(Thomas)
Improved handling of backend connections(Magnus)
New options ELOG_TIMESTAMPS and USE_SYSLOG options for log files(Massimo)
New TCL_ARRAYS option(Massimo)
New INTERSECT and EXCEPT(Stefan)
New pg_index.indisprimary for primary key tracking(D’Arcy)
New pg_dump option to allow dropping of tables before creation(Brook)
Speedup of row output routines(Tom)
New READ COMMITTED isolation level(Vadim)
New TEMP tables/indexes(Bruce)
Prevent sorting if result is already sorted(Jan)
New memory allocation optimization(Jan)
Allow psql to do \p\g(Bruce)
Allow multiple rule actions(Jan)
Added LIMIT/OFFSET functionality(Jan)
Improve optimizer when joining a large number of tables(Bruce)
New intro to SQL from S. Simkovics’ Master’s Thesis (Stefan, Thomas)
New intro to backend processing from S. Simkovics’ Master’s Thesis (Stefan)
Improved int8 support(Ryan Bradetich, Thomas, Tom)
New routines to convert between int8 and text/varchar types(Thomas)
New bushy plans, where meta-tables are joined(Bruce)
Enable right-hand queries by default(Bruce)
Allow reliable maximum number of backends to be set at configure time

(--with-maxbackends and postmaster switch (-N backends))(Tom)
GEQO default now 10 tables because of optimizer speedups(Tom)
Allow NULL=Var for MS-SQL portability(Michael, Bruce)
Modify contrib check_primary_key() so either "automatic" or "dependent"(Anand)

1221

Appendix E. Release Notes

Allow psql \d on a view show query(Ryan)
Speedup for LIKE(Bruce)
Ecpg fixes/features, see src/interfaces/ecpg/ChangeLog file(Michael)
JDBC fixes/features, see src/interfaces/jdbc/CHANGELOG(Peter)
Make % operator have precedence like /(Bruce)
Add new postgres -O option to allow system table structure changes(Bruce)
Update contrib/pginterface/findoidjoins script(Tom)
Major speedup in vacuum of deleted rows with indexes(Vadim)
Allow non-SQL functions to run different versions based on arguments(Tom)
Add -E option that shows actual queries sent by \dt and friends(Masaaki Sakaida)
Add version number in start-up banners for psql(Masaaki Sakaida)
New contrib/vacuumlo removes large objects not referenced(Peter)
New initialization for table sizes so non-vacuumed tables perform better(Tom)
Improve error messages when a connection is rejected(Tom)
Support for arrays of char() and varchar() fields(Massimo)
Overhaul of hash code to increase reliability and performance(Tom)
Update to PyGreSQL 2.4(D’Arcy)
Changed debug options so -d4 and -d5 produce different node displays(Jan)
New pg_options: pretty_plan, pretty_parse, pretty_rewritten(Jan)
Better optimization statistics for system table access(Tom)
Better handling of non-default block sizes(Massimo)
Improve GEQO optimizer memory consumption(Tom)
UNION now suppports ORDER BY of columns not in target list(Jan)
Major libpq++ improvements(Vince Vielhaber)
pg_dump now uses -z(ACL’s) as default(Bruce)
backend cache, memory speedups(Tom)
have pg_dump do everything in one snapshot transaction(Vadim)
fix for large object memory leakage, fix for pg_dumping(Tom)
INET type now respects netmask for comparisons
Make VACUUM ANALYZE only use a readlock(Vadim)
Allow VIEWs on UNIONS(Jan)
pg_dump now can generate consistent snapshots on active databases(Vadim)

Source Tree Changes

Improve port matching(Tom)
Portability fixes for SunOS
Add Windows NT backend port and enable dynamic loading(Magnus and Daniel Horak)
New port to Cobalt Qube(Mips) running Linux(Tatsuo)
Port to NetBSD/m68k(Mr. Mutsuki Nakajima)
Port to NetBSD/sun3(Mr. Mutsuki Nakajima)
Port to NetBSD/macppc(Toshimi Aoki)
Fix for tcl/tk configuration(Vince)
Removed CURRENT key word for rule queries(Jan)
NT dynamic loading now works(Daniel Horak)
Add ARM32 support(Andrew McMurry)
Better support for HP-UX 11 and UnixWare
Improve file handling to be more uniform, prevent file descriptor leak(Tom)
New install commands for plpgsql(Jan)

1222

Appendix E. Release Notes

E.37. Release 6.4.2

Release date: 1998-12-20

The 6.4.1 release was improperly packaged. This also has one additional bug fix.

E.37.1. Migration to version 6.4.2

A dump/restore isnot required for those running 6.4.*.

E.37.2. Changes

Fix for datetime constant problem on some platforms(Thomas)

E.38. Release 6.4.1

Release date: 1998-12-18

This is basically a cleanup release for 6.4. We have fixed a variety of problems reported by 6.4 users.

E.38.1. Migration to version 6.4.1

A dump/restore isnot required for those running 6.4.

E.38.2. Changes

Add pg_dump -N flag to force double quotes around identifiers. This is
the default(Thomas)

Fix for NOT in where clause causing crash(Bruce)
EXPLAIN VERBOSE coredump fix(Vadim)
Fix shared-library problems on Linux
Fix test for table existence to allow mixed-case and whitespace in

the table name(Thomas)
Fix a couple of pg_dump bugs
Configure matches template/.similar entries better(Tom)
Change builtin function names from SPI_* to spi_*
OR WHERE clause fix(Vadim)
Fixes for mixed-case table names(Billy)
contrib/linux/postgres.init.csh/sh fix(Thomas)
libpq memory overrun fix
SunOS fixes(Tom)
Change exp() behavior to generate error on underflow(Thomas)
pg_dump fixes for memory leak, inheritance constraints, layout change
update pgaccess to 0.93

1223

Appendix E. Release Notes

Fix prototype for 64-bit platforms
Multibyte fixes(Tatsuo)
New ecpg man page
Fix memory overruns(Tatsuo)
Fix for lo_import() crash(Bruce)
Better search for install program(Tom)
Timezone fixes(Tom)
HP-UX fixes(Tom)
Use implicit type coercion for matching DEFAULT values(Thomas)
Add routines to help with single-byte (internal) character type(Thomas)
Compilation of libpq for Windows fixes(Magnus)
Upgrade to PyGreSQL 2.2(D’Arcy)

E.39. Release 6.4

Release date: 1998-10-30

There aremanynew features and improvements in this release. Thanks to our developers and main-
tainers, nearly every aspect of the system has received some attention since the previous release. Here
is a brief, incomplete summary:

• Views and rules are now functional thanks to extensive new code in the rewrite rules system from
Jan Wieck. He also wrote a chapter on it for theProgrammer’s Guide.

• Jan also contributed a second procedural language, PL/pgSQL, to go with the original PL/pgTCL
procedural language he contributed last release.

• We have optional multiple-byte character set support from Tatsuo Ishii to complement our existing
locale support.

• Client/server communications has been cleaned up, with better support for asynchronous messages
and interrupts thanks to Tom Lane.

• The parser will now perform automatic type coercion to match arguments to available operators
and functions, and to match columns and expressions with target columns. This uses a generic
mechanism which supports the type extensibility features of PostgreSQL. There is a new chapter
in theUser’s Guidewhich covers this topic.

• Three new data types have been added. Two types,inet andcidr , support various forms of IP
network, subnet, and machine addressing. There is now an 8-byte integer type available on some
platforms. See the chapter on data types in theUser’s Guidefor details. A fourth type,serial , is
now supported by the parser as an amalgam of theint4 type, a sequence, and a unique index.

• Several more SQL92-compatible syntax features have been added, includingINSERT DEFAULT

VALUES

• The automatic configuration and installation system has received some attention, and should be
more robust for more platforms than it has ever been.

1224

Appendix E. Release Notes

E.39.1. Migration to version 6.4

A dump/restore using pg_dump or pg_dumpall is required for those wishing to migrate data from any
previous release of PostgreSQL.

E.39.2. Changes

Bug Fixes

Fix for a tiny memory leak in PQsetdb/PQfinish(Bryan)
Remove char2-16 data types, use char/varchar(Darren)
Pqfn not handles a NOTICE message(Anders)
Reduced busywaiting overhead for spinlocks with many backends (dg)
Stuck spinlock detection (dg)
Fix up "ISO-style" timespan decoding and encoding(Thomas)
Fix problem with table drop after rollback of transaction(Vadim)
Change error message and remove non-functional update message(Vadim)
Fix for COPY array checking
Fix for SELECT 1 UNION SELECT NULL
Fix for buffer leaks in large object calls(Pascal)
Change owner from oid to int4 type(Bruce)
Fix a bug in the oracle compatibility functions btrim() ltrim() and rtrim()
Fix for shared invalidation cache overflow(Massimo)
Prevent file descriptor leaks in failed COPY’s(Bruce)
Fix memory leak in libpgtcl’s pg_select(Constantin)
Fix problems with username/passwords over 8 characters(Tom)
Fix problems with handling of asynchronous NOTIFY in backend(Tom)
Fix of many bad system table entries(Tom)

Enhancements

Upgrade ecpg and ecpglib,see src/interfaces/ecpc/ChangeLog(Michael)
Show the index used in an EXPLAIN(Zeugswetter)
EXPLAIN invokes rule system and shows plan(s) for rewritten queries(Jan)
Multibyte awareness of many data types and functions, via configure(Tatsuo)
New configure --with-mb option(Tatsuo)
New initdb --pgencoding option(Tatsuo)
New createdb -E multibyte option(Tatsuo)
Select version(); now returns PostgreSQL version(Jeroen)
libpq now allows asynchronous clients(Tom)
Allow cancel from client of backend query(Tom)
psql now cancels query with Control-C(Tom)
libpq users need not issue dummy queries to get NOTIFY messages(Tom)
NOTIFY now sends sender’s PID, so you can tell whether it was your own(Tom)
PGresult struct now includes associated error message, if any(Tom)
Define "tz_hour" and "tz_minute" arguments to date_part()(Thomas)
Add routines to convert between varchar and bpchar(Thomas)
Add routines to allow sizing of varchar and bpchar into target columns(Thomas)
Add bit flags to support timezonehour and minute in data retrieval(Thomas)
Allow more variations on valid floating point numbers (e.g. ".1", "1e6")(Thomas)
Fixes for unary minus parsing with leading spaces(Thomas)
Implement TIMEZONE_HOUR, TIMEZONE_MINUTE per SQL92 specs(Thomas)
Check for and properly ignore FOREIGN KEY column constraints(Thomas)
Define USER as synonym for CURRENT_USER per SQL92 specs(Thomas)
Enable HAVING clause but no fixes elsewhere yet.
Make "char" type a synonym for "char(1)" (actually implemented as bpchar)(Thomas)

1225

Appendix E. Release Notes

Save string type if specified for DEFAULT clause handling(Thomas)
Coerce operations involving different data types(Thomas)
Allow some index use for columns of different types(Thomas)
Add capabilities for automatic type conversion(Thomas)
Cleanups for large objects, so file is truncated on open(Peter)
Readline cleanups(Tom)
Allow psql \f \ to make spaces as delimiter(Bruce)
Pass pg_attribute.atttypmod to the frontend for column field lengths(Tom,Bruce)
Msql compatibility library in /contrib(Aldrin)
Remove the requirement that ORDER/GROUP BY clause identifiers be
included in the target list(David)
Convert columns to match columns in UNION clauses(Thomas)
Remove fork()/exec() and only do fork()(Bruce)
Jdbc cleanups(Peter)
Show backend status on ps command line(only works on some platforms)(Bruce)
Pg_hba.conf now has a sameuser option in the database field
Make lo_unlink take oid param, not int4
New DISABLE_COMPLEX_MACRO for compilers that can’t handle our macros(Bruce)
Libpgtcl now handles NOTIFY as a Tcl event, need not send dummy queries(Tom)
libpgtcl cleanups(Tom)
Add -error option to libpgtcl’s pg_result command(Tom)
New locale patch, see docs/README/locale(Oleg)
Fix for pg_dump so CONSTRAINT and CHECK syntax is correct(ccb)
New contrib/lo code for large object orphan removal(Peter)
New psql command "SET CLIENT_ENCODING TO ’encoding’" for multibytes
feature, see /doc/README.mb(Tatsuo)
contrib/noupdate code to revoke update permission on a column
libpq can now be compiled on Windows(Magnus)
Add PQsetdbLogin() in libpq
New 8-byte integer type, checked by configure for OS support(Thomas)
Better support for quoted table/column names(Thomas)
Surround table and column names with double-quotes in pg_dump(Thomas)
PQreset() now works with passwords(Tom)
Handle case of GROUP BY target list column number out of range(David)
Allow UNION in subselects
Add auto-size to screen to \d? commands(Bruce)
Use UNION to show all \d? results in one query(Bruce)
Add \d? field search feature(Bruce)
Pg_dump issues fewer \connect requests(Tom)
Make pg_dump -z flag work better, document it in manual page(Tom)
Add HAVING clause with full support for subselects and unions(Stephan)
Full text indexing routines in contrib/fulltextindex(Maarten)
Transaction ids now stored in shared memory(Vadim)
New PGCLIENTENCODING when issuing COPY command(Tatsuo)
Support for SQL92 syntax "SET NAMES"(Tatsuo)
Support for LATIN2-5(Tatsuo)
Add UNICODE regression test case(Tatsuo)
Lock manager cleanup, new locking modes for LLL(Vadim)
Allow index use with OR clauses(Bruce)
Allows "SELECT NULL ORDER BY 1;"
Explain VERBOSE prints the plan, and now pretty-prints the plan to
the postmaster log file(Bruce)
Add indexes display to \d command(Bruce)
Allow GROUP BY on functions(David)
New pg_class.relkind for large objects(Bruce)
New way to send libpq NOTICE messages to a different location(Tom)
New \w write command to psql(Bruce)

1226

Appendix E. Release Notes

New /contrib/findoidjoins scans oid columns to find join relationships(Bruce)
Allow binary-compatible indexes to be considered when checking for valid
Indexes for restriction clauses containing a constant(Thomas)
New ISBN/ISSN code in /contrib/isbn_issn
Allow NOT LIKE, IN, NOT IN, BETWEEN, and NOT BETWEEN constraint(Thomas)
New rewrite system fixes many problems with rules and views(Jan)

* Rules on relations work
* Event qualifications on insert/update/delete work
* New OLD variable to reference CURRENT, CURRENT will be remove in future
* Update rules can reference NEW and OLD in rule qualifications/actions
* Insert/update/delete rules on views work
* Multiple rule actions are now supported, surrounded by parentheses
* Regular users can create views/rules on tables they have RULE permits
* Rules and views inherit the privileges of the creator
* No rules at the column level
* No UPDATE NEW/OLD rules
* New pg_tables, pg_indexes, pg_rules and pg_views system views
* Only a single action on SELECT rules
* Total rewrite overhaul, perhaps for 6.5
* handle subselects
* handle aggregates on views
* handle insert into select from view works

System indexes are now multikey(Bruce)
Oidint2, oidint4, and oidname types are removed(Bruce)
Use system cache for more system table lookups(Bruce)
New backend programming language PL/pgSQL in backend/pl(Jan)
New SERIAL data type, auto-creates sequence/index(Thomas)
Enable assert checking without a recompile(Massimo)
User lock enhancements(Massimo)
New setval() command to set sequence value(Massimo)
Auto-remove unix socket file on start-up if no postmaster running(Massimo)
Conditional trace package(Massimo)
New UNLISTEN command(Massimo)
psql and libpq now compile under Windows using win32.mak(Magnus)
Lo_read no longer stores trailing NULL(Bruce)
Identifiers are now truncated to 31 characters internally(Bruce)
Createuser options now availble on the command line
Code for 64-bit integer supported added, configure tested, int8 type(Thomas)
Prevent file descriptor leaf from failed COPY(Bruce)
New pg_upgrade command(Bruce)
Updated /contrib directories(Massimo)
New CREATE TABLE DEFAULT VALUES statement available(Thomas)
New INSERT INTO TABLE DEFAULT VALUES statement available(Thomas)
New DECLARE and FETCH feature(Thomas)
libpq’s internal structures now not exported(Tom)
Allow up to 8 key indexes(Bruce)
Remove ARCHIVE key word, that is no longer used(Thomas)
pg_dump -n flag to supress quotes around indentifiers
disable system columns for views(Jan)
new INET and CIDR types for network addresses(TomH, Paul)
no more double quotes in psql output
pg_dump now dumps views(Terry)
new SET QUERY_LIMIT(Tatsuo,Jan)

Source Tree Changes

/contrib cleanup(Jun)

1227

Appendix E. Release Notes

Inline some small functions called for every row(Bruce)
Alpha/linux fixes
HP-UX cleanups(Tom)
Multibyte regression tests(Soonmyung.)
Remove --disabled options from configure
Define PGDOC to use POSTGRESDIR by default
Make regression optional
Remove extra braces code to pgindent(Bruce)
Add bsdi shared library support(Bruce)
New --without-CXX support configure option(Brook)
New FAQ_CVS
Update backend flowchart in tools/backend(Bruce)
Change atttypmod from int16 to int32(Bruce, Tom)
Getrusage() fix for platforms that do not have it(Tom)
Add PQconnectdb, PGUSER, PGPASSWORD to libpq man page
NS32K platform fixes(Phil Nelson, John Buller)
SCO 7/UnixWare 2.x fixes(Billy,others)
Sparc/Solaris 2.5 fixes(Ryan)
Pgbuiltin.3 is obsolete, move to doc files(Thomas)
Even more documention(Thomas)
Nextstep support(Jacek)
Aix support(David)
pginterface manual page(Bruce)
shared libraries all have version numbers
merged all OS-specific shared library defines into one file
smarter TCL/TK configuration checking(Billy)
smarter perl configuration(Brook)
configure uses supplied install-sh if no install script found(Tom)
new Makefile.shlib for shared library configuration(Tom)

E.40. Release 6.3.2

Release date: 1998-04-07

This is a bug-fix release for 6.3.x. Refer to the release notes for version 6.3 for a more complete
summary of new features.

Summary:

• Repairs automatic configuration support for some platforms, including Linux, from breakage inad-
vertently introduced in version 6.3.1.

• Correctly handles function calls on the left side of BETWEEN and LIKE clauses.

A dump/restore is NOT required for those running 6.3 or 6.3.1. Amake distclean , make, and
make install is all that is required. This last step should be performed while the postmaster is not
running. You should re-link any custom applications that use PostgreSQL libraries.

For upgrades from pre-6.3 installations, refer to the installation and migration instructions for version
6.3.

1228

Appendix E. Release Notes

E.40.1. Changes

Configure detection improvements for tcl/tk(Brook Milligan, Alvin)
Manual page improvements(Bruce)
BETWEEN and LIKE fix(Thomas)
fix for psql \connect used by pg_dump(Oliver Elphick)
New odbc driver
pgaccess, version 0.86
qsort removed, now uses libc version, cleanups(Jeroen)
fix for buffer over-runs detected(Maurice Gittens)
fix for buffer overrun in libpgtcl(Randy Kunkee)
fix for UNION with DISTINCT or ORDER BY(Bruce)
gettimeofday configure check(Doug Winterburn)
Fix "indexes not used" bug(Vadim)
docs additions(Thomas)
Fix for backend memory leak(Bruce)
libreadline cleanup(Erwan MAS)
Remove DISTDIR(Bruce)
Makefile dependency cleanup(Jeroen van Vianen)
ASSERT fixes(Bruce)

E.41. Release 6.3.1

Release date: 1998-03-23

Summary:

• Additional support for multibyte character sets.

• Repair byte ordering for mixed-endian clients and servers.

• Minor updates to allowed SQL syntax.

• Improvements to the configuration autodetection for installation.

A dump/restore is NOT required for those running 6.3. Amake distclean , make, and make

install is all that is required. This last step should be performed while the postmaster is not
running. You should re-link any custom applications that use PostgreSQL libraries.

For upgrades from pre-6.3 installations, refer to the installation and migration instructions for version
6.3.

E.41.1. Changes

ecpg cleanup/fixes, now version 1.1(Michael Meskes)
pg_user cleanup(Bruce)
large object fix for pg_dump and tclsh (alvin)

1229

Appendix E. Release Notes

LIKE fix for multiple adjacent underscores
fix for redefining builtin functions(Thomas)
ultrix4 cleanup
upgrade to pg_access 0.83
updated CLUSTER manual page
multibyte character set support, see doc/README.mb(Tatsuo)
configure --with-pgport fix
pg_ident fix
big-endian fix for backend communications(Kataoka)
SUBSTR() and substring() fix(Jan)
several jdbc fixes(Peter)
libpgtcl improvements, see libptcl/README(Randy Kunkee)
Fix for "Datasize = 0" error(Vadim)
Prevent \do from wrapping(Bruce)
Remove duplicate Russian character set entries
Sunos4 cleanup
Allow optional TABLE key word in LOCK and SELECT INTO(Thomas)
CREATE SEQUENCE options to allow a negative integer(Thomas)
Add "PASSWORD" as an allowed column identifier(Thomas)
Add checks for UNION target fields(Bruce)
Fix Alpha port(Dwayne Bailey)
Fix for text arrays containing quotes(Doug Gibson)
Solaris compile fix(Albert Chin-A-Young)
Better identify tcl and tk libs and includes(Bruce)

E.42. Release 6.3

Release date: 1998-03-01

There aremanynew features and improvements in this release. Here is a brief, incomplete summary:

• Many new SQL features, including full SQL92 subselect capability (everything is here but target-
list subselects).

• Support for client-side environment variables to specify time zone and date style.

• Socket interface for client/server connection. This is the default now so you may need to start
postmaster with the-i flag.

• Better password authorization mechanisms. Default table privileges have changed.

• Old-styletime travelhas been removed. Performance has been improved.

Note: Bruce Momjian wrote the following notes to introduce the new release.

1230

Appendix E. Release Notes

There are some general 6.3 issues that I want to mention. These are only the big items that can not be
described in one sentence. A review of the detailed changes list is still needed.

First, we now have subselects. Now that we have them, I would like to mention that without subselects,
SQL is a very limited language. Subselects are a major feature, and you should review your code for
places where subselects provide a better solution for your queries. I think you will find that there are
more uses for subselects than you may think. Vadim has put us on the big SQL map with subselects,
and fully functional ones too. The only thing you can’t do with subselects is to use them in the target
list.

Second, 6.3 uses Unix domain sockets rather than TCP/IP by default. To enable connections from
other machines, you have to use the new postmaster -i option, and of course editpg_hba.conf .
Also, for this reason, the format ofpg_hba.conf has changed.

Third, char() fields will now allow faster access thanvarchar() or text . Specifically, thetext

andvarchar() have a penalty for access to any columns after the first column of this type.char()

used to also have this access penalty, but it no longer does. This may suggest that you redesign some
of your tables, especially if you have short character columns that you have defined asvarchar() or
text . This and other changes make 6.3 even faster than earlier releases.

We now have passwords definable independent of any Unix file. There are new SQL USER com-
mands. See theAdministrator’s Guidefor more information. There is a new table, pg_shadow, which
is used to store user information and user passwords, and it by default only SELECT-able by the post-
gres super-user. pg_user is now a view of pg_shadow, and is SELECT-able by PUBLIC. You should
keep using pg_user in your application without changes.

User-created tables now no longer have SELECT privilege to PUBLIC by default. This was done
because the ANSI standard requires it. You can of course GRANT any privileges you want after the
table is created. System tables continue to be SELECT-able by PUBLIC.

We also have real deadlock detection code. No more sixty-second timeouts. And the new locking code
implements a FIFO better, so there should be less resource starvation during heavy use.

Many complaints have been made about inadequate documentation in previous releases. Thomas has
put much effort into many new manuals for this release. Check out the doc/ directory.

For performance reasons, time travel is gone, but can be implemented using triggers (see
pgsql/contrib/spi/README). Please check out the new \d command for types, operators, etc.
Also, views have their own privileges now, not based on the underlying tables, so privileges on them
have to be set separately. Check/pgsql/interfaces for some new ways to talk to PostgreSQL.

This is the first release that really required an explanation for existing users. In many ways, this was
necessary because the new release removes many limitations, and the work-arounds people were using
are no longer needed.

E.42.1. Migration to version 6.3

A dump/restore using pg_dump or pg_dumpall is required for those wishing to migrate data from any
previous release of PostgreSQL.

E.42.2. Changes

Bug Fixes

Fix binary cursors broken by MOVE implementation(Vadim)
Fix for tcl library crash(Jan)

1231

Appendix E. Release Notes

Fix for array handling, from Gerhard Hintermayer
Fix acl error, and remove duplicate pqtrace(Bruce)
Fix psql \e for empty file(Bruce)
Fix for textcat on varchar() fields(Bruce)
Fix for DBT Sendproc (Zeugswetter Andres)
Fix vacuum analyze syntax problem(Bruce)
Fix for international identifiers(Tatsuo)
Fix aggregates on inherited tables(Bruce)
Fix substr() for out-of-bounds data
Fix for select 1=1 or 2=2, select 1=1 and 2=2, and select sum(2+2)(Bruce)
Fix notty output to show status result. -q option still turns it off(Bruce)
Fix for count(*), aggs with views and multiple tables and sum(3)(Bruce)
Fix cluster(Bruce)
Fix for PQtrace start/stop several times(Bruce)
Fix a variety of locking problems like newer lock waiters getting

lock before older waiters, and having readlock people not share
locks if a writer is waiting for a lock, and waiting writers not
getting priority over waiting readers(Bruce)

Fix crashes in psql when executing queries from external files(James)
Fix problem with multiple order by columns, with the first one having

NULL values(Jeroen)
Use correct hash table support functions for float8 and int4(Thomas)
Re-enable JOIN= option in CREATE OPERATOR statement (Thomas)
Change precedence for boolean operators to match expected behavior(Thomas)
Generate elog(ERROR) on over-large integer(Bruce)
Allow multiple-argument functions in constraint clauses(Thomas)
Check boolean input literals for ’true’,’false’,’yes’,’no’,’1’,’0’

and throw elog(ERROR) if unrecognized(Thomas)
Major large objects fix
Fix for GROUP BY showing duplicates(Vadim)
Fix for index scans in MergeJion(Vadim)

Enhancements

Subselects with EXISTS, IN, ALL, ANY key words (Vadim, Bruce, Thomas)
New User Manual(Thomas, others)
Speedup by inlining some frequently-called functions
Real deadlock detection, no more timeouts(Bruce)
Add SQL92 "constants" CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP,

CURRENT_USER(Thomas)
Modify constraint syntax to be SQL92-compliant(Thomas)
Implement SQL92 PRIMARY KEY and UNIQUE clauses using indexes(Thomas)
Recognize SQL92 syntax for FOREIGN KEY. Throw elog notice(Thomas)
Allow NOT NULL UNIQUE constraint clause (each allowed separately before)(Thomas)
Allow PostgreSQL-style casting ("::") of non-constants(Thomas)
Add support for SQL3 TRUE and FALSE boolean constants(Thomas)
Support SQL92 syntax for IS TRUE/IS FALSE/IS NOT TRUE/IS NOT FALSE(Thomas)
Allow shorter strings for boolean literals (e.g. "t", "tr", "tru")(Thomas)
Allow SQL92 delimited identifiers(Thomas)
Implement SQL92 binary and hexadecimal string decoding (b’10’ and x’1F’)(Thomas)
Support SQL92 syntax for type coercion of literal strings

(e.g. "DATETIME ’now’")(Thomas)
Add conversions for int2, int4, and OID types to and from text(Thomas)
Use shared lock when building indexes(Vadim)
Free memory allocated for an user query inside transaction block after

this query is done, was turned off in <= 6.2.1(Vadim)
New SQL statement CREATE PROCEDURAL LANGUAGE(Jan)

1232

Appendix E. Release Notes

New PostgreSQL Procedural Language (PL) backend interface(Jan)
Rename pg_dump -H option to -h(Bruce)
Add Java support for passwords, European dates(Peter)
Use indexes for LIKE and ~, !~ operations(Bruce)
Add hash functions for datetime and timespan(Thomas)
Time Travel removed(Vadim, Bruce)
Add paging for \d and \z, and fix \i(Bruce)
Add Unix domain socket support to backend and to frontend library(Goran)
Implement CREATE DATABASE/WITH LOCATION and initlocation utility(Thomas)
Allow more SQL92 and/or PostgreSQL reserved words as column identifiers(Thomas)
Augment support for SQL92 SET TIME ZONE...(Thomas)
SET/SHOW/RESET TIME ZONE uses TZ backend environment variable(Thomas)
Implement SET keyword = DEFAULT and SET TIME ZONE DEFAULT(Thomas)
Enable SET TIME ZONE using TZ environment variable(Thomas)
Add PGDATESTYLE environment variable to frontend and backend initialization(Thomas)
Add PGTZ, PGCOSTHEAP, PGCOSTINDEX, PGRPLANS, PGGEQO

frontend library initialization environment variables(Thomas)
Regression tests time zone automatically set with "setenv PGTZ PST8PDT"(Thomas)
Add pg_description table for info on tables, columns, operators, types, and

aggregates(Bruce)
Increase 16 char limit on system table/index names to 32 characters(Bruce)
Rename system indexes(Bruce)
Add ’GERMAN’ option to SET DATESTYLE(Thomas)
Define an "ISO-style" timespan output format with "hh:mm:ss" fields(Thomas)
Allow fractional values for delta times (e.g. ’2.5 days’)(Thomas)
Validate numeric input more carefully for delta times(Thomas)
Implement day of year as possible input to date_part()(Thomas)
Define timespan_finite() and text_timespan() functions(Thomas)
Remove archive stuff(Bruce)
Allow for a pg_password authentication database that is separate from

the system password file(Todd)
Dump ACLs, GRANT, REVOKE privileges(Matt)
Define text, varchar, and bpchar string length functions(Thomas)
Fix Query handling for inheritance, and cost computations(Bruce)
Implement CREATE TABLE/AS SELECT (alternative to SELECT/INTO)(Thomas)
Allow NOT, IS NULL, IS NOT NULL in constraints(Thomas)
Implement UNIONs for SELECT(Bruce)
Add UNION, GROUP, DISTINCT to INSERT(Bruce)
varchar() stores only necessary bytes on disk(Bruce)
Fix for BLOBs(Peter)
Mega-Patch for JDBC...see README_6.3 for list of changes(Peter)
Remove unused "option" from PQconnectdb()
New LOCK command and lock manual page describing deadlocks(Bruce)
Add new psql \da, \dd, \df, \do, \dS, and \dT commands(Bruce)
Enhance psql \z to show sequences(Bruce)
Show NOT NULL and DEFAULT in psql \d table(Bruce)
New psql .psqlrc file start-up(Andrew)
Modify sample start-up script in contrib/linux to show syslog(Thomas)
New types for IP and MAC addresses in contrib/ip_and_mac(TomH)
Unix system time conversions with date/time types in contrib/unixdate(Thomas)
Update of contrib stuff(Massimo)
Add Unix socket support to DBD::Pg(Goran)
New python interface (PyGreSQL 2.0)(D’Arcy)
New frontend/backend protocol has a version number, network byte order(Phil)
Security features in pg_hba.conf enhanced and documented, many cleanups(Phil)
CHAR() now faster access than VARCHAR() or TEXT
ecpg embedded SQL preprocessor

1233

Appendix E. Release Notes

Reduce system column overhead(Vadmin)
Remove pg_time table(Vadim)
Add pg_type attribute to identify types that need length (bpchar, varchar)
Add report of offending line when COPY command fails
Allow VIEW privileges to be set separately from the underlying tables.

For security, use GRANT/REVOKE on views as appropriate(Jan)
Tables now have no default GRANT SELECT TO PUBLIC. You must

explicitly grant such privileges.
Clean up tutorial examples(Darren)

Source Tree Changes

Add new html development tools, and flow chart in /tools/backend
Fix for SCO compiles
Stratus computer port Robert Gillies
Added support for shlib for BSD44_derived & i386_solaris
Make configure more automated(Brook)
Add script to check regression test results
Break parser functions into smaller files, group together(Bruce)
Rename heap_create to heap_create_and_catalog, rename heap_creatr

to heap_create()(Bruce)
Sparc/Linux patch for locking(TomS)
Remove PORTNAME and reorganize port-specific stuff(Marc)
Add optimizer README file(Bruce)
Remove some recursion in optimizer and clean up some code there(Bruce)
Fix for NetBSD locking(Henry)
Fix for libptcl make(Tatsuo)
AIX patch(Darren)
Change IS TRUE, IS FALSE, ... to expressions using "=" rather than

function calls to istrue() or isfalse() to allow optimization(Thomas)
Various fixes NetBSD/Sparc related(TomH)
Alpha linux locking(Travis,Ryan)
Change elog(WARN) to elog(ERROR)(Bruce)
FAQ for FreeBSD(Marc)
Bring in the PostODBC source tree as part of our standard distribution(Marc)
A minor patch for HP/UX 10 vs 9(Stan)
New pg_attribute.atttypmod for type-specific info like varchar length(Bruce)
UnixWare patches(Billy)
New i386 ’lock’ for spinlock asm(Billy)
Support for multiplexed backends is removed
Start an OpenBSD port
Start an AUX port
Start a Cygnus port
Add string functions to regression suite(Thomas)
Expand a few function names formerly truncated to 16 characters(Thomas)
Remove un-needed malloc() calls and replace with palloc()(Bruce)

E.43. Release 6.2.1

Release date: 1997-10-17

1234

Appendix E. Release Notes

6.2.1 is a bug-fix and usability release on 6.2.

Summary:

• Allow strings to span lines, per SQL92.

• Include example trigger function for inserting user names on table updates.

This is a minor bug-fix release on 6.2. For upgrades from pre-6.2 systems, a full dump/reload is
required. Refer to the 6.2 release notes for instructions.

E.43.1. Migration from version 6.2 to version 6.2.1

This is a minor bug-fix release. A dump/reload is not required from version 6.2, but is required from
any release prior to 6.2.

In upgrading from version 6.2, if you choose to dump/reload you will find that avg(money) is now
calculated correctly. All other bug fixes take effect upon updating the executables.

Another way to avoid dump/reload is to use the following SQL command frompsql to update the
existing system table:

update pg_aggregate set aggfinalfn = ’cash_div_flt8’
where aggname = ’avg’ and aggbasetype = 790;

This will need to be done to every existing database, including template1.

E.43.2. Changes

Allow TIME and TYPE column names(Thomas)
Allow larger range of true/false as boolean values(Thomas)
Support output of "now" and "current"(Thomas)
Handle DEFAULT with INSERT of NULL properly(Vadim)
Fix for relation reference counts problem in buffer manager(Vadim)
Allow strings to span lines, like ANSI(Thomas)
Fix for backward cursor with ORDER BY(Vadim)
Fix avg(cash) computation(Thomas)
Fix for specifying a column twice in ORDER/GROUP BY(Vadim)
Documented new libpq function to return affected rows, PQcmdTuples(Bruce)
Trigger function for inserting user names for INSERT/UPDATE(Brook Milligan)

E.44. Release 6.2

Release date: 1997-10-02

A dump/restore is required for those wishing to migrate data from previous releases of PostgreSQL.

1235

Appendix E. Release Notes

E.44.1. Migration from version 6.1 to version 6.2

This migration requires a complete dump of the 6.1 database and a restore of the database in 6.2.

Note that thepg_dump andpg_dumpall utility from 6.2 should be used to dump the 6.1 database.

E.44.2. Migration from version 1. x to version 6.2

Those migrating from earlier 1.* releases should first upgrade to 1.09 because the COPY output
format was improved from the 1.02 release.

E.44.3. Changes

Bug Fixes

Fix problems with pg_dump for inheritance, sequences, archive tables(Bruce)
Fix compile errors on overflow due to shifts, unsigned, and bad prototypes

from Solaris(Diab Jerius)
Fix bugs in geometric line arithmetic (bad intersection calculations)(Thomas)
Check for geometric intersections at endpoints to avoid rounding ugliness(Thomas)
Catch non-functional delete attempts(Vadim)
Change time function names to be more consistent(Michael Reifenberg)
Check for zero divides(Michael Reifenberg)
Fix very old bug which made rows changed/inserted by a command

visible to the command itself (so we had multiple update of
updated rows, etc.)(Vadim)

Fix for SELECT null, ’fail’ FROM pg_am (Patrick)
SELECT NULL as EMPTY_FIELD now allowed(Patrick)
Remove un-needed signal stuff from contrib/pginterface
Fix OR (where x != 1 or x isnull didn’t return rows with x NULL) (Vadim)
Fix time_cmp function (Vadim)
Fix handling of functions with non-attribute first argument in

WHERE clauses (Vadim)
Fix GROUP BY when order of entries is different from order

in target list (Vadim)
Fix pg_dump for aggregates without sfunc1 (Vadim)

Enhancements

Default genetic optimizer GEQO parameter is now 8(Bruce)
Allow use parameters in target list having aggregates in functions(Vadim)
Added JDBC driver as an interface(Adrian & Peter)
pg_password utility
Return number of rows inserted/affected by INSERT/UPDATE/DELETE etc.(Vadim)
Triggers implemented with CREATE TRIGGER (SQL3)(Vadim)
SPI (Server Programming Interface) allows execution of queries inside

C-functions (Vadim)
NOT NULL implemented (SQL92)(Robson Paniago de Miranda)
Include reserved words for string handling, outer joins, and unions(Thomas)
Implement extended comments ("/* ... */") using exclusive states(Thomas)
Add "//" single-line comments(Bruce)
Remove some restrictions on characters in operator names(Thomas)
DEFAULT and CONSTRAINT for tables implemented (SQL92)(Vadim & Thomas)
Add text concatenation operator and function (SQL92)(Thomas)
Support WITH TIME ZONE syntax (SQL92)(Thomas)

1236

Appendix E. Release Notes

Support INTERVAL unit TO unit syntax (SQL92)(Thomas)
Define types DOUBLE PRECISION, INTERVAL, CHARACTER,

and CHARACTER VARYING (SQL92)(Thomas)
Define type FLOAT(p) and rudimentary DECIMAL(p,s), NUMERIC(p,s) (SQL92)(Thomas)
Define EXTRACT(), POSITION(), SUBSTRING(), and TRIM() (SQL92)(Thomas)
Define CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP (SQL92)(Thomas)
Add syntax and warnings for UNION, HAVING, INNER and OUTER JOIN (SQL92)(Thomas)
Add more reserved words, mostly for SQL92 compliance(Thomas)
Allow hh:mm:ss time entry for timespan/reltime types(Thomas)
Add center() routines for lseg, path, polygon(Thomas)
Add distance() routines for circle-polygon, polygon-polygon(Thomas)
Check explicitly for points and polygons contained within polygons

using an axis-crossing algorithm(Thomas)
Add routine to convert circle-box(Thomas)
Merge conflicting operators for different geometric data types(Thomas)
Replace distance operator "<===>" with "<->"(Thomas)
Replace "above" operator "!^" with " >^" and "below" operator "!|" with " <^"(Thomas)
Add routines for text trimming on both ends, substring, and string position(Thomas)
Added conversion routines circle(box) and poly(circle)(Thomas)
Allow internal sorts to be stored in memory rather than in files(Bruce & Vadim)
Allow functions and operators on internally-identical types to succeed(Bruce)
Speed up backend start-up after profiling analysis(Bruce)
Inline frequently called functions for performance(Bruce)
Reduce open() calls(Bruce)
psql: Add PAGER for \h and \?,\C fix
Fix for psql pager when no tty(Bruce)
New entab utility(Bruce)
General trigger functions for referential integrity (Vadim)
General trigger functions for time travel (Vadim)
General trigger functions for AUTOINCREMENT/IDENTITY feature (Vadim)
MOVE implementation (Vadim)

Source Tree Changes

HP-UX 10 patches (Vladimir Turin)
Added SCO support, (Daniel Harris)
MkLinux patches (Tatsuo Ishii)
Change geometric box terminology from "length" to "width"(Thomas)
Deprecate temporary unstored slope fields in geometric code(Thomas)
Remove restart instructions from INSTALL(Bruce)
Look in /usr/ucb first for install(Bruce)
Fix c++ copy example code(Thomas)
Add -o to psql manual page(Bruce)
Prevent relname unallocated string length from being copied into database(Bruce)
Cleanup for NAMEDATALEN use(Bruce)
Fix pg_proc names over 15 chars in output(Bruce)
Add strNcpy() function(Bruce)
remove some (void) casts that are unnecessary(Bruce)
new interfaces directory(Marc)
Replace fopen() calls with calls to fd.c functions(Bruce)
Make functions static where possible(Bruce)
enclose unused functions in #ifdef NOT_USED(Bruce)
Remove call to difftime() in timestamp support to fix SunOS(Bruce & Thomas)
Changes for Digital Unix
Portability fix for pg_dumpall(Bruce)
Rename pg_attribute.attnvals to attdispersion(Bruce)
"intro/unix" manual page now "pgintro"(Bruce)

1237

Appendix E. Release Notes

"built-in" manual page now "pgbuiltin"(Bruce)
"drop" manual page now "drop_table"(Bruce)
Add "create_trigger", "drop_trigger" manual pages(Thomas)
Add constraints regression test(Vadim & Thomas)
Add comments syntax regression test(Thomas)
Add PGINDENT and support program(Bruce)
Massive commit to run PGINDENT on all *.c and *.h files(Bruce)
Files moved to /src/tools directory(Bruce)
SPI and Trigger programming guides (Vadim & D’Arcy)

E.45. Release 6.1.1

Release date: 1997-07-22

E.45.1. Migration from version 6.1 to version 6.1.1

This is a minor bug-fix release. A dump/reload is not required from version 6.1, but is required from
any release prior to 6.1. Refer to the release notes for 6.1 for more details.

E.45.2. Changes

fix for SET with options (Thomas)
allow pg_dump/pg_dumpall to preserve ownership of all tables/objects(Bruce)
new psql \connect option allows changing usernames without changing databases
fix for initdb --debug option(Yoshihiko Ichikawa))
lextest cleanup(Bruce)
hash fixes(Vadim)
fix date/time month boundary arithmetic(Thomas)
fix timezone daylight handling for some ports(Thomas, Bruce, Tatsuo)
timestamp overhauled to use standard functions(Thomas)
other code cleanup in date/time routines(Thomas)
psql’s \d now case-insensitive(Bruce)
psql’s backslash commands can now have trailing semicolon(Bruce)
fix memory leak in psql when using \g(Bruce)
major fix for endian handling of communication to server(Thomas, Tatsuo)
Fix for Solaris assembler and include files(Yoshihiko Ichikawa)
allow underscores in usernames(Bruce)
pg_dumpall now returns proper status, portability fix(Bruce)

1238

Appendix E. Release Notes

E.46. Release 6.1

Release date: 1997-06-08

The regression tests have been adapted and extensively modified for the 6.1 release of PostgreSQL.

Three new data types (datetime , timespan , andcircle) have been added to the native set of
PostgreSQL types. Points, boxes, paths, and polygons have had their output formats made consistent
across the data types. The polygon output in misc.out has only been spot-checked for correctness
relative to the original regression output.

PostgreSQL 6.1 introduces a new, alternate optimizer which usesgeneticalgorithms. These algo-
rithms introduce a random behavior in the ordering of query results when the query contains multiple
qualifiers or multiple tables (giving the optimizer a choice on order of evaluation). Several regression
tests have been modified to explicitly order the results, and hence are insensitive to optimizer choices.
A few regression tests are for data types which are inherently unordered (e.g. points and time inter-
vals) and tests involving those types are explicitly bracketed withset geqo to ’off’ andreset

geqo .

The interpretation of array specifiers (the curly braces around atomic values) appears to have changed
sometime after the original regression tests were generated. The current./expected/*.out files
reflect this new interpretation, which may not be correct!

The float8 regression test fails on at least some platforms. This is due to differences in implementa-
tions ofpow() andexp() and the signaling mechanisms used for overflow and underflow conditions.

The “random” results in the random test should cause the “random” test to be “failed”, since the
regression tests are evaluated using a simple diff. However, “random” does not seem to produce
random results on my test machine (Linux/gcc/i686).

E.46.1. Migration to version 6.1

This migration requires a complete dump of the 6.0 database and a restore of the database in 6.1.

Those migrating from earlier 1.* releases should first upgrade to 1.09 because the COPY output
format was improved from the 1.02 release.

E.46.2. Changes

Bug Fixes

packet length checking in library routines
lock manager priority patch
check for under/over flow of float8(Bruce)
multitable join fix(Vadim)
SIGPIPE crash fix(Darren)
large object fixes(Sven)
allow btree indexes to handle NULLs(Vadim)
timezone fixes(D’Arcy)
select SUM(x) can return NULL on no rows(Thomas)
internal optimizer, executor bug fixes(Vadim)
fix problem where inner loop in < or <= has no rows(Vadim)
prevent re-commuting join index clauses(Vadim)
fix join clauses for multiple tables(Vadim)

1239

Appendix E. Release Notes

fix hash, hashjoin for arrays(Vadim)
fix btree for abstime type(Vadim)
large object fixes(Raymond)
fix buffer leak in hash indexes (Vadim)
fix rtree for use in inner scan (Vadim)
fix gist for use in inner scan, cleanups (Vadim, Andrea)
avoid unnecessary local buffers allocation (Vadim, Massimo)
fix local buffers leak in transaction aborts (Vadim)
fix file manager memmory leaks, cleanups (Vadim, Massimo)
fix storage manager memmory leaks (Vadim)
fix btree duplicates handling (Vadim)
fix deleted rows reincarnation caused by vacuum (Vadim)
fix SELECT varchar()/char() INTO TABLE made zero-length fields(Bruce)
many psql, pg_dump, and libpq memory leaks fixed using Purify (Igor)

Enhancements

attribute optimization statistics(Bruce)
much faster new btree bulk load code(Paul)
BTREE UNIQUE added to bulk load code(Vadim)
new lock debug code(Massimo)
massive changes to libpg++(Leo)
new GEQO optimizer speeds table multitable optimization(Martin)
new WARN message for non-unique insert into unique key(Marc)
update x=-3, no spaces, now valid(Bruce)
remove case-sensitive identifier handling(Bruce,Thomas,Dan)
debug backend now pretty-prints tree(Darren)
new Oracle character functions(Edmund)
new plaintext password functions(Dan)
no such class or insufficient privilege changed to distinct messages(Dan)
new ANSI timestamp function(Dan)
new ANSI Time and Date types (Thomas)
move large chunks of data in backend(Martin)
multicolumn btree indexes(Vadim)
new SET var TO value command(Martin)
update transaction status on reads(Dan)
new locale settings for character types(Oleg)
new SEQUENCE serial number generator(Vadim)
GROUP BY function now possible(Vadim)
re-organize regression test(Thomas,Marc)
new optimizer operation weights(Vadim)
new psql \z grant/permit option(Marc)
new MONEY data type(D’Arcy,Thomas)
tcp socket communication speed improved(Vadim)
new VACUUM option for attribute statistics, and for certain columns (Vadim)
many geometric type improvements(Thomas,Keith)
additional regression tests(Thomas)
new datestyle variable(Thomas,Vadim,Martin)
more comparison operators for sorting types(Thomas)
new conversion functions(Thomas)
new more compact btree format(Vadim)
allow pg_dumpall to preserve database ownership(Bruce)
new SET GEQO=# and R_PLANS variable(Vadim)
old (!GEQO) optimizer can use right-sided plans (Vadim)
typechecking improvement in SQL parser(Bruce)
new SET, SHOW, RESET commands(Thomas,Vadim)
new \connect database USER option

1240

Appendix E. Release Notes

new destroydb -i option (Igor)
new \dt and \di psql commands (Darren)
SELECT "\n" now escapes newline (A. Duursma)
new geometry conversion functions from old format (Thomas)

Source tree changes

new configuration script(Marc)
readline configuration option added(Marc)
OS-specific configuration options removed(Marc)
new OS-specific template files(Marc)
no more need to edit Makefile.global(Marc)
re-arrange include files(Marc)
nextstep patches (Gregor Hoffleit)
removed Windows-specific code(Bruce)
removed postmaster -e option, now only postgres -e option (Bruce)
merge duplicate library code in front/backends(Martin)
now works with eBones, international Kerberos(Jun)
more shared library support
c++ include file cleanup(Bruce)
warn about buggy flex(Bruce)
DG/UX, Ultrix, IRIX, AIX portability fixes

E.47. Release 6.0

Release date: 1997-01-29

A dump/restore is required for those wishing to migrate data from previous releases of PostgreSQL.

E.47.1. Migration from version 1.09 to version 6.0

This migration requires a complete dump of the 1.09 database and a restore of the database in 6.0.

E.47.2. Migration from pre-1.09 to version 6.0

Those migrating from earlier 1.* releases should first upgrade to 1.09 because the COPY output
format was improved from the 1.02 release.

E.47.3. Changes

Bug Fixes

ALTER TABLE bug - running postgress process needs to re-read table definition
Allow vacuum to be run on one table or entire database(Bruce)
Array fixes
Fix array over-runs of memory writes(Kurt)
Fix elusive btree range/non-range bug(Dan)

1241

Appendix E. Release Notes

Fix for hash indexes on some types like time and date
Fix for pg_log size explosion
Fix permissions on lo_export()(Bruce)
Fix unitialized reads of memory(Kurt)
Fixed ALTER TABLE ... char(3) bug(Bruce)
Fixed a few small memory leaks
Fixed EXPLAIN handling of options and changed full_path option name
Fixed output of group acl privileges
Memory leaks (hunt and destroy with tools like Purify(Kurt)
Minor improvements to rules system
NOTIFY fixes
New asserts for run-checking
Overhauled parser/analyze code to properly report errors and increase speed
Pg_dump -d now handles NULL’s properly(Bruce)
Prevent SELECT NULL from crashing server (Bruce)
Properly report errors when INSERT ... SELECT columns did not match
Properly report errors when insert column names were not correct
psql \g filename now works(Bruce)
psql fixed problem with multiple statements on one line with multiple outputs
Removed duplicate system OIDs
SELECT * INTO TABLE . GROUP/ORDER BY gives unlink error if table exists(Bruce)
Several fixes for queries that crashed the backend
Starting quote in insert string errors(Bruce)
Submitting an empty query now returns empty status, not just " " query(Bruce)

Enhancements

Add EXPLAIN manual page(Bruce)
Add UNIQUE index capability(Dan)
Add hostname/user level access control rather than just hostname and user
Add synonym of != for <>(Bruce)
Allow "select oid,* from table"
Allow BY,ORDER BY to specify columns by number, or by non-alias table.column(Bruce)
Allow COPY from the frontend(Bryan)
Allow GROUP BY to use alias column name(Bruce)
Allow actual compression, not just reuse on the same page(Vadim)
Allow installation-configuration option to auto-add all local users(Bryan)
Allow libpq to distinguish between text value ” and null(Bruce)
Allow non-postgres users with createdb privs to destroydb’s
Allow restriction on who can create C functions(Bryan)
Allow restriction on who can do backend COPY(Bryan)
Can shrink tables, pg_time and pg_log(Vadim & Erich)
Change debug level 2 to print queries only, changed debug heading layout(Bruce)
Change default decimal constant representation from float4 to float8(Bruce)
European date format now set when postmaster is started
Execute lowercase function names if not found with exact case
Fixes for aggregate/GROUP processing, allow ’select sum(func(x),sum(x+y) from z’
Gist now included in the distrubution(Marc)
Idend authentication of local users(Bryan)
Implement BETWEEN qualifier(Bruce)
Implement IN qualifier(Bruce)
libpq has PQgetisnull()(Bruce)
libpq++ improvements
New options to initdb(Bryan)
Pg_dump allow dump of OIDs(Bruce)
Pg_dump create indexes after tables are loaded for speed(Bruce)
Pg_dumpall dumps all databases, and the user table

1242

Appendix E. Release Notes

Pginterface additions for NULL values(Bruce)
Prevent postmaster from being run as root
psql \h and \? is now readable(Bruce)
psql allow backslashed, semicolons anywhere on the line(Bruce)
psql changed command prompt for lines in query or in quotes(Bruce)
psql char(3) now displays as (bp)char in \d output(Bruce)
psql return code now more accurate(Bryan?)
psql updated help syntax(Bruce)
Re-visit and fix vacuum(Vadim)
Reduce size of regression diffs, remove timezone name difference(Bruce)
Remove compile-time parameters to enable binary distributions(Bryan)
Reverse meaning of HBA masks(Bryan)
Secure Authentication of local users(Bryan)
Speed up vacuum(Vadim)
Vacuum now had VERBOSE option(Bruce)

Source tree changes

All functions now have prototypes that are compared against the calls
Allow asserts to be disabled easly from Makefile.global(Bruce)
Change oid constants used in code to #define names
Decoupled sparc and solaris defines(Kurt)
Gcc -Wall compiles cleanly with warnings only from unfixable constructs
Major include file reorganization/reduction(Marc)
Make now stops on compile failure(Bryan)
Makefile restructuring(Bryan, Marc)
Merge bsdi_2_1 to bsdi(Bruce)
Monitor program removed
Name change from Postgres95 to PostgreSQL
New config.h file(Marc, Bryan)
PG_VERSION now set to 6.0 and used by postmaster
Portability additions, including Ultrix, DG/UX, AIX, and Solaris
Reduced the number of #define’s, centeralized #define’s
Remove duplicate OIDS in system tables(Dan)
Remove duplicate system catalog info or report mismatches(Dan)
Removed many os-specific #define’s
Restructured object file generation/location(Bryan, Marc)
Restructured port-specific file locations(Bryan, Marc)
Unused/uninialized variables corrected

E.48. Release 1.09

Release date: 1996-11-04

Sorry, we didn’t keep track of changes from 1.02 to 1.09. Some of the changes listed in 6.0 were
actually included in the 1.02.1 to 1.09 releases.

1243

Appendix E. Release Notes

E.49. Release 1.02

Release date: 1996-08-01

E.49.1. Migration from version 1.02 to version 1.02.1

Here is a new migration file for 1.02.1. It includes the ’copy’ change and a script to convert old ASCII
files.

Note: The following notes are for the benefit of users who want to migrate databases from Post-
gres95 1.01 and 1.02 to Postgres95 1.02.1.

If you are starting afresh with Postgres95 1.02.1 and do not need to migrate old databases, you
do not need to read any further.

In order to upgrade older Postgres95 version 1.01 or 1.02 databases to version 1.02.1, the following
steps are required:

1. Start up a new 1.02.1 postmaster

2. Add the new built-in functions and operators of 1.02.1 to 1.01 or 1.02 databases. This is done by
running the new 1.02.1 server against your own 1.01 or 1.02 database and applying the queries
attached at the end of the file. This can be done easily throughpsql . If your 1.01 or 1.02 database
is namedtestdb and you have cut the commands from the end of this file and saved them in
addfunc.sql :

% psql testdb -f addfunc.sql

Those upgrading 1.02 databases will get a warning when executing the last two statements in the
file because they are already present in 1.02. This is not a cause for concern.

E.49.2. Dump/Reload Procedure

If you are trying to reload a pg_dump or text-mode,copy tablename to stdout generated with a
previous version, you will need to run the attachedsed script on the ASCII file before loading it into
the database. The old format used ’.’ as end-of-data, while ’\.’ is now the end-of-data marker. Also,
empty strings are now loaded in as ” rather than NULL. See the copy manual page for full details.

sed ’s/^\.$/\\./g’ <in_file >out_file

If you are loading an older binary copy or non-stdout copy, there is no end-of-data character, and
hence no conversion necessary.

-- following lines added by agc to reflect the case-insensitive
-- regexp searching for varchar (in 1.02), and bpchar (in 1.02.1)
create operator ~* (leftarg = bpchar, rightarg = text, procedure = texticregexeq);
create operator !~* (leftarg = bpchar, rightarg = text, procedure = texticregexne);
create operator ~* (leftarg = varchar, rightarg = text, procedure = texticregexeq);
create operator !~* (leftarg = varchar, rightarg = text, procedure = texticregexne);

1244

Appendix E. Release Notes

E.49.3. Changes

Source code maintenance and development
* worldwide team of volunteers
* the source tree now in CVS at ftp.ki.net

Enhancements
* psql (and underlying libpq library) now has many more options for

formatting output, including HTML
* pg_dump now output the schema and/or the data, with many fixes to

enhance completeness.
* psql used in place of monitor in administration shell scripts.

monitor to be deprecated in next release.
* date/time functions enhanced
* NULL insert/update/comparison fixed/enhanced
* TCL/TK lib and shell fixed to work with both tck7.4/tk4.0 and tcl7.5/tk4.1

Bug Fixes (almost too numerous to mention)
* indexes
* storage management
* check for NULL pointer before dereferencing
* Makefile fixes

New Ports
* added SolarisX86 port
* added BSD/OS 2.1 port
* added DG/UX port

E.50. Release 1.01

Release date: 1996-02-23

E.50.1. Migration from version 1.0 to version 1.01

The following notes are for the benefit of users who want to migrate databases from Postgres95 1.0
to Postgres95 1.01.

If you are starting afresh with Postgres95 1.01 and do not need to migrate old databases, you do not
need to read any further.

In order to Postgres95 version 1.01 with databases created with Postgres95 version 1.0, the following
steps are required:

1. Set the definition ofNAMEDATALENin src/Makefile.global to 16 andOIDNAMELENto 20.

2. Decide whether you want to use Host based authentication.

a. If you do, you must create a file namepg_hba in your top-level data directory (typically
the value of your$PGDATA). src/libpq/pg_hba shows an example syntax.

b. If you do not want host-based authentication, you can comment out the line

1245

Appendix E. Release Notes

HBA = 1

in src/Makefile.global

Note that host-based authentication is turned on by default, and if you do not take steps
A or B above, the out-of-the-box 1.01 will not allow you to connect to 1.0 databases.

3. Compile and install 1.01, but DO NOT do theinitdb step.

4. Before doing anything else, terminate your 1.0 postmaster, and backup your existing$PGDATA

directory.

5. Set yourPGDATAenvironment variable to your 1.0 databases, but set up path up so that 1.01
binaries are being used.

6. Modify the file $PGDATA/PG_VERSION from 5.0 to 5.1

7. Start up a new 1.01 postmaster

8. Add the new built-in functions and operators of 1.01 to 1.0 databases. This is done by running
the new 1.01 server against your own 1.0 database and applying the queries attached and saving
in the file 1.0_to_1.01.sql. This can be done easily throughpsql . If your 1.0 database is name
testdb :

% psql testdb -f 1.0_to_1.01.sql

and then execute the following commands (cut and paste from here):

-- add builtin functions that are new to 1.01

create function int4eqoid (int4, oid) returns bool as ’foo’
language ’internal’;
create function oideqint4 (oid, int4) returns bool as ’foo’
language ’internal’;
create function char2icregexeq (char2, text) returns bool as ’foo’
language ’internal’;
create function char2icregexne (char2, text) returns bool as ’foo’
language ’internal’;
create function char4icregexeq (char4, text) returns bool as ’foo’
language ’internal’;
create function char4icregexne (char4, text) returns bool as ’foo’
language ’internal’;
create function char8icregexeq (char8, text) returns bool as ’foo’
language ’internal’;
create function char8icregexne (char8, text) returns bool as ’foo’
language ’internal’;
create function char16icregexeq (char16, text) returns bool as ’foo’
language ’internal’;
create function char16icregexne (char16, text) returns bool as ’foo’
language ’internal’;
create function texticregexeq (text, text) returns bool as ’foo’
language ’internal’;
create function texticregexne (text, text) returns bool as ’foo’
language ’internal’;

-- add builtin functions that are new to 1.01

create operator = (leftarg = int4, rightarg = oid, procedure = int4eqoid);
create operator = (leftarg = oid, rightarg = int4, procedure = oideqint4);
create operator ~* (leftarg = char2, rightarg = text, procedure = char2icregexeq);
create operator !~* (leftarg = char2, rightarg = text, procedure = char2icregexne);

1246

Appendix E. Release Notes

create operator ~* (leftarg = char4, rightarg = text, procedure = char4icregexeq);
create operator !~* (leftarg = char4, rightarg = text, procedure = char4icregexne);
create operator ~* (leftarg = char8, rightarg = text, procedure = char8icregexeq);
create operator !~* (leftarg = char8, rightarg = text, procedure = char8icregexne);
create operator ~* (leftarg = char16, rightarg = text, procedure = char16icregexeq);
create operator !~* (leftarg = char16, rightarg = text, procedure = char16icregexne);
create operator ~* (leftarg = text, rightarg = text, procedure = texticregexeq);
create operator !~* (leftarg = text, rightarg = text, procedure = texticregexne);

E.50.2. Changes

Incompatibilities:
* 1.01 is backwards compatible with 1.0 database provided the user

follow the steps outlined in the MIGRATION_from_1.0_to_1.01 file.
If those steps are not taken, 1.01 is not compatible with 1.0 database.

Enhancements:
* added PQdisplayTuples() to libpq and changed monitor and psql to use it
* added NeXT port (requires SysVIPC implementation)
* added CAST .. AS ... syntax
* added ASC and DESC key words
* added ’internal’ as a possible language for CREATE FUNCTION

internal functions are C functions which have been statically linked
into the postgres backend.

* a new type "name" has been added for system identifiers (table names,
attribute names, etc.) This replaces the old char16 type. The
of name is set by the NAMEDATALEN #define in src/Makefile.global

* a readable reference manual that describes the query language.
* added host-based access control. A configuration file ($PGDATA/pg_hba)

is used to hold the configuration data. If host-based access control
is not desired, comment out HBA=1 in src/Makefile.global.

* changed regex handling to be uniform use of Henry Spencer’s regex code
regardless of platform. The regex code is included in the distribution

* added functions and operators for case-insensitive regular expressions.
The operators are ~* and !~*.

* pg_dump uses COPY instead of SELECT loop for better performance

Bug fixes:
* fixed an optimizer bug that was causing core dumps when

functions calls were used in comparisons in the WHERE clause
* changed all uses of getuid to geteuid so that effective uids are used
* psql now returns non-zero status on errors when using -c
* applied public patches 1-14

1247

Appendix E. Release Notes

E.51. Release 1.0

Release date: 1995-09-05

E.51.1. Changes

Copyright change:
* The copyright of Postgres 1.0 has been loosened to be freely modifiable

and modifiable for any purpose. Please read the COPYRIGHT file.
Thanks to Professor Michael Stonebraker for making this possible.

Incompatibilities:
* date formats have to be MM-DD-YYYY (or DD-MM-YYYY if you’re using

EUROPEAN STYLE). This follows SQL-92 specs.
* "delimiters" is now a key word

Enhancements:
* sql LIKE syntax has been added
* copy command now takes an optional USING DELIMITER specification.

delimiters can be any single-character string.
* IRIX 5.3 port has been added.

Thanks to Paul Walmsley and others.
* updated pg_dump to work with new libpq
* \d has been added psql

Thanks to Keith Parks
* regexp performance for architectures that use POSIX regex has been

improved due to caching of precompiled patterns.
Thanks to Alistair Crooks

* a new version of libpq++
Thanks to William Wanders

Bug fixes:
* arbitrary userids can be specified in the createuser script
* \c to connect to other databases in psql now works.
* bad pg_proc entry for float4inc() is fixed
* users with usecreatedb field set can now create databases without

having to be usesuper
* remove access control entries when the entry no longer has any

privileges
* fixed non-portable datetimes implementation
* added kerberos flags to the src/backend/Makefile
* libpq now works with kerberos
* typographic errors in the user manual have been corrected.
* btrees with multiple index never worked, now we tell you they don’t

work when you try to use them

1248

Appendix E. Release Notes

E.52. Postgres95 Release 0.03

Release date: 1995-07-21

E.52.1. Changes

Incompatible changes:
* BETA-0.3 IS INCOMPATIBLE WITH DATABASES CREATED WITH PREVIOUS VERSIONS

(due to system catalog changes and indexing structure changes).
* double-quote (") is deprecated as a quoting character for string literals;

you need to convert them to single quotes (’).
* name of aggregates (eg. int4sum) are renamed in accordance with the

SQL standard (eg. sum).
* CHANGE ACL syntax is replaced by GRANT/REVOKE syntax.
* float literals (eg. 3.14) are now of type float4 (instead of float8 in

previous releases); you might have to do typecasting if you depend on it
being of type float8. If you neglect to do the typecasting and you assign
a float literal to a field of type float8, you may get incorrect values
stored!

* LIBPQ has been totally revamped so that frontend applications
can connect to multiple backends

* the usesysid field in pg_user has been changed from int2 to int4 to
allow wider range of Unix user ids.

* the netbsd/freebsd/bsd o/s ports have been consolidated into a
single BSD44_derived port. (thanks to Alistair Crooks)

SQL standard-compliance (the following details changes that makes postgres95
more compliant to the SQL-92 standard):

* the following SQL types are now built-in: smallint, int(eger), float, real,
char(N), varchar(N), date and time.

The following are aliases to existing postgres types:
smallint -> int2
integer, int -> int4
float, real -> float4

char(N) and varchar(N) are implemented as truncated text types. In
addition, char(N) does blank-padding.

* single-quote (’) is used for quoting string literals; ” (in addition to
\’) is supported as means of inserting a single quote in a string

* SQL standard aggregate names (MAX, MIN, AVG, SUM, COUNT) are used
(Also, aggregates can now be overloaded, i.e. you can define your
own MAX aggregate to take in a user-defined type.)

* CHANGE ACL removed. GRANT/REVOKE syntax added.
- Privileges can be given to a group using the "GROUP" key word.

For example:
GRANT SELECT ON foobar TO GROUP my_group;

The key word ’PUBLIC’ is also supported to mean all users.

Privileges can only be granted or revoked to one user or group
at a time.

"WITH GRANT OPTION" is not supported. Only class owners can change
access control

- The default access control is to to grant users readonly access.

1249

Appendix E. Release Notes

You must explicitly grant insert/update access to users. To change
this, modify the line in

src/backend/utils/acl.h
that defines ACL_WORLD_DEFAULT

Bug fixes:
* the bug where aggregates of empty tables were not run has been fixed. Now,

aggregates run on empty tables will return the initial conditions of the
aggregates. Thus, COUNT of an empty table will now properly return 0.
MAX/MIN of an empty table will return a row of value NULL.

* allow the use of \; inside the monitor
* the LISTEN/NOTIFY asynchronous notification mechanism now work
* NOTIFY in rule action bodies now work
* hash indexes work, and access methods in general should perform better.

creation of large btree indexes should be much faster. (thanks to Paul
Aoki)

Other changes and enhancements:
* addition of an EXPLAIN statement used for explaining the query execution

plan (eg. "EXPLAIN SELECT * FROM EMP" prints out the execution plan for
the query).

* WARN and NOTICE messages no longer have timestamps on them. To turn on
timestamps of error messages, uncomment the line in
src/backend/utils/elog.h:

/* define ELOG_TIMESTAMPS */
* On an access control violation, the message

"Either no such class or insufficient privilege"
will be given. This is the same message that is returned when
a class is not found. This dissuades non-privileged users from
guessing the existence of privileged classes.

* some additional system catalog changes have been made that are not
visible to the user.

libpgtcl changes:
* The -oid option has been added to the "pg_result" tcl command.

pg_result -oid returns oid of the last row inserted. If the
last command was not an INSERT, then pg_result -oid returns "".

* the large object interface is available as pg_lo* tcl commands:
pg_lo_open, pg_lo_close, pg_lo_creat, etc.

Portability enhancements and New Ports:
* flex/lex problems have been cleared up. Now, you should be able to use

flex instead of lex on any platforms. We no longer make assumptions of
what lexer you use based on the platform you use.

* The Linux-ELF port is now supported. Various configuration have been
tested: The following configuration is known to work:

kernel 1.2.10, gcc 2.6.3, libc 4.7.2, flex 2.5.2, bison 1.24
with everything in ELF format,

New utilities:
* ipcclean added to the distribution

ipcclean usually does not need to be run, but if your backend crashes
and leaves shared memory segments hanging around, ipcclean will
clean them up for you.

New documentation:
* the user manual has been revised and libpq documentation added.

1250

Appendix E. Release Notes

E.53. Postgres95 Release 0.02

Release date: 1995-05-25

E.53.1. Changes

Incompatible changes:
* The SQL statement for creating a database is ’CREATE DATABASE’ instead

of ’CREATEDB’. Similarly, dropping a database is ’DROP DATABASE’ instead
of ’DESTROYDB’. However, the names of the executables ’createdb’ and
’destroydb’ remain the same.

New tools:
* pgperl - a Perl (4.036) interface to Postgres95
* pg_dump - a utility for dumping out a postgres database into a

script file containing query commands. The script files are in a ASCII
format and can be used to reconstruct the database, even on other
machines and other architectures. (Also good for converting
a Postgres 4.2 database to Postgres95 database.)

The following ports have been incorporated into postgres95-beta-0.02:
* the NetBSD port by Alistair Crooks
* the AIX port by Mike Tung
* the Windows NT port by Jon Forrest (more stuff but not done yet)
* the Linux ELF port by Brian Gallew

The following bugs have been fixed in postgres95-beta-0.02:
* new lines not escaped in COPY OUT and problem with COPY OUT when first

attribute is a ’.’
* cannot type return to use the default user id in createuser
* SELECT DISTINCT on big tables crashes
* Linux installation problems
* monitor doesn’t allow use of ’localhost’ as PGHOST
* psql core dumps when doing \c or \l
* the "pgtclsh" target missing from src/bin/pgtclsh/Makefile
* libpgtcl has a hard-wired default port number
* SELECT DISTINCT INTO TABLE hangs
* CREATE TYPE doesn’t accept ’variable’ as the internallength
* wrong result using more than 1 aggregate in a SELECT

1251

Appendix E. Release Notes

E.54. Postgres95 Release 0.01

Release date: 1995-05-01

Initial release.

1252

Appendix F. The CVS Repository
Marc Fournier,Tom Lane,and Thomas Lockhart1999-05-20

The PostgreSQL source code is stored and managed using the CVS code management system.

At least two methods, anonymous CVS and CVSup, are available to pull the CVS code tree from the
PostgreSQL server to your local machine.

F.1. Getting The Source Via Anonymous CVS
If you would like to keep up with the current sources on a regular basis, you can fetch them from our
CVS server and then use CVS to retrieve updates from time to time.

Anonymous CVS

1. You will need a local copy of CVS (Concurrent Version Control System), which you can get
from http://www.cvshome.org/ (the official site with the latest version) or any GNU software
archive site (often somewhat outdated). We recommend version 1.10 or newer. Many systems
have a recent version of cvs installed by default.

2. Do an initial login to the CVS server:

cvs -d :pserver:anoncvs@anoncvs.postgresql.org:/projects/cvsroot login

You will be prompted for a password; you can enter anything except an empty string.

You should only need to do this once, since the password will be saved in.cvspass in your
home directory.

3. Fetch the PostgreSQL sources:

cvs -z3 -d :pserver:anoncvs@anoncvs.postgresql.org:/projects/cvsroot co -P pgsql

This installs the PostgreSQL sources into a subdirectorypgsql of the directory you are currently
in.

Note: If you have a fast link to the Internet, you may not need -z3 , which instructs CVS to use
gzip compression for transferred data. But on a modem-speed link, it’s a very substantial win.

This initial checkout is a little slower than simply downloading atar.gz file; expect it to take
40 minutes or so if you have a 28.8K modem. The advantage of CVS doesn’t show up until you
want to update the file set later on.

4. Whenever you want to update to the latest CVS sources,cd into thepgsql subdirectory, and
issue

$ cvs -z3 update -d -P

1253

Appendix F. The CVS Repository

This will fetch only the changes since the last time you updated. You can update in just a couple
of minutes, typically, even over a modem-speed line.

5. You can save yourself some typing by making a file.cvsrc in your home directory that contains

cvs -z3
update -d -P

This supplies the-z3 option to all cvs commands, and the-d and-P options to cvs update. Then
you just have to say

$ cvs update

to update your files.

Caution
Some older versions of CVS have a bug that causes all checked-out files to be
stored world-writable in your directory. If you see that this has happened, you
can do something like

$ chmod -R go-w pgsql

to set the permissions properly. This bug is fixed as of CVS version 1.9.28.

CVS can do a lot of other things, such as fetching prior revisions of the PostgreSQL sources rather
than the latest development version. For more info consult the manual that comes with CVS, or see
the online documentation at http://www.cvshome.org/.

F.2. CVS Tree Organization

Author: Written by Marc G. Fournier (<scrappy@hub.org >) on 1998-11-05

The commandcvs checkout has a flag,-r , that lets you check out a certain revision of a module.
This flag makes it easy to, for example, retrieve the sources that make up release 6_4 of the module
‘tc’ at any time in the future:

$ cvs checkout -r REL6_4 tc

This is useful, for instance, if someone claims that there is a bug in that release, but you cannot find
the bug in the current working copy.

Tip: You can also check out a module as it was at any given date using the -D option.

1254

Appendix F. The CVS Repository

When you tag more than one file with the same tag you can think about the tag as “a curve drawn
through a matrix of filename vs. revision number”. Say we have 5 files with the following revisions:

file1 file2 file3 file4 file5

1.1 1.1 1.1 1.1 /--1.1* <-*- TAG
1.2*- 1.2 1.2 -1.2*-
1.3 \- 1.3*- 1.3 / 1.3
1.4 \ 1.4 / 1.4

\-1.5*- 1.5
1.6

then the tagTAGwill reference file1-1.2, file2-1.3, etc.

Note: For creating a release branch, other than a -b option added to the command, it’s the same
thing.

So, to create the 6.4 release I did the following:

$ cd pgsql
$ cvs tag -b REL6_4

which will create the tag and the branch for the RELEASE tree.

For those with CVS access, it’s simple to create directories for different versions. First, create two
subdirectories, RELEASE and CURRENT, so that you don’t mix up the two. Then do:

cd RELEASE
cvs checkout -P -r REL6_4 pgsql
cd ../CURRENT
cvs checkout -P pgsql

which results in two directory trees,RELEASE/pgsql and CURRENT/pgsql . From that point on,
CVS will keep track of which repository branch is in which directory tree, and will allow independent
updates of either tree.

If you areonly working on theCURRENTsource tree, you just do everything as before we started
tagging release branches.

After you’ve done the initial checkout on a branch

$ cvs checkout -r REL6_4

anything you do within that directory structure is restricted to that branch. If you apply a patch to that
directory structure and do a

cvs commit

while inside of it, the patch is applied to the branch andonly the branch.

1255

Appendix F. The CVS Repository

F.3. Getting The Source Via CVSup
An alternative to using anonymous CVS for retrieving the PostgreSQL source tree is CVSup. CVSup
was developed by John Polstra (<jdp@polstra.com >) to distribute CVS repositories and other file
trees for the FreeBSD project3.

A major advantage to using CVSup is that it can reliably replicate theentireCVS repository on your
local system, allowing fast local access to cvs operations such aslog anddiff . Other advantages
include fast synchronization to the PostgreSQL server due to an efficient streaming transfer protocol
which only sends the changes since the last update.

F.3.1. Preparing A CVSup Client System

Two directory areas are required for CVSup to do its job: a local CVS repository (or simply a directory
area if you are fetching a snapshot rather than a repository; see below) and a local CVSup bookkeeping
area. These can coexist in the same directory tree.

Decide where you want to keep your local copy of the CVS repository. On one of our systems we
recently set up a repository in/home/cvs/ , but had formerly kept it under a PostgreSQL development
tree in/opt/postgres/cvs/ . If you intend to keep your repository in/home/cvs/ , then put

setenv CVSROOT /home/cvs

in your .cshrc file, or a similar line in your.bashrc or .profile file, depending on your shell.

The cvs repository area must be initialized. OnceCVSROOTis set, then this can be done with a single
command:

$ cvs init

after which you should see at least a directory namedCVSROOTwhen listing theCVSROOTdirectory:

$ ls $CVSROOT
CVSROOT/

F.3.2. Running a CVSup Client

Verify that cvsup is in your path; on most systems you can do this by typing

which cvsup

Then, simply run cvsup using:

$ cvsup -L 2 postgres.cvsup

where -L 2 enables some status messages so you can monitor the progress of the update, and
postgres.cvsup is the path and name you have given to your CVSup configuration file.

3. http://www.freebsd.org

1256

Appendix F. The CVS Repository

Here is a CVSup configuration file modified for a specific installation, and which maintains a full
local CVS repository:

This file represents the standard CVSup distribution file
for the PostgreSQL ORDBMS project
Modified by lockhart@fourpalms.org 1997-08-28
- Point to my local snapshot source tree
- Pull the full CVS repository, not just the latest snapshot
#
Defaults that apply to all the collections
*default host=cvsup.postgresql.org
*default compress
*default release=cvs
*default delete use-rel-suffix
enable the following line to get the latest snapshot
#*default tag=.
enable the following line to get whatever was specified above or by default
at the date specified below
#*default date=97.08.29.00.00.00

base directory where CVSup will store its ’bookmarks’ file(s)
will create subdirectory sup/
#*default base=/opt/postgres # /usr/local/pgsql
*default base=/home/cvs

prefix directory where CVSup will store the actual distribution(s)
*default prefix=/home/cvs

complete distribution, including all below
pgsql

individual distributions vs ’the whole thing’
pgsql-doc
pgsql-perl5
pgsql-src

If you specify repository instead ofpgsql in the above setup, you will get a complete copy of
the entire repository at cvsup.postgresql.org, including itsCVSROOTdirectory. If you do that, you will
probably want to exclude those files in that directory that you want to modify locally, using a refuse
file. For example, for the above setup you might put this in/home/cvs/sup/repository/refuse :

CVSROOT/config*
CVSROOT/commitinfo*
CVSROOT/loginfo*

See the CVSup manual pages for how to use refuse files.

The following is a suggested CVSup config file from the PostgreSQL ftp site4 which will fetch the
current snapshot only:

This file represents the standard CVSup distribution file
for the PostgreSQL ORDBMS project

4. ftp://ftp.postgresql.org/pub/CVSup/README.cvsup

1257

Appendix F. The CVS Repository

#
Defaults that apply to all the collections
*default host=cvsup.postgresql.org
*default compress
*default release=cvs
*default delete use-rel-suffix
*default tag=.

base directory where CVSup will store its ’bookmarks’ file(s)
*default base= /usr/local/pgsql

prefix directory where CVSup will store the actual distribution(s)
*default prefix= /usr/local/pgsql

complete distribution, including all below
pgsql

individual distributions vs ’the whole thing’
pgsql-doc
pgsql-perl5
pgsql-src

F.3.3. Installing CVSup

CVSup is available as source, pre-built binaries, or Linux RPMs. It is far easier to use a binary than to
build from source, primarily because the very capable, but voluminous, Modula-3 compiler is required
for the build.

CVSup Installation from Binaries

You can use pre-built binaries if you have a platform for which binaries are posted on the PostgreSQL
ftp site5, or if you are running FreeBSD, for which CVSup is available as a port.

Note: CVSup was originally developed as a tool for distributing the FreeBSD source tree. It is
available as a “port”, and for those running FreeBSD, if this is not sufficient to tell how to obtain
and install it then please contribute a procedure here.

At the time of writing, binaries are available for Alpha/Tru64, ix86/xBSD, HPPA/HP-UX 10.20,
MIPS/IRIX, ix86/linux-libc5, ix86/linux-glibc, Sparc/Solaris, and Sparc/SunOS.

1. Retrieve the binary tar file for cvsup (cvsupd is not required to be a client) appropriate for your
platform.

a. If you are running FreeBSD, install the CVSup port.

b. If you have another platform, check for and download the appropriate binary from the
PostgreSQL ftp site6.

5. ftp://ftp.postgresql.org/pub
6. ftp://ftp.postgresql.org/pub

1258

Appendix F. The CVS Repository

2. Check the tar file to verify the contents and directory structure, if any. For the linux tar file at
least, the static binary and man page is included without any directory packaging.

a. If the binary is in the top level of the tar file, then simply unpack the tar file into your
target directory:

$ cd /usr/local/bin
$ tar zxvf /usr/local/src/cvsup-16.0-linux-i386.tar.gz
$ mv cvsup.1 ../doc/man/man1/

b. If there is a directory structure in the tar file, then unpack the tar file within /usr/local/src
and move the binaries into the appropriate location as above.

3. Ensure that the new binaries are in your path.

$ rehash
$ which cvsup
$ set path=(path to cvsup $path)
$ which cvsup
/usr/local/bin/cvsup

F.3.4. Installation from Sources
Installing CVSup from sources is not entirely trivial, primarily because most systems will need to
install a Modula-3 compiler first. This compiler is available as Linux RPM, FreeBSD package, or
source code.

Note: A clean-source installation of Modula-3 takes roughly 200MB of disk space, which shrinks
to roughly 50MB of space when the sources are removed.

Linux installation

1. Install Modula-3.

a. Pick up the Modula-3 distribution from Polytechnique Montréal7, who are actively
maintaining the code base originally developed by the DEC Systems Research Center8.
The PM3 RPM distribution is roughly 30MB compressed. At the time of writing, the
1.1.10-1 release installed cleanly on RH-5.2, whereas the 1.1.11-1 release is apparently
built for another release (RH-6.0?) and does not run on RH-5.2.

Tip: This particular rpm packaging has many RPM files, so you will likely want to place
them into a separate directory.

7. http://m3.polymtl.ca/m3
8. http://www.research.digital.com/SRC/modula-3/html/home.html

1259

Appendix F. The CVS Repository

b. Install the Modula-3 rpms:

rpm -Uvh pm3*.rpm

2. Unpack the cvsup distribution:

cd /usr/local/src
tar zxf cvsup-16.0.tar.gz

3. Build the cvsup distribution, suppressing the GUI interface feature to avoid requiring X11 li-
braries:

make M3FLAGS="-DNOGUI"

and if you want to build a static binary to move to systems that may not have Modula-3 installed,
try:

make M3FLAGS="-DNOGUI -DSTATIC"

4. Install the built binary:

make M3FLAGS="-DNOGUI -DSTATIC" install

1260

Appendix G. Documentation
PostgreSQL has four primary documentation formats:

• Plain text, for pre-installation information

• HTML, for on-line browsing and reference

• PDF or Postscript, for printing

• man pages, for quick reference.

Additionally, a number of plain-textREADMEfiles can be found throughout the PostgreSQL source
tree, documenting various implementation issues.

HTML documentation and man pages are part of a standard distribution and are installed by default.
PDF and Postscript format documentation is available separately for download.

G.1. DocBook
The documentation sources are written inDocBook, which is a markup language superficially similar
to HTML. Both of these languages are applications of theStandard Generalized Markup Language,
SGML, which is essentially a language for describing other languages. In what follows, the terms
DocBook and SGML are both used, but technically they are not interchangeable.

DocBook allows an author to specify the structure and content of a technical document without wor-
rying about presentation details. A document style defines how that content is rendered into one
of several final forms. DocBook is maintained by the OASIS1 group. The official DocBook site2 has
good introductory and reference documentation and a complete O’Reilly book for your online reading
pleasure. The FreeBSD Documentation Project3 also uses DocBook and has some good information,
including a number of style guidelines that might be worth considering.

G.2. Tool Sets
The following tools are used to process the documentation. Some may be optional, as noted.

DocBook DTD4

This is the definition of DocBook itself. We currently use version 4.2; you cannot use later or
earlier versions. Note that there is also an XML version of DocBook — do not use that.

ISO 8879 character entities5

These are required by DocBook but are distributed separately because they are maintained by
ISO.

1. http://www.oasis-open.org
2. http://www.oasis-open.org/docbook
3. http://www.freebsd.org/docproj/docproj.html
4. http://www.oasis-open.org/docbook/sgml/
5. http://www.oasis-open.org/cover/ISOEnts.zip

1261

Appendix G. Documentation

OpenJade6

This is the base package of SGML processing. It contains an SGML parser, a DSSSL processor
(that is, a program to convert SGML to other formats using DSSSL stylesheets), as well as a
number of related tools. Jade is now being maintained by the OpenJade group, no longer by
James Clark.

DocBook DSSSL Stylesheets7

These contain the processing instructions for converting the DocBook sources to other formats,
such as HTML.

DocBook2X tools8

This optional package is used to create man pages. It has a number of prerequisite packages of
its own. Check the web site.

JadeTeX9

If you want to, you can also install JadeTeX to use TeX as a formatting backend for Jade. JadeTeX
can create Postscript or PDF files (the latter with bookmarks).

However, the output from JadeTeX is inferior to what you get from the RTF backend. Particular
problem areas are tables and various artifacts of vertical and horizontal spacing. Also, there is no
opportunity to manually polish the results.

We have documented experience with several installation methods for the various tools that are needed
to process the documentation. These will be described below. There may be some other packaged
distributions for these tools. Please report package status to the documentation mailing list, and we
will include that information here.

G.2.1. Linux RPM Installation

Most vendors provide a complete RPM set for DocBook processing in their distribution. Look
for an “SGML” option while installing, or the following packages:sgml-common , docbook ,
stylesheets , openjade (or jade). Possibly sgml-tools will be needed as well. If your
distributor does not provide these then you should be able to make use of the packages from some
other, reasonably compatible vendor.

G.2.2. FreeBSD Installation

The FreeBSD Documentation Project is itself a heavy user of DocBook, so it comes as no surprise
that there is a full set of “ports” of the documentation tools available on FreeBSD. The following ports
need to be installed to build the documentation on FreeBSD.

• textproc/sp

• textproc/openjade

• textproc/iso8879

6. http://openjade.sourceforge.net
7. http://docbook.sourceforge.net/projects/dsssl/index.html
8. http://docbook2x.sourceforge.net
9. http://jadetex.sourceforge.net

1262

Appendix G. Documentation

• textproc/dsssl-docbook-modular

Apparently, there is no port for the DocBook V4.2 SGML DTD available right now. You will need to
install it manually.

A number of things from/usr/ports/print (tex , jadetex) might also be of interest.

It’s possible that the ports do not update the main catalog file in
/usr/local/share/sgml/catalog . Be sure to have the following line in there:

CATALOG "/usr/local/share/sgml/docbook/4.2/docbook.cat"

If you do not want to edit the file you can also set the environment variableSGML_CATALOG_FILES

to a colon-separated list of catalog files (such as the one above).

More information about the FreeBSD documentation tools can be found in the FreeBSD Documenta-
tion Project’s instructions10.

G.2.3. Debian Packages

There is a full set of packages of the documentation tools available for Debian GNU/Linux. To install,
simply use:

apt-get install jade
apt-get install docbook
apt-get install docbook-stylesheets

G.2.4. Manual Installation from Source

The manual installation process of the DocBook tools is somewhat complex, so if you have pre-
built packages available, use them. We describe here only a standard setup, with reasonably standard
installation paths, and no “fancy” features. For details, you should study the documentation of the
respective package, and read SGML introductory material.

G.2.4.1. Installing OpenJade

1. The installation of OpenJade offers a GNU-style./configure; make; make install build
process. Details can be found in the OpenJade source distribution. In a nutshell:

./configure --enable-default-catalog=/usr/local/share/sgml/catalog
make
make install

Be sure to remember where you put the “default catalog”; you will need it below. You can also
leave it off, but then you will have to set the environment variableSGML_CATALOG_FILESto
point to the file whenever you use jade later on. (This method is also an option if OpenJade is
already installed and you want to install the rest of the toolchain locally.)

2. Additionally, you should install the filesdsssl.dtd , fot.dtd , style-sheet.dtd ,
and catalog from the dsssl directory somewhere, perhaps into
/usr/local/share/sgml/dsssl . It’s probably easiest to copy the entire directory:

cp -R dsssl /usr/local/share/sgml

10. http://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/tools.html

1263

Appendix G. Documentation

3. Finally, create the file/usr/local/share/sgml/catalog and add this line to it:

CATALOG "dsssl/catalog"

(This is a relative path reference to the file installed instep 2. Be sure to adjust it if you chose
your installation layout differently.)

G.2.4.2. Installing the DocBook DTD Kit

1. Obtain the DocBook V4.211 distribution.

2. Create the directory/usr/local/share/sgml/docbook-4.2 and change to it. (The exact
location is irrelevant, but this one is reasonable within the layout we are following here.)

$ mkdir /usr/local/share/sgml/docbook-4.2
$ cd /usr/local/share/sgml/docbook-4.2

3. Unpack the archive.

$ unzip -a/docbook-4.2.zip

(The archive will unpack its files into the current directory.)

4. Edit the file /usr/local/share/sgml/catalog (or whatever you told jade during installa-
tion) and put a line like this into it:

CATALOG "docbook-4.2/docbook.cat"

5. Download the ISO 8879 character entities12 archive, unpack it, and put the files in the same
directory you put the DocBook files in.

$ cd /usr/local/share/sgml/docbook-4.2
$ unzip/ISOEnts.zip

6. Run the following command in the directory with the DocBook and ISO files:

perl -pi -e ’s/iso-(.*).gml/ISO\1/g’ docbook.cat

(This fixes a mixup between the names used in the DocBook catalog file and the actual names of
the ISO character entity files.)

G.2.4.3. Installing the DocBook DSSSL Style Sheets

To install the style sheets, unzip and untar the distribution and move it to a suitable place, for example
/usr/local/share/sgml . (The archive will automatically create a subdirectory.)

$ gunzip docbook-dsssl-1. xx .tar.gz
$ tar -C /usr/local/share/sgml -xf docbook-dsssl-1. xx .tar

The usual catalog entry in/usr/local/share/sgml/catalog can also be made:

11. http://www.docbook.org/sgml/4.2/docbook-4.2.zip
12. http://www.oasis-open.org/cover/ISOEnts.zip

1264

Appendix G. Documentation

CATALOG "docbook-dsssl-1. xx /catalog

Because stylesheets change rather often, and it’s sometimes beneficial to try out alternative versions,
PostgreSQL doesn’t use this catalog entry. SeeSection G.2.5for information about how to select the
stylesheets instead.

G.2.4.4. Installing JadeTeX

To install and use JadeTeX, you will need a working installation of TeX and LaTeX2e, including the
supported tools and graphics packages, Babel, AMS fonts and AMS-LaTeX, the PSNFSS extension
and companion kit of “the 35 fonts”, the dvips program for generating PostScript, the macro packages
fancyhdr, hyperref, minitoc, url and ot2enc. All of these can be found on your friendly neighborhood
CTAN13 site. The installation of the TeX base system is far beyond the scope of this introduction.
Binary packages should be available for any system that can run TeX.

Before you can use JadeTeX with the PostgreSQL documentation sources, you will need to increase
the size of TeX’s internal data structures. Details on this can be found in the JadeTeX installation
instructions.

Once that is finished you can install JadeTeX:

$ gunzip jadetex- xxx .tar.gz
$ tar xf jadetex- xxx .tar
$ cd jadetex
$ make install
$ mktexlsr

The last two need to be done as root.

G.2.5. Detection by configure

Before you can build the documentation you need to run theconfigure script as you would when
building the PostgreSQL programs themselves. Check the output near the end of the run, it should
look something like this:

checking for onsgmls... onsgmls

checking for openjade... openjade

checking for DocBook V4.2... yes

checking for DocBook stylesheets... /usr/lib/sgml/stylesheets/nwalsh-modular

checking for sgmlspl... sgmlspl

If neitheronsgmls nornsgmls were found then you will not see the remaining 4 lines.nsgmls is part
of the Jade package. If “DocBook V4.2” was not found then you did not install the DocBook DTD kit
in a place where jade can find it, or you have not set up the catalog files correctly. See the installation
hints above. The DocBook stylesheets are looked for in a number of relatively standard places, but if
you have them some other place then you should set the environment variableDOCBOOKSTYLEto the
location and rerunconfigure afterwards.

13. http://www.ctan.org

1265

Appendix G. Documentation

G.3. Building The Documentation
Once you have everything set up, change to the directorydoc/src/sgml and run one of the com-
mands described in the following subsections to build the documentation. (Remember to use GNU
make.)

G.3.1. HTML

To build the HTML version of the documentation:

doc/src/sgml$ gmake html

This is also the default target.

When the HTML documentation is built, the process also generates the linking information for the
index entries. Thus, if you want your documentation to have a concept index at the end, you need to
build the HTML documentation once, and then build the documentation again in whatever format you
like.

To allow for easier handling in the final distribution, the files comprising the HTML documentation
are stored in a tar archive that is unpacked at installation time. To create the HTML documentation
package, use the commands

cd doc/src
gmake postgres.tar.gz

In the distribution, these archives live in thedoc directory and are installed by default withgmake

install .

G.3.2. Manpages

We use the docbook2man utility to convert DocBookrefentry pages to *roff output suitable for
man pages. The man pages are also distributed as a tar archive, similar to the HTML version. To
create the man page package, use the commands

cd doc/src
gmake man.tar.gz

which will result in a tar file being generated in thedoc/src directory.

To generate quality man pages, it might be necessary to use a hacked version of the conversion utility
or do some manual postprocessing. All man pages should be manually inspected before distribution.

G.3.3. Print Output via JadeTex

If you want to use JadeTex to produce a printable rendition of the documentation, you can use one of
the following commands:

• To make a DVI version:

doc/src/sgml$ gmake postgres.dvi

• To generate Postscript from the DVI:

doc/src/sgml$ gmake postgres.ps

1266

Appendix G. Documentation

• To make a PDF:

doc/src/sgml$ gmake postgres.pdf

(Of course you can also make a PDF version from the Postscript, but if you generate PDF directly,
it will have hyperlinks and other enhanced features.)

G.3.4. Print Output via RTF

You can also create a printable version of the PostgreSQL documentation by converting it to RTF
and applying minor formatting corrections using an office suite. Depending on the capabilities of the
particular office suite, you can then convert the documentation to Postscript of PDF. The procedure
below illustrates this process using Applixware.

Note: It appears that current versions of the PostgreSQL documentation trigger some bug in or
exceed the size limit of OpenJade. If the build process of the RTF version hangs for a long time
and the output file still has size 0, then you may have hit that problem. (But keep in mind that a
normal build takes 5 to 10 minutes, so don’t abort too soon.)

Applixware RTF Cleanup

OpenJade omits specifying a default style for body text. In the past, this undiagnosed problem led to
a long process of table of contents generation. However, with great help from the Applixware folks
the symptom was diagnosed and a workaround is available.

1. Generate the RTF version by typing:

doc/src/sgml$ gmake postgres.rtf

2. Repair the RTF file to correctly specify all styles, in particular the default style. If the docu-
ment containsrefentry sections, one must also replace formatting hints which tie a preceding
paragraph to the current paragraph, and instead tie the current paragraph to the following one. A
utility, fixrtf , is available indoc/src/sgml to accomplish these repairs:

doc/src/sgml$./fixrtf --refentry postgres.rtf

The script adds{\s0 Normal;} as the zeroth style in the document. According to Applixware,
the RTF standard would prohibit adding an implicit zeroth style, though Microsoft Word hap-
pens to handle this case. For repairingrefentry sections, the script replaces\keepn tags with
\keep .

3. Open a new document in Applixware Words and then import the RTF file.

4. Generate a new table of contents (ToC) using Applixware.

a. Select the existing ToC lines, from the beginning of the first character on the first line
to the last character of the last line.

b. Build a new ToC usingTools−→Book Building−→Create Table of Contents. Select
the first three levels of headers for inclusion in the ToC. This will replace the existing
lines imported in the RTF with a native Applixware ToC.

1267

Appendix G. Documentation

c. Adjust the ToC formatting by usingFormat−→Style, selecting each of the three ToC
styles, and adjusting the indents forFirst andLeft . Use the following values:

Style First Indent (inches) Left Indent (inches)

TOC-Heading 1 0.4 0.4

TOC-Heading 2 0.8 0.8

TOC-Heading 3 1.2 1.2

5. Work through the document to:

• Adjust page breaks.

• Adjust table column widths.

6. Replace the right-justified page numbers in the Examples and Figures portions of the ToC with
correct values. This only takes a few minutes.

7. Delete the index section from the document if it is empty.

8. Regenerate and adjust the table of contents.

a. Select the ToC field.

b. SelectTools−→Book Building−→Create Table of Contents.

c. Unbind the ToC by selectingTools−→Field Editing−→Unprotect.

d. Delete the first line in the ToC, which is an entry for the ToC itself.

9. Save the document as native Applixware Words format to allow easier last minute editing later.

10. “Print” the document to a file in Postscript format.

G.3.5. Plain Text Files

Several files are distributed as plain text, for reading during the installation process. TheINSTALL file
corresponds toChapter 14, with some minor changes to account for the different context. To recreate
the file, change to the directorydoc/src/sgml and entergmake INSTALL . This will create a
file INSTALL.html that can be saved as text with Netscape Navigator and put into the place of the
existing file. Netscape seems to offer the best quality for HTML to text conversions (over lynx and
w3m).

The file HISTORY can be created similarly, using the commandgmake HISTORY. For the file
src/test/regress/README the command isgmake regress_README .

G.3.6. Syntax Check

Building the documentation can take very long. But there is a method to just check the correct syntax
of the documentation files, which only takes a few seconds:

doc/src/sgml$ gmake check

1268

Appendix G. Documentation

G.4. Documentation Authoring
SGML and DocBook do not suffer from an oversupply of open-source authoring tools. The most
common tool set is the Emacs/XEmacs editor with appropriate editing mode. On some systems these
tools are provided in a typical full installation.

G.4.1. Emacs/PSGML

PSGML is the most common and most powerful mode for editing SGML documents. When properly
configured, it will allow you to use Emacs to insert tags and check markup consistency. You could
use it for HTML as well. Check the PSGML web site14 for downloads, installation instructions, and
detailed documentation.

There is one important thing to note with PSGML: its author assumed that your main SGML
DTD directory would be /usr/local/lib/sgml . If, as in the examples in this chapter,
you use /usr/local/share/sgml , you have to compensate for this, either by setting
SGML_CATALOG_FILESenvironment variable, or you can customize your PSGML installation (its
manual tells you how).

Put the following in your~/.emacs environment file (adjusting the path names to be appropriate for
your system):

; ********** for SGML mode (psgml)

(setq sgml-omittag t)
(setq sgml-shorttag t)
(setq sgml-minimize-attributes nil)
(setq sgml-always-quote-attributes t)
(setq sgml-indent-step 1)
(setq sgml-indent-data t)
(setq sgml-parent-document nil)
(setq sgml-default-dtd-file "./reference.ced")
(setq sgml-exposed-tags nil)
(setq sgml-catalog-files ’("/usr/local/share/sgml/catalog"))
(setq sgml-ecat-files nil)

(autoload ’sgml-mode "psgml" "Major mode to edit SGML files." t)

and in the same file add an entry for SGML into the (existing) definition forauto-mode-alist :

(setq
auto-mode-alist
’(("\\.sgml$" . sgml-mode)

))

Currently, each SGML source file has the following block at the end of the file:

<!-- Keep this comment at the end of the file
Local variables:
mode: sgml
sgml-omittag:t
sgml-shorttag:t
sgml-minimize-attributes:nil
sgml-always-quote-attributes:t

14. http://www.lysator.liu.se/projects/about_psgml.html

1269

Appendix G. Documentation

sgml-indent-step:1
sgml-indent-data:t
sgml-parent-document:nil
sgml-default-dtd-file:"./reference.ced"
sgml-exposed-tags:nil
sgml-local-catalogs:("/usr/lib/sgml/catalog")
sgml-local-ecat-files:nil
End:
-- >

This will set up a number of editing mode parameters even if you do not set up your~/.emacs file,
but it is a bit unfortunate, since if you followed the installation instructions above, then the catalog
path will not match your location. Hence you might need to turn off local variables:

(setq inhibit-local-variables t)

The PostgreSQL distribution includes a parsed DTD definitions filereference.ced . You may find
that when using PSGML, a comfortable way of working with these separate files of book parts is to
insert a properDOCTYPEdeclaration while you’re editing them. If you are working on this source, for
instance, it is an appendix chapter, so you would specify the document as an “appendix” instance of a
DocBook document by making the first line look like this:

<!DOCTYPE appendix PUBLIC "-//OASIS//DTD DocBook V4.2//EN" >

This means that anything and everything that reads SGML will get it right, and I can verify the
document withnsgmls -s docguide.sgml . (But you need to take out that line before building the
entire documentation set.)

G.4.2. Other Emacs modes

GNU Emacs ships with a different SGML mode, which is not quite as powerful as PSGML, but it’s
less confusing and lighter weight. Also, it offers syntax highlighting (font lock), which can be very
helpful.

Norm Walsh offers a major mode specifically for DocBook15 which also has font-lock and a number
of features to reduce typing.

G.5. Style Guide

G.5.1. Reference Pages

Reference pages should follow a standard layout. This allows users to find the desired information
more quickly, and it also encourages writers to document all relevant aspects of a command. Consis-
tency is not only desired among PostgreSQL reference pages, but also with reference pages provided
by the operating system and other packages. Hence the following guidelines have been developed.
They are for the most part consistent with similar guidelines established by various operating sys-
tems.

15. http://nwalsh.com/emacs/docbookide/index.html

1270

Appendix G. Documentation

Reference pages that describe executable commands should contain the following sections, in this
order. Sections that do not apply may be omitted. Additional top-level sections should only be used
in special circumstances; often that information belongs in the “Usage” section.

Name

This section is generated automatically. It contains the command name and a half-sentence sum-
mary of its functionality.

Synopsis

This section contains the syntax diagram of the command. The synopsis should normally not
list each command-line option; that is done below. Instead, list the major components of the
command line, such as where input and output files go.

Description

Several paragraphs explaining what the command does.

Options

A list describing each command-line option. If there are a lot of options, subsections may be
used.

Exit Status

If the program uses 0 for success and non-zero for failure, then you do not need to document it.
If there is a meaning behind the different non-zero exit codes, list them here.

Usage

Describe any sublanguage or run-time interface of the program. If the program is not interactive,
this section can usually be omitted. Otherwise, this section is a catch-all for describing run-time
features. Use subsections if appropriate.

Environment

List all environment variables that the program might use. Try to be complete; even seemingly
trivial variables likeSHELLmight be of interest to the user.

Files

List any files that the program might access implicitly. That is, do not list input and output files
that were specified on the command line, but list configuration files, etc.

Diagnostics

Explain any unusual output that the program might create. Refrain from listing every possible
error message. This is a lot of work and has little use in practice. But if, say, the error messages
have a standard format that the user can parse, this would be the place to explain it.

Notes

Anything that doesn’t fit elsewhere, but in particular bugs, implementation flaws, security con-
siderations, compatibility issues.

Examples

Examples

History

If there were some major milestones in the history of the program, they might be listed here.
Usually, this section can be omitted.

1271

Appendix G. Documentation

See Also

Cross-references, listed in the following order: other PostgreSQL command reference pages,
PostgreSQL SQL command reference pages, citation of PostgreSQL manuals, other reference
pages (e.g., operating system, other packages), other documentation. Items in the same group
are listed alphabetically.

Reference pages describing SQL commands should contain the following sections: Name, Synopsis,
Description, Parameters, Outputs, Notes, Examples, Compatibility, History, See Also. The Parameters
section is like the Options section, but there is more freedom about which clauses of the command can
be listed. The Outputs section is only needed if the command returns something other than a default
command-completion tag. The Compatibility section should explain to what extent this command
conforms to the SQL standard(s), or to which other database system it is compatible. The See Also
section of SQL commands should list SQL commands before cross-references to programs.

1272

Appendix H. External Projects
PostgreSQL is a complex software project, and managing it is difficult. We have found that many
enhancements to PostgreSQL can be more efficiently developed separately from the core project.
Separate projects can have their own developer teams, email lists, bug tracking, and release schedules.
While their independence makes development easier, it makes users’ jobs harder. They have to hunt
around looking for database enhancements to meet their needs. This section describes some of the
more popular externally developed enhancements and guides you on how to find them.

Many PostgreSQL-related projects are hosted at either GBorg at http://gborg.postgresql.org or pg-
Foundry at http://pgfoundry.org. There are other PostgreSQL-related projects that are hosted else-
where, but you will have to do an Internet search to find them.

H.1. Externally Developed Interfaces
PostgreSQL includes very few interfaces with the base distribution. libpq is packaged because it is
the primary C interface and many other interfaces are built on top of it. ecpg is packaged because it is
tied to the server-side grammar so is very dependent on the database version. All the other interfaces
are independent projects and must be installed separately.

Some of the more popular interfaces are:

psqlODBC

This is the most common interface for Windows applications.

pgjdbc

A JDBC interface.

Npgsql

.Net interface for more recent Windows applications.

libpqxx

A newer C++ interface.

libpq++

An older C++ interface.

pgperl

A Perl interface with an API similar to libpq.

DBD-Pg

A Perl interface that uses the DBD-standard API.

pgtclng

A newer version of the Tcl interface.

pgtcl

The original version of the Tcl interface.

1273

Appendix H. External Projects

PyGreSQL

A Python interface library.

All of these can be found at GBorg (http://gborg.postgresql.org) or pgFoundry (http://pgfoundry.org).

H.2. Extensions
PostgreSQL was designed from the start to be extensible. For this reason, extensions loaded into the
database can function just like features that are packaged with the database. Thecontrib/ directory
shipped with the source code contains a large number of extensions. TheREADMEfile in that directory
contains a summary. They include conversion tools, full-text indexing, XML tools, and additional data
types and indexing methods. Other extensions are developed independently, like PostGIS. Even Post-
greSQL replication solutions are developed externally. For example, Slony-I is a popular master/slave
replication solution that is developed independently from the core project.

There are several administration tools available for PostgreSQL. The most popular is pgAdmin, and
there are several commercially available ones.

1274

Bibliography
Selected references and readings for SQL and PostgreSQL.

Some white papers and technical reports from the original POSTGRES development team are avail-
able at the University of California, Berkeley, Computer Science Department web site1

SQL Reference Books

Judith Bowman, Sandra Emerson, and Marcy Darnovsky,The Practical SQL Handbook: Using Struc-
tured Query Language, Third Edition, Addison-Wesley, ISBN 0-201-44787-8, 1996.

C. J. Date and Hugh Darwen,A Guide to the SQL Standard: A user’s guide to the standard database
language SQL, Fourth Edition, Addison-Wesley, ISBN 0-201-96426-0, 1997.

C. J. Date,An Introduction to Database Systems, Volume 1, Sixth Edition, Addison-Wesley, 1994.

Ramez Elmasri and Shamkant Navathe,Fundamentals of Database Systems, 3rd Edition, Addison-
Wesley, ISBN 0-805-31755-4, August 1999.

Jim Melton and Alan R. Simon,Understanding the New SQL: A complete guide, Morgan Kaufmann,
ISBN 1-55860-245-3, 1993.

Jeffrey D. Ullman,Principles of Database and Knowledge: Base Systems, Volume 1, Computer Sci-
ence Press, 1988.

PostgreSQL-Specific Documentation

Stefan Simkovics,Enhancement of the ANSI SQL Implementation of PostgreSQL, Department of
Information Systems, Vienna University of Technology, November 29, 1998.

Discusses SQL history and syntax, and describes the addition ofINTERSECTandEXCEPTcon-
structs into PostgreSQL. Prepared as a Master’s Thesis with the support of O. Univ. Prof. Dr.
Georg Gottlob and Univ. Ass. Mag. Katrin Seyr at Vienna University of Technology.

A. Yu and J. Chen, The POSTGRES Group,The Postgres95 User Manual, University of California,
Sept. 5, 1995.

Zelaine Fong,The design and implementation of the POSTGRES query optimizer2, University of
California, Berkeley, Computer Science Department.

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/
2. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/UCB-MS-zfong.pdf

1275

Bibliography

Proceedings and Articles

Nels Olson,Partial indexing in POSTGRES: research project, University of California, UCB Engin
T7.49.1993 O676, 1993.

L. Ong and J. Goh, “A Unified Framework for Version Modeling Using Production Rules in a
Database System”,ERL Technical Memorandum M90/33, University of California, April, 1990.

L. Rowe and M. Stonebraker, “The POSTGRES data model3”, Proc. VLDB Conference, Sept. 1987.

P. Seshadri and A. Swami, “Generalized Partial Indexes4 ”, Proc. Eleventh International Conference
on Data Engineering, 6-10 March 1995, IEEE Computer Society Press, Cat. No.95CH35724,
1995, 420-7.

M. Stonebraker and L. Rowe, “The design of POSTGRES5”, Proc. ACM-SIGMOD Conference on
Management of Data, May 1986.

M. Stonebraker, E. Hanson, and C. H. Hong, “The design of the POSTGRES rules system”, Proc.
IEEE Conference on Data Engineering, Feb. 1987.

M. Stonebraker, “The design of the POSTGRES storage system6”, Proc. VLDB Conference, Sept.
1987.

M. Stonebraker, M. Hearst, and S. Potamianos, “A commentary on the POSTGRES rules system7”,
SIGMOD Record 18(3), Sept. 1989.

M. Stonebraker, “The case for partial indexes8”, SIGMOD Record 18(4), Dec. 1989, 4-11.

M. Stonebraker, L. A. Rowe, and M. Hirohama, “The implementation of POSTGRES9”, Transactions
on Knowledge and Data Engineering 2(1), IEEE, March 1990.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, “On Rules, Procedures, Caching and Views
in Database Systems10”, Proc. ACM-SIGMOD Conference on Management of Data, June 1990.

3. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M87-13.pdf
4. http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z
5. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M85-95.pdf
6. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M87-06.pdf
7. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-82.pdf
8. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-17.pdf
9. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M90-34.pdf
10. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M90-36.pdf

1276

Index

Symbols
$, 31

$libdir, 459

*, 73

.pgpass,368

A
ABORT, 635

add_missing_from configuration parameter,

258

aggregate function,12

built-in, 163

invocation,33

user-defined,479

AIX

IPC configuration,267

alias

for table name in query,11

in the FROM clause,67

in the select list,73

ALL, 165, 169

ALTER AGGREGATE,637

ALTER CONVERSION,639

ALTER DATABASE, 640

ALTER DOMAIN, 642

ALTER FUNCTION,644

ALTER GROUP,646

ALTER INDEX, 648

ALTER LANGUAGE, 650

ALTER OPERATOR,651

ALTER OPERATOR CLASS,652

ALTER SCHEMA,653

ALTER SEQUENCE,654

ALTER TABLE, 656

ALTER TABLESPACE,662

ALTER TRIGGER,664

ALTER TYPE,665

ALTER USER,273, 666

ANALYZE, 298, 669

AND (operator),113

any,111, 165, 165, 169

anyarray,111

anyelement,111

archive_command configuration parameter,

246

ARRAY, 34, 98

constant,98

constructor,34

determination of result type,186

of user-defined type,484

australian_timezones configuration parame-

ter,256

authentication_timeout configuration pa-

rameter,240

auto-increment

(See serial)

autocommit

bulk-loading data,212

psql,918

average,12, 163

B
B-tree

(See index)

backup,176, 303

base type,446

BEGIN, 671

BETWEEN,114

bgwriter_delay configuration parameter,244

bgwriter_maxpages configuration parame-

ter,244

bgwriter_percent configuration parameter,

244

bigint, 27, 79

bigserial,81

binary data,84

functions,126

binary string

concatenation,126

length,126

bison,218

bit string

constant,26

data type,97

bit strings

functions,127

bit_and,163

bit_or,163

BLOB

(See large object)

block_size configuration parameter,260

Boolean

data type,92

operators

(See operators, logical)

1277

bool_and,163

bool_or,163

booting

starting the server during,235

box (data type),94

BSD/OS

IPC configuration,265

shared library,467

bytea,84

in libpq, 353

C
C, 333, 388

canceling

SQL command,357

CASCADE

with DROP,58

foreign key action,45

CASE,160

determination of result type,186

case sensitivity

of SQL commands,24

char,82

character,82

character set,257, 260, 292

character string

concatenation,118

constant,24

data types,82

length,118

character varying,82

check constraint,40

checkpoint,323, 673

checkpoint_segments configuration parame-

ter,245

checkpoint_timeout configuration parame-

ter,246

checkpoint_warning configuration parame-

ter,246

check_function_bodies configuration pa-

rameter,256

cid, 109

cidr, 96

circle,95

client authentication,281

timeout during,240

client_encoding configuration parameter,

257

client_min_messages configuration parame-

ter,251

CLOSE,674

CLUSTER,675

of databases

(See database cluster)

clusterdb,863

cmax,47

cmin,47

COALESCE,162

column,6, 38

adding,51

removing,51

renaming,52

system column,47

column data type

changing,52

column reference,31

col_description,171

COMMENT, 678

about database objects,171

in SQL,28

COMMIT, 681

commit_delay configuration parameter,245

commit_siblings configuration parameter,

245

comparison

operators,113

row-wise,169

subquery result row,165

compiling

libpq applications,369

composite type,106, 446

constant,107

constructor,36

computed field,453

concurrency,197

conditional expression,160

configuration

of the server,237

of the server

functions,176

configure,219

config_file configuration parameter,238

conjunction,113

constant,24

constraint,40

adding,51

check,40

foreign key,44

name,40

NOT NULL, 42

primary key,43

removing,51

1278

unique,43

COPY,8, 682

with libpq, 360

count,12

cpu_index_tuple_cost configuration param-

eter,247

cpu_operator_cost configuration parameter,

248

cpu_tuple_cost configuration parameter,247

CREATE DATABASE,276

CREATE AGGREGATE,689

CREATE CAST,692

CREATE CONSTRAINT,695

CREATE CONVERSION,696

CREATE DATABASE,698

CREATE DOMAIN, 700

CREATE FUNCTION,702

CREATE GROUP,706

CREATE INDEX,708

CREATE LANGUAGE,711

CREATE OPERATOR,713

CREATE OPERATOR CLASS,716

CREATE RULE,719

CREATE SCHEMA,722

CREATE SEQUENCE,724

CREATE TABLE,6, 727

CREATE TABLE AS,737

CREATE TABLESPACE,279, 739

CREATE TRIGGER,741

CREATE TYPE,744

CREATE USER,272, 750

CREATE VIEW,753

createdb,2, 277, 866

createlang,869

createuser,272, 872

cross join,64

crypt,286

thread safety,369

cstring,111

ctid, 47, 513

currval,158

cursor

CLOSE,674

DECLARE,757

FETCH,791

in PL/pgSQL,551

MOVE, 809

showing the query plan,788

custom_variable_classes configuration pa-

rameter,261

D
data area

(See database cluster)

data type,77

base,446

category,180

composite,446

constant,27

conversion,179

internal organisation,459

numeric,78

type cast,33

user-defined,481

database,276

creating,2

privilege to create,273

database activity

monitoring,315

database cluster,6, 233

data_directory configuration parameter,238

date,86, 87

constants,90

current,152

output format,90

(See Also formatting)

DateStyle configuration parameter,256

DBI, 580

db_user_namespace configuration parame-

ter,240

deadlock,203

timeout during,??

deadlock_timeout configuration parameter,

258

DEALLOCATE, 756

debug_assertions configuration parameter,

261

debug_pretty_print configuration parameter,

252

debug_print_parse configuration parameter,

252

debug_print_plan configuration parameter,

252

debug_print_rewritten configuration param-

eter,252

debug_shared_buffers configuration param-

eter,261

decimal

(See numeric)

DECLARE,757

default value,39

changing,52

1279

default_statistics_target configuration pa-

rameter,248

default_tablespace configuration parameter,

256

default_transaction_isolation configuration

parameter,256

default_transaction_read_only configuration

parameter,256

default_with_oids configuration parameter,

259

DELETE,14, 61, 760

deleting,61

Digital UNIX

(See Tru64 UNIX)

dirty read,197

disjunction,113

disk drive,325

disk space,297

disk usage,321

DISTINCT, 9, 73

dollar quoting,25

double precision,80

DROP AGGREGATE,762

DROP CAST,763

DROP CONVERSION,764

DROP DATABASE,279, 765

DROP DOMAIN,766

DROP FUNCTION,767

DROP GROUP,768

DROP INDEX,769

DROP LANGUAGE,770

DROP OPERATOR,771

DROP OPERATOR CLASS,773

DROP RULE,774

DROP SCHEMA,775

DROP SEQUENCE,776

DROP TABLE,7, 777

DROP TABLESPACE,779

DROP TRIGGER,780

DROP TYPE,781

DROP USER,272, 782

DROP VIEW,784

dropdb,279, 875

droplang,878

dropuser,272, 880

duplicate,9

duplicates,73

dynamic loading,257, 458

dynamic_library_path,459

dynamic_library_path configuration param-

eter,257

E
ECPG,388, 883

effective_cache_size configuration parame-

ter,247

elog,1034

in PL/Perl,581

in PL/Python,586

in PL/Tcl, 575

embedded SQL

in C, 388

enable_hashagg configuration parameter,

246

enable_hashjoin configuration parameter,

246

enable_indexscan configuration parameter,

246

enable_mergejoin configuration parameter,

246

enable_nestloop configuration parameter,

247

enable_seqscan configuration parameter,

247

enable_sort configuration parameter,247

enable_tidscan configuration parameter,247

END, 785

environment variable,366

ereport,1034

error codes

libpq, 346

list of, 1066

error message,341

escaping strings,352

every,163

EXCEPT,74

EXECUTE,786

EXISTS,165

EXPLAIN, 206, 788

explain_pretty_print configuration parame-

ter,257

expression

order of evaluation,37

syntax,30

extending SQL,446

extensions,1274

external_pid_file configuration parameter,

238

extra_float_digits configuration parameter,

256

1280

F
false,92

FAQ-Liste,iv

fast path,358

FETCH,791

field

computed,453

field selection,32

flex, 218

float4

(See real)

float8

(See double precision)

floating point,80

floating-point

display,256

foreign key,15, 44

formatting,140

FreeBSD

IPC configuration,265

shared library,468

start script,235

FROM

missing,258

from_collapse_limit configuration parame-

ter,249

fsync,323

fsync configuration parameter,??

function,113

in the FROM clause,68

internal,458

invocation,32

polymorphic,447

type resolution in an invocation,183

user-defined,447

in C, 448

in SQL,448

G
genetic query optimization,??

GEQO

(See genetic query optimization)

geqo configuration parameter,248

geqo_effort configuration parameter,248

geqo_generations configuration parameter,

248

geqo_pool_size configuration parameter,

248

geqo_selection_bias configuration parame-

ter,248

geqo_threshold configuration parameter,

248

get_bit,126

get_byte,126

GiST

(See index)

global data

in PL/Python,585

in PL/Tcl, 573

GRANT, 274, 795

group,273

GROUP BY,12, 70

grouping,70

H
hash

(See index)

has_database_privilege,171

has_function_privilege,171

has_language_privilege,171

has_schema_privilege,171

has_tablespace_privilege,171

has_table_privilege,171

HAVING, 12, 72

hba_file configuration parameter,238

hierarchical database,6

history

of PostgreSQL,ii

host name,333

HP-UX

IPC configuration,266

shared library,468

I
ident,287

identifier

length,??

syntax of,23

ident_file configuration parameter,238

IMMUTABLE, 456

IN, 165, 169

index,188

B-tree,189

examining usage,195

on expressions,191

for user-defined data type,489

1281

GiST,1054

hash,189

locks,204

multicolumn,190

partial,193

R-tree,189

unique,190

index scan,246

inet (data type),95

inet_client_addr,171

inet_client_port,171

inet_server_addr,171

inet_server_port,171

information schema,406

inheritance,18, 259

initdb, 233, 931

input function,481

of a data type,481

INSERT,7, 60, 800

inserting,60

installation,216

on Windows,216, 232

instr,564

int2

(See smallint)

int4

(See integer)

int8

(See bigint)

integer,??, 79

integer_datetimes configuration parameter,

260

interfaces,1273

internal,111

INTERSECT,74

interval,86, 89

ipcclean,934

IRIX

shared library,468

IS DISTINCT FROM,115, 169

IS FALSE,115

IS NOT FALSE,115

IS NOT NULL, 114, 169

IS NOT TRUE,115

IS NOT UNKNOWN,115

IS NULL, 114, 169, 259

IS TRUE,115

IS UNKNOWN, 115

ISNULL, 114

J
join, 10, 64

controlling the order,210

cross,64

left, 65

natural,65

outer,11, 64

right, 65

self,11

join_collapse_limit configuration parameter,

249

K
Kerberos,286

key word

list of, 1090

syntax of,23

krb_server_keyfile configuration parameter,

240

L
label

(See alias)

language_handler,111

large object

backup,305

large object,379

lc_collate configuration parameter,260

lc_ctype configuration parameter,260

lc_messages configuration parameter,257

lc_monetary configuration parameter,257

lc_numeric configuration parameter,257

lc_time configuration parameter,257

ldconfig,225

left join, 65

length

of a binary string

(See binary strings, length)

of a character string

(See character strings, length)

libperl, 217

libpq, 333

libpq-fe.h,333, 339

libpq-int.h,339, 370

libpython,217

LIKE, 128

and locales,291

LIMIT, 75

1282

line segment,94

Linux

IPC configuration,266

shared library,468

start script,235

LISTEN, 803

listen_addresses configuration parameter,

239

LOAD, 805

locale,234, 290

lock, 201, 201, 806

monitoring,320

log_connections configuration parameter,

252

log_destination configuration parameter,

249

log_directory configuration parameter,250

log_disconnections configuration parameter,

252

log_duration configuration parameter,253

log_error_verbosity configuration parame-

ter,251

log_executor_stats configuration parameter,

254

log_filename configuration parameter,250

log_hostname configuration parameter,254

log_line_prefix configuration parameter,253

log_min_duration_statement configuration

parameter,251

log_min_error_statement configuration pa-

rameter,251

log_min_messages configuration parameter,

251

log_parser_stats configuration parameter,

254

log_planner_stats configuration parameter,

254

log_rotation_age configuration parameter,

250

log_rotation_size configuration parameter,

250

log_statement configuration parameter,253

log_statement_stats configuration parame-

ter,254

log_truncate_on_rotation configuration pa-

rameter,250

loop

in PL/pgSQL,547

lo_close,381

lo_creat,380, 382

lo_export,380, 382

lo_import,380, 382

lo_lseek,381

lo_open,380

lo_read,381

lo_tell, 381

lo_unlink,382, 382

lo_write,381

lseg,94

M
MAC address

(See macaddr)

macaddr (data type),97

MacOS X

IPC configuration,266

shared library,468

maintenance,297

maintenance_work_mem configuration pa-

rameter,241

make,216

MANPATH, 226

max,12

max_connections configuration parameter,

239

max_files_per_process configuration param-

eter,242

max_fsm_pages configuration parameter,

242

max_fsm_relations configuration parameter,

242

max_function_args configuration parameter,

260

max_identifier_length configuration param-

eter,260

max_index_keys configuration parameter,

260

max_locks_per_transaction configuration

parameter,258

max_stack_depth configuration parameter,

242

MD5, 286

memory context

in SPI,618

min, 12

monitoring

database activity,315

MOVE, 809

MVCC, 197

1283

N
name

qualified,54

syntax of,23

unqualified,55

natural join,65

negation,113

NetBSD

IPC configuration,265

shared library,468

start script,235

network

data types,95

nextval,158

nonblocking connection,336, 354

nonrepeatable read,197

NOT (operator),113

NOT IN, 165, 169

not-null constraint,42

notice processing

in libpq, 365

notice processor,365

notice receiver,365

NOTIFY, 811

in libpq, 359

NOTNULL, 114

null value

with check constraints,42

comparing,114

default value,39

in DISTINCT, 74

in libpq, 350

in PL/Perl,578

in PL/Python,585

with unique constraints,43

NULLIF, 162

number

constant,26

numeric,27

numeric (data type),79

O
object identifier

data type,109

object-oriented database,6

obj_description,171

OFFSET,75

oid, 109

column,47

in libpq, 352

on-line backup,303

ONLY, 64

opaque,111

OpenBSD

IPC configuration,265

shared library,469

start script,235

OpenSSL,222

(See Also SSL)

operator,113

invocation,32

logical,113

precedence,29

syntax,27

type resolution in an invocation,180

user-defined,484

operator class,192, 490

OR (operator),113

Oracle

porting from PL/SQL to PL/pgSQL,561

ORDER BY,9, 74

and locales,291

ordering operator,495

outer join,64

output function

of a data type,481

output function,481

overlay,118

overloading

functions,456

operators,484

owner,274

P
palloc,467

PAM, 222, 289

parameter

syntax,31

parenthesis,30

password,273

authentication,286

of the superuser,234

password file,368

password_encryption configuration parame-

ter,240

PATH, 226

for schemas,255

path (data type),94

pattern matching,128

1284

performance,206

Perl,578

permission

(See privilege)

pfree,467

PGcancel,357

PGCLIENTENCODING,368

PGconn,333

PGCONNECT_TIMEOUT,367

PGDATA, 233

PGDATABASE,367

PGDATESTYLE,368

PGGEQO,368

PGHOST,367

PGHOSTADDR,367

PGLOCALEDIR,368

PGOPTIONS,367

PGPASSWORD,367

PGPORT,367

PGREALM,367

PGREQUIRESSL,367

PGresult,345

PGSERVICE,367

PGSSLMODE,367

PGSYSCONFDIR,368

PGTZ,368

PGUSER,367

pgxs,469

pg_aggregate,959

pg_am,959

pg_amop,961

pg_amproc,961

pg_attrdef,962

pg_attribute,962

pg_cancel_backend,176

pg_cast,965

pg_class,966

pg_config,885

with libpq, 369

with user-defined C functions,466

pg_constraint,969

pg_controldata,935

pg_conversion,970

pg_conversion_is_visible,171

pg_ctl,234, 936

pg_database,278, 971

pg_depend,972

pg_description,974

pg_dump,887

pg_dumpall,894

use during upgrade,218

pg_function_is_visible,171

pg_get_constraintdef,171

pg_get_expr,171

pg_get_indexdef,171

pg_get_ruledef,171

pg_get_serial_sequence,171

pg_get_triggerdef,171

pg_get_userbyid,171

pg_get_viewdef,171

pg_group,974

pg_hba.conf,281

pg_ident.conf,288

pg_index,975

pg_indexes,994

pg_inherits,976

pg_language,976

pg_largeobject,977

pg_listener,978

pg_locks,994

pg_namespace,978

pg_opclass,979

pg_opclass_is_visible,171

pg_operator,979

pg_operator_is_visible,171

pg_proc,981

pg_restore,898

pg_rewrite,983

pg_rules,996

pg_settings,996

pg_shadow,983

pg_start_backup,176

pg_statistic,210, 984

pg_stats,210, 997

pg_stop_backup,176

pg_tables,999

pg_tablespace,986

pg_tablespace_databases,171

pg_table_is_visible,171

pg_trigger,986

pg_type,987

pg_type_is_visible,171

pg_user,1000

pg_views,1000

phantom read,197

PIC,467

PID

determining PID of server process

in libpq, 342

PITR,303

PL/Perl,578

PL/PerlU,583

PL/pgSQL,530

PL/Python,585

1285

PL/SQL (Oracle)

porting to PL/pgSQL,561

PL/Tcl, 571

point,94

point-in-time recovery,303

polygon,95

polymorphic function,447

polymorphic type,447

port,334

port configuration parameter,239

POSTGRES,ii

postgres (the program),942

postgres user,233

Postgres95,ii

postgresql.conf,237

postmaster,1, 234, 946

PQbackendPID,342

PQbinaryTuples,350

with COPY,361

PQcancel,358

PQclear,347

PQcmdStatus,351

PQcmdTuples,352

PQconndefaults,337

PQconnectdb,333

PQconnectPoll,336

PQconnectStart,336

PQconsumeInput,356

PQdb,339

PQendcopy,364

PQerrorMessage,341

PQescapeBytea,353

PQescapeString,352

PQexec,342

PQexecParams,343

PQexecPrepared,344

PQfformat,349

with COPY,361

PQfinish,338

PQflush,357

PQfmod,349

PQfn,359

PQfname,348

PQfnumber,348

PQfreeCancel,358

PQfreemem,354

PQfsize,350

PQftable,349

PQftablecol,349

PQftype,349

PQgetCancel,357

PQgetCopyData,362

PQgetisnull,350

PQgetlength,351

PQgetline,363

PQgetlineAsync,363

PQgetResult,355

PQgetssl,342

PQgetvalue,350

PQhost,339

PQisBusy,356

PQisnonblocking,357

PQmakeEmptyPGresult,347

PQnfields,348

with COPY,361

PQnotifies,359

PQntuples,348

PQoidStatus,352

PQoidValue,352

PQoptions,340

PQparameterStatus,340

PQpass,339

PQport,339

PQprepare,343

PQprint,351

PQprotocolVersion,341

PQputCopyData,361

PQputCopyEnd,362

PQputline,364

PQputnbytes,364

PQrequestCancel,358

PQreset,338

PQresetPoll,338

PQresetStart,338

PQresStatus,345

PQresultErrorField,346

PQresultErrorMessage,346

PQresultStatus,345

PQsendPrepare,355

PQsendQuery,354

PQsendQueryParams,354

PQsendQueryPrepared,355

PQserverVersion,341

PQsetdb,335

PQsetdbLogin,335

PQsetErrorVerbosity,365

PQsetnonblocking,357

PQsetNoticeProcessor,365

PQsetNoticeReceiver,365

PQsocket,341

PQstatus,340

PQtrace,365

PQtransactionStatus,340

PQtty,339

1286

PQunescapeBytea,353

PQuntrace,365

PQuser,339

predicate locking,200

preload_libraries configuration parameter,

242

PREPARE,813

prepared statements

creating,813

executing,786

removing,756

showing the query plan,788

preparing a query

in PL/Tcl, 574

in PL/pgSQL,530

in PL/Python,586

pre_auth_delay configuration parameter,

261

primary key,43

privilege,53, 274

querying,173

with rules,523

for schemas,56

with views,523

procedural language,528

handler for,1046

ps

to monitor activity,315

psql,3, 904

Python,585

Q
qualified name,54

query,8, 63

query plan,206

query tree,505

quotation marks

and identifiers,24

escaping,24

quote_ident,119

use in PL/pgSQL,543

quote_literal,119

use in PL/pgSQL,543

R
R-tree

(See index)

random_page_cost configuration parameter,

247

range table,505

read-only transaction,??

readline,216

real,80

record,111

rectangle,94

redirect_stderr configuration parameter,249

referential integrity,15, 44

regclass,109

regex_flavor configuration parameter,259

regoper,109

regoperator,109

regproc,109

regprocedure,109

regression test,224

regression tests,326

regtype,109

regular expression,129, 130

(See Also pattern matching)

regular expressions,259

reindex,301, 815

relation,6

relational database,6

RELEASE SAVEPOINT,818

rendezvous_name configuration parameter,

240

RESET,820

RESTRICT

with DROP,58

foreign key action,45

REVOKE,274, 821

right join, 65

ROLLBACK, 824

ROLLBACK TO SAVEPOINT,825

row, 6, 36, 38

row type,106

constructor,36

rule,505

and views,507

for DELETE,513

for INSERT,513

for SELECT,507

compared with triggers,525

for UPDATE,513

1287

S
SAVEPOINT,827

savepoints

defining,827

releasing,818

rolling back,825

scalar

(See expression)

schema,54, 276

creating,54

current,55, 171

public,55

removing,55

SCO OpenServer

IPC configuration,266

search path,55

current,171

search_path,55

search_path configuration parameter,255

SELECT,8, 63, 829

select list,72

SELECT INTO,840

in PL/pgSQL,540

semaphores,263

sequence,158

and serial type,81

sequential scan,247

serial,81

serial4,81

serial8,81

serializability,200

server log,249

log file maintenance,301

server_encoding configuration parameter,

260

server_version configuration parameter,260

SET,176, 842

SET CONSTRAINTS,845

set difference,74

set intersection,74

set operation,74

set returning functions

functions,170

SET SESSION AUTHORIZATION,846

SET TRANSACTION,848

set union,74

SETOF,448

setval,158

set_bit,126

set_byte,126

shared library,225, 467

shared memory,263

shared_buffers configuration parameter,241

SHMMAX, 264

SHOW,176, 850

shutdown,269

SIGHUP,237, 284, 288

SIGINT, 269

signal

backend processes,176

significant digits,??

SIGQUIT,269

SIGTERM,269

silent_mode configuration parameter,251

SIMILAR TO, 129

sliced bread

(See TOAST)

smallint,79

Solaris

IPC configuration,267

shared library,469

start script,235

SOME,165, 165, 169

sorting,74

SPI,588

SPI_connect,588

SPI_copytuple,622

SPI_cursor_close,609

SPI_cursor_fetch,607

SPI_cursor_find,606

SPI_cursor_move,608

SPI_cursor_open,605

SPI_exec,596

SPI_execp,604

SPI_execute,593

SPI_execute_plan,602

spi_exec_query

in PL/Perl,580

SPI_finish,590

SPI_fname,611

SPI_fnumber,612

SPI_freeplan,628

SPI_freetuple,626

SPI_freetuptable,627

SPI_getargcount,599

SPI_getargtypeid,600

SPI_getbinval,614

SPI_getrelname,617

SPI_gettype,615

SPI_gettypeid,616

SPI_getvalue,613

SPI_is_cursor_plan,601

spi_lastoid,574

1288

SPI_modifytuple,624

SPI_palloc,618

SPI_pfree,621

SPI_pop,592

SPI_prepare,597

SPI_push,591

SPI_repalloc,620

SPI_returntuple,623

SPI_saveplan,610

sql_inheritance configuration parameter,259

ssh,270

SSL,270, 368

with libpq, 335, 342

ssl configuration parameter,240

STABLE, 456

standard deviation,163

START TRANSACTION,852

statement_timeout configuration parameter,

256

statistics,315

of the planner,209, 298

stats_block_level configuration parameter,

255

stats_command_string configuration param-

eter,254

stats_reset_on_server_start configuration

parameter,255

stats_row_level configuration parameter,

255

stats_start_collector configuration parame-

ter,254

string

(See character string)

subquery,12, 34, 68, 165

subscript,31

substring,118, 126, 129

sum,12

superuser,4, 273

superuser_reserved_connections configura-

tion parameter,239

syntax

SQL,23

syslog_facility configuration parameter,250

syslog_identity configuration parameter,250

system catalog

schema,57

T
table,6, 38

creating,38

modifying,50

removing,39

renaming,53

table expression,63

table function,68

tableoid,47

tablespace,279

default,256

target list,506

Tcl, 571

template0,277

template1,277, 277

test,326

text,82

threads

with libpq, 368

tid, 109

time,86, 88

constants,90

current,152

output format,90

(See Also formatting)

time span,86

time with time zone,86, 88

time without time zone,86, 88

time zone,91, 256

Australian,256

configuration names,1078

conversion,151

input abbreviations,1075

timelines,303

timeout

client authentication,240

deadlock,258

timestamp,86, 89

timestamp with time zone,86, 89

timestamp without time zone,86, 89

timezone configuration parameter,256

TOAST,1058

and user-defined types,484

per-column storage settings,657

versus large objects,379

token,23

to_char,140

trace_notify configuration parameter,262

transaction,16

transaction ID

wraparound,299

1289

transaction isolation,197

transaction isolation level,197, ??

read committed,198

serializable,199

transaction log

(See WAL)

transform_null_equals configuration param-

eter,259

trigger,111, 497

arguments for trigger functions,498

in C, 499

in PL/pgSQL,556

in PL/Python,586

in PL/Tcl, 575

compared with rules,525

Tru64 UNIX

shared library,469

true,92

TRUNCATE,853

trusted

PL/Perl,582

type

(See data type)

polymorphic,447

type cast,27, 33

U
UNION, 74

determination of result type,186

unique constraint,43

Unix domain socket,333

UnixWare

IPC configuration,267

shared library,469

unix_socket_directory configuration param-

eter,239

unix_socket_group configuration parameter,

240

unix_socket_permissions configuration pa-

rameter,240

UNLISTEN, 854

unqualified name,55

UPDATE,13, 61, 856

updating,61

upgrading,218, 313

user,272

current,171

V
vacuum,297, 859

vacuumdb,927

vacuum_cost_delay configuration parame-

ter,243

vacuum_cost_limit configuration parameter,

243

vacuum_cost_page_dirty configuration pa-

rameter,243

vacuum_cost_page_hit configuration pa-

rameter,243

vacuum_cost_page_miss configuration pa-

rameter,243

value expression,30

varchar,82

variance,163

version,4, 171

compatibility,313

view, 15

implementation through rules,507

updating,518

void, 111

VOLATILE, 456

volatility

functions,456

W
WAL, 323

wal_buffers configuration parameter,245

wal_debug configuration parameter,262

wal_sync_method configuration parameter,

245

WHERE,69

where to log,249

work_mem configuration parameter,241

X
xid, 109

xmax,47

xmin, 47

Y
yacc,218

1290

Z
zero_damaged_pages configuration parame-

ter,262

zlib, 223

1291

